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Abstract: 15 

Parameter specification usually has significant influence on the performance of land 16 

surface models (LSMs). However, estimating the parameters properly is a challenging 17 

task due to the following reasons: (1) LSMs usually have too many adjustable 18 

parameters (20 to 100 or even more), leading to the curse of dimensionality in the 19 

parameter input space; (2) LSMs usually have many output variables involving 20 

water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective 21 

optimization problem; (3) Regional LSMs are expensive to run, while conventional 22 

multi-objective optimization methods need a large number of model runs (typically 23 

105~106). It makes parameter optimization computationally prohibitive. An uncertainty 24 

quantification framework was developed to meet the aforementioned challenges, which 25 

include the following steps: (1) using parameter screening to reduce the number of 26 

adjustable parameters; (2) using surrogate models to emulate the responses of dynamic 27 

models to the variation of adjustable parameters; (3) using an adaptive strategy to 28 

improve the efficiency of surrogate modeling based optimization; (4) using a weighting 29 
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function to transfer multi-objective optimization to single objective optimization. In 30 

this study, we demonstrate the uncertainty quantification framework on a single column 31 

application of a land surface model – the Common Land Model (CoLM) and evaluate 32 

the effectiveness and efficiency of the proposed framework.  The result indicate that 33 

this framework can efficiently achieve optimal parameters in a more effective way. 34 

Moreover, this result implies the possibility of calibrating other large complex dynamic 35 

models, such as regional-scale land surface models, atmospheric models and climate 36 

models.  37 

 38 

Keywords: 39 

Land surface model; multi-objective optimization; parameter calibration; surrogate 40 

modeling; statistical emulator; adaptive sampling; 41 

 42 

1. Introduction 43 

Land surface models (LSMs), which offer land surface boundary condition for 44 

atmospheric models and climate models, are widely used in weather and climate 45 

forecasting. They are also a tool for studying the impacts of climate change and human 46 

activities on our environment. Parameters of land surface models usually have 47 

significant influence on their simulation and forecasting capability. It has been shown 48 

that tuning even one or two parameters may significantly enhance the simulation ability 49 

of a land surface model (e.g., [Henderson-Sellers et al., 1996; Liang et al., 1998; 50 

Lohmann et al., 1998; Wood et al., 1998]). How to specify the parameters in a LSM 51 

model properly, however, remains a very challenging task because the LSM parameters 52 

are usually not directly measurable at the scale of model applications.  53 

Automatic optimization approaches have been frequently used in calibrating the 54 

parameters of hydrological models. There is a plethora of optimization approaches 55 

available, including single-objective optimization methods such as SCE-UA [Duan et 56 

al., 1992; Duan et al., 1993; Duan et al., 1994], SCEM-UA [Vrugt et al., 2003], genetic 57 

algorithm [Wang, 1991], and multi-objective optimization methods such as MOCOM-58 

UA [Boyle et al., 2000; Boyle, 2000; Gupta et al., 1998; Yapo et al., 1998] and 59 
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MOSCEM-UA[Vrugt et al., 2003].   60 

Compared to traditional hydrological models, the parameter calibration approach 61 

has not been practiced as much in LSM community, especially for large spatial scale 62 

applications. The major obstacles to calibrating land surface models over a large spatial 63 

scale are: (1) there are too many parameters to calibrate, (namely, the curse of 64 

dimensionality in parameters); (2) dimensionality of the output space is too high (i.e., 65 

many processes such as water/energy/carbon cycles are simulated simultaneously); (3) 66 

conventional optimization methods, especially multi-objective approach, need a large 67 

number (~105-106) of model runs; and the large complex dynamic system models such 68 

LSMs are usually expensive to run (i.e., costing many CPU hours). There have been 69 

numerous attempts to use multi-objective optimization to calibrate the parameters of 70 

land surface models and significant improvement in LSM performance measures as a 71 

result of optimization have been reported (e.g., [Bastidas et al., 1999; Gupta et al., 1999; 72 

Leplastrier et al., 2002; Xia et al., 2002]). However, the optimization efforts in the past 73 

were usually limited to cases studies involving only point or limited spatial domain-74 

scale applications of LSMs [Liu et al., 2003; Liu et al., 2004; 2005]. To take a multi-75 

objective optimization approach to the calibration of LSM parameters for large scale 76 

applications, the key is to reduce the number of model runs to an appropriate level that 77 

we can afford. 78 

Surrogate based optimization is one of the most commonly used approaches to 79 

optimizing large complex dynamic models. Several books and literature reviews have 80 

described the advances of surrogate based optimization in recent years [e.g., Jones, 81 

