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1. Point-by-point reply to the comment 

 

The comments will be repeated in black, as our responses will be noted in red, 

referring to the manuscript with the highlighted changes attached to this guide. 

 

a. Referee 1 

[...] 

I have three main concerns:  

(1) Wheras the approach is useful as mentioned above, I am missing information 

on its novelty. Has anybody done this before? If not, why not outlining clearly that 

this is a novel approach. The introduction references studies by Anderson and 

Steenpass but differences and similarities to the present study remain unclear. 

 

As of our knowledge, neither in thermal remote sensing nor in catchment 

hydrology where the delineation of hydrological response units or functional units 

including their parameterization is subject to research is there any publication on 

the use of complex time series analysis of TIR data in combination with PCA as 

used here. In this sense, our approach is new. However, we recently got aware of 

the application of empirical orthogonal functions (EOF) that seem to be frequently 

used in oceanography and atmospheric research (e.g. Denbo & Allen, 1984; 

Hamlington et al., 2011; Lorenz, 1956). The approach is similar to PCA with an 

adjustment considering the extent of a single spatial data point/model output due 

to calculations on a global coordinate system and therefore occurring contortions. 

Nevertheless, the used data and the suggested applications differ largely.  

 

We noted in which way our approach is a novelty within the abstract (p1, l19), as 

well as extended the rationale in the PCA section (p8, l25-30).  

 

Anderson et al. (2011) and Steenpass et al. (2010) are both using similar thermal 

RS data within their work. However, Anderson et al. focus on the translation of 

thermal data into evapotranspiration data and, therefore, are limited to real data 

transformation based on the knowledge of physical processes. Steenpass et al. 

use the data to derive hydrological properties by the use of inversion. These two 

approaches differ largely from ours. They are mainly quoted to note different 

appliances of TIR data, as noted. 

 

We removed the example from Anderson et al. and clarified the approach from 

Steenpass et al. (p3, l20-22). 

 

 

(2) The methods appear rather complicated, except for the PCA which is well 

established and applicable in this context. Are the other methods also established 

or are they applied for the first time here? I do not understand why and how these 

methods were chosen. Further, I do not understand the benefit of investigating the 



persistence; and the added value of the behavioral measure analysis over the 

PCA. 

 

Our main intention using all of the presented methods is to strengthen the 

reliability of our results. The first part on “persistency measures” is to our 

knowledge novel and our own contribution in terms of a new methodology of 

spatial data exploration. By applying these persistency methods we are able to 

confirm the existence of spatially and temporally consistent patterns within the 

time series of images. This finding supports the application of a principle 

component analysis (PCA) where the most dominant patterns (in the form of 

independent principle components) within the time series are extracted and 

information on explained variance by that PC is given.  

 

It could be argued, that a PCA resulting in PCs with a significant high percentage 

of explained variance would be sufficient to confirm pattern persistency. However, 

there might be situation where 2 (or more) PCs with a high percentage of 

explained variance exist, but where e.g. some oscillating landscape behavior 

might result in non-persistent time series. 

 

We added an appropriate part to the persistency section (p6, l21-26). 

 

The part on behavioral measure analysis is a new approach to classify the 

dataset into functional units (or hydrological response units, here only under 

radiation driven condition, see Zehe et al. 2014 for an extended discussion).  We 

assume that different loading values derived from PCA are related to a 

dominance of a different PC and therefore a different control on land surface 

temperature (LST) (and hence related to the  functioning of the land and sub-

surface  as a reaction to the differing meteorological short time history and 

surface states). In this way we can choose a limited set of LST-images showing 

most distinct patterns. The derived classification by using the 5 most distinct LST-

images is a representation of the spatio-temporal dynamics of LST and therefore 

of the “real landscape functioning”. We are currently not in the situation to 

evaluate this procedure as superior to other classification methods (e.g. using the 

first 5 PCs, deviding them into a number of classes and intersecting them). Such 

an approach would involve a catchment scale hydro-meteorological modelling 

exercise, where different classification methods are compared with regard to 

effectiveness of parameterization and the quality of modelling results.  While this 

is beyond the scope of this paper, it is motivation for current research and we will 

briefly add that in the outlook part of the paper.  

Overall, we belief that the persistency analysis is a very helpful additional tool 

needed to avoid biased handling of the dataset. The behavioral measure is used 

to complete the PCA to spatially classify the catchment concerning the 

compartments’ functioning.  

 

We tried to clarify the part on behavioural measures by rearranging parts (p 11, 

l7-20). An evaluation is not a part of this paper.  

 



(3) Please improve the English language throughout the manuscript. I have seen 

worse papers, but some improvements would facilitate the readability and clarify 

the message in some places. 

 

We had a native speaker for examination of the quality of the text for the initial 

version as well as a second expert for the revised version. Minor changes were 

made throughout the text.  

 

 

Title 

Is "catchment functional unit" an established term? I would suggest to use 

hydrological response unit. 

 

We do not change the title on purpose – because we like the expression 

functional units and it is consistent with our project’s nomenclature. 

 

Abstract 

line 8: what is ASTER? We explained the abbreviation in the abstract and the 

introduction. 

line 9: change "The application mathematical-statistical" to "The application of 

mathematical-statistical" Changed. 

line 14: "binary word" is not introduced before and hard to understand Clarified. 

 

page 7021: 

lines 22/23: also phenology and leaf area index may be impacted by hydrology, 

for example in dry regions. Deleted. 

 

page 7022: 

line 1: change "atmospheric states" to "atmospheric state" Changed. 

lines 10/11: please elaborate on the results of the Anderson and Steenpass 

studies and how the present study complements these. See above. 

lines 15/16: why do you think that LST is only relevant to determined HRUs under 

radiation-limited conditions? Deleted. 

line 21: what do you mean by "transformed images"? Changed to recoded. It is 

too early to explain the recoding here but necessary to note the procedure.  

line 25: no comma after "surface characteristics" Deleted. 

 

page 7023: 

line 8: replace "Research" with "research" Changed. 

line 19: explain "VNIR" and "SWIR", or remove Explained in the brackets. 

