
 

 

Author Response 

Please note that all pages and line numbers refer to those in the revised 
manuscript. In the revised manuscript, the blue color indicates the added 
contents, the green color implies that the contents are updated (only for the 
Figures), and the red color with strikethrough indicates the deleted contents. 
The numbering of all figures has been updated. 
 
Firstly, we would like to thank the editor for giving us the opportunity to modify 
our manuscript. We also want to thank Prof. Bárdossy and the anonymous 
reviewer #2 for the comments that helped us to improve the quality of the 
manuscript. The manuscript is revised now following the comments of the 
reviewers. We additionally improved it in terms of grammar and spelling. Our 
point-by-point response to the comments is given in the following: 
 

Referee Comments 1 

General Comments 

The goal of bias correction is to provide time series which preserve the signal 
of the meteorological models, but are not biased with respect to the 
observations. 
 

Comment 1 

The methodology provides a set of realizations as time series. The 
evaluations are based on the mean of theses series. The mean is however 
not a good bias corrected series, as it has a different marginal (with reduced 
variance) than what was assumed. Thus the comparisons made with the 
mean of the realizations are misleading and do not reflect the quality of the 
corrected time series. 
 

Answer 

The major goal and motivation of this study is to develop a new framework for 
the bias correction of precipitation time series for subsequent modellers, e.g. 
in hydrology, based on the concept of Copulas. Our focus is on the 
introduction and demonstration of the methodology. The framework provides 



 

 

the possibility to obtain a large set of random realizations that give additional 
information about the Probability Density Function (PDF) for each corrected 
time step. Subsequent modellers usually request one corrected value for each 
time step rather than a PDF. This is mainly due to practical reasons since they 
cannot handle the full PDF for subsequent analyses. Therefore, in this study 
we take a typical value (e.g. mean, median or mode) as the estimator of the 
derived PDF for each time step. The mean is finally selected as estimator 
because it is found to perform best. The mean indeed follows a different 
marginal distribution with reduced variance. However, we are more interested 
in better correcting each time step separately instead of better matching the 
statistical distribution. To justify our method, its performance is compared to 
the quantile mapping approach. 
 
The following changes were made in the revised manuscript: 
 
Page 2, Line 28: 
“Finally, the Copula-based approach is compared to the quantile mapping 
correction method. The Root Mean Square Error (RMSE) and the percentage 
of the corrected time steps that are closer to the observations are 
analyzed.The Copula-based correction derived from the mean of the sampled 
distribution reduces the RMSE significantly, while e.g. the quantile mapping 
method results in an increased RMSE for some regions.” 
 
Page 17, Line 10: 
“While this stochastic bias correction method gives a full ensemble and the 
empirical predictive distribution of corrected WRF precipitation, for practical 
reasons one can choose e.g., the expectation, median or mode to get single 
corrected values. This can be regarded as a Copula-based regression by 
taking such a “typical” value as the estimator of the derived empirical 
predictive distribution of corrected WRF precipitation. It is noted that this 
“typical”	
  value (e.g. the mean) can also be directly derived from the analytical 
Copula-based conditional CDF (mean regression curve, Nelsen, 1999).” 
 
Page 18, Line 1: 
“A comparison of corrected WRF data derived by the expectation, median and 
mode of the predictive distribution with observations indicates that the 
correction performs best for the expectation value (see Fig. 10). Both 
simulations based on the median and the mode tend to underestimate the 
precipitation values, thus causing a dry bias over the domain. Therefore in the 
following, the results are shown and analyzed for that case only.” 
 
Page 21, Line 7: 
“The quantile mapping method is often used in bias correction of RCM derived 
precipitation (Dosio and Paruolo, 2011; Gudmundsson et al., 2012). This 
method corrects the bias by rescaling the values of the RCM so that the 
distribution of the RCM matches that of the observations. It corrects all 
moments of the RCM precipitation distribution under the assumption of a 
perfect dependence among the ranks. This full dependence assumption is 
limited: In our study area, the rank correlation between the datasets varies 
between 0.3 and 0.6 (see Fig. 15).  



 

 

  The quantile mapping correction has been performed for comparison to the 
Copula-based approach. The RMSE between the observed (REGNIE) and 
bias corrected modelled data is calculated for both the Copula-based 
correction and the quantile mapping method. The original RMSE (between 
REGNIE and WRF) is also computed as a reference. For the Copula-based 
approach, we calculated the RMSE for all the simulations with respect to the 
mean-, median- and mode value. The changes of the RMSE by different 
corrections over the study area are shown in Fig. 16. The Copula-based 
correction derived from the mean regression reduces the RMSE significantly 
with an average number of −12% over the domain. The Copula-based 
correction derived from the median also reduces the RMSE, but to a less 
degree. The correction derived from Copula-based mode regression reduces 
the RMSE, but results in an increase of the RMSE in some regions. The same 
holds true for the quantile mapping approach. This is in agreement with our 
previous results (see Fig. 10) that the Copula-based correction derived from 
the mean regression performs best. Therefore, in the following analyses, the 
results focus on the Copula-based mean regression approach. 
  To further assess the performance of the Copula-based method, additional 
performance measures are analyzed. The RMSE for different magnitudes of 
observed precipitation (i.e. a quantile RMSE analyses) is done for the 
selected four grid cells (see Fig. 1). The results from the validation period are 
shown in Fig. 17. The RMSE in different quantiles are represented by 
RMSE0.1, RMSE0.2, ..., RMSE1.0, while the subscript indicates the magnitude 
level. RMSE0.1 evaluates the errors in the dry part of the observation 
distribution, implying the (0,1) errors. From RMSE0.2 to RMSE1.0 the RMSE 
are calculated for equally spaced probability intervals of the observed 
empirical CDF of wet days. For example, RMSE1.0 indicates the errors in the 
magnitude of the 10% highest events. As it can be seen from Fig. 17, the 
Copula-based correction performs equally or even better in terms of the 
RMSE in most of the quantiles. 
  Furthermore, we also investigated the percentage of the corrected time 
steps that are closer to the observations compared to the quantile mapping 
method. The results are shown in Fig. 18. The values indicate the percentage 
of the successful corrections (i.e. closer to the observations) by the two bias 
correction methods. It can be seen that the results of the quantile mapping 
correction strongly depends on the rank correlation (see Fig. 15), while the 
Copula-based correction provides a stable correction efficiency over the entire 
domain. The average percentages of the successful correction are 55% for 
the Copula-based correction and 46% for the quantile mapping correction, 
respectively.” 
 
We shifted the text describing the comparison between the Copula-based and 
the quantile mapping approach from the end of section 4.3 to the new section 
4.4. The comparison to the liner scaling method is removed now in the revised 
manuscript. 
 
Please note that the Figure 16 in the revised manuscript is updated 
(compared to that in the answers to the reviewer’s comments). We identified 
and corrected an error in our calculations of the RMSE. 
 



 

 

Page 24, Line 25: 
“When comparing to the quantile mapping correction, the Copula-based 
method has an improved performance in reducing the RMSE. It is also found 
that the Copula-based method allows for a better correction with respect to 
the percentage of the time steps that are closer to the observations after the 
corrections. The Copula-based method is able to provide a stable correction 
efficiency over the entire domain, even when the rank correlations between 
the RCM- and observed precipitation in some regions are low.” 
 
Page43: 
“Figure 10. Relative bias map of mean daily precipitation for Copula-based 
correction by taking the expectation (left), median (middle) and the mode 
(right) as the estimator of the sampled distribution. The results are based on 
the validation period 1986-2000.” 
 
Page48: 
“Figure 15. The rank correlations between RCM and REGNIE precipitation 
over the domain in the validation period from 1986 to 2000.” 
 
Page49: 
“Figure 16. The changes of the RMSE in the validation period (1986-2000) by 
different bias correction methods. The green color indicates a decrease of the 
RMSE, while the ocher color implies an increase of the RMSE.” 
 
Page50: 
“Figure 17. The root mean square errors (RMSE) and the root mean square 
errors for specific probability intervals (RMSE0.1, RMSE0.2, ..., RMSE1.0) for 
different methods. The selected four pixels are the same as in Fig. 13. The 
black solid line indicates the errors without correction. The results are derived 
from the validation period from 1986 to 2000.” 
 
Page51: 
“Figure 18. The percentage of the corrections that are closer to the 
observations. Left: Copula-based correction (mean regression); Right: 
quantile mapping correction. The results are derived from the validation period 
from 1986 to 2000.” 
 

Comment 2 

It is unclear for me why the authors did not use the normal copula for the 
description of the dependence. There is no reason to assume tail 
dependence, and there are no evaluations with respect to extremes. 
 

Answer 

Initially, we did not consider the Gaussian Copula in this study due to the 



 

 

following reason: The Gaussian Copula is able to describe a similar 
dependence structure, but shows slightly higher densities in the lower and 
upper tails compared to the Frank Copula. Based on findings from our 
previous works (Laux et al., 2011, & Vogl et al., 2012), we excluded the 
Gaussian Copula to be a suitable candidate in our study. We now followed the 
suggestions of the reviewer to include the Gaussian Copula as a potential 
candidate in our study. All the results are recalculated. The relative bias map  
(Fig. 11 & 12) in the revised manuscript are updated. 
 
The following changes were made in the revised manuscript: 
 
Page 16, Line 11: 
“Four Copulas (Clayton, Frank, Gumbel and Gaussian) are investigated by 
applying the Goodness-of-fit tests described in section 3.4. Figure 7 shows 
the results of the Goodness-of-fit tests for the calibration period for the 
complete study area. It is found that for most of the grid cells in the study 
area, the Frank Copula can capture the dependence structure best, while for 
the Northeast of Germany the Clayton Copula provides the best fit. In total the 
dependence structure of 72% of the grid cells is modelled by the Frank, 20% 
by the Clayton, 7% by the Gaussian and only 0.09% by the Gumbel Copula. 
  In order to assess for the annual variability of the dependence structures 
between REG- NIE and WRF precipitation time series, the Copula functions 
are identified for the different seasons separately. The corresponding results 
are shown in Fig. 8. 
  While for spring, autumn and winter the Copulas that have no pronounced 
tail dependence (the Frank and Gaussian Copula) dominate (spring 49% 
(Frank) + 22% (Gaussian) = 71%, autumn 53% + 24% = 77% and winter 63% 
+ 28% = 91%), in summer the Clayton Copula provides the best fit for most of 
the grid cells (62%). For all seasons the Gumbel Copula is only selected for 
few grid cells with a maximum number of hits in spring (5% of the grid cells). 
In general the differences are most prominent for winter and summer (see Fig. 
8).” 
 
Page 30: 
“Table 1. Theoretical Copula functions used in this study.” 
 
Page 40: 
“Figure 7. Identified Copula functions between REGNIE and WRF 
precipitation in the calibration period (1971 to 1985) with positive pairs.” 
 
Page 41: 
“Figure 8. Fitted Copula functions between REGNIE and WRF precipitation 
(calibration period (1971–1985), positive pairs only). The Copulas are 
identified for the different seasons (spring –	
  MAM, summer –	
  JJA, autumn –	
  
SON, winter –	
  DJF, from left to right and from top to bottom).” 
 
Page 44: 
“Figure 11. Relative bias of mean daily precipitation for uncorrected (left) and 
corrected WRF precipitation field (right). The results are based on the 
validation period 1986-2000.” 