2001; Ong et al., 2005; Jin, 2011; Koziel and Leifsson, 2013; and Wang et al., 2014]. 82 

Surrogate based optimization has been applied to economics, robotics, chemistry, 83 

physics, civil and environmental engineering, computational fluid dynamics, aerospace 84 

designs, et al [Gorissen, 2010]. On the development of surrogate based optimization, 85 

Jones et al. [1998] proposed EGO (Effective Global Optimizer) for expensive models 86 

using ‘DACE stochastic process model’, namely Kriging interpolation method, as 87 

surrogate model. Castelletti et al. [2010] developed a multi-objective optimization 88 

method for water quality management using radial basis function, inverse distance 89 
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weighted and n-dimensional linear interpolator as surrogates. Loshchilov et al. [2010] 90 

investigated the use of ranked-based Support Vector Machine and demonstrated that for 91 

surrogate based optimization capturing the relative value of the objective functions is 92 

more important than reducing the absolute fitting error. Pilát and Neruda [2013] 93 

developed a surrogate model selector for multi-objective surrogate-assisted 94 

optimization. In hydrology and water resources, Razavi et al. [2012] has summarized 95 

recent applications, advantages, and existing problems. Wang et al. [2014] evaluated 96 

the influence of initial sampling and adaptive sampling methods for surrogate-assisted 97 

optimization of a simple hydrological model, SAC-SMA model. Song et al. [2012] 98 

optimized the parameter of a distributed hydrological model-DTVGM model’s 99 

parameter with SCE-UA algorithm using MARS method [Friedman, 1991] as surrogate.  100 

In our recent works, we proposed a framework that can potentially reduce the 101 

number of model runs needed for parameter calibration of large complex system models 102 

[Wang et al., 2014]. This framework involves the following steps: (1) a parameter 103 

screening step using global sensitivity analysis to identify the most sensitive parameters 104 

to be included in the optimization; (2) surrogate modelling that can emulate the 105 

response surface of the dynamic system model to the change in parameter values; (3) 106 

an adaptive sampling strategy to improve the efficiency of the surrogate model 107 

construction; (4) a multi-objective optimization step to optimize the most sensitive 108 

parameters of the dynamic system model. In this paper, we will illustrate this parametric 109 

uncertainty quantification framework with the Common Land Model (CoLM), a widely 110 

used, physically based land surface model developed by Yongjiu Dai and colleagures 111 

[Dai et al., 2003; Dai et al., 2004; Ji and Dai, 2010]. The work related to parameter 112 

screening and surrogate modeling based optimization (ASMO) method for single 113 

objective has already been published [Li et al., 2013; Wang et al., 2014]. This paper 114 

will emphasize on the analysis of different surrogate model construction methods and 115 

multi-objective optimization method and results. 116 

This paper contains the following parts: section 2 introduces the basic information 117 

of CoLM, the study area and dataset, the adjustable parameters and the output variables 118 

to be analyzed; section 3 presents an inter-comparison of 5 surrogate modeling methods, 119 
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and discusses how many model runs would be sufficient to build a surrogate model for 120 

optimization; section 4 carries out single and multiple objective optimization using an 121 

adaptive surrogate model based optimization strategy (ASMO); section 5 provides the 122 

discussion and conclusions.  123 

 124 

2. Experiment setup 125 

Model and Parameters 126 

Common Land Model (CoLM) proposed by Yongjiu Dai and colleagues [Dai et al., 127 

2003; Dai et al., 2004; Ji and Dai, 2010] is one of the most widely used land surface 128 

model in the world. It combines the advantages of Land Surface Model (LSM) [Bonan, 129 

1996], Biosphere-atmosphere transfer scheme (BATS) [Dickinson et al., 1993] and 130 

Institute of Atmospheric Physics land-surface model (IAP94) [Dai and Zeng, 1997; Dai 131 

et al., 1998]. CoLM considers physical processes of energy and water transmission in 132 

soil vegetation, snow cover and atmosphere. It also implements glacier, lake, wetland 133 

and dynamic vegetation processes. Similar to previous research in presented in [Li et 134 

al., 2013], we select 40 adjustable parameters from CoLM. The parameter names, 135 

physical meanings and value ranges are shown in Table 1. 136 

[Table 1] 137 

This study considers six output variables simulated by CoLM: sensible heat, latent 138 

heat, upward longwave radiation, net radiation, soil temperature and soil moisture. The 139 