 

page 7024: 

lines 1/2: please ensure that order of Figures is consistent with appearance in the 

text (also when referring to Figures 5 and 6, and 8 and 9 later on), or remove 

reference to Figure We try to avoid duplicated figures and want to strengthen the 

rationale in the adequate section. Unchanged. 

line 5: explain "L1A", or remove We repeat the initial declaration. 

line 10: explain "digital numbers" We added “unprocessed”. “Digital number” is the 

common nomenclature in this context.  



line 11: explain "sensor decay" Clarified. 

line 16: so you are assuming TOA=LST? under which circumstances can this be 

valid? please discuss It is already discussed that the used bandwidth is “least 

altered” du tue the atmosphere (Sect 2.2) and that “homogeneous atmospheric 

conditions” are assumed (Sect. 2.3) hence, patternwise, TOA is closest to LST as 

possible. 

line 22: I do not understand this ratio, please explain or remove Restated. 

 

page 7025: 

Please explain in more detail why you are investigating persistence here. And 

please clarify that you refer to spatial persistence (?). Further, you should 

elaborate on the choice of your methods; e.g. why not just correlating the images 

to infer spatial pattern similarity? We added an adequate rationale to Sect. 3.1, as 

noted above. The overall pattern persistency is stated to be a persistency along 

the time series, a temporal persistency. The pattern dynamics persistency 

includes locally spatial information, stated as well. We did not mention “simpler” 

methods as patterns disregarded. This now is clarified in Sect. 3.1. 

line 16: explain "co-referencing", or remove This is used in textbooks as well as 

specific nomenclature form the cited Hirschmüller et al.. Changed to a citation. 

 

page 7027: 

Please clarify that Fig 5 is using artificial data. Changed. 

 

page 7028: 

lines 10/12: I guess you mean row here instead of column Changed. 

 

page 7030: 

What is the added value of the behavioral measure analysis as compared to the 

PCA results? There is no accountable “added value”, though the method is in line 

with the rationale on functionality. See rationale above. 

line 21: I guess you mean Fig 11 Changed. 

 

Figures 2,3,5,8,9,11 are hard to read, please enlarge captions and labels 

Changed. (Images will be uploaded as a supplement) 

 

 

b. Referee 2 

I agree with the first reviewer comments, for example on the need for a stronger 
and more clearly explained rationale for why these methods in particular were 
selected. In the main the author responses have addressed these, so I will not 
repeat them here, but I do urge the authors to be very clear in explaining why they 
have done what they have done.  
 
See above. 
 
Thus overall I find the paper well written and very interesting. I have only a few 
minor comments: 
 



I think the paper would be stronger with a little bit more context about why HRUs 
are so important in hydrology, and how they work and what they mean for 
improving prediction. 

 
What is the background for spatial pattern analysis in addition? A further 
paragraph in the literature review would much improve this context and thus also 
help to highlight the importance of this work for hydrological prediction. I think the 
importance could also be further highlighted in the abstract and conclusions. Don’t 
undersell your work! 
 
We extended the section on HRUs and hence the analysis of patterns, citing 
appropriate literature. We also added information on the use of persistency 
measures (see above), 
 
Linked to this I think the authors could give more explicit ideas on how their 
techniques can be practically turned into improvements in the “conceptualization 
and parameterization of land surface models and the planning of observational 
networks within a catchment” Can you suggest some suggested future 
experiments to make this a reality? 
 
We note the MPR approach of Samaniego et al. concidering conceptualization an 
d parameterization and extended the use of delineated Units in the process of 
planning a monitoring/field campaign.  
 
Please provide more details on the hydrological, ecological and climatological 
regime of the test site, then link this further to the section where you discuss the 
transferability of the technique. 
 
We improved the information on the test site (Sect. 2.1). The methods are 
supposed to be applicable to remote (ungauged) catchments, as noted, hence 
special explanation on transferability is not further outlined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Marked-up manuscript version showing the changes made  

See following pages: 
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 10 

Abstract 11 

The identification of catchment functional behavior with regard to water and energy balance 12 

is an important step during the parameterization of land surface models.   13 

An approach based on time series of thermal infrared (TIR) data from remote sensing is 14 

developed and investigated to identify land surface functioning as is represented in the 15 

temporal dynamics of land surface temperature (LST).  16 

For the meso-scale Attert catchment in midwestern Luxembourg, a time series of 28 TIR 17 

images from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 18 

was extracted and analyzed.   applying a novel process chain: 19 

TheFirst, the application of mathematical-statistical pattern analysis techniques demonstrated 20 

a strong degree of pattern persistency in the data. Dominant LST patterns over a period of 12 21 

years were then extracted by a principal component analysis. Component values of the 2two 22 

most dominant components could be related for each land surface pixel to vegetation/land use 23 

data, and geology, respectively. A classification The application of the landscape by 24 

introducing “a data condensation technique (“binary word”, representingwords”) extracting 25 

distinct differences in the LST dynamics, allowed the separation into functionallandscape 26 

units that show similar functioning/behavior under radiation driven conditions.       27 

It is further outlined that both information, component values from PCA as well as the 28 

functional units from “binary words” classification, will highly improve the conceptualization 29 



 

 2 

and parameterization of land surface models and the planning of observational networks 1 

within a catchment. 2 

1 Introduction 3 

Resolving the spatial variability of hydrological processes at the land surface within spatially 4 

explicit physical-based models is still nowadays a very time-consuming and expensive task 5 

that is not applicable for operational purposes.  Therefore, a large variety of hydrological 6 

models is based on the delineation of spatially distributed hydrological functional units that 7 

are assumed to behave or function in a similar way for some given initial or boundary 8 

condition (Flügel, 1995a). TheseThey are often calledreferred to as “hydrological response 9 

units (HRUs)” typicallyand represent areasclasses of homogeneous topography, pedology, 10 

vegetation and landscape/catchment entities that share common climate conditions that are 11 

delineated by intersecting available GIS (Geographic Information System) or remote sensing 12 

information/maps., land use and underlying pedo-topo-geological characteristics. 13 

 In this way the number of computational units is significantly reduced, thus facilitating an 14 

efficient parameterization and calculation process. Examples of hydrological model systems 15 

following the HRU concept are the “Soil Water Assessment Tool (SWAT)” (Arnold et al. 16 