 

 

 
Page 45: 
“Figure 12. Relative bias between uncorrected (left) and corrected (right) WRF 
mean daily precipitation and the REGNIE data set in Germany for the different 
seasons (spring–MAM, summer–JJA, autumn–SON, winter–DJF, from top to 
bottom). The results are derived for the validation time period (1986-2000).” 
 

Comment 3 & 4 

It is not clear how the authors handle zero precipitation. Further how the 
problem of different zero precipitations for the model and the observations is 
treated? How is the distribution of the lower dry probability modified? 
 
It is unclear to me why the authors did not use truncated copulas as 
suggested in Bárdossy and Pegram (2009) which is referenced in the paper. 
This approach could help to avoid several problems with the zeros. 
 

Answer 

The strategy and procedure how to handle the different cases, including zero 
precipitation is described now in more detail in section 3.6 of the revised 
manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 12, Line 20: 
“The implementation of a bias correction for precipitation (a discrete variable) 
is more complex than a bias correction of continuous variable, e.g. 
temperature. In general four cases have to be distinguished, namely (0,0), 
(0,1), (1,0), and (1,1), where 0 denotes a dry day and 1 indicates a wet day 
(see Fig. 3). A threshold of rainfall amount of 0.1 mm per day was used to 
identify a wet day with respect to the usual precision of rain gauges 
(Dieterichs, 1956; Moon et al., 1994). Therefore, the four cases are defined as 
follows: 
1. (1,1): REGNIE and WRF precipitation ≥ 0.1 mm 
2. (0,1): REGNIE < 0.1 mm, while WRF ≥ 0.1 mm 
3. (1,0): REGNIE ≥ 0.1 mm and WRF < 0.1 mm 
4. (0,0): Both REGNIE and WRF < 0.1 mm 
  Different approaches exist in the literature to account for the intermittent 
nature of rainfall. For example the truncated Copula suggested in Bárdossy 
and Pegram (2009) and the Copula-based mixed model described in Serinaldi 
(2008). Both methods are able to produce time series that statistically hold the 
same proportion of the four different cases (0,0), (0,1), (1,0) and (1,1). These 
methods allow for the correction of the total number of dry days, but do not 
allow to correct individual events in the (0,1) and (1,0) cases. 
  In this study, we aim to an event-based correction as described in the 



 

 

following: The Copula-based concept focuses on the correction of the (1,1) 
cases, i.e. the positive pairs. In order to generate a complete bias corrected 
time series of WRF output, the events that are not covered by the (1,1) case 
are left un- changed. For the (0,0) cases, there is no error. The errors that 
come from the (0,1) and (1,0) cases are not corrected by this method. To 
justify this strategy, we investigated the proportion of the four cases in the 
study area (see Fig. 4): The (1,1) cases take the highest proportion, followed 
by the (0,0) cases. The proportion of both the (0,1) and (1,0) cases are 
comparatively low. The average proportion of these cases are 40% for the 
(1,1) cases, 29% for the (0,0) cases, 19% for the (0,1) cases and 12% for the 
(1,0) cases, respectively.” 
 
Page 36: 
“Figure 3. Illustration of the four cases: (0,0) indicates that both REGNIE and 
WRF show no rain, (0,1) stands for an observation with no precipitation but 
the RCM model shows a rain event, while (1,0) indicates the opposite of (0,1), 
(1,1) implies that both are wet.” 
 
Page 37: 
“Figure 4. The proportion of the four cases over the study area for the 
validation time period (from 1986 to 2000).” 
 

Comment 5 

The fit of a parametric distribution followed by a fit of the copula based on the 
empirical distribution is statistically not correct. 
 

Answer 

We have now corrected this in our revised manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 10, Line 14: 
“Let {r1(1), ..., r1(n)} and {r2(1), ..., r2(n)} denote the rank space values that 
are derived from the fitted theoretical marginal distributions.” 
 

Comment 6a 

Is a parametric fit of the local precipitation distribution really needed? In my 
opinion the empirical distributions or a non-parametric fit would do a better 
job. Further this would avoid some problems with the spatial discontinuities 
imposed by taking different distributions. 
 



 

 

Answer 

The parametric fit of the local precipitation distribution is well-accepted in 
literature (please see e.g. Dupuis, 2007, Gao et al., 2007). It also allows us to 
provide spatially distributed differences, i.e. fitted marginal family maps 
between the WRF and the REGNIE data. This gives additional valuable 
information about the differences in their statistical properties. 
 
The following changes were made in the revised manuscript: 
 
Page 8, Line 23: 
“Generally, both non-parametric and parametric fitting approaches for the 
local precipitation distribution are found in the literature (Dupuis, 2007; Gao et 
al., 2007; Bárdossy and Pegram, 2009; van den Berg et al., 2011). In this 
study a parametric fitting of the precipitation distribution is applied to allow 
also an illustration of the spatially distributed differences (provided as the 
fitted marginal distribution family maps) between WRF and REGNIE. This 
gives additional valuable information about their differences in statistical 
properties.” 
 

Comment 6b 

The use of different copulas for the different locations is also causing spatial 
ruptures. 
 

Answer 

Using one common Copula to describe the dependence over the whole 
domain may not be appropriate. In some areas, this does not adequately 
reflect the underlying dependence structures since the dependence structure 
also depends e.g. on the topography and prevailing circulation patterns. 
 
The following changes were made in the revised manuscript: 
 
Page 9, Line 23: 
“The Copulas from different families describe different dependence structures. 
To increase the accuracy of the description of the dependence, different types 
of Copulas are considered, since one common Copula might be incapable to 
capture the dependence structure for all grid cells over the entire study area 
and for all seasons.” 
 

Comment 6c 

The method provides individual time series for each pixel. The simulated 



 

 

series are independent, thus there is no spatial coherence. This is a serious 
restriction of the suggested methodology, which can thus only be used for 
local and small scale studies. 
 

Answer 

Indeed, the method corrects the time series for each pixel independently. 
More details about how spatial patterns are preserved are now inserted in our 
revised manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 20, Line 5: 
“Finally, in order to investigate the spatial coherence of the bias corrected 
precipitation fields, exemplarily the sequence of three selected days (from 
January 9th to 11th, 1986) are shown in Fig. 14. The left column from top to 
bottom are the observed precipitation fields for these three days. In the middle 
are the uncorrected (original) WRF simulated precipitation fields and the right 
column indicates the bias corrected WRF precipitation fields: While correcting 
the absolute precipitation values, the spatial coherence of the precipitation 
patterns are retained after the bias correction procedure.” 
 
Page 24, Line 18: 
“By investigating the spatial coherence, the proposed method is found to be 
able to preserve the spatial structure of the WRF model output. This is due to 
the reason that the Copula-based approach is conditioned on the WRF 
simulation. The method is adjusting the value of the WRF precipitation 
according to the fitted Copula model. Even though the Copula models are 
estimated for each grid cell, the spatial coherence is captured by the Copula 
model as both the Copula families as well as the marginal distributions are 
also spatially clustered.” 
 
Page 47: 
“Figure 14. Daily precipitation fields over Germany for the three consecutive 
days from January 9 to January 11, 1986.” 
 

Comment 7 

The evaluation of the series is only concentrating on the mean behavior of the 
simulated series. There are no attempts to look at other statistics, such as 
variance, dry probability etc. 
 



 

 

Answer 

Besides the evaluation of the mean daily precipitation, we also analyzed 
mean monthly precipitation, the Root Mean Square Error (RMSE), the 
quantile RMSE and the percentage of the time steps that are closer to the 
observations after the application of our correction method.  
 
The following changes were made in the revised manuscript: 
 
Page 21, Line 14: 
“The quantile mapping correction has been performed for comparison to the 
Copula-based approach. The RMSE between the observed (REGNIE) and 
bias corrected modelled data is calculated for both the Copula-based 
correction and the quantile mapping method. The original RMSE (between 
REGNIE and WRF) is also computed as a reference. For the Copula-based 
approach, we calculated the RMSE for all the simulations with respect to the 
mean-, median- and mode value. The changes of the RMSE by different 
corrections over the study area are shown in Fig. 16. The Copula-based 
correction derived from the mean regression reduces the RMSE significantly 
with an average number of −12% over the domain. The Copula-based 
correction derived from the median also reduces the RMSE, but to a less 
degree. The correction derived from Copula-based mode regression reduces 
the RMSE, but results in an increase of the RMSE in some regions. The same 
holds true for the quantile mapping approach. This is in agreement with our 
previous results (see Fig. 10) that the Copula-based correction derived from 
the mean regression performs best. Therefore, in the following analyses, the 
results focus on the Copula-based mean regression approach. 
  To further assess the performance of the Copula-based method, additional 
performance measures are analyzed. The RMSE for different magnitudes of 
observed precipitation (i.e. a quantile RMSE analyses) is done for the 
selected four grid cells (see Fig. 1). The results from the validation period are 
shown in Fig. 17. The RMSE in different quantiles are represented by 
RMSE0.1, RMSE0.2, ..., RMSE1.0, while the subscript indicates the magnitude 
level. RMSE0.1 evaluates the errors in the dry part of the observation 
distribution, implying the (0,1) errors. From RMSE0.2 to RMSE1.0 the RMSE 
are calculated for equally spaced probability intervals of the observed 
empirical CDF of wet days. For example, RMSE1.0 indicates the errors in the 
magnitude of the 10% highest events. As it can be seen from Fig. 17, the 
Copula-based correction performs equally or even better in terms of the 
RMSE in most of the quantiles. 
  Furthermore, we also investigated the percentage of the corrected time 
steps that are closer to the observations compared to the quantile mapping 
method. The results are shown in Fig. 18. The values indicate the percentage 
of the successful corrections (i.e. closer to the observations) by the two bias 
correction methods. It can be seen that the results of the quantile mapping 
correction strongly depends on the rank correlation (see Fig. 15), while the 
Copula-based correction provides a stable correction efficiency over the entire 
domain. The average percentage of the successful correction are 55% for the 
Copula-based correction and 46% for the quantile mapping correction, 



 

 

respectively.” 
 
Page 24, Line 25: 
“When comparing to the quantile mapping correction, the Copula-based 
method has an improved performance in reducing the RMSE. It is also found 
that the Copula-based method allows for a better correction with respect to 
the percentage of the time steps that are closer to the observations after the 
corrections. The Copula-based method is able to provide a stable correction 
efficiency over the entire domain, even when the rank correlations between 
the RCM- and observed precipitation in some regions are low.” 
 

Comment 8 

The bias remaining after the correction is very high. It would be interesting to 
know how the observed and modelled precipitation itself was changing. Was 
the signal captured? 
 

Answer  

In our study, after the correction the average relative bias of daily mean 
precipitation from WRF for the validation period is reduced from 10 % to 
−1 %. In different seasons, the average bias are reduced from 32% to 16% in 
spring (MAM), from -15% to -11% in summer (JJA), from 4% to -1% in autumn 
(SON) and from 28% to -3% in winter (DJF). The results show that the biases 
are corrected efficiently especially in winter. To investigate typical situations in 
detail, we also evaluated the monthly mean precipitation for four selected grid 
cells. It is also shown that the biases are significantly reduced. 
  We are not sure, whether or not the question of the reviewer is directed 
towards climate trends. We do not address climate trends in this study. The 
analyses of climate trends are beyond the scope of this study. 
 
No changes in the revised manuscript are made. 
 

