This document contains two parts: part I lists all three referees’” comments
that go beyond technical corrections and the authors’ responses to them. Part IT
(beginning at page 12) contains a marked-up version that compares the current
revision to the initial submission.

The most substantial difference to the initial submission is the removal of the
normalised TF variants (this affects methods, results, including figures 4-9 as
well as Tab. 4 and 5, and discussion) and the first appendix. The introduction
was extended by references to more recent time-variant modelling approaches.

Part 1
Responses to the referees

1 Comments and responses: Referee #1

We appreciate the helpful comments of the Anonymous Referee #1. The tech-
nical corrections will be implemented and the comments are answered below.

Comment #1 Steady state lumped parameter models were used to deter-
mine MTTs, although it is expected that time-variable parameters should apply
especially during short-term high flow episodes. Such an approach (with their
two-weekly sampling regimen) means essentially that baseflow transit times were
being determined in this study (especially if sampling during high-flow periods
was avoided). This may be a satisfactory approach, although it is by no means
clear that baseflow MTTs will be constant in time (e.g. that high baseflow
MTT will equal low baseflow MTT). If baseflow TTDs are time-variable, the
long transit time tails will be even more ”underdetermined” than indicated in
the paper, and the need for a longer-term tracer greater. I think that studies
such as this should point out that they are talking about baseflow transit times,
not streamflow transit times.

Reply We clarified that we were considering baseflow (Sec. 2.3 lines 12-14
of the revised paper).

Comment #2 The paper uses two variants of the three TF's, normalised
and unnormalised versions. I found these difficult to understand, although a
description is given in Appendix A. In particular, if it is logical for the TF's to
be normalised, then why give both versions? Is there doubt about which version
is correct?

Reply Our initial reasons to consider the normalised TF versions were not
sound enough to keep them in the paper and apart from a short mention in lines
24 — 28 of Sec. 5.4, we removed them altogether from the revised version of the

paper .



Comment #3 Table 4 caption contains the sentence ”Significant correla-
tions (p-value < 0.05) are printed in boldface, correlations with p-values = 0.2
are printed in italics.” I cannot see how this relates to the boldface and italic
numbers in the table.

Reply We refrained from using italic numbers to indicate p values > 0.2 and
rewrote the caption of Tab. 4 and hope that those measures helped to increase
clarity.

2 comments and responses: Referee #2

We appreciate the numerous and helpful comments of Anonymous Referee #2.

General comment

[...]. However, the methods applied are not always convincing, in particular
the normalisation of the response functions. This practice, which is presented
as necessary for a numerical implementation of the convolution model, seems
to me confusing and unnecessary. Moreover, the relevance of the work is never
clearly stated in the manuscript. A more consistent use of the terms ”transfer
function”, ”response function” and ”transit time distribution”, to which I would
give very different meanings, would also help the reading and the understanding.
Accordingly, I think the paper should be published under major revisions.

Reply
After a similar remark of Anonymous Referee #1, we came to the conclusion
that the reasons we had to include the results of normalised transfer functions
(see our response to Anonymous Referee #1) were insufficient to justify such
a detailed consideration of those results. Consequently, we removed the nor-
malised variants from the paper.

Detailed comments

- Title: I dont think the title conveys the essential information about the paper.
I would suggest to change it, focusing more on the core of the work, i.e. the
determination of the catchment response functions from isotope data and the
correlation between topographic indices and mean response times.

Reply
We changed the title.

- Page 6754, line 9: Here the term ”transfer function” is mentioned for the
first time, apparently with the same meaning of transit time distribution. I
would suggest to be more cautious and consistent in the use of the terminology
throughout the paper: transfer function (or, as it is sometimes called in the
manuscript, response function) and transit time distribution are conceptually
different. The transfer function, in fact, describes the causality between input
pulses and output signals at the outlet, without requiring that the water the



flows out is exactly the same water that was injected. The transit time dis-
tribution, instead, implies this link. Evidently, the work does not investigate
transit time distributions, for which the stationarity assumption cannot hold,
but rather transfer functions. I would therefore avoid using the term ”tran-
sit time distribution” and replace it with ”hydraulic response function” and
"tracer response function”, respectively for discharge and isotopic composition.
Accordingly also the MTT should become MRT (mean response time).

Reply
Some assumptions have to be made in order to treat an optimised transfer
function as equivalent to the TTD of a catchment. However, these are exactly
the same assumptions that have to be made in order to work with lumped
convolution models. McGuire and McDonnell (2006), Hrachowitz et al. (2010),
Roa-Garcia and Weiler (2010) and Heidbiichel et al. (2012) all used the term
TTD in the same sense as we do in this paper. We do mention the required
assumptions in the introductory section of the paper. Consequently we adhere to
our use of terminology, as we see it in agreement with the established framework.

- Page 6754, line 10: It was not clear to me why you decided to introduce the
normalised response function. I do not see the necessity, neither from a mathe-
matical nor from a numerical point of view. Mathematically, the normalisation
introduces errors, because you are constraining the mass of the distribution in a
finite range, which is given by the length of your record and is thus arbitrary. In
fact, there is no physical reason to assign an upper limit to the random variable
"response time”. From a numerical perspective, the convolution is effectively
computed by calculating the mean value of the distribution in the different time
steps, without normalisation. This procedure is sufficient to conserve the mass,
as it is correctly explained at the end of Appendix A. For these reasons, I would
suggest to completely delete any references to normalisation and normalised
distributions throughout the manuscript.

Reply
We removed the normalised TF versions from the paper.

- Page 6754, line 20: "which were also correlated to the mean annual pre-
cipitation sum”. It is not clear if the authors observed a correlation among the
geomor- phological and meteorological characteristics of the study catchments.
Please clarify.

Reply
We rewrote the whole abstract and the according passage does not longer exist.

- Page 6755, introduction: In the introduction there are no references to a
whole line of research that sought a more in-depth theoretical understanding of
the non stationarity of the hydrologic response, the water age mixing and the old
water paradox. I would suggest considering the relevant work of Botter et al.
(2010) ”Transport in the hydrologic response: Travel time distributions, soil
moisture dynamics, and the old water paradox”, Botter et al. (2011) ”Catch-
ment residence and travel time distributions: The master equation”, Botter et
al. 2005 ”On the Lagrangian formulations of reactive solute transport in the hy-



drologic response”, Rinaldo et al. (2011) ”Catchment travel time distributions
and water flow in soils”.

Reply
We included relevant works of Botter et al. (2010), Botter et al. (2011) and
Rinaldo et al. (2011) into the introductory section of the paper.

- Page 6756, line 22: ”...assumed time invariant transfer functions”. Here, I
would briefly discuss the implications of this assumption. The resulting mean
values of the response functions (mean response times) are not mean transit
times (because the stationarity assumption cannot hold). Though, they can
still give useful information on the catchment behaviour. A sentence discussing
the relevance of the work would also be appreciated here.

Reply
We mentioned the required assumptions and justified our decision to work with
time-invariant lumped convolution models in the introductory section of the

paper.

- Page 6759, line 16: What type of initiation threshold did the authors use?
Drainage area threshold or slope-area threshold?

Reply
We used a drainage area threshold and will added this information to the re-
vised version of the paper.

- Page 6760, line 3: The way DD is defined in the manuscript does not
correspond to the traditional drainage density, which is L/A [m 1 ] (length of
the streams over catchment area). It could be calculated, using a DTM, as the
inverse of the mean distance from the steam 1/< D >, where D is calculated
for each non- stream pixel along the steepest descent direction. Why did the
authors choose this definition? Different results would possibly be obtained if
DD was computed as 1/< D >?

Reply
When we computed DD the way described in the manuscript, we also had its tra-
ditional definition as L/A in mind. Under the assumption of a sufficiently highly
resolved DTM and the further assumption that different catchments’ channels’
directions are similarly distributed with regard to the raster orientation, we
supposed our metric should be a sufficiently good approximation to L/A. After
your criticism on our approximated approach we invested some time to compute
the DD in according to its actual definition: we summed up the lengths of the
line segments of the shapefiles that contained the computed channel networks
to obtain the channel lengths L and divided them by the catchment areas A.
Those actual DDs correlated remarkably well with the approximated DDs of
our initial computation approach (but the dimensions were different) . When
we computed DD according to your suggestion as 1/< D >, the correlation to
the correctly computed DD was rather low(R? of 0.46).

- Page 6760, Eq. 1: What are the implications of assuming a constant



vertical gradient g of isotopic content? Is this a reasonable assumption that is
supported by previous studies?

Reply
Siegenthaler and Oeschger (1980) have clearly shown that there is a vertical
gradient of isotopic content in precipitation for the study area and we also saw
this gradient in the site data. Most of this gradient is linked to the vertical tem-
perature gradient, as there is a clear influence of the condensation temperature
on the isotopic content of the resulting precipitation (Dansgaard , 1964). Apart
from seasonally varying atmospheric conditions, temperature differences in the
study area are predominantly caused altitudes differences.

To account for the seasonality, we did not assume one constant vertical gra-
dient of isotopic content over the whole year, but we computed average gradients
for each month of the year. We are aware of the fact, that the assumption of con-
stant height gradients for each month of the year will certainly not hold for each
and every specific month contained in our study, as atmospheric conditions do
not strictly align with calendrical dates and we are sure that more sophisticated
ways to estimate the vertical height gradient are conceivable. Within the scope
of this study we decided on the described procedure and we were content with its
results (see Appendix B (now A) and Fig. B1 (now Al) in the discussion paper).

- Page 6761, Eq. 5: It is not clear to me why only 4, was interpolated and
not is. If both were interpolated, there would be no need of identifying the
closest measurement point s*.

Reply
Our input time series of isotopes in precipitation exhibit various gaps. In months
with few available site data, a direct interpolation of the available monthly site
data will inevitably fail to reproduce the real spatial heterogeneity. By basing
the estimation on average monthly values, we may retain at least the average
component of spatial heterogeneity.

- Page 6761, line 16: It is not clear what is the purpose of considering the
transit time proxy. ”To complement the lumped convolution modelling” is too
vague. It becomes clearer later in the manuscript but for the reader would be
useful to have a more precise explanation here.

- Page 6761, Eq 6: I would suggest giving directly the definition of TTP, instead
of defining ITTP and then saying that you preferred using TTP.

Reply
Since we directly referred to the ITTP defined by Tetzlaff et al. (2009), we chose
to repeat their definition. We agree that this is not the best way to define the
TTP we used in the study. Consequently we modified the according section and
defined TTP more directly.

- Page 6762, Section 3.4.1: Additional information about the snow model
would be useful. What is the resolution of the model? Do you account for the
shading effect in the computation of incoming shortwave radiation? Do you
account for snow drift?