1998; Srinivasan et al., 1998), the Cold Region Hydrological Modell (CRHM) (Pomeroy et 17 

al., 2007) or the “Precipitation Runoff Modeling System/ Modular Modeling System 18 

(PRMS/MMS)” (Flügel, 1995b), amongst many others. In this way, the definition of HRU’s 19 

is based on information that isWhile the HRU concept has been criticized in the past for e.g. 20 

often neglecting the lateral exchange processes that are driven by inter-unit gradients 21 

(Neumann et al., 2010), Zehe et al., (2014) have recently extended the original HRU concept 22 

by “postulating a hierarchy of functional units, lead topologies and elementary functional 23 

units compiling the main catchment functions in a given hydrological setting by spatially 24 

organized interactions at and across different scales”.  25 

In any of these concepts the delineation of HRUs or functional units is mainly based on 26 

information that is directly related to land and subsurface characteristics that are well known 27 

to have some control on a wide range of hydrological processes (such as geology on soil type, 28 

soil texture and therefore hydraulic conductivity; or slope on the hydraulic gradient), but that 29 

do not represent directly internal states or (water) fluxes.  30 

In order to characterize thethis spatial (hydrological) functioning of the landscape at larger 31 

scales, it would be beneficial to have relevant information at hand that will be available 32 
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routinely (and also at locations that are ungauged) via remote sensing. Typical 1 

data/parameters are digital elevation models (DEM) from Radar Missions (Farr et al., 2007; 2 

NASA, 2009), land use/land cover data (EEA, 2014; EPA, 2007), as well as soil parameters 3 

(Lagacherie et al., 2012; Mulder et al., 2011; Summers et al., 2011; Ladoni et al., 2010; Kheir 4 

et al., 2010; Serbin et al., 2009a, 2009b; Eldeiry et al., 2010) from sensors within the visible 5 

and near infrared spectrum. Except for phenology or leaf area index data, both representing an 6 

aggregate response of vegetation to climate, soil moisture and nutrient availability, most of 7 

these parameters are again indirect indicators of hydrological processes.    8 

Another important spatial information that can be obtained from remote sensing is land 9 

surface temperature (LST). It results from a complex balance and interaction of incoming and 10 

outgoing short and long wave radiation as well as sensible, latent and ground heat fluxes 11 

(Moran, 2004). Therefore, LST is highly controlled by geographic location, atmospheric 12 

states, andstate, soil (moisture) and vegetation conditions. The monitoring of LST at the 13 

catchment scale via thermal infrared (TIR) remote sensing from e.g. LANDSAT (spatial 14 

resolution: 4/5 – 120 m, 7 – 60 m, 8 – 100 m), ASTER (90 m) or MODIS (1 km) has been 15 

used in the past primarily to derive sensible and latent heat fluxes (Bolle et al., 1993; Farah 16 

and Bastiaanssen, 2001). Given the control of latent heat fluxes by the available water content 17 

(and therefore by hydraulic properties of the soil, the location within the catchment (, Beven 18 

and Kirkby, 1979), and the phenological and physiological states of the plants (, Taiz and 19 

Zeiger, 2010)),), TIR data have also been applied to inversely extractestimate soil hydraulic 20 

properties, bulk density or volumetric water content using complex soil-vegetation-21 

atmosphere transfer (SVAT) schemes (e.g. Anderson et al., 2011; Steenpass et al., 2010).  22 

In this way, LST can be seen as a complex ecosystem state variable that aggregates a variety 23 

of (micro-)meteorological and hydrological processes as well as land surface characteristics at 24 

each individual pixel in a catchment. The spatio-temporal dynamics of LST is therefore 25 

important information in order to distinguish spatially different functional behavior of the 26 

landscape, particularly under radiation driven conditions. . 27 

 28 

In the following, the dynamic patterns of LST are investigated for the 288km288 km² Attert-29 

catchment in Luxembourg using 28 ASTER (Advanced Spaceborne Thermal Emission and 30 

Reflection Radiometer) TIR remote sensing images over a time period of 12 years. The 31 

persistency of the LST pattern time series is analyzed in two different novel ways deriving 32 



 

 4 

summary statistics of the correlation of shifted windows across the original or 1 

transformedrecoded images and/or time steps (overall pattern persistency, pattern dynamics 2 

persistency). The following principal component analysis (PCA) of the LST pattern time 3 

series allows the identification of dominant independent patterns within the time series, 4 

ranked by the ability/degree to explain the temporal variation in the LST time series. Relating 5 

the dominant principal components to available land surface characteristics, will allow to 6 

extract the most important controls of LST variation in the catchment under study and . 7 

Finally a novel scheme is suggested to group pixels/sites related tointo a manageable number 8 

of functional units based on their eco-hydrological functioning.  “behavior” that is expressed 9 

in a binarized form of LST dynamics for a representative subset of images. 10 

The rest of the paper is organized as follows: Section 2 will introduce the test site, the data 11 

used and the pre-processing steps necessary. Section 3 will describe the methods applied as 12 

well as results in a stepwise approach. Finally, Section 4 summarizes and discusses main 13 

findings and gives an outlook to future research. 14 

 15 

2 Data and Preprocessing 16 

2.1 Test site 17 

The study area is the Attert catchment located in midwestern Luxembourg and partially in 18 

Belgium (see Fig. 1). It is the main test site of the German DFG Researchresearch project 19 

CAOS (“catchments as organizedorganised systems”, (CAOS, 2014)) with a total catchment 20 

area of 288 km² at the gauge in Bissen. The undulating landscape with a mean slope of 8.4% 21 

spans between 222 m and 535 m a.s.l. The northern slopes are geologically defined by schists 22 

from the Ardennes massif, while the mainly southern slopes arise on sandstones from the 23 

Paris basin Mesozoic deposits (compare Fig. 9). Soils vary between sand and silty clay loam. 24 

The land cover of the catchment is predominantly cultivated with 4.8% settlements and rather 25 

impermeable, 65.4% agricultural used land predominantly on the knolls, and 29.7% forests 26 

predominantly in the v-shaped valleys (compare Fig. 9). Climate is characterized by mean 27 

monthly temperatures between 18 °C in July and 0 °C in January (1971–2000). The mean 28 

annual precipitation is 850 mm (1971–2000); the hydrological regime is defined asand the 29 

mean annual actual evapotranspiration is 570 mm (1971–2000) resulting in a pluvial oceanic 30 