Comment 9 

The possibly biggest problem with the method is its partial inability to reflect 
the signal of the meteorological model. The weaker the dependence between 
model and observations the less the model signal is reflected after bias 
correction. 
This is illustrated with a small example. I simulated 500 realizations of 
modelled precipitation with a mean of 2mm using an exponential distribution. 
The observed precipitation has a mean of 3 mm and follows an exponential 
distribution. Copulas with different degrees of dependence ranging from full 
dependence to independence were used. 



 

 

It is assumed that the model shows a precipitation increase of 50%. The 
corresponding bias corrected series were simulated, and the means were 
compared to the original mean (3mm for the observations). The increase in 
precipitation varied between 0 and 50% depending on the degree of 
dependence. The weaker the dependence the smaller is the signal which is 
captured. This is unfortunately not in the sense of bias correction, where the 
signal should be reflected. 
 

Answer 

In order to analyze the signal-dependence relationship and inspired by the 
principle idea of the reviewer’s example calculation, we followed the example 
and repeated the calculations. Apart from the results obtained by the 
reviewer, we found that our method is able to reflect the signal. The results 
are shown in the answers to the reviewer’s comments. We decided not to 
include them in the final revised version. 
 

Comment 10 

Remark: The quantile/quantile transformation can be regarded as a special 
case of the suggested methodology with a fully dependent copula (rank 
correlation equal to one). 
 

Answer 

It is true that the quantile mapping method can be regarded as a special case 
of the proposed methodology as it corrects all the moments of modelled 
precipitation distribution under the assumption of the full dependence between 
the ranks. However, this full dependence assumption is limited. In our study 
area, the rank correlation between the datasets varies between 0.3 and 0.6. 
By comparing to the quantile mapping correction, the RMSE and the 
percentage of the corrected time steps that is closer to the observations are 
analyzed. 
 
The following changes were made in the revised manuscript. 
 
Page 21, Line 14: 
“The quantile mapping correction has been performed for comparison to the 
Copula-based approach. The RMSE between the observed (REGNIE) and 
bias corrected modelled data is calculated for both the Copula-based 
correction and the quantile mapping method. The original RMSE (between 
REGNIE and WRF) is also computed as a reference. For the Copula-based 
approach, we calculated the RMSE for all the simulations with respect to the 
mean-, median- and mode value. The changes of the RMSE by different 



 

 

corrections over the study area are shown in Fig. 16. The Copula-based 
correction derived from the mean regression reduces the RMSE significantly 
with an average number of −12% over the domain. The Copula-based 
correction derived from the median also reduces the RMSE, but to a less 
degree. The correction derived from Copula-based mode regression reduces 
the RMSE, but results in an increase of the RMSE in some regions. The same 
holds true for the quantile mapping approach. This is in agreement with our 
previous results (see Fig. 10) that the Copula-based correction derived from 
the mean regression performs best. Therefore, in the following analyses, the 
results focus on the Copula-based mean regression approach. 
  To further assess the performance of the Copula-based method, additional 
performance measures are analyzed. The RMSE for different magnitudes of 
observed precipitation (i.e. a quantile RMSE analyses) is done for the 
selected four grid cells (see Fig. 1). The results from the validation period are 
shown in Fig. 17. The RMSE in different quantiles are represented by 
RMSE0.1, RMSE0.2, ..., RMSE1.0, while the subscript indicates the magnitude 
level. RMSE0.1 evaluates the errors in the dry part of the observation 
distribution, implying the (0,1) errors. From RMSE0.2 to RMSE1.0 the RMSE 
are calculated for equally spaced probability intervals of the observed 
empirical CDF of wet days. For example, RMSE1.0 indicates the errors in the 
magnitude of the 10% highest events. As it can be seen from Fig. 17, the 
Copula-based correction performs equally or even better in terms of the 
RMSE in most of the quantiles. 
  Furthermore, we also investigated the percentage of the corrected time 
steps that are closer to the observations compared to the quantile mapping 
method. The results are shown in Fig. 18. The values indicate the percentage 
of the successful corrections (i.e. closer to the observations) by the two bias 
correction methods. It can be seen that the results of the quantile mapping 
correction strongly depends on the rank correlation (see Fig. 15), while the 
Copula-based correction provides a stable correction efficiency over the entire 
domain. The average percentage of the successful correction are 55% for the 
Copula-based correction and 46% for the quantile mapping correction, 
respectively.” 
 
Page 24, Line 25: 
“When comparing to the quantile mapping correction, the Copula-based 
method has an improved performance in reducing the RMSE. It is also found 
that the Copula-based method allows for a better correction with respect to 
the percentage of the time steps that are closer to the observations after the 
corrections. The Copula-based method is able to provide a stable correction 
efficiency over the entire domain, even when the rank correlations between 
the RCM- and observed precipitation in some regions are low.” 
 	
  



 

 

Referee Comments 2 

General Comments 

The authors have submitted a paper in which precipitation fields are rescaled 
based on copulas. While the idea is interesting (something similar was 
already published in HESS by van den Berg et al., 2011), it does not really 
make use of the advantages of copulas. Basically, van den Berg et al. perform 
a rescaling where the intra-pixel variability in a coarse scale observation is 
estimated based on copulas (leading to the pdf of the expected rainfall within 
one coarse scale pixel). In this paper, more or less the same is done, except 
that the mean or median of the pdf is used as estimation of precipitation 
value. So, the total information of the pdf is lost, and actually, one obtains a 
relation between the expected mean (or median) and an observation (the 
copula in- deed corrects for bias). Actually, what is thus obtained is a kind of 
non-linear regression between REGNIE and (bias-corrected) WRF. My 
question then is: why should one go through copulas and shouldn’t any kind 
of non-linear regression be done immediately? Why do the authors throw 
away all information within the conditional CDF obtained from the copula? 
Why did the authors rescale the REGNIE to 7 km and didn’t they keep the 1 
km scale (and then follow van den Berg et al.), as it is perfectly possible to 
compare different scales using the proposed framework. 
 

Comment 1 

Why should one go through copulas and shouldn’t any kind of non-linear 
regression be done immediately? 
 

Answer 

The non-linear regression is a bijection method. The Copula-based method is 
a stochastic bias correction method. It provides a full PDF of the corrected 
value for each time step. For practical reasons and the typical needs of 
subsequent modellers, we take the mean as estimator of the derived PDF for 
each time step. Different to the non-linear regression, this mean regression 
curve, however, is derived based on the dependence between RCM and 
observations. There are two advantages compared to the non-linear 
regression: 1) The Copula-based regression provides a higher flexibility since 
it can be used with different combination of marginals and Copulas; 2) The 
Copula-based regressions predicts the full ensemble of the possible 
outcomes which gives an additional quality criterion of the bias correction. 
 
The following changes were made in the revised manuscript: 
 



 

 

Page 25, Line 8: 
“Apart from traditional approaches such as the quantile mapping, which is 
based on a bijection transfer function, the Copula-based stochastic bias 
correction technique provides the information of the full PDF for each 
individual time step. This additionally provides a quality criterion for the bias 
correction, e.g. expressed as the spread of the PDF in form of the 
interquantile range. Subsequent modellers using RCM derived precipitation 
data are potentially enabled to make use of the full PDF, especially if they are 
interested in other statistical moments or in estimating uncertainties arising 
from this approach.” 
 

Comment 2 

Why do the authors throw away all information within the conditional CDF 
obtained from the copula? 
 

Answer 

Our approach calculates and stores the full information of the sampled PDF 
for each time step. Thus, we do not throw away the information about the 
distributions. Due to the practical reasons, we take the mean as the estimator 
of the sampled PDF. 
 
The following changes were made in the revised manuscript: 
 
Page 17, Line 10: 
“While this stochastic bias correction method gives a full ensemble and the 
empirical predictive distribution of corrected WRF precipitation, for practical 
reasons one can choose e.g., the expectation, median or mode to get single 
corrected values. This can be regarded as a Copula-based regression by 
taking such a “typical” value as the estimator of the derived empirical 
predictive distribution of corrected WRF precipitation. It is noted that this 
“typical” value (e.g. the mean) can also be directly derived from the analytical 
Copula-based conditional CDF (Mean Regression Curve, Nelsen, 1999).” 
 
Page 25, Line 12: 
“Subsequent modellers using RCM derived precipitation data are potentially 
enabled to make use of the full PDF, especially if they are interested in other 
statistical moments or in estimating uncertainties arising from this approach.” 
 

Comment 3 

Why did the authors rescale the REGNIE to 7 km and didn’t they keep the 1 
km scale (and then follow van den Berg et al.), as it is perfectly possible to 



 

 

compare different scales using the proposed framework. 
 

Answer 

The aim of our study is the bias correction of WRF precipitation fields instead 
of a downscaling. The REGNIE data was aggregated from 1 km to 7 km to 
achieve the same resolution as WRF. 
 
The following changes were made in the revised manuscript: 
 
Page 5, Line 10: 
 
“To achieve the same resolution, the REGNIE data are aggregated to 7 km.” 
 

Specific Comments 

Comment 1 

page 7195, line 15: why only consider parametric functions? 
 

Answer 

Please see the response to General Comment #6a of reviewer #1. 
 

Comment 2 

Figure 2 shows the density, while the paper is referring to cumulative 
probabilities (so c versus C) 
 

Answer 

The Figure 2 has been updated now in the revised manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 35: 
“Figure 2. Visualisation of a bivariate Copula model consisting of two marginal 
distributions and a theoretical Copula function that describes the pure 
dependence.” 



 

 

 

Comment 3 

page 7198, lines 24-25: it is not clear to me why step 6 is needed as in the 
end only the mean (or median) is used: this could be determined right away 
instead of first a random set from which the mean (or median) is calculated. 
 

Answer 

The Copula-based correction is a stochastic method. Repeating the step 6 
and step 7 can be regarded as the Monte Carlo simulation to obtain the 
random realizations. We take the mean of the realization as the estimation of 
the corrected value regarding to the practical reasons, e.g. spatial illustration. 
We stated now more clearly in the revised manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 12, Line 15: 
“This provides the possibility to obtain a large set of random realizations and 
additionally gives the information of a probability density function (PDF) for 
each corrected time step. From the PDF the spread of the distribution in form 
of the interquantile range can e.g. be provided as an additional uncertainty 
criterion for the bias correction.” 
 
Page 17, Line 10: 
“While this stochastic bias correction method gives a full ensemble and the 
empirical predictive distribution of corrected WRF precipitation, for practical 
reasons one can choose e.g., the expectation, median or mode to get single 
corrected values. This can be regarded as a Copula-based regression by 
taking such a “typical” value as the estimator of the derived empirical 
predictive distribution of corrected WRF precipitation. It is noted that this 
“typical” value (e.g. the mean) can also be directly derived from the analytical 
Copula-based conditional CDF (Mean Regression Curve, Nelsen, 1999).” 
 

Comment 4 

page 7199, last paragraph: operationally, you should also apply it to the (0,1) 
case, as you have no idea whether the REGNIE-data is 0 or 1. 
 

Answer 

The implementation of a bias correction for precipitation, in general, needs to 
investigate four cases, i.e. (0,0), (0,1), (1,0), and (1,1). Our strategy to deal 



 

 

with these four cases is now described in more detailed in the revised 
manuscript. 
 
The following changes were made in the revised manuscript. 
 