Normalized Root Mean Squared Error is used as the objective function in our analysis:  140 

 
𝑁𝑅𝑀𝑆𝐸𝑖 =

√∑ (𝑦𝑖,𝑗
𝑠𝑖𝑚 − 𝑦𝑖,𝑗

𝑜𝑏𝑠)
2𝑁

𝑗=1

∑ 𝑦𝑖,𝑗
𝑜𝑏𝑠𝑁

𝑗=1

 
(1) 

where i is the index of output variables, j is the index of time step, N is the total number 141 

of observations, 𝑦𝑖,𝑗
𝑠𝑖𝑚 and 𝑦𝑖,𝑗

𝑜𝑏𝑠 are the simulated and observed values, respectively. 142 

Objective functions represent the performance of model simulation and a smaller 143 

objective function means better performance. 144 

 145 

Study area and datasets 146 
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The study area and associated datasets are from the Heihe river basin, the same as 147 

in [Li et al., 2013]. The Heihe river basin, which is located between 96°42'-102°00'E 148 

and 37°41'-42°42'N, is an inland river basin in the arid region of northwest China. The 149 

basin area is approximately 130,000 km2 and its altitude varies from sea level to 5500m. 150 

The Heihe river basin has a variety of land using types including forest, grassland, 151 

farmland, and glacier, among others, making it an ideal research region for LSM 152 

simulation. In this research we use the data from A’rou observation station located at 153 

the upstream region of the Heihe river basin. Its geographic coordinate is 100°28'E, 154 

38°03'N, altitude is 3032.8m above sea level and the land cover type is alpine steppe. 155 

The forcing data used include downward shortwave and longwave radiation, 156 

precipitation, air temperature, relative humidity, air pressure and wind speed [Hu et al., 157 

2003]; and the observation data used to validate the simulation of CoLM include: 158 

sensible heat, latent heat, upward longwave radiation, net radiation, soil temperature 159 

and soil moisture. The soil temperature and moisture were measured at depth 10cm, 160 

20cm, 40cm and 80cm. In CoLM, the soil is divided into 10 layers and the simulated 161 

soil temperature and soil moisture are linearly interpolated to the measured depth. 162 

Currently we have 2 years observation data. The data from year 2008 was used for spin 163 

up and that of 2009 was used for parameter screening, surrogate modeling and 164 

optimization. The simulation time step is set to 30 minutes and the simulation outputs 165 

are averaged to 3 hours in order to compare with the observation data. 166 

 167 

3. Comparison of Surrogate models 168 

After the sensitive parameters are identified using global sensitivity methods (see 169 

[Li et al., 2013]), the next step is to calibrate the sensitive parameters through multi-170 

objective optimization. Since the calibration of CoLM in real world applications can be 171 

very expensive, we aim to establish a surrogate model to represent the response surface 172 

of the dynamic CoLM. Surrogate model, also called response surface, meta-model, 173 

statistical emulator, is a statistical model that describes the response of output variable 174 

to the variation of input variables. Because the surrogate model only considers the 175 

statistical relationship between input and output, it is usually much cheaper to run than 176 
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the original large complex dynamic model (“original model” for short). Parameter 177 

optimization usually needs thousands, or even up to millions times of model runs. It 178 

will be impossible to calibrate large complex dynamic models if running the original 179 

dynamic model is too time consuming. If we can do parameter optimization with 180 

surrogate model instead of original model, the time of running original model will be 181 

dramatically reduced, making it possible to calibrate the large complex dynamic models, 182 

such as land surface models, atmospheric models, or even global climate models. 183 

However, optimization based on surrogate models can be a challenging task because 184 

the response surface might be very bumpy and has many local optima. Razavi et al. 185 

[2012] gave a comprehensive review of the surrogate modeling methods and 186 

applications in water resources, and discussed the pitfalls of surrogate modeling as well. 187 

In this research, we first compared 5 different surrogate models: Multivariate 188 