 

 5 

with low flows within July to September due to high summer evapotranspiration, and high 1 

flows mainly from December to February. 2 

2.2 Spatial data 3 

The multispectral imaging system ASTER (advanced spaceborne thermal emission and 4 

reflection radiometer) on board the TERRA satellite, launched in December 1999, orbits on a 5 

near circular, sun-synchronous path with a repeat cycle of 4-16 days. The ASTER instrument 6 

consists of three sensors (VNIR, visible-near infrared: 0.52-0.86 µm; SWIR, shortwave 7 

infrared: 1.6-2.43 µm; TIR, thermal infrared: 8.125-11.65 µm) with 4, 6 and 5 bands, 8 

respectively (Fujisada, 1995). For this study, only the Level 1A (raw) TIR data band 13, 9 

within 10.25-10.95 µm, with a spatial resolution of 90 m are used. This band is chosen due to 10 

the lowest absorption of the atmosphere and, therefore, least altered thermal signals (compare 11 

Elder and Strong (1953)). The local overpass time is around 11:40 am LTCET. Between 12 

January 2001 and June 2012, a total of 28 snow free images (see Fig. 2, after preprocessing) 13 

with a maximum cloud cover of 15% were extracted. In addition, Corine land cover (EEA, 14 

1995) updated from 2006 (Fig. 9, upper right), and a geological map based on dominant rock 15 

formations (SGL, 2003) (Fig. 9, lower right) are used for further analysis. 16 

2.3 Preprocessing 17 

The delivered L1Aused Level 1A (raw) TIR data product lacks a proper geo-referencing. This 18 

was applied manually with 60 to 70 ground control points (depending on the cloud cover) 19 

achieving a mean accuracy of 40 m within the Attert catchment. In this transformation step, 20 

the spatial resolution of the images was adjusted from 90 m to 15 m by assigning the nearest 21 

neighbor values. The geo-positioned images were then converted from unprocessed digital 22 

numbers to top-of-atmosphere temperatures TTOA with standard parameters as given by 23 

CESSLU (2009). Sensor decay was not taken into account as decay errors due to spatially 24 

homogeneous and heterogeneous degradation of the sensor (sensitivity) are a magnitude 25 

smaller than measurement accuracy, according to Hook et al. (2007). Merely homogenous 26 

atmospheric conditions throughout the catchment were assumed for each single time step and 27 

as our focus is on statistical pattern analysis rather than on absolute LST values, atmospheric 28 

correction was omitted here and TTOA is used in the following. Additionally, calculating cloud 29 

masks was omitted as heavy fragmentation of the full time series would occur, if masks were 30 

applied for even small clouds in every affected image and cumulatively applied for the full 31 



 

 6 

series. In further statistical analysis the distortion of results due to clouds is negligibly small 1 

as occurring clouds are neither repeating in certain areas nor of large spatial extent per image. 2 

The time series of LST for individual pixels in the dataset hence include one outlier due to 3 

clouds at most. This means a maximum cloud-noise to emittance ratio of 1:27 and does not 4 

heavily influence further calculations on the full pattern. For simplification reasons the 5 

calculated data is further referred to as LST time series. 6 

 7 

3 Methods and Analysis 8 

The general objective was to explore the relevance of the spatio-temporal dynamics of land 9 

surface temperature as a determinant of the functional behavior of the water and energy 10 

balance of a landscape unit in a given watershed. In the first part of the analysis, the 11 

persistency of the LST patterns, both, in a temporal, as well in a spatio-temporal context, was 12 

explored. to analyze the existence of spatially and temporally consistent patterns. The second 13 

part will analyze the most dominant structures/patterns in the landscape that can be extracted 14 

from LST time series using PCA and will also investigate the relationship between dominant 15 

structures from LST-PCA and other landscape characteristics. In the third part, landscape 16 

functional units will then be classified based on the PCA results. 17 

3.1 Overall pattern persistency 18 

The first aim was to demonstrate that LST patterns, although changing throughout time, 19 

persist to a certain degree and, hence, provide information on the local organization of land 20 

surface energy and water balance within the full catchment. The absence of persistency would 21 

imply competing patterns within the time series and hence sever changes within the 22 

controlling features or even oscillating states within the time series. A further investigation of 23 

the timing of the pattern changes and appropriate splitting of the time series would be 24 

imminent to a comprehensive pattern analysis. In such a case, the following steps need to be 25 

executed for the separated datasets. In order to analyze the overall pattern persistency within 26 

the time series while retaining spatial patterns a procedure similar to the one used for “co-27 

referencing” different ASTER TIR bands is used (Hirschmüller et al., 2002). The correlation 28 

of shifted windows within two images indicates, whether there is a clear shift within the 29 

overall pattern in any spatial direction or if “blurring” occurs and, hence, persistency is 30 

absent. Therefore, a square window w of defined size w (e.g. 3×3 pixel (px)) around a pixel Pc 31 
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of the image I1 (time step 1) is selected and the correlation coefficient is calculated for the 1 

same window (e.g. from 3
2
=9 values) in the image I2 at time step 2 (Fig. 3a). The window 2 

within the second image now is shifted around Pc within defined maximum ranges r1, r2 (e.g. 3 

r1=[-3,+3] in N-S direction, r2=[-3,+3] in E-W direction); Fig. 3b) and correlation coefficients 4 

are assigned for any shifted position (dx,dy) of Pc and produce square fields of correlation 5 

coefficients (e.g. 7×7 px; Fig. 3c). 6 

 7 

The persistency of the patterns in the LST data within two time steps is then assessed by 8 

calculating average correlation coefficient fields for a sample of well distributed central 9 

pixels, depending on the ratio of window and shift size to image size (to reduce the effort of 10 

calculating a shift for the whole image). The overall persistency of the patterns is the average 11 

of the correlation coefficients for all combinations of patterns within the time series (28∙(28-12 