Page 13, Line 9: 
“  Different approaches exist in the literature to account for the intermittent 
nature of rainfall. For example the truncated Copula suggested in Bárdossy 
and Pegram (2009) and the Copula-based mixed model described in Serinaldi 
(2008). Both methods are able to produce time series that statistically hold the 
same proportion of the four different cases (0,0), (0,1), (1,0) and (1,1). These 
methods allow for the correction of the total number of dry days, but do not 
allow to correct individual events in the (0,1) and (1,0) cases. 
  In this study, we aim to an event-based correction as described in the 
following: The Copula-based concept focuses on the correction of the (1,1) 
cases, i.e. the positive pairs. In order to generate a complete bias corrected 
time series of WRF output, the events that are not covered by the (1,1) case 
are left un- changed. For the (0,0) cases, there is no error. The errors that 
come from the (0,1) and (1,0) cases are not corrected by this method. To 
justify this strategy, we investigated the proportion of the four cases in the 
study area (see Figure 4): The (1,1) cases take the highest proportion, 
followed by the (0,0) cases. The proportion of both the (0,1) and (1,0) cases 
are comparatively low. The average proportion of these cases are 40% for the 
(1,1) cases, 29% for the (0,0) cases, 19% for the (0,1) cases and 12% for the 
(1,0) cases, respectively.” 
 

Comment 5 

page 7199: what are the proportions of (0,0), (1,1), (0,1) and (1,0) within the 
data used?, Is it also possible to show a scatterplot of observations versus 
RCM? 
 

Answer 

The proportions of (0,0), (0,1), (1,0) and (1,1) cases are calculated. The 
results are shown and discussed in the revised manuscript. 
We were analyzing scatterplots for the (1,1) case at four different grid cells 
(please see answers to the reviewer’s comments), but decided not to include 
them in the final revised version.  
 
The following changes were made in the revised manuscript. 
 
Page 13, Line 23: 
“To justify this strategy, we investigated the proportion of the four cases in the 
study area (see Figure 4): The (1,1) cases take the highest proportion, 
followed by the (0,0) cases. The proportion of both the (0,1) and (1,0) cases 



 

 

are comparatively low. The average proportion of these cases are 40% for the 
(1,1) cases, 29% for the (0,0) cases, 19% for the (0,1) cases and 12% for the 
(1,0) cases, respectively.” 
 
Page 37: 
“Figure 4. The proportion of the four cases over the study area for the 
validation time period (from 1986 to 2000).” 
 

Comment 6 

page 7202”, line 7: the Frank copula also allows to model negative 
dependence. 
 

Answer 

We stated this more clearly in the revised manuscript. 
 
The following changes were made in the revised manuscript: 
 
Page 10, Line 4: 
“For the Clayton Copula, the formulas of positive and negative dependence 
are different. The parameter θ can take values −1 < θ < 0 to model negative 
dependence. In that case the formula is  
Cθ(u,v) = [max(u−θ + v−θ − 1,0)]−1/θ 
For the data used in this study, negative dependences could not be found. 
Therefore it is θ�[0,∞] and the Clayton Copula is defined as described in 
Table 1.” 
Please note that this part has been moved from section 4.2 to section 3.4 and 
modified. 
 

Comment 7 

page 7203 line 10: here you actually could do the same with a non-linear 
regression 
 

Answer 

Please see the response to General Comment #1 of reviewer #2. 
 



 

 

Comment 8 

page 7203, line 18: does this hold if you look at the blue line? 
 

Answer 

For most of the time steps the blue line (corrected WRF precipitation) is 
indeed closer to REGNIE precipitation compared to the raw WRF 
precipitation. We also calculated the overall proportion of successful 
corrections (the time steps that are closer to the observations after correction) 
for the whole study area. 
 
The following changes were made in the revised manuscript: 
 
Page 22, Line 12: 
“Furthermore, we also investigated the percentage of the corrected time steps 
that are closer to the observations compared to the quantile mapping method. 
The results are shown in Fig. 18. The values indicate the percentage of the 
successful corrections (i.e. closer to the observations) by the two bias 
correction methods. It can be seen that the results of the quantile mapping 
correction strongly depends on the rank correlation (see Fig. 15), while the 
Copula-based correction provides a stable correction efficiency over the entire 
domain. The average percentage of the successful correction are 55% for the 
Copula-based correction and 46% for the quantile mapping correction, 
respectively.” 
 

Additional changes which are not related to the suggestions 

of the reviewers are: 

Page 4, Line 15: 
“In this study, a Copula-based stochastic bias correction method is applied to 
correct each individual time step of a RCM simulation. This is different to the 
traditional transfer function based statistical correction approaches. The 
strategy of this method is the identification and description of the underlying 
dependence structures between observed and modeled climate variables 
(here: precipitation) and its application for bias correction. It is known that the 
traditional measures of dependence (e.g. Pearson’s correlation coefficient) 
can only capture the strength of the linear dependence as a single global 
parameter. Alternatively, Copulas are able to describe the complex non-linear 
dependence structure between variables (Bárdossy and Pegram, 2009). 
Based on the identified dependence structure between observed and 
modeled precipitation and the identified respective marginal distributions, a 
set of realizations is finally obtained through Monte Carlo simulations. 
  Recently, Copulas are used for various applications in hydrometeorology 
(e.g., Gao et al., 2007; Serinaldi, 2008; van den Berg et al., 2011; Bárdossy 



 

 

and Pegram, 2012).” 
 
Page 8, Line 20: 
“3.3 Marginal distribution estimation” 
 
Page 9, Line 22: 
“3.4 Copula function estimation” 
 
Page 9, Line 27: 
“In this study, four different one-parametric Copulas (see Table 1) are 
selected: The Gumbel Copula is able to describe an upper tail dependence 
structure, while the Clayton Copula allows to express higher probability in the 
lower tail. The Frank Copula exhibits no tail dependence, and the Gaussian 
Copula describes a similar dependence as the Frank Copula, but with slightly 
higher densities in the lower and upper tails (Venter, 2002; Schmidt, 2007).” 
 
Page 22, Line 20: 
“5 Summary and conclusions” 
 
Page 22, Line 22: 
“The strategy of this method is the identification and description of underlying 
dependence structures between RCM and observed precipitation and its 
application for bias correction.” 
 
Page 23, Line 6: 
“The conditional distribution derived from fitted Copula model forms the basis 
of the correction procedure. It provides the possibility to access all the 
possible outcomes of the corrected value and additionally gives the 
information of a PDF for each corrected time step.” 
 
Page 24, Line 11: 
“For the investigation of the spatial performance, the Copula correction based 
on the mean value is applied.”	
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Abstract

Dynamically downscaled precipitation fields from regional climate model (RCM) often can-
not be used directly for local regional climate change impact studies. Due to their inherent
biases, i.e. systematic over- or underestimations compared to observations, several correc-
tion approaches have been developed. Most of the bias correction procedures such as the5

quantile mapping approach employ a transfer function that is based on the statistical dif-
ferences between RCM output and observations. Apart from such transfer function based
statistical correction algorithms, a stochastic bias correction technique, based on the con-
cept of Copula theory, is developed here and applied to correct precipitation fields from
the Weather Research and Forecasting (WRF) model. As dynamically downscaled precip-10

itation fields we used high resolution (7 km, daily) WRF simulations for Germany driven
by ERA40 reanalysis data for 1971–2000. The REGNIE data set from Germany Weather
Service is used as gridded observation data (1 km, daily) and rescaled aggregated to 7km
for this application. The 30-year time series are splitted into a calibration (1971–1985) and
validation (1986–2000) period of equal length. Based on the estimated dependence struc-15

ture (described by the Copula function) between WRF and REGNIE data and the identi-
fied respective marginal distributions in the calibration period, separately analyzed for the
different seasons, conditional distribution functions are derived for each time step in the
validation period. This finally allows to get additional information about the range of the
statistically possible bias corrected values. The results show that the Copula-based ap-20

proach efficiently corrects most of the errors in WRF derived precipitation for all seasons. It
is also found that the Copula-based correction performs better for wet bias correction than
for dry bias correction. In autumn and winter, the correction introduced a small dry bias in
the Northwest of Germany. The average relative bias of daily mean precipitation from WRF
for the validation period is reduced from 10 % (wet bias) to −1 % (slight dry bias) after the25

application of the Copula-based correction. The bias in different seasons is corrected from
32 % (MAM), −15 % (JJA), 4 % (SON) and 28 % (DJF) to 16 % (MAM), −11 % (JJA), −1 %
(SON) and −3 % (DJF), respectively. Finally, the Copula-based approach is compared with
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linear scaling and to the quantile mapping correction approaches method. by analysing
the RMSE and quantile RMSE. The results show that the Copula-based correction has
improved performance in all of the quantiles, except for the extremes. The Root Mean
Square Error (RMSE) and the percentage of the corrected time steps that are closer to
the observations are analyzed. The Copula-based correction derived from the mean of5

the sampled distribution reduces the RMSE significantly, while e.g. the quantile mapping
method results in an increased RMSE for some regions.

1 Introduction

Most climate change impact studies operate on regional and local scale. Global climate
models (GCMs), however, provide climatological information only on coarse scales, usually10

in a horizontal resolution of 100–300 km. Since they are not able to mimic the regional and
local scale climate variability, further refinement is necessary. As dynamical downscaling,
regional climate models (RCMs) are capable to bridge the gap between large-scale GCM
data and local-scale information to conduct climate change impact studies. Nevertheless,
the RCM simulations usually do not agree well with observations even if downscaled to15

high spatial resolutions (Smiatek et al., 2009; Teutschbein and Seibert, 2010). Thus, they
might not be useful for deriving hydrological impacts on local scales directly (Graham et al.,
2007a, b; Christensen et al., 2008; Bergström et al., 2001). Therefore, further bias correc-
tion is often required. The impacts of biases on hydrological and agriculture modeling has
been studied extensively (e.g., Kunstmann et al., 2004; Baigorria et al., 2007; Ghosh and20

Mujumdar, 2009; Ott et al., 2013). Precipitation is an important parameter in climate change
impact studies (Schmidli et al., 2006). RCMs tend to generate too many wet days with small
precipitation amounts (Schmidli et al., 2006; Ines and Hansen, 2006). In addition, RCMs of-
ten contain under- and overestimations of rainfall as well as incorrect representations of
the seasonality (Terink et al., 2010). Therefore, several bias correction methods have been25

developed. These methods range from simple scaling approaches such as the linear scal-
ing approach (e.g., Lenderink et al., 2007) and local intensity scaling (e.g., Schmidli et al.,
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2006) to methods like quantile mapping (e.g., Ines and Hansen, 2006). Bias correction
techniques usually employ the use of a transfer function that is based on the statistical
differences between observed and modeled climate variables to adjust the modeled data
under the assumption that these functions are stationary. A recent overview of bias correc-
tion methods for hydrological application is provided e.g. by Teutschbein and Seibert (2012)5

and Lafon et al. (2013).
In this study, a Copula-based stochastic bias correction method is applied which is

different to the traditional transfer function approach. The main idea of this method is the
identification and description of the underlying dependence structure between observed
and modeled climate variables (here: precipitation) instead of the biases between them.10

It is well known that the traditional measures of dependence (e.g. Pearson’s correlation
coefficient) can only capture the strength of the linear dependence as a global parameter
instead of describing the complex non-linear dependence structure between variables
(Bárdossy and Pegram, 2009).