Reply

Except for the modifications listed on page 6762 (lines 21-24) (referring to the
initial submission), the snow model basically is ESCIMO Strasser and Marke
(2010), which is a point based energy balance model. Therefore, it has no spatial
resolution and we did not account for shading effects regarding incoming short-
wave radiation or snow drift. In accordance with the available meteorological
input data (see page 6758, lines 5-8) (referring to the initial submission) the
model was computed for 100 m elevation bands of each catchment. We added
this information to the revised version of the paper.

- Page 6765, line 9: Please change ”pareto” to ”Pareto”. Also, briefly explain
the meaning of Pareto-optimal parameters sets, for non specialised readers.
- Page 6767, line 21: Please explain the meaning of Pareto-fronts for non spe-
cialised readers.

Reply
We gave short explanations for the concepts of Pareto optimality and Pareto
front in the revised version of the paper.

- Page 6765, line 24: ”...with a population size of 1500 and 20 generations”.
I could not understand this. Are the generations the number of parameter sets
that you extract? what is the population then? Please clarify.

Reply
Assuming that anyone interested in the details of the NSGAII algorithm would
resort to the given reference (Deb et al., 2002), we avoided to give more in-
formation on the algorithm specific meaning of popoulation size (which is the
number of parameter sets) and generations (which is the number of iterations
of the algorithm). We included more explicit information on this in the revised
version of the paper.

- Page 6768, line 3: If you decide to abbreviate transfer function as TF,
please start doing it since the beginning of the manuscript. At this point of
the text you have already mentioned this term several times and it seems a bit
too late for an abbreviation. I would anyway suggest using the term response
function and the abbreviation RF.

Reply
We will introduced the abbreviation earlier in the paper and paid attention to
a more consistent use of it in the revised version of the paper.

- Page 6771, line 17: On which basis did you select the five catchments? Do
they show any particular features or are they representative for all the other
catchments?

Reply
We intended to choose catchments which represent all occurring types of dis-
tributions encountered in our study. As shown in Fig. 6, which shows the
RTDs and TTDs of all catchments, the five selected catchments’ distributions
(coloured lines, belonging to the same five selected catchments whose results



are depicted in Fig. 5) encompass the other catchments’ distributions and also
contain some intermediate cases. We included our intention to select those five
catchments in the revised version of the paper.

- Page 6755, lines 21-26: I am not sure I understand or agree with the
explanation. I think the reason why the tails of the distributions were not
influential in the computation of the objective function is rather caused by
the length of the record, which is less than 3 years. Accordingly, when the
convolution is computed over such a relatively small time period, the tail of the
distribution (which in some cases extends far beyond the length of the record)
does not play any important role.

- Page 6776, line 23: Since the main problem involved in the estimation of the
MTT (that I would call MRT ”mean response time”) is the poor influence of
the tail of the distributions, I would add here that reliable MRT estimates are
not possible without a longer data set, because of the aforementioned reasons.

Reply
In that point we disagree. Our simulation period encompassed 20 years and we
used an equally long time series of precipitation isotope data. The increased
damping of the input signal towards the tailing of a transfer function with heavy
tailing has nothing to do with the length of the output validation data time se-
ries. There is no measurable difference between a seasonal oscillation signal
damped over 10 or 100 years: both will lie around the average value and both
will be overlain by short term variation and noise. Longer stream discharge iso-
tope data time series may be beneficial to decrease short term climatic influences
on time-invariant transit time estimations or enable time-variant transit time
modelling, but as long as the only considered input signal are annually recurring
stable water isotope concentrations, they will not help to identify transit time
distributions’ tailings beyond a few years.

- Page 6780, Appendix A: I would suggest to delete this section of the
manuscript. ...
Reply
We removed this Appendix from the paper.

- Fig. 2: Maybe the authors can find a way to convey the information with
a simpler scheme. E.g. T would use only one arrow connecting the box ”input
variables from PREVAH” to the box ”snow module”.

Reply
Thanks to this comment, we realised that the explicit depiction of the five mete-
orological input variables does not help to convey the essential information and
we merged them into one box. Apart from that, we would refrain from further
simplifications of the model scheme.

- Fig. 5: The plots on the right are very confusing. I could not really
understand why there are so many lines having the same colour but different
thickness. ” Thinner lines indicate ranges of the best solutions” is not really clear.



Range of what? Why dont you show ONLY the ones giving the best solution?
I imagine that after removing the lines of the normalised distributions the plots
may be more clear, but I would still suggest to explain it better.
Reply

We removed the normalised TF variants and hope that this step will makes the
right column of the figure easier to comprehend. The bold lines in the right
column of subfigures of Fig. 5 do not show the results of one particular param-
eter set, but represent the median value of 30 to 100 Pareto-optimal parameter
sets, while the thinner lines indicate the upper and lower ranges of those Pareto-
optimal parameter sets. We clarified this in the figure’s caption.

- Fig. A1l: The Figure on the left may be useful to understand the numerical
computation of the convolution. The Figure on the right should be removed.
Reply
We removed the figure together with the appendix it belonged to.

3 Comments and responses: Referee #3

3.1 General Comments

[...]. Tonly have two main concerns reading the paper. First, I wonder whether
the structure of the input data influences the results and conclusions. The data
is rather sparse temporally as well as spatially and more smoothing is introduced
by a novel interpolation method. I could for example imagine that due to the
smoothed input, transfer functions that smooth data less than others would in
this scenario produce better fits and fewer errors than they would otherwise
(if the input was more variable). The authors should discuss this. Second,
the authors should also discuss their results on the relations between mean
transit times and physical catchment properties with regard to recent work on
temporally-varying mean transit times. [...]

Reply
We would like to thank Anonymous Referee #3 for the thoughtful comments.
We agree that the stream isotope data time series are rather sparse. The reasons
for the sparse input data do mainly originate from financial constraints to the
study design. While the precipitation isotope data is spatially sparse and its
coarse temporal resolution of monthly bulk samples introduces smoothing, we
would like to point out that our interpolation approach does not introduce any
further smoothing. With the available data, an analysis of short-term stream
discharge behaviour is not possible and the results of this study rather refer to
baseflow conditions. We clarified this in the revised version of the paper (new
abstract and Sec. 2.3 lines 12-14 of the revised paper).

As our study focused on time invariant transfer functions, we missed to
consider studies which focus on temporally-varying mean transit times and their
relation to physical catchment properties. We are thankful for the hint and now



we included a reference to Heidbiichel et al. (2013). Apart from that one study,
we could not find any study that tried to relate time-variable transit times to
catchment properties.

3.2 Specific Comments

p- 6754, 1. 2: The TTD is not only linked to water storage potential, so you
should maybe add amongst other things to the statement. It is the first sentence
of the abstract after all and should therefore be a little more general.

p. 6754, 1. 11: Reading the abstract I did not know what you mean by
normalised. In the paper it becomes clear, but just reading the abstract alone
leaves you wondering.

p. 6754, 1. 15: What do you mean by ...transfer functions mainly have to
agree on an intermediate time scale...?

Reply
We completely rewrote the abstract.

p. 6755, 1. 12: Other important references would be van der Velde et al.
(2010) and Botter et al. (2011).

p. 6756, 1. 1-17: There is a relatively new paper by Heidbiichel et al. (2013)
that investigates MTTs under different meteorological conditions and assesses
how these conditions alter the influence of the physical catchment characteristics
on MTTs. You should definitely have a look.

Reply
We will included the works of consider these references in the revised introduc-
tion.

p. 6758, I. 22: Deuterium and oxygen-18 do only almost convey the same
information (see Lyon et al. (2009)). It is fine, however, that you make this
assumption.

Reply
The assumption we made might not be applicable to any circumstances, but
even according to Lyon et al. (2009) this assumption should be fine for our
study region, were all precipitation and discharge data are close to the global
meteoric water line. We are thankful for the hint and included a reference to
Lyon et al. (2009) in Sec. 2.4 (lines 16-19).

p- 6763, 1. 5: Does this method also take into account the fact that early
melt water is very much enriched in the heavy isotopes?

Reply
This effect is not taken into account, but is discussed in Sec. 5.3. If we con-
sidered a small area on a high temporal resolution, this certainly would play
an important roll. In our case the fortnightly sampling of discharge isotopes as
well as the vertical extent of most of the study catchments probably decreases
the measurable influence of this effect sufficiently.



p. 6774, 1. 3: Do you think that the averaging and smoothing of the input
that is introduced by this method is one reason that no transfer function type
could be singled out as the best one? Maybe if you had better input (i.e. more
resolved in time and space) than you would find that for example the gamma
function is better able to reproduce the short-term variability.

Reply
Our method of precipitation isotope data estimation works with (uninterpo-
lated) deviations from average values. This approach may introduce a bias,
but it should not introduce any smoothing compared to the station data. The
monthly averaged precipitation isotope data and the fortnightly discharge sam-
pling certainly do introduce a smoothing and temporally higher resolved isotope
data would probably allow to decide between the TPLR and the gamma func-
tion.

p. 6777, 1. 27 p. 6778, 1. 21: Again, this is where it would be helpful to
compare and discuss your results with regard to the results of Heidbiichel et al.
(2013). They found that the MTTs of catchments for three different years cor-
related with different physical catchment properties, depending on the specific
weather conditions during that specific year. Not only was it important how
much precipitation fell in one year, it was also important whether this precipi-
tation was more distributed over time or whether it was more concentrated in
certain periods. They went on to explain this observation by linking weather
conditions with storage states and storage states with predominant flow paths.
Depending on the specific flow paths MTTs were then controlled by different
physical catchment properties. Maybe you can find something similar in your
study?

Reply
We included this point into our discussion (page 25 lines 14-23). Due to the
sparse temporal resolution of our input data and limited time for further re-
search in this direction, we refrained from a time-variant consideration of our
data.

p. 6779, 1. 14: What about using the median value instead? Since the long
tails are not identifiable with stable isotope data anyways the median would not
be affected that dramatically by the shape of the tail.