1)=756). In case the maximum correlation coefficient is within a shift of (0,0) and the 13 

decrease of the correlation coefficients is large towards bigger shifts (= no “blurring” of a 14 

single peak), the persistency of the overall pattern over time is considered as high.  15 

For our LST time series, the observed overall patterns are stationary persistent in general. By 16 

calculating the mean correlation coefficient within the full time series dataset and a range of 17 

shifts of [-50,+50] in both directions (Fig. 4), it is shown that the peak correlation value is 18 

within a shift of (4,1) px and, hence, within the range of the resolution of one original ASTER 19 

pixel (4×15 m=60 m). Also, the overall positioning of temperature values within the patterns 20 

is correlated over times and as a first result it can be derived that temporal trends within the 21 

thermal images of the Attert catchment can be considered as “spatially stationary persistent”. 22 

3.2 Pattern dynamics persistency 23 

In addition to the overall persistency, the temporal dynamics of local TIRLST patterns are 24 

investigated using a second type of “moving window” approach. To analyze the spatial 25 

relationship of each pixel within its local neighborhood, for each pixel Pc within an image a 26 

square window w (the environment) of a defined size (e.g. 3×3 px) around this central Pc is 27 

compared to the value of Pc. The environment information (ENV) is summarized to statistical 28 

information in the form of percentages of values within the square window that are bigger 29 

than, smaller than or equal the value of Pc (see Fig. 6a for an example analysis of values that 30 

are bigger than Pc).  31 
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The variations of the ENV information over time was analyzed for the 28 LST images via the 1 

spatial assessment of the coefficient of variation (|σ/µ|) for each of the three setups (<, =, >; 2 

see example in Fig. 5c-d). The three spatially distributed coefficients of variation are finally 3 

reduced to an average pattern of coefficients of variation by taking the mean value of the three 4 

setups (Fig. 5b, right). 5 

Low coefficients of variation over time indicate a very “stable positioning” or rank of that 6 

particular pixel within its local environment. An extreme value of zero would mean no change 7 

of dynamics over time for the pixel environments; for a value of 1, the standard deviation is as 8 

large as the mean value, suggesting that the persistency of the local pattern is rather low and 9 

values larger than 1 have to be interpreted as non-persistent. In this way, areas of low 10 

coefficients indicate stable, persistent local patterns and distinct varying behavior can be well 11 

identified by areas of high coefficients of variation.  12 

 13 

The analysis of the LST time series using a window size of 15×15 px = 225×225 m
2
 identifies 14 

relatively low coefficients of variation (Fig. 6) with 90% of the values between 0.19 and 0.55,  15 

50% within the range of 0.27 and 0.42, and only 0.03% of the values larger than 1. This 16 

indicates a high local pattern persistency.  17 

 18 

Based on both, global and local persistency analysis, relatively stationary patterns at the 19 

catchment scale, accompanied by stationary dynamics at the scale of hill slopes throughout 20 

the catchment can be expected. The existence of LST pattern persistence   also suggests some 21 

structured control on LST by some land surface characteristics.  In the following section 22 

possible controls will be extracted and analyzed.   23 

3.3 Principle component analysis 24 

Assessing independent structures is possible by applyingApplying principle component 25 

analysis (PCA; for a full mathematical description, see Richards and Jia (2006; chapter 26 

6.1)).), or empirical orthogonal functions (EOFs,  e.g. Denbo & Allen, 1984; Hamlington et 27 

al., 2011; Lorenz, 1956) allows the assessment of independent structures within complex data 28 

sets. Because both approaches share a similar methodology, here, PCA is used to determine 29 

which spatial factors are controlling patterns of LST within the time series. PCA uses 30 
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orthogonal transformation to calculate a composition of linearly uncorrelated values of 1 

decreasing dominance from possibly correlated monitored variables. In remote sensing, PCA 2 

is often applied to reduce the number of (correlated) variables within classification procedures 3 

(see e.g. Crósta et al., 2003; Moore et al., 2008, for the analysis of multi-spectral, single 4 

temporal TIR data to assess different geological structures).  5 

Here, the aim is to transform the observed 28 LST patterns into patterns of virtual and 6 

independent principal components. These components represent the most dominant 7 

controlling factors for the temporal dynamics of LST pattern in decreasing order. An 8 

illustrative example for a PCA application in this context is given in Fig. 77 for artificial data. 9 

 10 

The PCA application for the ASTER TIR time series produced 28 independent components as 11 

summarized in Table 1. By construction, components with higher (lower) degree show less 12 

(more) information and more (less) noise. 61.9% of the variation is cumulatively expressed 13 

via the first 5 components (third columnrow), while still more than 3% of the variance are 14 

expressed by particular components (second columnrow). In the following, a focus is given to 15 

the first 5 components (Fig. 9). 16 

Figure 8 illustrates a distinct degree of structured heterogeneity for these 5 components. In 17 

principle the patterns of the PCs would allow to classify the catchment/landscape into 18 

different functional units that, when using LST images, would strongly reflect the functioning 19 

of the landscape related to the water and energy balance under radiation driven conditions. 20 

The number of PCs to be considered in such a classification would depend on the overall 21 

number of units that should be differentiated (which will strongly depend on computational 22 

resources available to explicitly represent within catchment variability), but also on the 23 

(cumulative) percentage of explained variance of the PCs, as well as on the distribution/range 24 

of the component values of each individual PC.  25 

However, while this is an important topic related to land surface hydrological modeling, the 26 

focus here will be on the relationship of the extracted PCs with other land surface 27 

characteristics. Given the controls of LST as discussed in the introduction, it is expected to 28 

find some relationship of the first dominant PCs with vegetation, soil/geology, elevation, 29 

slope, aspect or others. A comparison of the PCs with available data suggested a strong 30 

relationship between PC1 and vegetation/land use data, as well as PC2 with geological 31 

information. These relationships are illustrated in Fig. 9, where maps PC1 and Corine land 32 
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cover as well as PC2 and a geological map of the Attert catchment are shown next to each 1 

other.   2 

A more detailed analysis is given by Fig. 10, where the distributions of component values of 3 