In this study, a Copula-based stochastic bias correction method is applied to correct each15

individual time step of a RCM simulation. This is different to the traditional transfer function
based statistical correction approaches. The strategy of this method is the identification
and description of the underlying dependence structures between observed and modeled
climate variables (here: precipitation) and its application for bias correction. It is known that
the traditional measures of dependence (e.g. Pearson’s correlation coefficient) can only20

capture the strength of the linear dependence as a single global parameter. Alternatively,
Copulas are able to describe the complex non-linear dependence structure between vari-
ables (Bárdossy and Pegram, 2009). Based on the identified dependence structure between
observed and modeled precipitation and the identified respective marginal distributions, a
set of realizations is finally obtained through Monte Carlo simulations.25

Recently, Copulas are used for various applications in hydrometeorology (e.g., Gao et al.,
2007; Serinaldi, 2008; van den Berg et al., 2011; Bárdossy and Pegram, 2012). Copula-
based bias correction techniques have been originally introduced by Laux et al. (2011)
and Vogl et al. (2012), and are extended in this study by investigating gridded precipitation
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fields instead of selected individual and unevenly distributed stations. The Copula mod-
els are estimated for each single grid cell instead of choosing the most dominant model
for the whole domain. Bayesian Information Criterion (BIC) is implemented in addition to
Kolmogorov–Smirnov test (K–S test) for marginal distribution Goodness-of-fit test, as the
large sample size makes the K–S test highly sensitive. The performance of the correction5

method is analyzed for differents seasons to investigate seasonal variability. This study is
based on data for a 30 year time period (1971–2000) of high resolution (7 km) dynamical
downscaled precipiation precipitation fields using the Weather Research and Forecasting
Model WRF-ARW (Berg et al., 2013) are used. REGNIE data from Germany Weather Ser-
vice were used as the gridded observation data source. To achieve the same resolution,10

the REGNIE data are aggregated to 7 km. In the calibration period, only positive pairs (both
REGNIE and WRF data indicate precipitation) are used to calibrate the model. Therefore, in
the validation period only the days that belong to positive pairs are corrected and the other
days are kept the same as the original WRF data.

The article is structured as follows: in Sect. 2 the data sets for this application are in-15

troduced. Section 3 briefly describes the basic theory of Copulas and the procedure of
Copula-based conditional simulations to correct RCM precipitation. Results of application
of the Copula-based approach for Germany are shown in Sect. 4, followed by the discussion
summary and conclusions (Sect. 5).

2 Data20

In this section the data sources which are used for the application of the Copula-based
bias correction method for gridded data sets is described. The newly developed approach
is applied for Germany (Fig. 1) for a 30 year time period from 1971 to 2000. The RCM
output and the observational data that is used in this application are both gridded data in
7 km spatial resolution and in daily scale. We split the 30 year time series into a calibration25

(1971–1985) and validation (1986–2000) period of equal length.
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2.1 RCM data

Dynamically downscaled precipitation fields over Germany from a RCM simulation (Berg
et al., 2013) with the non-hydrostatic WRF-ARW model (Skamarock et al., 2008) are used.
For this data set, the WRF-ARW simulations are forced by ERA40 reanalysis data (Uppala
et al., 2005) from 1971 to 2000 at the boundaries which implies large-scale circulation5

close to observations. Due to the coarse resolution of the GCM, a double-nesting approach
is applied in Lambert conformal map projection. The coarse nest extends over all of Europe
(42 km) and the fine nest covers Germany and the near surroundings (7 km). The model
uses 40 vertical levels for both nests. For further details (e.g. parameterization schemes)
on the applied WRF-ARW setup we refer to Berg et al. (2013) and the references listed10

therein.

2.2 Observational data

As observations, we used the 1 km gridded daily data set REGNIE (DWD, 2011) from the
German Weather Service (DWD). The REGNIE product is available for complete Germany
from 1951 on and the number of underlying stations is approximately 2000 stations. The15

statistical gridding approach of station data is based on the spatial interpolation of anoma-
lies compared to long-term mean values. For the background climatological field a multi-
linear regression approach is applied where the geographical position, elevation and wind
exposure of the stations are taken into account. For the calculation of the daily precipita-
tion fields, station values are first assigned to a grid point and divided by the background20

data to calculate anomalies. The anomalies are spatially interpolated using inverse distance
weighted interpolations, and the results are finally multiplied by the background field. For
the grid cell based bias correction the 1 km REGNIE data set is up-scaled and remapped
to the 7 km WRF grid such that precipitation amounts are conserved. Also, the time period
is kept the same as WRF output (1971–2000).25
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3 Methodology

In this section the fundamentals of Copula theory are briefly summarized. Details about
Copula theory are given e.g. in Nelsen (1999). The basis of the Copula-based bias cor-
rection algorithm used in this study is a bivariate Copula model that allows to model the
dependence structure between WRF and REGNIE data. The Copula model consists of two5

respective marginal distributions and a bivariate Copula function and is then used to gen-
erate bias corrected WRF data by conditional stochastic sampling. Details about the bias
correction algorithm are described below. In the following section,X and Y refer to REGNIE
and WRF data set, respectively.

3.1 Copula theory10

Let (X,Y ) be a pair of random variates with a realization (x,y) and the bivariate joint distri-
bution FXY (x,y). Following Sklar’s Theorem (Sklar, 1959), there exists an unique function
C (Copula) such that:

F (x,y) = C(FX(x),FY (y)) x,y ∈ R
= C(u,v) u,v ∈ [0,1], (1)15

with u= FX(x) and v = FY (y).
The Copula functions provide a functional link between the two univariate marginal dis-

tributions FX(x), FY (y). As the Copula function allows to model the pure dependence
between the two variates X and Y , it is rather flexible to describe their relationship with full20

freedom to the choice of the univariate marginal distributions. This is especially advanta-
geous in cases, where the dependence structure between the variates is too complex to be
modelled by a multivariate Gaussian distribution, as it is often the case for hydrometeoro-
logical variables (Salvadori and Michele, 2007; Dupuis, 2007).
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3.2 Copula models

As a consequence of Sklar’s Theorem, each complex and unknown joint distribution
FXY (x,y) can be estimated by assuming specific parametric functions for FX , FY and
C in Eq. (1). The bivariate Copula model of the variates X and Y consists of two univariate
parametric marginal distributions (FX(x) and FY (y)) and a theoretical parametric Copula5

function Cθ(u,v) that can be estimated separately based on the realizations x,y. Figure 2
visualizes the process of estimating a Copula model with a bivariate exemplary data set,
i.e. realizations (x,y) of the two random variates X and Y .

A scatter plot of the two realizations (x,y) is shown in Fig. 2 (left). The Copula model for
the data set consists of two marginals and the theoretical Copula. Therefore, the first step10

is to estimate the theoretical univariate distribution functions for the two variates X and Y
(see Fig. 2, middle).

The next step is to estimate the theoretical Copula function Cθ (see Fig. 2, right). Finally,
the unknown joint distribution FXY (x,y) is fully determined by the marginal distributions
and the Copula function, i.e. the dependence structure itself. Figure 2 visualizes the fact15

that different marginal distributions and theoretical Copula functions can be combined in-
dependently allowing to model highly complex interdependencies between the variables X
and Y . This is especially beneficial if these interdependencies are non-linear, asymmetric
or the data show heavy-tail behaviour.

3.3 Marginal Goodness-of-fit testMarginal distribution estimation20

The Copula-based modelling of the dependence between X and Y requires the fitting of
suitable marginal distributions for both data sets (REGNIE and WRF) for each grid cell.
Generally, both non-parametric and parametric fitting approaches for the local precipita-
tion distribution are found in the literature (Dupuis, 2007; Gao et al., 2007; Bárdossy and
Pegram, 2009; van den Berg et al., 2011). In this study a parametric fitting of the precipita-25

tion distribution is applied to allow also an illustration of the spatially distributed differences
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(provided as the fitted marginal distribution family maps) between WRF and REGNIE. This
gives additional valuable information about differences in their statistical properties.

In this study, five different parametric distribution functions are tested (Weibull, Gamma,
Normal, Generalized Pareto and Exponential). For all time series (REGNIE and WRF) the
parameters of the respective distribution functions are estimated by a standard maximum5

likelihood estimation (MLE). The Goodness-of-fit is evaluated in a two-stage process. Firstly,
a Kolmogorov–Smirnov test (K–S test) is applied (Massey, 1951). As the K–S test is highly
sensitive due to the large sample sizes (Serinaldi, 2008), the null hypothesis (the sample
comes from the selected distribution) is rejected in some cases for all of the candidates.
In other cases there might be more than one possible candidate for the best fit. For that10

reason, all candidates which are accepted by the K–S test are further inspected by using the
Bayesian Information Criterion (BIC) (Weakliem, 1999). If all of the candidates are rejected
by the K–S test, only the BIC is relevant for the selection of the best fit.

The Bayesian Information Criterion selects the optimum within a finite set of models. It is
based on the likelihood function and deals with the trade-off between the Goodness-of-fit of15

the model and its complexity:

BIC = k ln(n)− 2 ln(L), (2)

where k denotes the number of the free parameters of the model, n is the sample size and
L is the maximized value of the likelihood function of the estimated model. The smallest20

value of the BIC suggests the best fitting distribution.

3.4 Copula Goodness-of-fit testCopula function estimation

The Copulas from different families describe different dependence structures. To increase
the accuracy of the description of the dependence, different types of Copulas are consid-
ered, since one common Copula might be incapable to capture the dependence structure25

for all grid cells over the entire study area and for all seasons.
In this study, four different one-parametric Copulas (see Table 1) are selected: the Gum-

bel Copula is able to describe an upper tail dependence structure, while the Clayton Copula
9
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allows to express higher probability in the lower tail. The Frank Copula exhibits no tail de-
pendence, and the Gaussian Copula describes a similar dependence as the Frank Copula,
but with slightly higher densities in the lower and upper tails (Venter, 2002; Schmidt, 2007).
For the Clayton Copula, the formulas of positive and negative dependence are different.
The parameter θ can take values −1< θ < 0 to model negative dependence. In that case5

the formula is

Cθ(u,v) = [max(u−θ + v−θ − 1,0)]−
1
θ . (3)

For the data used in this study, negative dependences could not be found. Therefore it is
θ ∈ [0,∞] and the Clayton Copula is defined as described in Table 1.

For the Copula Goodness-of-fit test we closely follow the approach as described in Laux10

et al. (2011) and Vogl et al. (2012). For reason of completeness it is briefly summarized.
Since the dependence structure, i.e. the theoretical Copula function, between X and Y

is in general not known in advance, the empirical Copula which can be calculated from the
data is analyzed (Deheuvels, 1979). Let {r1(1), . . ., r1(n)} and {r2(1), . . ., r2(n)} denote
the ranks of observed and modelled rainfall from day 1 to day n, obtained from the original15

data. the rank space values that are derived from the fitted theoretical marginal distributions.
Then, the empirical Copula, a rank based estimator of Cθ, is defined as:

Cn(u,v) = 1/n
n∑
t=1

1
(
r1(t)

n
6 u,

r2(t)

n
6 v

)
(4)

with u= FX(x), v = FY (y) and 1(. . .) is denoting the indicator function and n being the20

sample size. A visual inspection of Cn allows to choose promising candidates out of the
set of available theoretical parametric Copula functions. To estimate the unknown parame-
ter θ ∈ R for each candidate, a standard maximum likelihood (MLE) approach is used. To
decide which Copula function is able to describe the dependence structure best, different
Goodness-of-fit tests (e.g., Genest and Rémillard, 2008; Genest et al., 2009) are available.25

In this study the Goodness-of-fit test is based on the Cramér-von Mises statistic (Genest
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and Favre, 2007), where the empirical Copula Cn is compared to the parametric estimate
Cθ:

Sn =
1

n

n∑
t=1

{Cθ(ut,vt)−Cn(ut,vt)}2 (5)

The specific parametric bootstrap procedure to obtain the approximate P -value is described5

by Genest et al. (2009).