Reply
In comparison to the MTTs, the consideration of median transit times decreases
the absolute range of uncertainty, but it hardly changes the ranking of the
catchments. As previous studies focused on MTT comparisons, we would like
to adhere to this practice, be it to point out its weakness. We also identified a
relatively transit time measure which proved to be more identifiable and con-
sistent between different TF types (the cumulated fraction of the TTD reached
after 3 month) and included it into our analysis. However, in comparison to the
consideration of MTTs, it looks like the relations to topographic characteristics
are very similar.
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3.3 Technical Corrections

Reply
We appreciate the technical corrections and implemented them.
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Part II
Changes since last submission

The following marked-up version was created with the latexdiff-tool. Unfortu-
nately, the changes in Tab. 4 and Tab. 5 could not appropriately be marked
and the formatting of those two tables is lost.
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Abstract

WMMWMWWMW
of catchments, revealing information about the flow pathways, source of water and storage
in_a single integrated measure. While several studies have investigated the relationship
between catchment _topography and _transit times, there are few studies that expanded the
analysis to a wide range of catchments properties and assessed the influence of the selected
transfer function model. We used stable water isotopes from mostly baseflow samples with
lumped convolution models of time invariant transfer functions to estimate the transit time
distributions of 24 meso-scale catchments covering different geomorphic and geologic regions
in Switzerland. The sparse network of 13 precipitation isotope sampling sites required the
development of a new spatial interpolation method for the monthly isotopic _composition
&w%%nm%@mmsed snow model wefe—&pphed%e%rmﬂ}a{e—the

ea{ehmemsm&vﬁzefkafrd%ﬁeeﬁrffefeﬂ&ype&e#&&nsfe%me&e&was ada ted to account for

the seasonal water isotope storage in snow dominated catchments. Transit time distributions
were estimated with three established transfer functions (exponential, gamma distribution and

two parallel linear reservmrs)w%we—d#fefefﬁﬂp}aﬁemaﬂm%w&ﬂamﬁsmeﬂymaﬂ%ema&ea}

te—fefﬁﬂghﬂyudfsehafgeﬂamp}es—whﬂ&%heﬁshefkfeﬁﬁﬂﬂek Whlle the ex onentlal transfer
function proved to be less suitable to simulate the isotopic signal in most of the catchments,
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the gamma distribution and the two parallel linear reservoirs transfer function reached similarl
ood model fits to the fortnightly observed isotopic compositions in discharge. Albeit, in man
catchments the transit time distributions implied by equally well fitted models differed markedl

of each other and in extreme cases, the resulting mean transit time differed by orders of

magnitude. A more thorough comparison showed that equally suited models corresponded with
agreeing values of cumulated transit time distributions only between three and six month. The
short term (< 30 days) component of the transit time distributions did not play a role because
guh@w@évmwgmwwwﬂlmmwm -term behaviour-seent

W&M@WM
water isotopes resulting in ambiguous mean transit time and hence questioning the relevance
of a mean transit time determined with stable isotopes. Finally we investigated the relation
between mean transit time estimates based on the three different transfer function types as
well as other transit time properties and a range of topographical catchment characteristics.
Depending on the selected transfer model, we found a weak correlation between transit time
properties and the ratio between flow path length over the flow gradient, drainage density and
the mean discharge. The catchment storage derived from mean transit times and mean discharge
did not show any clear relation to any catchment properties, indicating that in many studies the
mean annual discharge may bias the MTT estimates.

1 Introduction

Stable water isotopes or other natural constituents, like chloride, in precipitation act as
environmental tracers whose signals are altered by hydrological processes, storage and mixing
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inside a —catchment. Measurements of those environmental tracers in discharge can be used
to infer transit (or travel) time distributions (TTDs) and mean transit times (MTTs) on the
catchment scale (Kirchner et al., 2010) . These inferred TTDs and MTTs might in turn enable
a —deeper understanding of hydrological processes which cannot be assessed by discharge
measurements alone.

Transit time estimations based on lumped convolution modelling approaches have been
carried out in various studies, reviewed by 2-McGuire and McDonnell (2006) , and subsequent
studies like Soulsby and Tetzlaff (2008), Tetzlaff et al. (2009b), Hrachowitz et al. (2010), Roa-
Garcia and Weiler (2010), Lyon et al. (2010), Soulsby et al. (2011), Heidbiichel et al. (2012),
and Capell et al. (2012).

*Lumped _convolution modelling_approaches are based on the convolution of an

input signal with a transfer function (TF) to obtain an appropriate output signal.
McGuire and McDonnell (2006) pointed out that the-widespreadlumped-convolution—model
this_widespread modelling approach was originally developed for groundwater systems
(Matoszewski and Zuber, 1982) and assumes a —hydrological steady state system {(2)-and
a—(Maloszewski et al., 1983) and a determinable representative input. Fer—eatchmentsthese

AR SIS AR A SRRSO AR

assumptions-are-often-violated-Consequently,-

Botteretal. (2010), __Botteretal. (2011) and __ Rinaldo et al. (2011) developed __a
mathematical framework for catchment based tracer studies and they reached the conclusion
that the steady state assumption generally cannot hold in dynamically responding catchments.
Botter et al. (2010) found that the steady state assumption is particularly unsuited to capture a
catchment’s short term _behaviour. Rinaldo et al. (2011) pointed out that the TTD conditional
on a specific input time usually is not the same as its counterpart, the TTD conditional on a
certain exit time. The input TTD will be continuous, while the exit TTD will be as discrete as
the respective input. Despite this clear discrepancy, lumped convolution modelling approaches
assume an _equivalence of both TDD. This also means that an optimized TF is assumed to
be suited to reflect a catchments TTD, which remains a crude approximation as long as the
catchment is not a steady state system with continuous input.
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Some _more recent studies abandoned——the——steady—state——assumption
Hrachowitz et al., 2010; Heidbiichel et al., 2012, 2013) have abandoned the time-invariant
TF approach in favour of convolution medel—approaches—with—time—variant
TTDstHrachowitz-et-al-2010; Heidbiichel-et-al; 2012)-or—even—more—{flexible—models _with
time-variant TFs. This approach allows for temporal variability of the TTDs, but it also greatly
increases the computational cost and includes further assumptions. Another way to allow for
time-variant TTDs is to abdicate the convolution approach altogether and to apply a more
explicit modelling approaches (Hrachewitz-et-al;-2013)—While—these—approaches—are—like
van der Velde et al. (2010) or Hrachowitz et al, (2013) .

%M@&M&@Wmm suited to e&pfuf&ﬂ%emesﬂﬁheﬁ*efm

Mﬂ*ﬁm&%&qumﬁ%%ﬂ%&miwm%mg
TTDs, they all come at an increased cost. In order to keep the computational cost of
the optimisation manageable, Heidbiichel et al. (2012) , who_estimated time-variant TTDs
for two_catchments, limited the number of free parameters in their TFs to one. Whereas
Hrachowitz et al. (2010) stated that_the estimation of time-variant TTDs based on_a_two
parameter gamma distribution TF took about 150 h for one catchment. In a flux tracking
approach of Hrachowitz et al. (2013) , the size of the multidimensional data matrix required
for flux-tracking increases with the square of the time series length and tends to exhaust the
commonly available memory capacity rather fast.

So even though the lumped convolution modelling approach with time-invariant TTDs has
several shortcomings and is likely to be superseded by more sophisticated modelling approaches
in the future, up to date the only practical alternatives to consider a greater amount of catchments
without additional assumptions to_reduce the number of parameters using commonly
available computing resources are time-invariant TTDs. Neither the fitting of sine waves

5

1odeJ UOISSNOSI(]

1ode J UOISSNOSI(]

1ode J UOISSNOSI(]

1ode J UOISSNOSI(]



20

25

(Matoszewski et al., 1983) nor_the computation of damping_ratios(Tetzlaff et al., 2009a) are
suitable to account for time-variant TTDs. For the time being the lumped convolution approach
with time-invariant TTDs will likely stay the method of choice for studies which have another
focus than the advancement of transit time estimation methods (e.g. Mueller et al. (2013) ).
Several studies were dedicated to the investigation of the potential relationship between
catchment tepography—properties and mean transit times. >-McGuire et al. (2005) as well
as Tetzlaff et al. (2009b) found a strong correlation between MTTs and the ratio of the
median overland flow distance to median flow path gradlent (L /G) for two 1 nested catchment
studiesin-the-V ¢ e sh RO motntainsres
Hrachowitz et al (2009) on the other hand, found no significant correlation between MTTs
and L/G. They identified the catchments’ proportions of responsive soils and their drainage
densities as best predictors of MTTs. Soulsby and Tetzlaff (2008) and Capell et al. (2012)
also found good correlations between MTTs and the proportions of responsive soils. Probably
due to the small sample size of four catchments, Mueller et al. (2013) found no significant
correlation between MTTs and any topographic index, but the highest correlation coefficient
of 0.62 was obtained for the drainage densityef-base-flow-streams—They-, however, they did
not test for a —correlation to L/G. In a —comparative study Tetzlaff et al. (2009a) used the
damping ratio of standard deviations of §'80 in precipitation and discharge as transit time
proxy (TTP) instead of MTTs to investigate catchments of various geomorphic regions across
the Northern Hemisphere and also found a -strong correlation to L/G. Considering time variant

TTDs of zero order catchments, Heidbiichel et al. (2013) found that the relation between MTTs
and catchment characteristics is not constant over time and hypothesized that internal catchment
states as well as external forcings can alter the dominating factors that influence TTDs.

The objective of this study was to determine MTTs-TTDs of 24 catchments in Switzerland

and to assess their—relationship—te-the relationship of MTT and other proxies to catchment’s
topographical indices, with the final aim of finding a -topography driven regionalisation method.

f%eﬂem—?he%ﬂ&a&eeef&vatwete&&etwﬂe}ea%e—hyAnother focus of this stud was lald
6
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on a comparison of the MTT estimates from different TFs to assess the suitability of different TF
es. Furthermore, the influence of seasonal snow storage in alpine catchments necessitated the

development of a -snow module, Wthh accounts for the 1s0t0plc composition of snow storage
and melt water. An '

typesThe sparse network of precipitation isotope sampling sites required the development of a
new spatial interpolation method for the monthly isotopic composition of precipitation.

2 Data
2.1 Study area

This study focused on 24 catchments distributed across the Swiss Plateau and the Swiss Alps
(see Fig. 1), selected based on the following criteria: least possible human influence, glaciers
covering less than 5 % of the catchment area, possibility for collecting isotope samples and data
availability. The catchment area, mean elevation and average annual precipitation is listed for
all catchments in Table 1. The mean catchment elevations are between 472 m and 2369 ma.s.l.
and their areas range from 0.7 to 351 km?. The dominating landcovers within these catchments
are elevation dependent, with agricultural areas dominating at lower elevations (< 800 m),
grasslands, pastures and forests at mid altitudes (800—1400m) and grasslands or sparsely
vegetated areas at higher elevations > 1700 m. Minor fractions of the catchments Schaechen
and Dischmabach (2 and 5 %, respectively) are glaciated and around 10 % of the catchments
Biber and Aabach are covered with permanent wetlands or open water.

Mean annual catchment pfeerpft&&enﬁmwrnﬁange from 1012 to 2600 mmand
WWM&@NWuh 54 to 61 % of annual preclpltatlon occurring
during the summer half year. Primarily elevation dependent temperature differences cause
arange of discharge regimes from pluvial for the colline and submontane catchments to nival for
the more alpine catchments. Different underlying geologies, from crystalline and limestone in

7
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the Alps to flysch and molasse in the Swiss Plateau, in connection with varying topographical
conditions led to a variety of soils and further differences in discharge behavior among the
catchments.