PC1 for the individual Corine land use data (Fig. 10a) and of PC2 for the individual 4 

geological classes (Fig. 10b) are plotted separately. The diagrams underpin a strong 5 

relationship between both components and suggested land surface characteristics. Concerning 6 

land cover, low component values of PC1 are shown for artificial areas, medium values for 7 

agricultural areas (arable, pastures, complex cultivation and agricultural/natural) and high 8 

values for forests. In this way, PC1 might be interpreted as related to similar dynamics in leaf 9 

area index (LAI) (see Asner et al, 2003), and therefore the potential for water vapor/energy 10 

exchange between the land surface and the atmosphere. The high values for “mineral 11 

extraction” can be explained, as the single, relatively small area is surrounded by forests and 12 

partially replanted with smaller trees/shrubs during the observed time span.  13 

When analyzing the component values of PC2 for the different geological classes, schist areas 14 

show distinct different distributions compared to the other (mainly) sandstone areas. Schists 15 

with a high proportion of fractures are known for a high water drainage potential compared to 16 

the remaining sedimentary geology classes (see Chiang, 1971). The availability of water for 17 

transpiration and therefore the splitting of available energy into sensible and latent heat 18 

fluxes, resulting in different land surface temperatures are thereby strongly affected. In this 19 

sense, PC2 can be interpreted as being related to bedrock information or coupled soil texture. 20 

Even though land surface temperature is expected to depend on elevation and other terrain 21 

properties, no correlation for PC3 to PC5 (and higher) could be found with any other available 22 

observable land surface characteristic pattern and in particular to DEM related variables. For 23 

the Attert catchment, the elevation differences are moderate and higher altitudes are related to 24 

the Schist areas (see Fig. 1). Thus, some part of a possible elevation effect might be “hidden” 25 

in PC2 already. However, for other more mountainous areas, possible relationships might be 26 

more pronounced and should be considered and analyzed in detail.  27 

In addition to the component values, PCA also provides information on the weight of each 28 

component within each single time step through calculation of the specific loadings. Table 2 29 

illustrates the first 5 components and their loadings for the analyzed data set. While some 30 

dependencies of the sign, mean and standard deviation of the loadings with meteorological or 31 

hydrological conditions/states in the Attert catchment are expected, here only the differences 32 



 

 11 

in the loadings at individual dates are used to identify a limited number of images that are 1 

most distinct in their information content but represent the wide range of LST dynamics over 2 

the considered time period. Based on the cumulative Euclidean distance of loadings within the 3 

LST time series, a number of 5 exemplary images are selected for further analysis (15 Feb 4 

2003, 17 May 2004, 24 May 2004, 27 May 2005, and 27 Mar 2012). 5 

3.4 Behavioral measure 6 

In the following, the temporal dynamics of LST data are analyzed in terms of their “functional 7 

behavior” and to classify the catchment into areas of similar/units some similarity in this 8 

behavior. (functional units). Similar to the analysis of pattern dynamics persistency, the vast 9 

data variability is transformed into simple information. Using the 5 most different 10 

images/time steps (see Sect. 3.3) the data are binarized using an approach suggested by Hauhs 11 

and Lange (2008). The pixels of each image within the time step are separated into values 12 

larger than the median value of the image (1) or lower (0) (Fig. 1311, left). The set of 5 13 

binarized images can be aggregated into 5-lettered “words” (Hauhs and Lange, 2008) by 14 

concatenating these binary values (see three-lettered example in Fig. 11, right).  15 

 16 

Based on the assumptions made with the PCA, theThe order of letters within the “words” 17 

represents the response of the land surface to differences in the water and energy balance for 18 

each pixel and can therefore be used to classify similarly. These different land surface 19 

responses refer to differently behaving landscape units. 20 

The transformation of the 5 LST images into behavioral “words” results in a (still 21 

manageable) number of 32 (=2
5
) classes throughout the catchment, as illustrated in Fig. 12. In 22 

some areas, functional behavior changes over short distances indicating different response of 23 

the land surface towards radiation driven conditions; other areas behave very similar over 24 

larger spatial extend. These larger clusters are characterized by a constant behavior 25 

throughout the subset time series with short interruptions only (e.g. class “00010” only has 1 26 

short “break” of length 1).  Different “binary words” represent different land surface 27 

functioning and therefore allow the delineation of “functional units” (with a focus on the 28 

radiation driven conditions) in the (Attert) catchment.  Based on results from Fig. 9 and 12, 29 

larger units can be found within the forests (e.g. “00000”, “10000”, “00001”), main 30 

settlements or frequently bare soils (”11111”), and large pastures (”11011” and “00100”). The 31 
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heterogeneous areas are more related to periodical land cover changes and represent small 1 

scale dominations of processes throughout the time series. 2 

 3 

4 Conclusions 4 

An alternative way of characterizing land surface functionality based on time series of thermal 5 

remote sensing images is introduced. First, it is shown that the overall LST patterns of the 6 

time series are spatio-temporally persistent. Second, dominant patterns within the time series 7 

were extracted via PCA and could be related to physical ecological features such as land use 8 

and geology. Based on these analysis, representative images from the time series were 9 

selected to express land surface “functionality” in terms of “binary words” and to classify 10 

land surface into different “functional units” that again could be related to existent land use 11 

patterns in the catchment. In contrast to the “classical” HRU delineation process, where maps 12 

of land surface properties (DEM, land use, soil)), that often are generalized, estimated, 13 

outdated or interpolated from sparse measures, are intersected and hydrological similarity is 14 

assumed for these units, the derived principal components and values as well as the 15 

classification with regard to “binary words”, both, represent ‘real’ and ‘on-site’ catchment 16 

functional behavior with regard to LST and therefore to the water and energy balance at each 17 

location.   18 

 19 

 While ASTER data were used here, this approach is applicable to any other platform/sensor 20 

providing LST information (e.g. Landsat 8 data, 100 m resolution, TIR). Given the maximum 21 

spatial resolution of ca. 100 m in TIR remote sensing, any analysis concerning the size of 22 

functional similarity in the landscape is limited to that resolution. Aircraft based TIR sensing 23 

might overcome this limitation, but is still not routinely available yet. More global hence 24 

coarse patterns can be derived from geostationary satellites (e.g. Meteosat) and might improve 25 

spatial representations of global standard datasets for climate modeling, e.g. the FAO (Food 26 

and Agriculture Organization of the United Nations) world soil map. By investigating the 27 