3.5 Copula-based bias correction

The Copula-based bias correction applied for this study is based on the estimation of a Cop-
ula model for each pair of observed (X) and modelled (Y ) rainfall for each grid cell. As soon
as this Copula model (FX(x),FY (y) and Cθ(u,v)) is estimated, conditional random sam-10

ples are generated can be generated through Monte Carlo simulations (Gao et al., 2007;
Salvadori et al., 2007). The procedure follows the algorithm detailed in Laux et al. (2011)
and Vogl et al. (2012) to generate pseudo-observations conditioned on the modelled data.
We condition by purpose on the RCM data as the method is the first step for correcting
future climate projection (where no observations are available). This conditional simulation15

algorithm is based on a conditional probabilities distribution of the form:

CU |V=v(u) = P [U ≤ u|V = v] =
∂C(u,v)

∂v
(6)

The complete Copula-based bias correction algorithm consists of the following steps:

1. estimate the theoretical marginal distributions FX(x) and FY (y) for observation and20

RCM data respectively

2. transform the time series x1, · · · ,xn and y1, · · · ,yn to the rank space by taking u=
FX(x) and v = FY (y)

11
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3. calculate the empirical Copula Cn(u,v) as a rank based estimator for the theoretical
Copula function Cθ(u,v)

4. estimate the Copula parameter θ and perform Goodness-of-fit tests to identify the best
theoretical Copula function Cθ(u,v)

5. calculate the Copula distribution conditioned on the variate v representing the RCM5

time series in the rank space

6. generate the pseudo-observations in the rank space for each time step by using the
conditional Copula distribution

7. transform back the random samples to the data space by using the integral transfor-
mation.10

The Copula-based conditional prediction simulation is the critical step of this bias cor-
rection approach, as it forces a certain variable (observation) to take a value when another
variable (RCM) is given. To assess the uncertainty associated with this prediction, the con-
ditional prediction process (step 6 and 7) must be repeated for a large number of times
(Grégoire et al., 2008). This provides the possibility to obtain a large set of random realiza-15

tions and additionally gives the information of a probability density function (PDF) for each
corrected time step. From the PDF the spread of the distribution in form of the interquantile
range can e.g. be provided as an additional uncertainty criterion for the bias correction.

3.6 Correction strategy for continous time series

The implementation of a bias correction for precipiation precipitation (a discrete variable) is20

more complex than a bias correction of a continuous variables variable, e.g., temperature.
In addition to general under- and overestimations, the RCM bias correction has to cope with
the problem that precipitation data is zero inflated, i.e. (0,1) and (1,0) cases are possible
((0,1) case stands for a observation indicates no precipitation event but the RCM model
shows a rain event, while (1,0) indicates the opposite). In general four cases have to be25
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distinguished, namely (0,0), (0,1), (1,0), and (1,1), with where 0 denotes a dry day and 1
indicates a wet day (see Fig. 3). A threshold of rainfall amount of 0.1 mm per day was used
to identify a wet day with respect to the usual precision of rain gauges (Dieterichs, 1956;
Moon et al., 1994). Therefore, the four cases are defined as follows:

1. (1,1): REGNIE and WRF precipitation ≥ 0.1 mm5

2. (0,1): REGNIE < 0.1 mm, while WRF ≥ 0.1 mm

3. (1,0): REGNIE ≥ 0.1 mm and WRF < 0.1 mm

4. (0,0): Both REGNIE and WRF < 0.1 mm

Different approaches exist in the literature to account for the intermittent nature of rain-
fall. For example the truncated Copula suggested in Bárdossy and Pegram (2009) and the10

Copula-based mixed model described in Serinaldi (2008). Both methods are able to pro-
duce time series that statistically hold the same proportion of the four different cases (0,0),
(0,1), (1,0), and (1,1). These methods allow for the correction of the total number of dry
days, but do not allow to correct individual events in the (0,1) and (1,0) cases.

In this study, only the positive pairs (1,1) of REGNIE and WRF data are used to construct15

the Copula models in calibration period. Therefore, the correction of WRF data is also only
applied for the (1,1) cases in validation period. In this study, we aim to an event-based cor-
rection as described in the following: the Copula-based concept focuses on the correction
of the (1,1) cases, i.e. the positive pairs. In order to generate a complete bias corrected time
series of WRF output, the events that are not covered by the (1,1) case are left unchanged.20

Note that this method does not correct for errors coming from the (0,1) and (1,0) cases
while there is no error in the (0,0) case. For the (0,0) cases, there is no error. The errors
that come from the (0,1) and (1,0) cases are not corrected by this method. To justify this
strategy, we investigated the proportion of the four cases in the study area (see Fig. 4): the
(1,1) cases take the highest proportion, followed by the (0,0) cases. The proportion of both25

the (0,1) and (1,0) cases are comparatively low. The average proportion of these cases are
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40% for the (1,1) cases, 29% for the (0,0) cases, 19% for the (0,1) cases and 12% for the
(1,0) cases, respectively.

4 Results

In this section, details about the estimated Copula models are presented including infor-
mation about the fitting of the marginal distributions and the theoretical bivariate Copula5

functions from the calibration period (1971–1985). Since the estimated marginal distribu-
tions reflect the statistical characteristics of RCM and observations, their differences are
analyzed spatially. The fitted Copula models are applied for the validation period (1986–
2000) to bias correct the WRF precipitation. It is found that the dependence structures vary
intra-annually, therefore the performance of the algorithm is analyzed separately for the10

different seasons.

4.1 Estimated marginal distributions

For both REGNIE and WRF data five different distribution functions are employed for each
grid cell separately: Generalized Pareto distribution (gp); Gamma distribution (gam); Ex-
ponential distribution (exp); Weibull distribution (wbl) and Normal distribution (norm). This15

guarantees the flexibility in selecting the most appropriate distribution for each grid cell. The
Goodness-of-fit tests (K–S test and the Bayesian information criterion, see Sect. 3.3) reject
the Normal distribution in all cases, while the Generalized Pareto distribution is accepted
most frequently for both REGNIE and WRF (Fig. 5). The result shows a reasonable agree-
ment of selected marginal distribution between REGNIE and WRF mainly in the Eastern20

and Southern parts of Germany. The patterns of the selected types follow the topography
of Germany (see Fig. 1). In the Northwest of Germany, the Weibull distribution function pre-
vails as well as in the low mountain ranges. In general, this effect is stronger for WRF while
the patterns are more patchy for REGNIE.

The coincidence between REGNIE and WRF marginals is shown in the confusion matrix.25

Each row of the matrix represents the distribution types of REGNIE, while each column
14
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represents that of WRF (in %). The major diagonal shows the fraction of concurring marginal
types. The confusion matrix for the calibration period is shown in Table 2. It is found that
for 42 % of grid cells, the Generalized Pareto distribution is selected for both data sources
concordantly. For the Weibull distribution this holds true for 16 % of the grid cells. Since
the total number of grid cells where Gamma and Exponential distribution are fitted is very5

low, the percentage of hits in the diagonal of the confusion matrix is small. Summing up
the major diagonal gives a measure for the overall agreement. For the complete calibration
series about 59 % correspond. The failures of 21 % of grid cells, where REGNIE follows the
Generalized Pareto distribution and WRF follows the Weibull distribution, are predominately
located in the Northwest of Germany (Fig. 5).10

In order to assess for the annual variability in the precipitation time series, the marginal
distributions are estimated for the different seasons (spring – MAM, summer – JJA, autumn
– SON, winter – DJF).

For both REGNIE and WRF data, the seasonal representation of the different distribu-
tion types is shown in Fig. 6. It indicates that the choice of the optimal marginal distribution15

clearly depends on the season. In WRF, the winter (summer) season is dominated by Ex-
ponential (Generalized Pareto). The differences for REGNIE are not that obvious since the
dominant distribution type is the Generalized Pareto distribution for all seasons. For WRF
data the effect of the underlying elevation on the identified distribution type is most promi-
nent during winter and fall. In the low mountain regions the favorite marginal distribution20

change from fall (Weibull, Generalized Pareto) to winter (Exponential, Weibull).
The seasonal confusion matrices are shown in Table 3. The results indicate the best

agreement between WRF and REGNIE (approximately 56 % of the grid cells) in summer,
while in wintertime only approximately 30 % of the types agree.

As mentioned above in Sect. 3.3 the Goodness-of-fit tests follow a two-step process due25

to the fact that the K–S test is highly sensitive to large sample sizes. For the annual marginal
distribution identification, for 99 % of the grid cells the K–S test fails and only the BIC is
used for REGNIE, while the number for WRF is 68 %. Since the sample size is reduced
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in seasonal analysis, the failures of K–S test are decreased dramatically. The results are
shown in Table 4.

4.2 Identified Copula functions

For each grid cell the theoretical Copula function that characterizes the dependence
structure between REGNIE and WRF data is identified separately. Three different5

one-parametric Archimedean Copulas (see Table 1) are investigated by application of the
Goodness-of-fit tests described in Sect. 3.4. For the Clayton Copula the parameter θ can
also take values −1< θ < 0 to model negative dependence. In that case it is
Cθ(u,v) = [max(u−θ + v−θ − 1,0)]−

1
θ .

For the data used in this study however, no negative dependence is found. Therefore10

it is θ ∈ [0,∞] and the Clayton Copula is defined as described in Table 1. Four Copulas
(Clayton, Frank, Gumbel and Gaussian) are investigated by applying the Goodness-of-fit
tests described in Sect. 3.4. Figure 7 shows the results of the Goodness-of-fit tests for the
calibration period for the complete study area. It is found that for most of the grid cells in the
Southwest of Germany study area, the Frank Copula can capture the dependence structure15

best, while for the Northeast of Germany the Clayton Copula provides the best fit. In total
the dependence structure of 79 % 72 % of the grid cells is modelled by the Frank, 21 % 20 %
by the Clayton, 7 % by the Gaussian and only 0.09 % by the Gumbel Copula.

In order to assess for the annual variability of the dependence structures between REG-
NIE and WRF precipitation time series, the Copula functions are identified for the different20

seasons separately. The corresponding results are shown in Fig. 8.
While for spring, autumn and winter the Frank Copula Copulas that have no pronounced

tail dependence (the Frank and Gaussian Copula) dominate (spring 66 %, autumn 74 % and
winter 88 % spring 49 % (Frank) + 22 % (Gaussian) = 71 %, autumn 53 % + 24 % = 77 % and
winter 63 % + 28 % = 91 %), in summer the Clayton Copula provides the best fit for most of25

the grid cells (64 % 62 %). For all seasons the Gumbel Copula is only selected for few grid
cells with spring being the season of most hits a maximum number of hits in spring (7 %
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5 % of the grid cells). In general the differences are most prominent for winter and summer
(see Fig. 8).