2.2 Discharge data and meteorological data

The Swiss Federal Office for the Environment (FOEN) provided the daily discharge data for
most of the catchments. Discharge data for the catchments Luempenenbach, Erlenbach and
Vogelbach were obtained from the Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL). Additional discharge data for the catchments Roethebach and Emme were
provided by the Amt fiir Abwasser und Umwelt (AWA) of the Swiss Canton Berne.

The climate data, like-including average catchment precipitation, temperature, relative air
humidity, wind speed and global radiation for 100 m elevation bands in each catchment based
on interpolated site data from the national meteorological service of Switzerland (MeteoSwiss)
were provided by the PREVAH working group (Viviroli et al., 2009a,b).

2.3 Discharge isotope data

All isotopic compositions in this study are expressed in the J notation according to the
VSMOV-standardVSMOW-standard. Water samples at the catchment outlets were taken
fortnightly from mid 2010 to end 2012. The 100 mL samples were analyzed for stable water
isotopes with a PICARRO cavity ringdown spectrometer at the Chair for—of Hydrology
at the University of Freiburg, Germany. According to the manufacturer’s specifications the
measurement accuracy for §'%0 and §2H is 0.16 and 0.6 %o, respectively. Additional discharge
isotope data before 2010 for the catchment Rietholzbach Mosnang and its subcatchment Oberer
Rietholzbach was received from the Institute for Atmospheric and Climate Science (IAC) of
the Swiss Federal Institute of Technology (ETH), Zurich. Therefore, the available discharge
isotope time series for those two catchments extent-extend further into the past, though no
discharge isotope samples for the subcatchment Oberer Rietholzbach have been taken after
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February 2010. Due to limited financial and logistic resources, the sampling frequency remained

temporally sparse and samples mostly include baseflow conditions.
As

2.4 Precipitation isotope data

In our study region, the ratio of §'°0 to §°H in precipitation shows no_seasonal variation.
Therefore, we assume that the §'®0 and 6*H data records convey virtually the same
informationand-the-availability-of, Lyon et al. (2009) presented a study in a different climatic
setting, where this assumption would be untenable. As the data availability was better for §'°6
vatues-was-better-Q than for §2H, this-stady-coneentrated-on-only 5180 values ;-oceasionally
referring-to-them-as-isotopic compositionwere considered in our analyses.

25 Precivitation .

The National Network for the Observation of Isotopes in the Water Cycle (NAQUA-ISOT) of
the Federal Office for the Environment (FOEN) of Switzerland measures stable water isotopes
(6'0 and 6H) in the precipitation at monthly intervals at 13 sites. Supplemental data were
taken from 5 sites of the Austrian Network of Isotopes in Precipitation (ANIP) and 5 sites of
the Global Network of Isotopes in Precipitation (GNIP). Figure 1 shows the positions of these
sites. The highest data availability is given for the period between July 1992 and October 2011,
where at least for eleven sites monthly values were available.

3 Methods

3.1 Derivation of topographic indices

In order to derive topography based indices for the 24 catchments, a topographic terrain analysis
based on a digital elevation model (DEM) with a resolution of 25 m was carried out with the
free open source software SAGA-GIS (Conrad et al., 2013). In a first step, the SAGA module

9
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“Channel Network™ was used to derive the channel network for each catchment. The required
drainage area initiation threshold was adapted manually for each catchment to achieve the best
agreement between the computed channel networks and the channel networks observed in maps
and areal imagery, in our case from Google Maps WMS (Web Map Service) layers.

The SAGA module “Overland Flow Distance to Channel network™ was used to calculate the
flow path lengths L as well as their respective horizontal and vertical components (Ly, and L)
for the 24 catchments. Furthermore, the flow gradient G was computed as the ratio L. /Ly.
These values were aggregated for each catchment by computing each catchment’s median
values. Eventually, the ratio L/G was computed for each of the study catchments. Additionally,
the topographic wetness indices (TWI) were computed with the module “Topographic Wetness
Index” (Bohner and Selige, 2006) and again aggregated by computing their median values for
each catchment. Dralnage densities (DD) were computed as the ratlo of Fasfe%eeH&eeﬁ{ammg

schannel length

@Vs@@v@amm-

3.2 Spatial interpolation of precipitation isotope data

The isotopic composition of precipitation is—required—as—input—for—modelling—transit—time
distributions—Sinee-it-was not directly measured within the catchments. Instead, the following

procedure to interpolate the available site data was applied:

I Based on the §'%0 values of the three measurement sites Meiringen, Guttannen and
Grimsel, which lie along an elevation transect in the Bernese Alps between 632 and
1950 m a.s.l. (see the bold red line in the map in Fig. 1), average heightelevation gradients
g for each month were computed. It was assumed that these gradients are representative
for the whole study area.

10
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Monthly and average monthly 6'80 values corrected to the sea level elevation (i and i)
were computed for every measurement site s as follows:

Z.s:[s‘i‘hs'g (1)
EZTS_FhS'g (2)

where I is the isotopic composition for measurement site s with the site elevation hg for
a certain month and year, while I is the same, but averaged over all years for each month.

The average monthly elevation corrected 580 values i for all measurement sites were
spatially interpolated using kriging (Delhomme, 1978), implemented in the gstat-package
(Pebesma, 2004) for R. This resulted in continuous maps of average monthly sea level
§'80 values for every point p within the study region for each month of the year.

To derive the 6'80 value for a certain location p at a specific year and month, I, the
following equations were used:

ds* = lgx — lg (3)
iy = ip — dgs )
I,=ip—hy-g (&)

First, the measurement site closest to the location p was chosen, denoted as s*. In Eq. (3),
the deviation dg- for a specific month’s 580 value to its according average monthly value
was computed for the measurement site s*. By subtracting this deviation from the average
monthly sea level §'%0 value at the location p, obtained from the interpolation in step
I11, the specific month’s sea level 6180 value at point p was estimated in Eq. (4). Finally
h.,, the elevation of the point of interest, was taken into account to obtain the actual 60
value I}, at the location p in Eq. (5). Since most measurement sites have data gaps during
the investigation period, s* for the same p can refer to different sites for different time
steps.

11
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3.3 Transit time proxy

obtained by the lumped convolution approach using time-invariant TFs with a more simplistic
Wmmnm time proxy HﬂP}approach described by Tetzlaff et al.
(2009a);-sim d ?
WWM
reciprocal value, the transit time proxy (TTP) which is computed according to eq. 6:

p= 2% (6)
O'CQ

The TTP, denoted as P in eq. 6, is computed as the ratio of the standard deviations of

6180 values in discharge{er;)-and-precipitation (¢z;0¢,) and discharge (o¢,). The ¥FFP
TTP 1 reﬂects the prempltatlon 1nput 51gnal S damplng in the dlscharge and shewedﬂfﬂﬁvefse

fP&ﬂSH—Hme—pfO%y—TIPP‘ roved to be ro ortlonal to MTT estimates Tetzlaff et al 2009a) .

Instead of long time series of climatic input data and stream discharge measurements, this
approach only requires time series of the isotopic compositions of precipitation and stream

water(Tetzlaff et al., 2009a) .

3.4 Model framework

The model framework in this study is based on the TRANSEP-framework (Weiler et al.,
2003), without the distinction of event and pre-event water and extended by a snow module
to encounter the specific conditions in alpine catchments. Figure 2 provides an overview on the
model structure and the data flow.

3.4.1 Distributed snow modelling

Since many—several of the selected catchments are heavily—notably influenced by snow
accumulation and snow melt processes, the implementation of a snow model was crucial. Due
12
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to a lack of suitable snow data for the calibration of a simple parameterized-parametrised snow
model and the availability of the appropriate climatic input data, a point-energy-balance based
approach was chosen. This study uses a modified implementation of ESCIMO (Energy balance
Snow Cover Integrated MOdel by Strasser and Marke, 2010), based on ESCIMO.spread and
requires hourly input values for air temperature, precipitation amount, wind speed, relative
humidity as well as for incoming short- and longwave radiation. To account for the available
input data, the following modifications were made:

— change of time step length from hourly to daily (significant snowfall rate of 0.5 mmh~!
to reset the albedo to its maximum value was adapted to 2 mmd 1)

— calculation of incoming longwave radiation with available input data and an empirical
relationship given in Sicart and Hock (2010)

Like the original ESCIMO, this modified version predicts melt water amounts and sublimation
for one point. Under the simplifying assumptions of complete mixing in the snow pack and
negligible influence of fractionation processes, further minor modifications like the computation
of weighted averages of snow pack and new snow enabled the prediction of average isotopic
compositions of the snow pack and hence the melt water. Due to the distinct elevation
dependence of snow accumulation and melt processes, it was decided to run the snow module
for-different-elevation—bands-individually for each 100 m elevation band in each catchment.
Melt water amounts (including precipitation not retained in the snow pack), sublimation from
the snow pack and the isotopic composition of the melt water for all elevation levels-ef-a-bands
of a catchment were then aggregated to calculate the average-total catchment wide liquid input
for the next modelling steps.

3.4.2 Lumped discharge and isotope modelling

Discharge and its isotopic compositions were simulated with two similar lumped convolution
models. Both of these models require effective precipitation as their input. The effective
precipitation was obtained—froem—computed with a rainfall-loss module. While the proposed

13
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modelling framework is not bound to any particular method for computing the effective
precipitation, we used the approach described by Jakeman and Hornberger (1993), which
computes effective precipitation based on a storage index that underlies a decay rate depending
on temperature. For further details see Jakeman and Hornberger (1993) or Weiler et al. (2003).
Discharge () for a certain time step ¢ is described by a convolution of the hydraulic transfer
function h(7) with all preceding effective precipitation values peg (Weiler et al., 2003):

t
/h T)pete(t — 7)dT (7)
0

The tracer concentration in discharge C'(¢) is computed in a similar way. Instead of the effective
precipitation, the mass weighted isotopic composition of the precipitation, C'p(t), is convoluted

by the tracer transfer function, ertransittime-distribution(FFD);-¢(7) (Stewart and McDonnell,
1991; Weiler et al., 2003; Hrachowitz et al., 2010):

3 g(T)pese(t — 7)Cp(t —7)dt
f() petf t_ )dT

C(t) = (8)

In this time-invariant modelling approach, the optimized tracer TF can be considered to
represent the respective catchments TTD.,

3.4.3 Transfer functions

Table 2 shows all transfer-funetions-TFs used in this study: the widely used exponential model
(EM), described by Matoszewski and Zuber (1982); the more flexible gamma distribution model
(GM), described by Kirchner et al. (2000) and the two parallel linear reservoir (TPLR) model
(Weiler et al., 2003). Both, the GM as well as the TPLR, have special cases in which they are
equal to the EM.

The discharge convolution module was mainly needed as an auxiliary mean to constrain
the parameters of the rainfall-loss module. As initial testing revealed, the TPLR was clearly

14
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outperforming the GM and the EM as hydraulic transferfunetion-TE and was therefore a priori
selected as the sole hydraulic transferfunetion'TF h(7) of this study.