Adaptive Regression Spline (MARS), Gaussian Process Regression (GPR), Random 189 

Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). A 190 

brief introduction of these methods is provided in the Appendix. To build a surrogate, 191 

we need to choose a sampling method first. The sampling method used in this study is 192 

Latin Hypercube Sampling (LH) [McKay et al., 1979]. The sample sizes are set to 50, 193 

100, 200, 400, 800, 1200, and 2000, respectively. The inter-comparison results are 194 

shown in Figure 1 and Figure 2, in which the x-axis is the sample size, and y-axis is 195 

the NRMSE (i.e., the ratio of the root mean square error (RMSE) of the simulation 196 

model and the surrogate model). Figure 1 shows the error of the training set, namely 197 

the NRMSE between the outputs predicted by the surrogate model and the outputs of 198 

the training samples, and figure 2 shows the NRMSE of the testing set. Since every 199 

sample set of each size was independently generated, we use the 2000 points set to test 200 

50, 100, 200, 400, 800 and 1200 points set, and use the 1200 one to test the 2000 one. 201 

For each output variable, we only construct surrogate models for the most sensitive 202 

parameters based on the screening results obtained by Li [2012] and Li et al. [2013] 203 

(see Table 2). 204 

[Table 2] 205 

As shown in Figure 1, for some cases, such as upward longwave radiation, the 206 
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fitting ability of the training set does not change significantly with sample size, but for 207 

soil moisture, larger sample size leads to better fitted surrogate models. Such 208 

phenomenon indicated that the specific features of the response surfaces have 209 

significant influence on the fitting ability, and good surrogate models must have the 210 

ability to adapt to those features. As shown in Figure 1, GPR has the best fitting ability 211 

for almost every case except soil temperature. As described in Appendix 2, the hyper-212 

parameters used by GPR can be adaptively determined using the maximum marginal 213 

likelihood method. 214 

Figure 2 shows the NRMSE of the testing sets, indicating the risk of over-fitting. 215 

In Figure 2 we can note more remarkable findings: (1) The error of a surrogate model 216 

decreases as the sample size increases. The marginal benefits of using additional 217 

samples become less or even negligible if the sample size is larger than 400; (2) Among 218 

the 5 different surrogate models, GPR has the best performance, while ANN ranks the 219 

second. RF and MARS have lower accuracy. For some output variables (e.g., sensible 220 

and latent heat), the performance of SVM seems acceptable, while for other variables 221 

(e.g., soil temperature), SVM’s performance is not satisfactory; (3) The convergence 222 

speeds for the 6 output variables are different. For net radiation, soil temperature and 223 

soil moisture, the fitting error decreases to nearly zero if the sampling points are more 224 

than 200; while for sensible heat, latent heat and upward long-wave radiation, the 225 

marginal benefit of adding more points is still significant beyond more than 200 sample 226 

points. Since the GPR method can consistently give the best performance for all the 6 227 

output variables, we choose GPR in the multi-objective optimization analysis presented 228 

later. 229 

[Figure 1] 230 

[Figure 2] 231 

 232 

4. Optimization 233 

4.1 Single-objective optimization 234 

Before we conduct multi-objective optimization, we first carried out single-235 

objective optimization for each output variable using the GPR surrogate model. The 236 
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Shuffled Complex Evolution (SCE) method [Duan et al., 1992; Duan et al., 1993; Duan 237 

et al., 1994] is used to find the optima of the surrogate models. In order to figure out 238 

how many sample points are sufficient to construct a surrogate model for optimization, 239 

different sample sizes (i.e., 50, 100, 200, 400, 800, 1200, and 2000) are experimented. 240 

To evaluate the optimization results based on the surrogate model, we also set up two 241 

control cases: (1) No optimization using the default parameters as specified in CoLM. 242 

(2) Optimization using the original CoLM (i.e., no surrogate model is used). The second 243 

case is referred as “direct optimization”. The control cases are used to confirm the 244 

following hypotheses: (1) Parameter optimization can indeed enhance the performance 245 

of CoLM. (2) Optimization using the surrogate model can achieve similar optimization 246 

result as using the original model, but with fewer model runs.  247 

The optimal parameters given by single-objective optimization are shown in 248 

Figure 3. In each subfigure the optimal parameter values are normalized to [0, 1]. The 249 

bold black line is the optimal parameter set obtained by direct optimization using the 250 

original CoLM, and other lines are optimal parameters given by surrogate models 251 

created with different sample sizes. Table 3 summarizes the optimized NRMSE values 252 