4.3 Validation of the Copula-based bias correction

Based on the estimated Copula model (parametric marginal distributions and theoretical
Copula functions) the conditional distribution of REGNIE conditioned on WRF is derived5

for each grid cell separately (see Sect. 3.5). To generate bias-corrected WRF precipitation,
random samples of possible outcomes are drawn from this conditional distribution. We use
a sample size of 100. The result can be interpreted as an empirical predictive distribu-
tion for corrected WRF (pseudo-observations) that is determined for all conditioning WRF
precipitation values for each time step. While this stochastic bias correction method gives10

a full ensemble and the empirical predictive distribution of corrected WRF precipitation, for
pratical practical reasons one can choose e.g., the expectation, median or mode to get a
single corrected value values. This can be regarded as a Copula-based regression by tak-
ing such a “typical” value as the estimator of the derived empirical predictive distribution of
corrected WRF precipitation. It is noted that this “typical” value (e.g. the mean) can also be15

directly derived from the analytical Copula-based conditional CDF (mean regression curve,
Nelsen, 1999).

Figure 9 exemplarily shows WRF (red), REGNIE (green) and the bias-corrected WRF
(blue) data for pixel 1 in Fig. 1 during wintertime 1986–1987 (positive pairs only). The box
plot visualizes the spread of the generated random sample (100 members) indicating the20

uncertainty of the predicted bias-corrected precipitation, while the blue line shows the me-
dian of the respective emprical predictive distribution.

It can be seen from Fig. 9 that for most of the time steps the proposed Copula-based
approach can sucessfully correct for biases in the modelled precipitation compared to ob-
served values.25

To investigate the spatial performance of the correction algorithm, the relative bias of
RCM modelled mean daily precipitation (WRF) compared to gridded observations (REG-
NIE) is compared to that of the bias corrected model data (B.C. WRF) for Germany.
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A comparison of corrected WRF data derived by the expectation, median and mode of
the predictive distribution with observations indicates that the correction performs best for
the expectation value (see Fig. 10). Both simulations based on the median and the mode
tend to underestimate the precipitation values, thus causing a dry bias over the domain.
Therefore in the following, the results are shown and analyzed for that case the mean only.5

Figure 11 (left) shows the bias between REGNIE and WRF, indicating wet biases in most
of the study area. These wet biases are most prominent in high elevation areas following the
topography of Germany. Wet biases are also detected in the Northeast of Germany, where
the elevation is low. Dry biases are found in the alpine and pre-alpine areas in the Southeast
of Germany as well as in the West of Germany. After the application of the Copula-based10

correction algorithm, the wet biases are corrected for most of the domain, except for a very
small region in the Northeast (see Fig. 11, right). It is also found that the dry bias can also
be significantly reduced, but small dry biases are introduced in some areas in the West of
the domain. The average of the bias for the whole study area is reduced from 10 to −1%.

A performance analysis with respect to seasonal variations is shown in Fig. 12. It shows15

that the relative bias is even larger for different seasons. Figure 12 (left) shows the rela-
tive bias between uncorrected WRF mean daily precipitation and the REGNIE data set for
the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF, from
top to bottom). The WRF model tends to generate too much precipitation in spring and
winter for the majority of grid cells in the study area. For summer and autumn, there are20

also regions found, where the model is too dry. These regions are mostly located in the
North and in the South of Germany. This effect is found to be strongest in summer while
in autumn areas with an overestimation of precipitation are still found in the Northeast and
Southwest of Germany. In all cases, the bias is influenced by the underlying terrain show-
ing an overesimation especially in regions with higher altitude. The average of the bias from25

spring to winter are 32, −15, 4 and 28%, respectively. Figure 12 (right) shows the rela-
tive bias between corrected WRF mean daily precipitation and the REGNIE data set for
the different seasons (spring – MAM, summer – JJA, autumn – SON, winter – DJF, from
top to bottom). It can be seen that the Copula-based correction efficiently removes most
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of the biases indicating a comparable performance for all seasons. Figure 12 especially for
spring and winter indicates that the correction is tending to be more suitable to correct for
overestimation of the rainfall. The underestimation of precipitation, that is most prominent in
summer, however, is still significantly reduced. In autumn and winter the Copula-based cor-
rection reduces the rainfall amounts too much for the west of Germany, introducing a small5

dry bias in that region. The average bias are reduced to 16 −11, −1 and −3 respectively
for different seasons from spring to winter.

In the following, it is further analyzed how well the model can reproduce the intra-annual
variability of observed precipitation and how the performance for the different seasons is
influenced by the Copula-based correction algorithm.10

To investigate typical situations in detail, the results are shown for four specific grid cells
in the study area (see Fig. 1): grid cells 1 and 3 are selected as they show the highest wet
bias between WRF and the REGNIE. Grid cell 2 is located in the region where a dry bias
was generated by the WRF in summer and autumn and a wet bias was generated in winter.
Grid cell 4 represents a case where the agreement between uncorrected model data and15

REGNIE observations is already good (see Fig. 12).
Figure 13 shows mean monthly precipitation derived for the validation period (1986–

2000) for the selected grid cells 1–4 (see Fig. 1 for their exact locations). The number of the
respective grid cell is noted in the upper left corner.

The results for grid cell 1 in Fig. 13 confirm the fact that the RCM model results strongly20

overestimate the precipitation amount in that case. The annual variability of the observa-
tions is in general reproduced, except for a strong increase of the mean precipitation in
August that is not found in the observations. This behaviour is found also for grid cell 3
indicating a relatively too dry summer season. For grid cells 1 and 3, the Copula-based cor-
rection is found to be able to correct for the overestimation of precipitation amounts as well25

as for the effect of a too strong decrease of precipitation in August. However, the correction
is introducing a slight underestimation mainly during summer and autumn instead. For grid
cell 2, the correction shows a good performance by decreasing the rainfall amounts when
the RCM is overestimating, and increasing the amounts when the RCM has underestimated
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it. The correction reduced the wet bias efficiently, while the dry bias is corrected less effi-
ciently. The effectiveness of this correction is also highlighted by an analysis of the results
for grid cell 4. Even if the performance of WRF was already satisfactory, the algorithm was
still able to further improve the results.

Finally, in order to investigate the spatial coherence of the bias corrected precipitation5

fields, the sequence of three selected days (from January 9th to 11th, 1986) are exemplar-
ily shown in Figure 14. The left column from top to bottom are the observed precipitation
fields for these three days. In the middle are the uncorrected (original) WRF simulated pre-
cipitation fields and the right column indicates the bias corrected WRF precipitation fields:
while correcting the absolute precipitation values, the spatial coherence of the precipitation10

patterns are retained after the application of the bias correction.
The performance of the proposed bias correction approach is also assessed by

comparing to two standard correction methods, i.e. linear scaling and quantile mapping
correction. The root mean square error (RMSE) between the observed (REGNIE) and bias
corrected modelled data (B.C. WRF) is calculated for different bias correction methods. The15

original RMSE (between REGNIE and WRF) is also computed as a reference. To assess the
performance for more specific properties, e.g., RMSE for different magnitude of observed
precipitation, a quantile RMSE analysis is done for four grid cells the same as in Fig. 13.
The result from the validation period is shown in Fig. 17 and similar results are found for the
entire study area. The RMSE in different quantiles are represented by RMSE0.1, RMSE0.2,20

. . . , RMSE1.0, while the subscript indicates the magnitude level. RMSE0.1 evaluates the
errors in the dry part of the observation distribution, implying the (0,1) errors. From RMSE0.2

to RMSE1.0 the root mean square errors are calculated for equally spaced probability
intervals of the observed empirical CDF of wet days. For example, RMSE1.0 indicates the
errors in the magnitude of the most extreme events.25

As it can be seen from Fig. 17, the RMSE (a global evaluation) for all of the four grid
cells are reduced by the Copula-based bias correction, while for the other two methods the
RMSE are not decreased so efficiently. The quantile mapping correction even increased the
RMSE in grid cells 2 and 4. The performance is even better for the proposed approach in the
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quantile RMSE analysis. The Copula-based method provides an equal or better correction
for RMSE in almost every quantile except the part of the most extreme values (RMSE1.0).
As the Copula-based correction is only applied for (1,1) cases, the (0,1) errors are not
corrected (Fig. 17, RMSE0.1). The results show that for linear scaling and the quantile
mapping correction, the (0,1) errors are also not corrected.5

4.4 Comparison of Copula-based bias correction to the quantile mapping method

The quantile mapping method is often used in bias correction of RCM derived precipitation
(Dosio and Paruolo, 2011; Gudmundsson et al., 2012). This method corrects the bias by
rescaling the values of the RCM so that the distribution of the RCM matches that of the
observations. It corrects all moments of the RCM precipitation distribution under the as-10

sumption of a perfect dependence among the ranks. This full dependence assumption is
limited: in our study area, the rank correlation between the datasets varies between 0.3 and
0.6 (see Fig. 15).

The quantile mapping correction has been performed for comparison to the Copula-
based approach. The RMSE between the observed (REGNIE) and bias corrected modelled15

data is calculated for both the Copula-based correction and the quantile mapping method.
The original RMSE (between REGNIE and WRF) is also computed as a reference. For the
Copula-based approach, we calculated the RMSE for all the simulations with respect to the
mean-, median- and mode value. The changes of the RMSE by different corrections over
the study area are shown in Fig. 16. The Copula-based correction derived from the mean20

regression reduces the RMSE significantly with an average of −12% over the domain. The
Copula-based correction derived from the median also reduces the RMSE, but to a less
degree. The correction derived from Copula-based mode regression reduces the RMSE,
but results in an increase of the RMSE in some regions. The same holds true for the quan-
tile mapping approach. This is in agreement with our previous results (see Fig. 10) that the25

Copula-based correction derived from the mean regression performs best. Therefore, in the
following analyses, the results focus on the Copula-based mean regression approach.
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To further assess the performance of the Copula-based method, additional performance
measures are analyzed. The RMSE for different magnitudes of observed precipitation (i.e.
a quantile RMSE analysis) is done for the selected four grid cells (see Fig. 1). The results
from the validation period are shown in Fig. 17. The RMSE in different quantiles are rep-
resented by RMSE0.1, RMSE0.2, . . . , RMSE1.0, while the subscript indicates the magnitude5

level. RMSE0.1 evaluates the errors in the dry part of the observation distribution, implying
the (0,1) errors. From RMSE0.2 to RMSE1.0 the RMSE are calculated for equally spaced
probability intervals of the observed empirical CDF of wet days. For example, RMSE1.0

indicates the errors in the magnitude of the 10% highest events. As it can be seen from
Fig. 17, the Copula-based correction performs equally or even better in terms of the RMSE10

in most of the quantiles.
Furthermore, we also investigated the percentage of the corrected time steps that are

closer to the observations compared to the quantile mapping method. The results are shown
in Fig. 18. The values indicate the percentage of the successful corrections (i.e. closer to
the observations) by the two bias correction methods. It can be seen that the results of the15

quantile mapping correction strongly depends on the rank correlation (see Fig. 15), while the
Copula-based correction provides a stable correction efficiency over the entire domain. The
average percentages of the successful correction are 55% for the Copula-based correction
and 46% for the quantile mapping correction, respectively.