Regardless whether previous transit time studies mentioned different tracer transferfunctions
TFs or not, for catchment comparisons most of them focused on one of them: McGuire et al.
(2005) and Mueller et al. (2013) chose the EM; Hrachowitz et al. (2010), Soulsby et al. (2011),
Birkel et al. (2012) and Heidbiichel et al. (2012) chose the GM while Roa-Garcia and Weiler
(2010) selected the TPLR. An exception is a nested catchment study by Capell et al. (2012), who
fitted GM as well as TPLR to elght catchments and considered both model types throughout the
analys1s of the results. When mplemen he-mathems y a g A

e e e e e L o T el L this
study we refrained from an a priori selection of the tracer transfer—funetion—TE type and
chose to optimise our models for each of the three transferfunetions-and-theirnormalised-and
non-normalized-vartantsTE types.

3.5 Model optimisation and uncertainty

Due to the large amount of optimisations (six—medels—at-three models with seven to nine
parameters for 24 catchments) Monte Carlo sampling was deemed impracticable for this study.
Instead, a multi objective optimisation approach using the NSGA-II algorithm after Deb et al.
(2002) 1mp1emented in the R- package mco by Trautmann et al. (2013) was-chosen-to-obtain

Three objective functions were applied to evaluate the model: KGE'(Q) and KGE'(log(Q))
were selected to compare the simulated discharge values against the observed values and
KGE~(C) was used to compare the simulated isotopic composition of the discharge against
the 180 values observed in the discharge.
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KGE' is the modified Kling-Gupta Efficiency after Gupta et al. (2009) and Kling et al. (2012),
which consists of a combination of the correlation coefficient, the ratio of standard deviations
and the ratio of mean values. For the evaluation of simulated isotope concentrations, possible
biases caused by the spatial interpolation of sparse input data had to be ignored. Therefore
a reduced variant of the KGE/’, called KGE™, that only takes into account the correlation
coefficient and the ratio of standard deviations was applied.

When dealing with multiple separate objective functions, there is no clear best solution, as
the improvement of one objective function value can impair the value of another objective
function. All combinations of objective function values where this is the case are Pareto optimal.
The multi-objective NSGA-II optimisation algorithm was-run-(Deb et al., 2002) was run with
a population size N = 1500 over the curse of I = 20 generations, which lead to a total number
MI?)OOMAMQQAQA%@;%N for each of the 24 catchments and eael%ef—fhwa&rsefepe

A 1 s s—with—a 0 S : erationsthe three TF
MMM@W
are Pareto optimal. In case the first run of the algorithm did not produee-generate at least 300
pareto-optimal-Pareto_optimal parameter sets, the found solutions were remembered and the
algorithm was repeated as often as needed to reach at least 300 Pareto optimal parameter sets
for each catchment.

Not all of the pareto-optimal-Pareto optimal parameter sets lead to reasonable-sensible
solutions, as at a certain point minimal improvements in respect to the value of one objective
function lead to substantial deterioration of the values of the other objective functions. Similarly
to combining three single objective functions into one for the Kling-Gupta Efficiency (Gupta
etal., 2009), we used Dy, the euclidean distance to the ideal point (in our case zero), to evaluate
the overall goodness of a parameter set:

Do=+/(1-E(Q))?*+ (1 - E(log(@)))? + (1 — Ex(C))>? )
In Eq. (9), Q is the discharge amount, C'is the isotopic composition in the discharge, F stands

for KGE' and FE, stands for the previously explained reduced variant, KGE™.
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The results of the iterative meta-heuristic NSGA-II algorithm are not suited to be used
within the established Generalized Likelihood Uncertainty Estimation (Beven and Binley,
1992) method, which would require big-large numbers of parameter sets obtained by random
sampling over the whole parameter value ranges. Therefore another approach to estimate model
uncertainty was utilised. All parameter sets with a Dy smaller than the 10 % quantile of all
parameter sets’ Dy were considered acceptable. Parameter- and prediction uncertainties were
then given by the ranges encompassed by all acceptable parameter sets and their respective
simulation results. Most comparisons and analysis presented in this study refer to the median
values of all acceptable solutions.

3.6 Transittimedistributi .

To compare the characteristics of the-six-model-types—TTDs-TTDs resulting from the three
TF types across all catchments, we started by 1dent1fy1ng the best mede%TF I'F type for each

catchment, i.e. th v v
mmﬁawm@m%m@wmmw@wm@
amongst all acceptable solutions. This set of the best models served as a reference against which
the six-three model types were compared. We compared the models under the-two aspects: time
after which a certain cumulated transferfunetion(TE)-TTD value is reached and the cumulated
TF-value-reached-TTD value after a certain time. Coefficients of determination as well as the
mean ratio of the reference values and the respective values of a specific model were computed.

4 Results
4.1 Spatial interpolation of isotopes in precipitation

Monthly elevation gradients of §'%0, averaged over the time period from mid 1992 to the

end of 2011, computed along the three NAQUA-ISOT sites Meiringen, Gutannen and Grimsel

reached values between —0.10 %o per 100 m for January and —0.25 %o per 100 m for September,

with an overall mean value of —0.21 %o per 100 m. This is in good agreement with the values
17
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reported for the same region by Siegenthaler and Oeschger (1980) and Mueller et al. (2013). The
interpolated average monthly 520 values at sea level shown in Fig. 3 reveal a seasonal pattern,
where 680 values at sea level from May to September are higher and far more homogeneous
than from October to April. Biggest differences occur from December to March, where §'80
values at sea level clearly decline in a south-eastern direction. A qualitative validation of the
interpolation based predictions can be found in Appendix A.

4.2 Model optimisation and parameter identifiability

For some catchments, the required-intended number of 300 pareto-optimal-Pareto optimal
solutions was exceeded after the first run and it could easily be increased to 1000, for
other catchments the required number of 300 pareto-optimal—solutions—demanded—many
Pareto_optimal_solutions demanded several repetitions of the optimisation—optimization
algorithm. Consequently, the number of acceptable solutions and the quality of the pareto-fronts
obtained Pareto fronts varied between the catchments and the models-and-parameter ranges-are

TF types, so that the final analyses were based on 30-100 parameter—sets(10%_ of 300-1000
arameter sets for each catchment and TF type. The parameters of the rainfall loss module after

Jakeman and Hornberger (1993) could hardly be identified — in many cases two of the three
parameters spanned over wide ranges of the whole possible valuesyalue ranges. For the TPLR
hydraulic transfer model, 7t and ¢ could be identified quite well, while the values for 7 often
covered large parts of the possible value range. Unsurprisingly, the EM with only one parameter
showed the best parameter identifiability amongst all transferfunctions{(fromnow-on-TEs)tracer
TF types. Even when the parameters of the rainfall-loss models proved to be unidentifiable, in
most cases T, of the EM could be constrained to rather narrow ranges. Selely-Only for the
catchments Aabach and Mentue T, varied by orders of magnitude. The two parameters of the
GM generally proved to be identifiable, even though in some cases they exhibited-had a notable
range. As expectable, parameter identifiability for the three parameter TPLR transferfunetion
was the lowest. Similarly to the TPLR hydraulic transfer-meodel-TF, the TPLR tracer TF’s ¢
and ¢ tended to be more identifiable than its 7.
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4.3 Rainfall-discharge model

Independently from-the six differentisotope TF modelsindependent from the three different
tracer TF types, the rainfall-runoff component of the model performed equally satisfactory
satisfactorily for most of the studied catchments, reaching KGE’ and KGE{Og values between
0.7 and 0.9 for most of them (see Fig. 4). Notable exceptions are-were Riale di Calneggia,
whose KGE' value of 0.6 is-was still acceptable but below the values of the other catchments,
Erlenbach and Vogelbach with KGE,,, values around 0.5 and Oberer Rietholzbach with KGE'
values below 0.3 and KGE{og values around 0.6. Not only the values of the discharge based
objective functions, but also the optimised parameter values for the rainfall-runoff component of
the model turned out to have the same values, no matter which tracer transferfunetion-TF type
was part of the multi-objective optimisation. ©bvieustyUnsurprisingly, the application of the
snow module was-essential-forproved to be essential for the good performance of the rainfall-
runoff model in-partieular-for catchments at higher elevations.

4.4 Isotepelsotopic composition model

4.4.1 Performance

Objective function values for the prediction of isotopic compositions in discharge for the
six—different-TFEmedels-three different TF types are listed in the lower part of Fig. 4, while
the left column of Fig. 5 shows the simulated and observed §'%0 values for five seleeted

most-of the-eatehments(Fig—4)-catchments, which were selected to represent the range of all
observed catchment behaviours. For the four catchments Guerbe, Sitter (see third eelumnrow of
Fig. 5), Riale di Calneggia and Schaechen, all models performed similarly well. Comparison of
simulated and observed §'®0 values in discharge as well as the objective function values suggest
a less satisfactory performance of the EM transferfunetion-for the other catchments. Beyond
that, it is not possible to anneunce-name an overall superior TF type: The three parameter
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TPLR medels-often reached the highest objective function values, but for some catchments the
two parameter GM reached higher values. For many catchments the GM and TPLR performed
very similarly, even though the simulated §'®O values in discharge were not the same for the
two model types, as the GM tended to produce more short term variability than the TPLR.

4.4.2 Prediction bias

Regardless of the applied modet-TF types, all predicted 580 time series in discharge were
biased in one or the other direction (for some examples see the result of the bias calculation
shown in the middle column of Fig. 5). A negative prediction bias means that the predicted
5'80 values in discharge were lower than the respective observed values. These biases were
not taken into account for the computation of the respective objective function values. For
most catchments, the bias for all six-T¥FDs-three TF types varied within a range of 0.5 %o
§180. Larger differences between different medelsTF types’ bias values were observed for the
catchments at higher elevation, with a maximum bias for the catchment Dischmabach, where
the biases—of-the-netnormalised-TPER-medelwere-bias of the TPLR was around —0.2 %o
5180, while the biases of the other moedels-TF types were distinctly higher and reached 2 %o
5'%0. An elevation dependent grouping was observed: the 16 catchments at mean elevations
up to 1300 m.a.s.l. showed negative biases around —0.7 %o (ranging from —0.1 to —1.3 %o),
while seven catchments with higher mean elevations showed more positive biases between —(.2
and 2 %o. The transition between those two groups is not gradually but abrupt. Being the only
catchment south of the Alps, Riale di Calneggia with a mean elevation of nearly 2000 m.a.sl.

showed high-negative-biases-a distinctively negative bias around —2 %o for all three TF types.