of all surrogate model based optimization runs with different sample sizes, as well as 253 

the control cases. The numbers of original model runs that SCE takes are also listed in 254 

the brackets. 255 

 256 

[Figure 3] 257 

[Table 3] 258 

 259 

The optimization results reveal that: (1) Parameter optimization can significantly 260 

improve the simulation ability of CoLM for all output variables; (2) For sensible heat, 261 

upward longwave radiation, net radiation, soil moisture, the optimal parameters 262 

obtained by surrogate model optimization runs are very similar to those obtained by 263 

direct optimization. The optimal parameters obtained for different sample sizes are also 264 

close to each other. For latent heat and soil temperature, however, the optimal 265 

parameters given by surrogate model optimization and direct optimization are 266 



Surrogate based parameter optimization of CoLM 

10 
 

significantly different. The discrepancy between the results with different sample sizes 267 

is also significant, comparing to the previous 4 outputs; (3) Surprisingly, for four of the 268 

outputs, namely some variables (e.g., sensible heat, upward longwave radiation, net 269 

radiation and soil moisture), sample size does not have significant influence on the 270 

optimization results. As shown in table 3, even a surrogate model constructed with 50 271 

samples is similar to the one constructed with 2000 samples and with the direct 272 

optimization. For soil temperature, 200 samples are sufficient, and for latent heat, more 273 

than 400 samples are enough. Interestingly, the LH50’s optimization result for sensible 274 

heat is even smaller than that of LH2000. This is because LH sampling is random and 275 

the LH 50 sampling may have produced a sample point very close to the global 276 

optimum, while the best sample point of LH2000 sampling may be further away from 277 

the global optimum. Consequently, the number of samples required for surrogate based 278 

optimization varies for different outputs because of the randomness of sampling designs, 279 

and the complexity of response surfaces. A more complex surface needs more sample 280 

points to build an effective surrogate model, compared to simple surface. Even so, this 281 

result is very encouraging that with the help of surrogate models we can possibly reduce 282 

the number of model runs required by optimization down to hundreds of times; (4) The 283 

number of original model runs that SCE takes before convergence is also listed in Table 284 

3. The result indicated that SCE can get better, or similar optimal NRMSE, but the 285 

number of model runs is larger than that using surrogate model. If the original dynamic 286 

model costs too much CPU time to run, surrogate based optimization can be more 287 

efficient than the SCE; (5) Different output variables require different optimal 288 

parameters, indicating the necessity of multi-objective optimization. For example, P6, 289 

the Clapp and Hornberger "b" parameter, is sensitive to many outputs. For sensible heat, 290 

latent heat and soil moisture, the optimal value of P6 is high, while for upward 291 

longwave radiation, net radiation and soil temperature, the optimal value of P6 is low. 292 

In order to balance the performance of all output variables, it is necessary to choose a 293 

compromised value for P6. Multi-objective optimization is an approach that can 294 

provide such a compromised optimal parameter that balances the requirements of many 295 

output variables. 296 
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 297 

4.2 Multi-objective optimization 298 

The results of single-objective optimization from previous section have highlighted 299 

the necessity for multi-objective optimization. Many multi-objective optimization 300 

methods have been proposed and validated in numerous studies (e.g., [Boyle et al., 2000; 301 

Boyle, 2000; Gupta et al., 1998; Yapo et al., 1998; Vrugt et al., 2003; Bastidas et al., 302 

1999; Gupta et al., 1999; Leplastrier et al., 2002; Pollacco et al., 2013; Xia et al., 303 

2002]), but in the context of this research, we need a method that can satisfy the 304 

following constrains: (1) the method should be compatible with surrogate model 305 

optimization; (2) for practical reasons, it should provide a single best parameter set 306 

instead of a full Pareto optimum set with many non-dominated parameter sets. The 307 

Pareto optimal set usually contains hundreds of points, but for large complex dynamic 308 

models such as regional or global land surface models, it is generally impractical, and 309 

also unnecessary to run the model in an ensemble mode with hundreds of model runs. 310 