PCA results for different resolutions, it should also be possible to develop new statistical up 28 

and down scaling methods for model parameterizations. This approach is also limited by the 29 

number and datesseasonality of available (and almost cloud free) LST images. For the Attert 30 

catchment a dataset of 28 LST images was available for a period of ca. 12 years. Using the 31 

full data setdataset, any significant land surface changes related to LST are implicitly 32 
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contained and expressed in the derived principal components and itstheir values as well as in 1 

derived classification of functional units using “binary words”. An analysis of historic 2 

Landsat images has shown that the land use changes in the Attert catchment have been 3 

minimal over the last 35 years, so that crop rotation by farmers is the most dominant change 4 

over the seasons here. Given an average of not even 3 available images per year for this mid-5 

latitude region (see Fig. 2), any application of this approach will have to balance between 6 

sufficient temporal coverage in order to capture the relevant LST dynamics of the landscape, 7 

and not covering too many externally driven changes into the procedure.         8 

In order to analyze the number of images required, the PCA and “binary word” classification 9 

was repeated with only down to 6 subsequent images (given the minimum set of 5 10 

images/PCs considered in Sects. 3.3 to 3.4).  For all the subsets, results in terms of PCA, 11 

component values and classification were similar when compared to the full LST time series, 12 

indicating, that already a much smaller time period and smaller number of images will be 13 

sufficient to capture landscape functioning with regard to LST. This might change with more 14 

complex catchments/sites. The application of digital numbers instead of extracted LST also 15 

showed almost identical results, so that a proper conversion to LST is in our opinion not 16 

fundamentally needed. 17 

What are the additional benefits of the LST analysis presented here? The analysis of “binary 18 

words” as presented in Sect. 3.4 provides a classification of the catchment into areas that 19 

behave similarly (with regard to the complex interactions of the water/energy balance as 20 

expressed in LST) in terms of response to radiation driven conditions. These units can either 21 

be used in an already established HRU framework or provide some guidance on the size of 22 

spatial discretization of the landscape in land surface modeling exercises, and might support 23 

effective observation-//monitoring strategies under limited resources by providing distributed 24 

information of distinct behavior. and hence be used as decision support on the spatial 25 

distributions of field experiments. The strongest impact of the approach presented is expected 26 

when the derived component values from the PCA analysis will be incorporated into model 27 

parameter regionalization schemes (e.g. the multi-scale parameter regionalization (MPR) 28 

scheme presented by Samaniego et al. (., 2010)).). Rather than providing nominal scaled data, 29 

the component values are continuous, pixel based information representing the land surface 30 

functioning with regard to LST. Formulating the parameterization of land surface models by 31 

e.g. transfer functions (see MPR) that are based on individual component values derived from 32 
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PCA are expected to strongly improve the spatially explicit modeling of catchment water and 1 

energy fluxes. However, this hypothesis has still to be tested by comparing these different 2 

regionalization approaches within different models and catchments.  3 

By extending this analysis to further catchments under different terrain, climate, and 4 

vegetation conditions, it is expected that a more general interpretation and understanding of 5 

principal components, component values and loadings and their occurrence and interrelation 6 

can be derived. The impact of elevation on LST will certainly be more dominant in 7 

mountainous areas; soil texture is supposed to show stronger signals in water limited regions; 8 

information on variations within multi-level vegetation will appear in strongly natural and 9 

forested areas; and the association of PCA loadings with e.g. meteorological measurements or 10 

indices (e.g. cumulative rainfall of the last 7 days) might allow further processes/states (such 11 

as interception storage) to be derived. 12 
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Table 1: Overview on the 28 calculated principle components (PCs) regarding their accounted 1 

proportion of variance. The components show in each column their specific standard 2 

deviation (σ), proportion of variance (prop. of VAR) and cumulative proportion of variance 3 

(cum. prop.). 4 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

σ 3.475 1.502 1.018 1.006 0.977 0.874 0.867 

prop. of VAR 0.431 0.081 0.037 0.036 0.034 0.027 0.027 

cum. prop. 0.431 0.512 0.549 0.585 0.619 0.646 0.673 

         continued 
PC8 PC9 PC10 PC11 PC12 PC13 PC14 

σ 0.843 0.834 0.792 0.754 0.746 0.730 0.713 

prop. of VAR 0.025 0.025 0.022 0.020 0.020 0.019 0.018 

cum. prop. 0.699 0.723 0.746 0.766 0.786 0.805 0.823 

         continued 
PC15 PC16 PC17 PC18 PC19 PC20 PC21 

σ 0.712 0.694 0.671 0.669 0.646 0.619 0.598 

prop. of VAR 0.018 0.017 0.016 0.016 0.015 0.014 0.013 

cum. prop. 0.841 0.858 0.875 0.891 0.905 0.919 0.932 

         
continued 

PC22 PC23 PC24 PC25 PC26 PC27 PC28 

σ 0.589 0.575 0.555 0.535 0.525 0.483 0.357 

prop. of VAR 0.012 0.012 0.011 0.010 0.010 0.008 0.005 

cum. prop. 0.944 0.956 0.967 0.977 0.987 0.995 1.000 

 

                             

 5 
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Table 2: Loadings of the first 5 components (rows) to reproduce the LST time series 1 

(columns). The weights differ largely between the time steps. The lowest coefficient of 2 

variation for the loadings is calculated for PC1 (0.195), the highest value for PC2 (136.996); 3 