4.4.3 Intercomparison of transfer functions

Despite the quite similar perfermanee-of-the-different-TTHDs-in-the-eatehments-independent-of

takingnormalisation-of-the-transfer function-into-acecount;a-performances of the simulations
based on TPLR and GM TFs, clear differences of the TTD shapes and-the-resulting- MTTsfor
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TPER-and-GM-was-were observed (Fig. 6). For-TTDs-with-long-tailings;-the-normalised-and

bl%%ghhglﬁed%me&ﬂﬁhe%epﬂgh&see&e&eﬁThe dlfferences concernin TTD shapes and

tailings were reflected by differences in MTT estimates for the different TF types (see Fig. 67).
The MTTs for all TFs agreed only for two catchments: Schaechen (MTT of 1.2 years) and

Sitter (MTTs between 0.7 and 0.9 years). For the other catchments, the-MTT estimates of the
different-model-different TF types occasionally varied by orders of magnitude (see Table 5).
One example is the catchment Langeten (see top of Fig. 5): while beth-EM—variants—result
the EM results in a MTT of 2.3 years, the-not-normatised-vartants-of TPER-and-GM-result-in
aMTT-of-GM and TPLR result in MTTs of 29 and 67.2and-29 years;respectively,—whereas
%heﬁﬁeﬂﬂahsed%ﬁs—shew-am&eﬁ%#—aﬂ%%years respectlvely Despﬁefh&disfme&y

Spe&ma%&ﬁgggwgank correlation coefficients (p) and Pearson correlation coefﬁ01ents (r)
and their respective p values were computed to assess the relationships between the MTTs
estimated with the six-different-model-three different TF types as well as the transit-time-proxy
(FFP-TTP (Fig. 8). Correlations between the EM and TPLR medels-proved to be the lowest
(correlation—ecoefficients—between030-and-049)r = 0.49 and p = 0.53), but still significant
(both p values < 0.05). For all other combinations the correlations were elearty—significant
with-highly significant with _correlation coefficients between 0.6 and 0.8 and p values less
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than-below 0.005. The TTP signifieantly—correlated with all moedelsTE types’ MTT estimates
and reached highly si mﬁcant values < 0. 005 rank correlatlon coefficients between O 61
(for M A 3§ ; § v 3 vb-

TPLR based MTT estlmates) and 0.87 (for EM based MTTs estimates). Generally, the Pearson

correlation coefficients, which assumes a linear relationship, were smaller than the Spearman

The comparison of the cumulated TTDs of the six-three model types (examples for five
selected catchments in the right column of Fig. 5) showed that the differences between the
model types were greatest towards the longer transit times (>2 years). For some catchments
there were also notable differences between different model types towards the shortest transit
times (<1 month). Instead of discussing the cumulated TTD curves for all 24 catchments of each
of the six-medels-three TF types individually, Fig. 22-9 shows the coefficients of determination
and the mean cumulated TTD value ratios between a specific model type and the respective best
model for each catchment (as described in Sect. 2?). Figure 22-9 shows that for the GM and
TPLR the coefficient of determination as well as the mean value ratios reached values close to
one around a time of three months. This means that after an elapsed time of around three months
eaehwaﬁan%eﬁthes&ﬂﬁeﬁ}edekthgsety\wgypes led to very similar cumulated TTD values—

medels. For longer and shorter times, the coefficients of determmatlon declined and the mean
value ratios started to diverge from one, which means that the cumulated TTDs ef-the-medels
were generally less similar and further apart from the respective best medel’s-cumulated TTD.

4.4.4 Relation between topographic indices and mean transit times

Without discussing all topographic indices (see Table 3) in detail, it seems noteworthy to point
out that PWE-G-L, L/G and DD were significantly (p < 0.05) correlated to-each-otherand
to-the-mean-catchment-elevationwith each other. Furthermore, G significantly correlated with

TW I and elevation, whereas L/ also significantly correlated with elevation. The higher the

catchments the blgger were the gradients G, the smaller the ratios L/G and the smaller the
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eatchments— 'V I values. The catchments Aach, Aabach and (to a lesser degree) Mentue proved

to-be-muchflatter-than-the remaining-catchments-and-to-aveid-showed the lowest values for G
and consequently extremely high values for L /G. To remove a distortion of the results caused

by a leverage effect, correlations between MTTs-transit time metrics and topographic indices
were computed for all and exe}udrﬂgfhes&ﬁmﬂl)m three catchments.

e}evaﬂeﬂs—aﬂdmeaﬂﬂﬁmﬁl—pfeerpftaﬁeﬁs&m%Whe&Even thou h there were some si mﬁcant
orrelatlons to topographic catchment characteristics when all catchments were melﬂdedréﬁfst

pte%eeehat&ged%b&%conmdered table not shown the icture got much clearer when those

three flattest catchments were omitted (Tab. 4).

We observed a high agreement between the cumulated TTD fractions of the first three months
(from now on CE3M) for GM and TPLR (see Fig. 9). On the other hand, the TTDs tailings and
MTTs varied notably between different models and proved to be less identifiable. Therefore we
decided to include CEF3M as an apparently more consistent transit time metric than MTT into
this analysis. For all model types the transit time metrics CE3M (first section of Tab. 4) as well
as MTT (second section of Table-2?)—Mestnotably,exceptforthenormalised TPER-modelthe
correlations-between-MTFs—(and-the-TTP)-and-Tab. 4) showed significant (p < 0.05) Pearson
correlations and Spearman rank correlations to the ratio L/Gswere-higherand-nearly-att-but-one
weresignificant-. Furthermore, there were significant correlations between CEF3M values of all
TF types and the drainage densities DD and significant correlations to MTT for some TF types.

However, the strongest correlations were found between MTTs-(and-the transit time metrics

CE3M and MTTs including TTPs) and the mean annual-precipitation—sums—discharge of
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the catchments (Q), which is also correlated to other topographic properties. Q primarily
is_a_consequence of external climatic_forcings, namely precipitation input and potential
evapotranspiration. In order to neutralize the influence of this dominant external forcing, we
multiplied MTT estimates with Q-values to estimate catchment storage volumes. After this
step, the correlations to topographic characteristics generally decreased (third section of Tab. 4).
The only remaining significant rank correlations to topographic indices were those between
EM and GM based MTT estimates and L/G and between EM based MTT estimates and

DD. Tk ot surprising,-ashiche o-the-same-storage-system-consequently-sh

5 Discussion

5.1 Modelling framework and optimisation procedure

For-a-better-estimation-of-In order to estimate the effective precipitation amounts, the discharge
amounts were considered during the multi-objective optimisation procedure. The relatively
simple TPLR discharge convolution module managed to predict annual discharge reasonably
well for most catchments. As it turned out, the optimised parameters for the rainfall loss module
and the discharge convolution module did not depend on the chosen isotopic TFmedel. This
suggests, that both of them could have been calibrated before and independently from the
isotopic convolution module and only once for all TFs, as done by Weiler et al. (2003) — an
approach that reduces the complexity of the optimisations and therefore frees computational
resources. Considering the low parameter identifiability of the three parameter rainfall loss
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module after Jakeman and Hornberger (1993), the use of another rainfall loss module might
be advisable.

5.2 Applicability of the precipitation isotope interpolation method

Beeause-Despite the availability of precipitation isotope concentration data was—rather-being
suboptimal (insufficient precipitation isotope data; directly measured only within a few of the
study catchments and a sparse measurement network in a region with distinct topography), the
interpolation method described in Sect. 3.2 proved to work fairly well. Assuming the observed
negative prediction biases for the lower catchments and the positive biases for the higher situated
catchments can, for the most part, be explained by systematic errors of other model components
(see next section), the interpolation method can be considered suitable for this application
(see_also Appendix A). More sophisticated interpolation procedures, taking other influence
factors such as air temperatures, precipitation amounts, windward-leeward effects and dominant
weather situations into account, are conceivable, but to the authors’ knowledge up to the present
there is no such interpolation method for the given temporal and spatial scales available and its
development clearly exceeded the scope of this study.

5.3 Prediction bias of streamwater stable isotopes

The convolution model could adequately reproduce the seasonal variations of the isotope
concentrations in streamwater, however all predictions exhibited a bias. For most of the
catchments, the biases were independent from the applied transfer—funetionTF, indicating
that the systematic bias was not caused by the choice of transferfunetionsTFs. Upon closer
inspection, three possible reasons for this bias have to be considered:

First, there could be a bias in the precipitation isotopes, caused by incorrect assumptions
made during the interpolation of the sparse measurement site data. The resulting biases could be
positive or negative and are more likely to occur in regions where the surrounding measurement
sites are further apart and the catchment elevations exceed the elevations of the measurement
sites.
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Another error source for the input isotope concentration of alpine catchments could be
assumptions made for the snow module. Particularly the assumption of isotopical homogeneous
melt from the snow pack without significant enrichment is debatable as Taylor et al. (2001) as
well as Unnikrishna et al. (2002) observed a range of melt water 50 values of up to 3 %o
around the snow pack’s mean isotopic composition. Furthermore, Taylor et al. (2001) measured
an overall 580 enrichment of around 0.3 %o for the entire melt water amount. While this could
explain deviations during the ablation period, it is not sufficient to explain the observed overall
bias values of around 1 %o for the alpine catchments, unless the enrichment effect observed in
the two aforementioned studies, both of them conducted in the Californian Sierra Nevada, is
more pronounced for our study region.

The third possible cause of the prediction biases is inherent to the model, more precisely
its rainfall-loss module. Since there is no representation of a soil storage, where winter- and
summer precipitation can mix to a certain extent, the simulated evapotranspiration, occurring
predominantly during summer, consists almost entirely of the isotopically heavier summer
precipitation. On the other hand, nearly all of the isotopically lighter winter precipitation is
routed to discharge. While it is likely, that the largest part of the yearly evapotranspiration
stems from summer precipitation and that a larger fraction of winter precipitation contributes
to discharge, it can be assumed that the missing model representation of a mixing soil storage
necessarily leads to a prediction bias towards lighter discharge isotope concentrations. This kind
of bias might be prevalent at the non-alpine catchments, where all predictions have a slightly
negative bias between 0 and —1%o §'80, while no such bias can be recognised when the
interpolated precipitation isotope concentrations are compared to the validation site data (see
Appendix A) in the same region.

5.4 Temporal scope of the modelling approach

The-As all simulated values can only be compared to the observed values, the coarse temporal

resolution of the isotopic input data (fortnightly data in streamflow and monthly bulk sampled
recipitation isotope data) is not suited to evaluate the short term behawe%gmof

the TTDs.
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onlyfortnightly-data-in-streamflow—was-available—At the same time, the increased dampening

of the seasonal variation of the §'®0 signal in precipitation after a few years inevitably leads
to a point, where the measurement uncertainties and faster components of the TTD wholly
conceal the part of the signal which is caused by the long tailing of the TTD, which in turn also
excludes the-slowestfraction-long tailings of a TTD from an objective evaluation using stable

water isotopes. fn-faet;-the-However, the ratio between high frequency variations and complete
dampening during different times of the years seems to define the fraction between the fast and
slow part of the TPLR. Hence, the proportion of relative young water (< 2 years) and much
older water (>10 years) can be estimated with a good certainty for most watersheds using the

TPLR transfer function.