5 Discussion and conclusionsSummary and conclusions20

In this study, a Copula-based stochastic bias correction technique for RCM- output is in-
troduced. The strategy of this method is the identification and description of underlying de-
pendence structures between RCM and observed precipitation and its application for bias
correction. Copulas are able to capture the non-linear dependencies between variables
(here: between RCM and gridded observed precipitation) including a reliable description25

of the dependence structure in the tails of the joint distribution. This is not possible e.g.
by using a Gaussian approach or methods based on the Pearson’s correlation coefficient.
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Yet, another albeit more practical advantage of this approach is that the univariate marginal
distributions can be modeled independently from the dependence function, i.e. the Copula.
This provides more flexiblity flexibility to construct a correction model by combining different
marginal distributions and Copula functions, as many parametric univariate distribution and
theoretical Copulas are available.5

The conditional distribution derived from fitted Copula model forms the basis of the cor-
rection procedure. It provides the possibility to access all the possible outcomes of the
corrected value and additionally gives the information of a PDF for each corrected time
step.

This study is an extension of the two former studies of Laux et al. (2011) and Vogl et al.10

(2012) by applying the Copula-based bias correction technique to high resolution RCM
precipitation output and a gridded observation product. Compared to those two studies,
this study is based on a framework to:

– Work on a grid cell base and to estimate the Copula model (marginal distributions
and Copula function) for each grid cell separately rather than selecting e.g. the most15

dominant model. Therefore, the statistical characteristics of observed (REGNIE) and
modelled data (WRF) and their dependence structure is visualized spatially and ana-
lyzed for the first time.

– Implement the Bayesian Information Criterion in addition to the Kolmogorov–Smirnov
test for the marginal Goodness-of-fit test. From previous studies we found that very20

large sample sizes may bias the result of the K–S test, leading to the rejection of the
null hypothesis (the sample comes from the selected distribution) most of the time.

– Estimate the Copula model for every season separately. Thus, different precipitation
geneses types are not masked by the same models. This, in general, leads to stronger
dependencies and robuster models.25

Positive REGNIE and WRF pairs of fifteen years daily precipitation in calibration period
(1971–1985) are used to establish the Copula models. The results indicate discrepancies
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between the fitted marginal distributions of REGNIE and WRF-EAR40 (see Figs. 5 and 6).
The estimated marginal distributions for WRF show distinct spatial (strongly related to the
orography of the domain) and seasonal patterns (clear differences between summer and
winter, similar patterns for spring and fall season). The distributions are more scattered for
the REGNIE data.5

For the dependence function it is found that the fitted Copula families vary both in space
and time (seasonally) (see Fig. 7 and Fig. 8). The fact that different dependence structures
exist for the different seasons indicates that the method corrects for different dominating
precipitation types, i.e. convective and stratiform precipitation.

The assumptions assumption of this approach is that the dependence structure between10

observed and modelled precipitation is stationary over the period of interest. For the in-
vestigation of the spatial performance, the Copula correction based on the mean value is
applied. The validation results show that the proposed approach successfully corrected the
errors in RCM derived precipitation. even when a slight dry bias might be introduced by this
correction (see Fig. 11 and Figure 12). It is also found that the correction method performs15

better for overestimation correction rather than for underestimation correction. By applying a
specific analyses with four specific grid cells, results show that the Copula-based correction
provides better results than linear scaling and quantile mapping. By investigating the spatial
coherence, the proposed method is found to be able to preserve the spatial structure of the
WRF model output. This is due to the reason that the Copula-based approach is condi-20

tioned on the WRF simulation. The method is adjusting the value of the WRF precipitation
according to the fitted Copula model. Even though the Copula models are estimated for
each grid cell, the spatial coherence is captured by the Copula model as both the Copula
families as well as the marginal distributions are also spatially clustered.

When comparing to the quantile mapping correction, the Copula-based method has an25

improved performance in reducing the RMSE. It is also found that the Copula-based method
allows for a better correction with respect to the percentage of the time steps that are closer
to the observations after the correction. The Copula-based method is able to provide a
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stable correction efficiency over the entire domain, even if the rank correlations between
the RCM- and observed precipitation are low.

The proposed algorithm is based on the identification and description of the dependence
structure between observed and modelled data which is represented by a Copula model.
Apart from traditional approaches such as linear scaling and quantile mapping, which are5

based on a bijection transfer function, this method corrects the biases dynamically and
offers the possibility to estimate the uncertainties inherently.

Apart from traditional approaches such as the quantile mapping, which is based on a
bijection transfer function, the Copula-based stochastic bias correction technique provides
the information of the full PDF for each individual time step. This additionally provides a10

quality criterion for the bias correction, e.g. expressed as the spread of the PDF in form
of the interquantile range. Subsequent modellers using RCM derived precipitation data are
potentially enabled to make use of the full PDF, especially if they are interested in other
statistical moments or in estimating uncertainties arising from this approach.
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Table 1. Theoretical Copula functions used in this study.

Copulas Cθ(u,v) Generator ϕθ(t) Parameter θ ∈

Clayton (u−θ + v−θ − 1)−
1
θ

1
θ (t−θ − 1) (0,+∞)

Frank − 1
θ ln(1 + (e−θu−1)(e−θv−1)

e−θ−1
) − ln( e

−θt−1

e−θ−1
) (−∞,+∞)\{0}

Gumbel e−((− ln(u)θ)+(− ln(v)θ))
1
θ (− ln(t)θ) [1,+∞]

Gaussian ΦR(Φ−1(u),Φ−1(v));R =

[
1 θ
θ 1

]
(-1, 1)
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Table 2. Confusion matrix between REGNIE and WRF for the different distribution types.

WRF
gp gam exp wbl

R
E

G
N

IE gp 42.04 % 1.27 % 1.55 % 20.79 %
gam 4.92 % 0.5 % 0.18 % 2.44 %
exp 0.27 % 0 % 0 % 0.23 %
wbl 7.14 % 1.94 % 0.79 % 15.93 %
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Table 3. Seasonal confusion matrix of fitted REGNIE and WRF precipitation distribution.

MAM WRF
gp gam exp wbl

R
E

G
N

IE gp 39.57 % 0.29 % 25.68 % 3.89 %
gam 2.32 % 0.12 % 1.32 % 0.18 %
exp 2.68 % 0.02 % 3.03 % 0.14 %
wbl 8.88 % 0.56 % 7.81 % 3.51 %

JJA WRF
gp gam exp wbl

R
E

G
N

IE gp 42.3 % 0.09 % 0.39 % 11.58 %
gam 0.72 % 0.14 % 0.04 % 0.83 %
exp 1.74 % 0 % 0 % 0.81 %
wbl 26.4 % 0.62 % 0.61 % 13.73 %

SON WRF
gp gam exp wbl

R
E

G
N

IE gp 35.43 % 0.08 % 6.36 % 18.83 %
gam 1.55 % 0.29 % 0.95 % 1.14 %
exp 0.51 % 0 % 0.15 % 0.41 %
wbl 11.23 % 0.29 % 4.88 % 17.9 %

DJF WRF
gp gam exp wbl

R
E

G
N

IE gp 8.92 % 1.25 % 24.66 % 7.12 %
gam 2.18 % 0.27 % 7.65 % 1.21 %
exp 1.44 % 0.48 % 8.08 % 1.12 %
wbl 6 % 0.89 % 16.42 % 12.31 %
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Table 4. The proportion of grid cells for both REGNIE and WRF that K–S test failed and only BIC is
used in Goodness-of-fit procedure.

Spring Summer Autumn Winter

REGNIE 25.83 % 10.86 % 38.38 % 56.13 %
WRF 0.31 % 10.61 % 12.26 % 3.88 %
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1
2

3

4

Figure 1. Terrain elevation of Germany (DEM). The numbers represent the position of the four
specific grid cells for which the performance of the Copula-based algorithm is analyzed in Fig. 13.
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Figure 2. Visualisation of a bivariate Copula model consisting of two marginal distributions and
a theoretical Copula function that describes the pure dependence.
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Figure 3. Illustration of the four cases: (0,0) indicates that both REGNIE and WRF show no rain,
(0,1) stands for an observation with no precipitation but the RCM model shows a rain event, while
(1,0) indicates the opposite of (0,1), (1,1) implies that both are wet.
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(0,0) case (0,1) case

(1,0) case (1,1) case

Figure 4. The proportion of the four cases over the study area for the validation time period (from
1986 to 2000).
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Figure 5. Estimated marginal distributions of precipitation for Germany for both REGNIE (left) and
WRF (right). The results are shown for the calibration period (1971–1985) and positive pairs only.
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Figure 6. Estimated marginal distribution of precipitation for the different seasons for REGNIE (left
column) and WRF (right column) in Germany. The results are shown for the calibration period (1971–
1985) for positive pairs only. Spring (MAM), summer (JJA), autumn (SON) and winter (DJF) are
illustrated from top to bottom.
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Figure 7. Identified Copula functions between REGNIE and WRF precipitation in the calibration
period (1971 to 1985) with positive pairs.

40



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

MAM JJA

SON DJF

Figure 8. Fitted Copula functions between REGNIE and WRF precipitation (calibration period
(1971–1985), positive pairs only). The Copulas are identified for the different seasons (spring –
MAM, summer – JJA, autumn – SON, winter – DJF).
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Figure 9. Comparison of bias-corrected WRF data (blue) with the original WRF data (red) and
REGNIE (green) in winter 1986–1987 (positive pairs only) for pixel 1 in Fig. 1. For each time step
100 realisations are drawn from the conditional distribution visualized by the box-whiskers (boxes
are defined by the lower Q1 and the upper quartile Q3). The length of the whiskers is determined by
1.5 · (Q3−Q1) and outliers, i.e. data values beyond the whiskers are marked by crosses.
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Figure 10. Relative bias map of mean daily precipitation for Copula-based correction by taking the
expectation (left), median (middle) and the mode (right) as the estimator of the sampled distribution.
The results are based on the validation period 1986-2000.
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Figure 11. Relative bias of mean daily precipitation for uncorrected (left) and corrected WRF pre-
cipitation field (right). The results are based on the validation period 1986-2000.
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Figure 12. Relative bias between uncorrected (left) and corrected (right) WRF mean daily precipi-
tation and the REGNIE data set in Germany for the different seasons (spring–MAM, summer–JJA,
autumn–SON, winter–DJF, from top to bottom). The results are derived for the validation time period
(1986-2000).
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Pixel 1: Wet bias all the year Pixel 2: Large dry bias in summer and fall

Pixel 3: Large wet bias except summer Pixel 4: Small bias all the year

Figure 13. Comparison of bias corrected WRF mean monthly precipitation (blue) with REGNIE
(green) and original WRF data (red) for the selected four pixel 1–4 in the validation period from 1986
to 2000. The number of the respective grid cell is noted in the upper left corner of each plot.
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REGNIE WRF B.C. WRF

Figure 14. Daily precipitation fields over Germany for the three consecutive days from January 9 to
January 11, 1986.
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Figure 15. The rank correlations between RCM and REGNIE precipitation over the domain in the
validation period from 1986 to 2000.
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Copula (mean regression) Copula (median regression)

Copula (mode regression) Quantile Mapping

Figure 16. The changes of the RMSE in the validation period (1986-2000) by different bias correction
methods. The green color indicates a decrease of the RMSE, while the ocher color implies an
increase of the RMSE.
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Figure 17. The root mean square errors (RMSE) and the root mean square errors for specific prob-
ability intervals (RMSE0.1, RMSE0.2, . . . , RMSE1.0) for different methods. The selected four pixels
are the same as in Fig. 13. The black solid line indicates the errors without correction. The results
are derived from the validation period from 1986 to 2000.
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Figure 18. The percentage of the corrections that are closer to the observations. Left: Copula-based
correction (mean regression); Right: quantile mapping correction. The results are derived from the
validation period from 1986 to 2000.
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