PC3, PC4 and PC5 have coefficients of variation of 80.131, 21.914 and 14.193. 4 

loading 

of 

25 Feb 

2001 

23 Sep 

2001 

15 Feb 

2003 

21 Mar 

2003 

03 Aug 

2003 

15 Apr 

2004 

17 May 

2004 

PC1 -0.055 -0.056 -0.044 -0.054 -0.052 -0.038 -0.048 

PC2 -0.050 -0.038 -0.099  0.012  0.026  0.054  0.023 

PC3  0.045  0.006  0.042  0.041 -0.043  0.099  0.057 

PC4 -0.066 -0.072 -0.013 -0.054 -0.055  0.009  0.029 

PC5  0.059  0.000  0.075  0.016 -0.018 -0.028 -0.098 

        continued 
24 May 

2004 

27 May 

2005 

12 Sep 

2006 

01 May 

2007 

15 Jul 

2008 

24 Jul 

2008 

26 Sep 

2008 

PC1 -0.056 -0.043 -0.054 -0.049 -0.061 -0.053 -0.055 

PC2  0.002 -0.015  0.019  0.045 -0.025 -0.024  0.004 

PC3  0.038  0.014 -0.022 -0.024 -0.036 -0.048 -0.022 

PC4  0.008  0.041 -0.063  0.006  0.028  0.014 -0.070 

PC5 -0.103 -0.085 -0.026 -0.016 -0.011 -0.001  0.004 

        continued 
21 Mar 

2009 

20 Apr 

2009 

22 May 

2009 

23 Jun 

2009 

02 Jul 

2009 

27 Jul 

2009 

16 Apr 

2010 

PC1 -0.059 -0.038 -0.050 -0.043 -0.042 -0.049 -0.034 

PC2  0.026  0.026 -0.041 -0.028 -0.037 -0.033  0.098 

PC3 -0.004  0.010  0.007 -0.067 -0.052 -0.022  0.010 

PC4 -0.011  0.091  0.061  0.078  0.112  0.008  0.020 

PC5  0.042  0.075  0.007  0.049  0.000 -0.006  0.104 
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continued 
23 Apr 

2010 

23 Sep 

2010 

19 Apr 

2011 

30 May 

2011 

06 Nov 

2011 

27 Mar 

2012 

14 May 

2012 

PC1 -0.037 -0.034 -0.059 -0.059 -0.028 -0.032 -0.048 

PC2  0.070  0.057 -0.024 -0.003 -0.117  0.066  0.017 

PC3  0.056 -0.128 -0.035 -0.026  0.069  0.038  0.013 

PC4  0.027 -0.061  0.031 -0.041 -0.025 -0.010  0.044 

PC5  0.022  0.010 -0.014 -0.043  0.038  0.058 -0.013 

1 
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Figure 1: The location of the Attert catchment and its elevation. Catchment boundaries are 3 

given for the gauge Bissen, Luxembourg.  4 

5 
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Figure 2:  a) Examples of single band top-of-atmosphere (TOA) temperature time series 1 

covering winter (1), spring (2), summer (3) and autumn (4). b) Basic temporal and statistical 2 

information (mean, ranges) of the image time series. 3 

4 
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Figure 3: Analysis for the coefficient of correlation for a designed spatial dataset. We added 3 

small normal distributed noise to a concentric spatial pattern I1 to construct I2 and show the 4 

correlation for an extracted window w (red) around the central pixel Pc (blue) in the same 5 

position (a), in different positions (b) and for the whole image I2 within the maximum ranges 6 

[-3,+3] (c). 7 

8 
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Figure 4: Coefficient of correlation for the LST time series data. The mean coefficient of 3 

correlation for all 756 combinations shows a centered behavior (single peak area with 4 

maximum correlation of 0.47; green) with a low shift (4,1) within a maximum range of [-5 

50,+50] in both x- and y-direction. The size of the correlation window is 51×51 px for 5 fixed, 6 

non-overlapping positions ( 
   
   
   

 ) throughout the images. 7 

8 
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Figure 5: Analysis of the coefficient of variation via an “environment assessment” for a 3 

designed dataset. The data are generated in the same way as in the previous analysis (see Fig. 4 

3). Subfigure (a) illustrates the derivation of a single summary value for the central pixel Pc 5 

(blue) from the data of the surrounding environment w (red). The example here investigates 6 

how many values within the environment are larger than the central value. 7 

8 
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Figure 5 continued: This is repeated for all image pixels (except for boundary pixels) resulting 3 

in the leftmost picture. 4 

  5 
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 1 

Figure 5 continued: Subfigures (b)-(d-e) illustrate the procedure from dataset (b, left) to the 2 

environment measures (c-e, left), to the coefficients of variation for different environments (c-3 

e, right) and to the final describing average pattern (b, right). 4 

  5 
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Figure 6: Coefficient of variation for the ASTERLST time series data. The median coefficient 3 

of variation is 0.34, the mean value 0.35. 90% of the calculated values are within the range of 4 

0.19 and 0.55 (red lines), 50% within the range of 0.27 and 0.42 (red dashes); 0.03% of the 5 

values are larger than 1 (blue arrow). 6 
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Figure 7: Principle component analysis for a designed dataset. The data are the same as for 3 

Fig. 5. The first row shows the pattern of the original data (I1-I3), the second row shows the 4 

three resulting principle components (PC1-PC3). The PCs are scaled to the same numeric 5 

domain as the original data and colored alike (orange for low, green for high values). PC1 6 

shows the dominance of the concentric pattern explaining 90.5% of overall variance of the 7 

data. PC2 and PC3 are more homogeneous and describe the noise of the construction of the 8 

dataset. 9 

10 



 

 35 

 1 

 2 

 3 

Figure 8: The first 5 components of the PCA for the LST time series data. 4 

5 
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Figure 9: The first and second component of the PCA for the LST time series data (left) next 4 

to the patterns of the illustration of Corine land cover and geology data (right) of the Attert 5 

catchment. 6 

7 
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Figure 10: Comparison of component values and spatial information for the Attert catchment. 3 

The density distribution of the component values (PC1 in a; PC2 in b) are shown for the 4 

different classes of the spatial datasets (Corine land cover in a; geology in b). Mean values of 5 

the distributions are shown as vertical bars at the bottom line. 6 

7 
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Figure 11: Construction of “binary word” classification for a designed dataset. The data are 4 

the same as for Fig. 5. On the left, the three images are binarized (BIN) from the upper to the 5 

lower panel. Values larger than the median are converted to 1 (blue), values lower are 6 

converted to 0 (green). The right panel shows the aggregated words for the three datasets. Not 7 

every possible occurrence of words is produced (maximum: 2
3
=8). 8 
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Figure 12: Behavioral classification of the subset LST time series data. The algorithm is 3 

producing 2
5
=32 classes of different frequency. The image shows the full bandwidth with 4 

classes named in the legend. 5 