The inter-model comparison in Fig. 22-9 suggests that, at least for the available fortnightly
stream sample data in combination with the monthly aggregated-bulk sampled precipitation
isotope data, the model optimisation is most sensitive on an intermediate time scale between
one month and a year. During these time scales, the estimated cumulated discharge fractions

of the more ﬂex1b1e TPLR and GM are a}me%&mnlaf—%eempaﬂ%eﬂaefweefr&e—ﬂefmah%ed
mmwmw
%Mf)emmmmu@mme f&r}mg%f—&le%ﬂ%d*éﬂw
wﬂa&%ﬁ%mmmgwm

compressed and had notably lower MTTs than their not normalised variants.
This might help to explain the low identifiability of the TPLR model’s parameter representing

the mean-transittime-MTT of the slow reservoir 7. The long term tailing of a transferfunetion
TTD simply does not matter in respect to an objective function based on natural precipitation’s
5180 in discharge, no matter how long the input data time series is. To asses this part of
a catchment’s TTD, a tracer with an extended temporal scope, like *H, would be required. This
was already emphasised by McDonnell et al. (2010), Stewart et al. (2010) and Stewart et al.
(2012).
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5.5 Meaningfulness of the mean transit timeestimates

As mentioned in the previous section, a TTD containing longer transit times cannot be properly
assessed solely with a cyclical annually varying environmental tracer like '*O or 2H. Still, it
is possible to fit an arbitrary transferfunetion-TE with any kind of long-term tailing to the
measured environmental tracer data. A wide range of sufficiently flexible transfer functions is
should be able to produce acceptable predictions of temporally sparse measurements of §'80
values—in discharge. However th1s is not enough to ensure an approprlate representatlon of
a TTD’s long-term v § rd-RoTH
%GM%&%%H&M@Hwem%Mlong -term behaweu%ef
the-TTDstailing of a TTD strongly affects MTT estimates without having any discernible
impact on the predicted time series. Thus, reliable MTT estimates are not possible without
the consideration of a tracer with extended temporal scope.

Even though the MTT estimates vary between the different model types (see Fig. 7), Fig. 8
indicates that the MTT estimates are not random, as there are significant, yet not very strong,
correlations between mostof-the-medels™MTT-estimates-the MTT estimates based on different
TF types. It turns out that in respect to MTT estimates relying solely on stable water isotope
data, TTP values seem to be just as good as more complex convolution models: both can be used
for a general classification into catchments with short, intermediate and long MTTs, neither can
provide sound absolute values for MTT.

Given a sufficiently high measurement frequency, stable water isotope data seems-te-should
be suited to characterise the short term and intermediate part of a catchment’s TTD, but it
certainly does not contain enough information to determine complete TTDs or actual MTTs of
a catchment.

5.6 Relationship between MTT and topography

Despite the distinct differences between different model-types™MTTsMTT estimates based on
different TF types, the results in Table 22-4 suggest a significant correlation between MTTs
(and the TTP) and the ratio L/G for mest-transferfunetionsall TFs.
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2McGuire et al. (2005) also reported a strong correlation between MTTs estimated by the
EM and L /G for the Lookout Creek catchment and six of its subcatchments in the H. J. Andrews
Experimental Forest in the central western Cascades of Oregon, USA. Tetzlaff et al. (2009b)
likewise found the strongest correlation between MTTs and L/G for three Scottish catchments
and their subcatchments, while the study of Hrachowitz et al. (2009) did not find a significant
correlation between MTTs estimated by the GM and L/G for 20 catchments in the Scottish
Highlands. Though, according to the method description in Hrachowitz et al. (2009) the stream
network for all of the 20 Scottish catchments was computed with a fixed stream initiation
threshold. At least for our study area, in some cases a fixed stream initiation threshold area
caused large discrepancies between the computed and the observed channel networks and
consequently led to different values for L as well as G. Therefore it cannot be excluded that
Hrachowitz et al. (2009) found no significant correlation between MTTs and L /G because they
worked with values for L and G which were derived with fixed stream initiation thresholds.

However, in this study most of the deseribed-observed correlations were only significant

as long as the elimatie-inflaenee—of-mean—annual-preeipitation—external climatic forcing was
not taken into account. Fer-mest-of-the-medels;-the-The correlation between MTTs and mean

annual preeipitation—were-discharge was higher than for any of the topographical indices.
When-For two hypothetical catchments, which share identical properties regarding geology,
topography, soils and vegetationwere—censidered, the catchment with the higher effective
precipitation would undoubtedly expese-have higher turnover rates and hence lower MTTs.
Consequently, a catchment’s MTT actually always will be determined by two components:
external forcings (precipitation and potential evapotranspiration) and catchment internal
properties. When the aim of a study is the assessment of the influence of catchment properties

mmon MTTS it would appear that it t&neee%&&ey—teﬂsee}m%ﬁat&th&mﬂaeﬁee

pfeelpjrtatrewwould be essent1a1 to take external forc1n s into account Yet, many studles (e g.

d1d not account for this and dlrectly compared MTTs of catchments with varying-differing
mean annual precipitation sumsor discharge amounts. This practice is likely to, at least
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partlally, obscure the true 1nﬂuence of the (non- chmatlc) catchment properties. h&«th’rs—sf&dy

Due-Troch et al. (2013) found strong evidence for a_general co-evolution of catchment
properties and climatic influences. When climate as well as catchment properties determine
MTTs, but at the same time there is a relation between climate and catchment properties
gvllvlglvlvlgegiswto colhnearlty between many of the fﬁpegf&ph—t&iﬂd—tees—aﬂd—{-he—me&ﬂ—aﬂﬂﬂﬂ-}

a&%he—de{eﬂﬁmaﬁeﬁeﬁ%he—ae&la}%@&ﬁse}ﬁtﬁmeefmmcatchment roperties, it gets near to

impossible to identify catchment properties that actually control MTTs independently from the
climatic influences, unless there is a possibility to compare different catchments that underlie
identical climatic forcings.

Together with the aforementioned issue, the uncertainties connected to the determination of
MTTs (Which is the most appropriate modet?TE? Is the time-invariant TF approach suited at
all? How can the TTDs tailing properly assessed?), any-method-toregionalise MTTs-willexpose
wsﬂvlsféévzghlgh degrees of uncertamty @WM&WM

Heidbiichel et al. (2013) showed _that depending on_varying external forcings and internal
catchment states MTTs can be highly variable. This means that the outcome of any catchment
TTD comparison_study is likely to be influenced by time-variant climatic conditions prior
to_and during the time when_the catchments were studied. The reliability of the results
might be impaired, when the observational time series do not cover representative periods.
Furthermore, Heidbiichel et al. (2013) showed that in some years topographical characteristics
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might be a good predictor, while in other years, with different external forcings, other factors,
like soil characteristics or underlying geology, have greater influence on the observed TTDs.

Consequently, when TTDs are considered as time-invariant, it is possible to miss temporall

6 Conclusions

In this study, we used six-different-transter-meodels-three different TF types in a time-invariant
lumped convolution modelling approach to estimate the TTDs and MTTs of 24 meso-scale
catchments in Switzerland on the basis of 'O data. We showed, that different transfer
funetions-TF types could be used to reach similarly acceptable fits to fortnightly sampled §'80
data in discharge. A comparison of the cumulated TTDs of those equally well performing
models indicated that their cumulated values agreed-tended to agree at an intermediate time
scale between three months and one year, while they diverged on shorter and even more so
on longer time scales. From a certain point on, differences in TTD tailings did not influence
the predicted §'80 values in discharge at all. Hence, to properly assess a catchment’s TTD on
all time scales, a higher sampling frequency of precipitation and discharge would be needed
for more information on the catchment’s short term behaviour and a more persistent tracer is
required to determine the catchment’s actual long term behaviour.

The poorly identifiable tailings of the TTDs greatly influenced MTT estimates, which
partially exhibited high uncertainties. For catchments with longer MTTs, different model types’
MTT estimates could differ by orders of magnitude while the available data was not suited to
determine the most appropriate model type. In many cases the EM proved to be less appropriate
than the more flexible GM and the TPLR. Given the fact, that the easily computable TTP values

showed a-good-correlation-significant rank correlations to MTT estimates of mest-of-the-mere

complex—transfer-funetionsall TF types, they might serve as a coequal replacement for them, as
long as the latter are as underdetermined as in this study and only relative differences among

the catchments are the focus.
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The results of this study suggest that seemingly good correlations between MTTs and the
ratio of median flow path lengths over median flow path gradients L/G er-the-eloselyrelated
drainage—densities-DD-are mainly caused by the mean annual preeipitation—sumsdischarge,
which considerably influenee-influences these topographic indices as well as the MTTs. In order
to assess the actual influence of topographlc indices on MTTs ;-the-influence-of the-mean-annual

in catchment comparison studies, the
Wﬂ%@%&bm-

Appendix A
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Appendix A

Validation of the interpolated precipitation isotope data
A1l Origin of the validation data

Within the frame project of this study, bulk precipitation samples have been taken to determine
the isotopic composition of the precipitation at five sites in Central Switzerland. With lengths
of not more than one year and limited spatial coverage, these time series were of little use as
model input data. Three of those sites, Benglen, Schallenberg and Aeschau have been chosen to
validate the interpolated precipitation isotope data.

Further isotope composition data was thankfully obtained from Mueller et al. (2013), who
collected precipitation bulk samples for the summer half years of 2010 and 2011 for four small
alpine catchments in the Ursern Valley in southern Central Switzerland. Data from the two sites
Bonegg and Laubgaedem were included into the validation data to extend the their elevation
range up to 1720 m.

The Institute for Atmospheric and Climate Science (IAC) of the Swiss Federal Institute of
Technology Zurich maintains the field measurement site Messtelle Biiel within the catchment
Rietholzbach for which fortnightly bulk sample data for 5’0 from 1994 until the beginning of
the year 2010 were available.
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A2 Reasons for the qualitative validation

The method described in Sect. 3.2 was not only applied to obtain precipitation isotope
compositions for the studied catchments, but also for all available validation sites.
Unfortunately, the temporal resolutions of the monthly interpolation derived predictions and the
sub-monthly observed 6'80 time series were not the same. To aggregate isotope composition
data to a coarser time scale, mass weighted averaging would be required, but the respective
precipitation amounts to the bulk sample isotope data were not available. Hence, a quantitative
validation of the interpolation based predictions was not possible, instead a qualitative
comparison was made.

A3 Comparison of predictions and validation data

Figure Al shows the monthly predicted %O values obtained by the interpolation procedure
described in Sect. 3.2 plotted with the on-site measured validation data. All validation time
series have been collected over shorter periods than one month and thus exhibit more variance
and higher amplitudes than the monthly predictions. Nevertheless, a qualitative comparison of
predicted and validation data indicates a reasonably wel-good performance of the interpolation
method.
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Table 1. Areas, elevations, and mean annual precipitation sums of the 24 studied catchments.

catchment gauging catchment area meanelev. minelev. max elev. prep
name station ID [km?] [m] [m] [m] [mma~!]
Dischmabach Davos DIS 432 2369 1663 3139 1391
Ova da Cluozza Zernez OVA 26.9 2364 1519 3160 1053
Riale di Calneggia Cavergno RIA 239 1986 881 2908 2104
Allenbach Adelboden ALL 28.8 1852 1293 2742 1651
Schaechen Buerglen SCH 107.9 1719 487 3260 1687
Sitter Appenzell SIT 88.2 1301 768 2500 1870
Biber Biberbrugg BIB 31.6 999 827 1495 1639
Alp Einsiedeln ALP 46.5 1154 845 1894 2112
Luempenenbach - ALP_L 0.9 1336 1092 1508 2615
Erlenbach - ALP_E 0.7 1359 1117 1650 2168
Vogelbach - ALP_V 1.6 1335 1038 1540 2161
Sense Thoerishaus SEN 351.2 1068 554 2184 1270
Ilfis Langnau ILF 187.9 1037 681 2087 1450
Emme Eggiwil EMM 127 1285 743 2216 1559
Roethebach Eggiwil ROE 54.1 991 731 1542 1099
Guerbe Burgistein GUE 55.4 1037 556 2152 1241
Mentue Yvonand MEN 105.0 679 447 926 1060
Langeten Huttwil LAN 60.3 760 598 1100 1195
Aach Salmsach AAC 50.0 472 408 560 1095
Ergolz Liestal ERG 261.2 584 305 1165 1012
Aabach Moenchaltorf AAB 55.6 635 519 1092 1081
Murg Waengi MUR 76.8 648 467 1036 1281
Rietholzbach Mosnang RIE 32 794 671 938 1555
Oberer Rietholzbach - RIE_O 0.9 815 748 938 1670
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Table 2. Overview of transfer functions with specification of the parameters and analytical mean transit

time (MTT).
Transfer function Parameters analytical MTT
Linear reservoir (EM)
9(m) =7 exp (Tm ) Tm Mean transit time Tm
Gamma Distribution (GM)
g(1) = B“F(a exp( 7/8) « shape parameter
B scale parameter af

Two parallel linear reservoirs (TPLR)

W) =g(r) = Lexp (=% ) + Fexp (- 2)

¢ fraction of fast reservoir

¢ MTT of fast reservoir
7s MTT of slow reservoir

¢1e+ (1 — @)7s
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Table 3. Results of the topographic analysis. £-L is the flowpath length, &-G the flow gradient, DD the
drainage densities-density and TWI the topographic wetness index.

catchment £L &G EELIG DD TWI
ID [m] [mm~'] [m]  [mkm mkm—?] (-]
DIS 647 0.33 1961 6:624-1.14  9.52
OVA 616 0.46 1339 66020091  8.87
RIA 647 0.46 1407 6:625-1.17 9.10
ALL 423 0.31 1365 0:633-1.53 9.27
SCH 646 0.38 1700 6:623-1.08  9.38
SIT 329 0.27 1219 0:0452.14 948
BIB 207 0.16 1294 6:0602.80  9.96
ALP 196 0.21 933 6:6793.72  9.69
ALPL 155 0.17 912 6:6984.52 9.61
ALP_E 169 0.20 845 0-104-4.75 9.67
ALP_.V 193 0.28 689 6676330  9.22
SEN 227 0.20 1135 0:0562.63  9.76
ILF 157 0.30 523 6:075354  9.00
EMM 286 0.27 1059 6:646-2.18 9.43
ROE 210 0.18 1167 0:656-2.34 9.67
GUE 258 0.19 1358 0:0653.06  9.88
MEN 364 0.08 4550 6628132 10.83
LAN 308 0.11 2800 6:030-140  9.85
AAC 481 0.02 24050 6:626-1.17 11.67
ERG 421 0.15 2807 6:622-1.05 9.99
AAB 407 004 10175 0:632-149  10.92
MUR 219 0.10 2190 6:049-2.29  10.07
RIE 194 0.18 1078 6056259 951
RIE.O 254 0.15 1693 0:043-1.86  9.46
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te-tndi 53 ipitati S Pearson correlatlon coefﬁc1ents are-given-as
g’k)/ggg»Spearman rank correlatlon coefﬁ<:1ents af&giveﬂ—as—(p)wggmemwwmm
and different transit time metrics of different models. Significant correlations (p-value-value < 0.05) are
prmted in boldface;-. The shown correlations mﬁm%%%ﬁeﬁm%&mﬁh%wm
WL@&@Q) £
model 5
EM —
GM

1odeJ UOISSNOSI(T

STOS

FHP-0:-06 627 —0146 —0:28-0-06 0:28—017 —044 —0:06 047 —037—045—0:03 0-05 —0-43—0-53E.
EM=0-21 0:32—033—0-51-0-607 626 —032—038-0:6 0:61 —0-47—0-46-016 015 —0B-63—0-65GM

EM

EMS 0.1 0.020.090.020.260.29 0.01 0.03 0.32041 039 039 0.8 024 043 0.4GM
GM* —0.05 —0:-07 044 —0:-07 045 069 —0.03 —0:07 624 024 —0.31 —0.3 —048 —0:23 —0:25 —0-29TPL
TTP Z.
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Table 5. Mininum, median and maximum MTT in years for each catchment and transfer function type

and the respective transit time proxy (TTP) values.

GM TPLR EM 1
catchment min med max min  med max min  med max min-med-max-mi
DIS 9.16 105 12 845 96.7 102 142 151 154 5:67573-578848-83
OVA 332 4.81 8.46 321 6777 949 0.87 091 094 2:54-3-88-4-73-7:69-7
RIA 043 06 075 0.65 1.79 727 045 057 0.68 0:41+-06:59-1+05-0:96-4«
ALL 433 625 8.65 223 705 108 1.53 158 1.65 4145065394165
SCH 11 121 125 L1112 1.27 .11 1.2 1.26 +08+148124-1-0%1
SIT 069 092 1.7 079 09 68 0.61 068 0.74 6:66-6:9-143-6:31-68
BIB 052 0.76 123 0.78 849 171.6 03 036 04 6:52-0:72108-0-76-4::
ALP 035 046 0.57 058 08 35 0.24 028 032 0:35-0:47-0-75-3:33-4A
ALP L 1.7 191 224 18.5 657 8038 0.52 055 0.59 +44-+762-528-5-
ALPE 0.14 021 035 052 0.57 151 0.15 0.17 0.18 0-146-6:21-0:33-2:43 3=
ALPV 0.66 1.02 1.48 1.47 473 788 0.18 0.27 035 0:66-6:95+563:57-5-
SEN 236 582 176 313 39 84 1.25 134 143 2724143464282
ILF 5.31 8.88 207 3.62 12.1 88.6 149 155 1.75 4075055323426
EMM 1.14 166 277 3.18 123 715 0.39 042 048 FOS T 4122342450
ROE 6.5 122 256 531 595 108 029 177 245 425522556 1986+
GUE 1.04 133 252 1.43 555 754 0.84 1.04 1.15 +651+352481-64 3¢
MEN 129 182 20.7 23.7 693 105 0.02 0.86 1.84 3:96-4:43-4-85-6-19-6
LAN 204 29 318 21,6 672 122 217 231 236 5:9+-6:67-6-18-7-62-84
AAC 1.05 1.6 296 .72 19.6 98.7 076 1.03 1.1 +3-+H792:91336
ERG 742 18.8 29 182 814 114 145 163 1.86 4-59-5:53-5:83349-F=
AAB 1.7 185 21.6 428 172 105 0.01 0.09 236 AT0449 485539
MUR 124 205 264 879 74 112 171 179 1.82 4:89-5:3-5:46-2:684
RIE 245 644 143 405 158 68.9 0.79 134 202 3.144.76 548 4.84-6.
RIEO_ 2.02 844 264 3.1 219 100 091 202 4.04
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Fig. 1. Map of the study area with elevation and catchment borders. The not shown catchment Oberer
Rietholzbach is a subcatchment of the Rietholzbach-catchment. The symbols indicate positions of isotope
measurement sites of various sources.
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Fig. 2. Overview scheme of the model modules. Grey boxes represent input data, blue boxes represent
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Fig. 3. Monthly maps of interpolated sea level precipitation 680 values.
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Fig. 5. Optimisation results for selected catchments. Left: observed and predicted isotope concentrations
in discharge. Right: cumulated TTDs (thinrer-thicker lines indicate-ranges-of represent the best-median
values of all accepted solutions, thinner lines indicate their range). Centre: objective function values for
isotopic composition predictions, biases of the predictions and MTTs implied by the optimised TFs;
lines indicate the full value range, diamonds indicate the 25te-, 50 and 75 percentiles of the best-accepted
solutions.
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Fig. 8. Combined matrix of Pearson correlation coefficients (lower left) and Spearman rank correlation
coefficients (upper right) for MTTs of all catchments derived by the six-three different transterfunctions

TF types and the TTP. Correlation—All correlations were si nlﬁcant values < 0.05), correlation

coefficients with p values < 0.005 are printed in boldfaceand-these-with-p—values>=0-05-are—printed
in-italies.
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Fig. A1. Comparison between measured 580 values (red lines) in precipitation and values obtained by
the spatial interpolation method (black lines.)

54



	changes_MW.pdf
	Introduction 
	Data
	Study area
	Discharge data and meteorological data
	Discharge isotope data
	Precipitation isotope data
	

	Methods
	Derivation of topographic indices
	Spatial interpolation of precipitation isotope data
	Transit time proxy
	Model framework
	Distributed snow modelling
	Lumped discharge and isotope modelling
	Transfer functions

	Model optimisation and uncertainty
	

	Results
	Spatial interpolation of isotopes in precipitation
	Model optimisation and parameter identifiability
	Rainfall-discharge model
	Isotopic composition model
	Performance
	Prediction bias
	Intercomparison of transfer functions
	Relation between topographic indices and mean transit times


	Discussion
	Modelling framework and optimisation procedure
	Applicability of the precipitation isotope interpolation method
	Prediction bias of streamwater stable isotopes
	Temporal scope of the modelling approach
	Meaningfulness of the mean transit time
	Relationship between MTT and topography

	Conclusions 
	
	Validation of the interpolated precipitation isotope data
	Origin of the validation data
	Reasons for the qualitative validation
	Comparison of predictions and validation data