For regional or global land surface models coupled with atmospheric models, providing 311 

only one parameter set that has good simulation ability for most outputs is a more 312 

economical and convenient choice. 313 

In multi-objective optimization, there have been many methods that can transform 314 

multiple objectives to single objective. Among them, the weighting function based 315 

method is the most intuitive and widely used one. In this paper, we assign higher 316 

weights to the outputs with larger errors. In the research of Liu et al. [2005], the RMSE 317 

of each outputs were normalized by the RMSE of default parameter set, and each 318 

normalized RMSE were assigned equal weights. Van Griensven and Meixner [2007] 319 

developed a weighting system based on Bayesian statistics to define ‘high probability 320 

regions’ that can give ‘good’ results for multiple outputs. However, both of Liu et al. 321 

[2005] and van Griensven and Meixner [2007] tended to assign higher weights to the 322 

outputs with lower RMSE, and lower weights to the outputs with higher RMSE. This 323 

tendency, although reasonable in the probability meaning, conflicts with our intuitive 324 

motivations that we want to emphasis on the poorly simulated outputs with large RMSE. 325 

Jackson et al. [2003] assumed Gaussian error in the data and model so that the outputs 326 
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were in a joint Gaussian distribution, and the multi-objective ‘cost function’ was 327 

defined on the joint Gaussian distribution of multiple outputs. In Gupta et al. [1998], a 328 

multiple weighting function method is proposed to fully describe the Pareto frontier, if 329 

the frontier is convex and model simulation is cheap enough. If one outputs is more 330 

important than others, a higher weight should be assigned to it. Marler and Arora [2010] 331 

reviewed the applications, conceptual significance and pitfalls of weighting function 332 

based optimal methods, and gave some suggestions to avoid blind use of it.  333 

In this study, we use a weighting function method to convert the multi-objective 334 

optimization into a single objective optimization. The general idea is that we assign 335 

more weight to the objective function of an output, if that output is simulated more 336 

poorly as compared to the other outputs. Table 4 shows the RMSE and NRMSE of 337 

CoLM using default parameterization scheme, and the weight of each output is 338 

proportional to the NRMSE. 339 

[Table 4] 340 

After the weights are determined, the weighted objective function is as follows: 341 

 𝐹 = ∑ 𝑤𝑖𝑅𝑀𝑆𝐸𝑖

𝑛

𝑖=1

 (2) 

in which the 𝑅𝑀𝑆𝐸𝑖  is the Root Mean Squared Error of each output variable that 342 

defined as 𝑅𝑀𝑆𝐸𝑖 =
1

𝑁
√∑ (𝑦𝑖,𝑗

𝑠𝑖𝑚 − 𝑦𝑖,𝑗
𝑜𝑏𝑠)

2𝑁
𝑗=1  , 𝑤𝑖 is the weight of each output, and 343 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  344 

In order to use the information offered by surrogate model more effectively, we 345 

developed an adaptive surrogate modeling based optimization method called ASMO 346 

[Wang et al., 2014]. The major steps of ASMO are as follows: (1) Construct a surrogate 347 

model with initial samples, and find the optimal parameter of the surrogate model. (2) 348 

Run the original model with this optimal parameter and get a new sample. (3) Add the 349 

new sample to the sample set and construct a new surrogate model, and go back to the 350 

1st step. The effectiveness and efficiency of ASMO have been validated in [Wang et al., 351 

2014] using 6D Hartman function and a simple hydrologic model SAC-SMA. As shown 352 

in the comparison between ASMO and SCE-UA, ASMO is more efficient that can 353 
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converge with less model runs, while SCE-UA is more effective that can get closer to 354 

the true global optimal parameter. So making a choice between ASMO and SCE-UA is 355 

a “cost-benefit” trade-off: if the model is very cheap to run, SCE-UA is preferred 356 

because it is more effective to find the global optimum; while if the model is very 357 

expensive to run, ASMO is preferred because it can find a fairly good parameter within 358 

a limited time of model runs. Such parameter set can provide only the approximate 359 

global optimum, but this approach is much cheaper than using traditional approaches 360 

such as SCE-UA. 361 

We carried out multi-objective optimization with ASMO using weighting function 362 

defined in equation (2) and the optimization results are shown in figure 4 and 5. To 363 

compare, we also carried out the direct optimization using SCE-UA. Figure 4 presents 364 

the default parameter, the optimal parameter given by ASMO and that given by SCE-365 

UA. Figure 5 shows the improvements given by ASMO and SCE-UA comparing to the 366 

default parameters. From Figure 5 we can find that all of the outputs are improved 367 

nearly 10% except soil temperature, and the improvements made by ASMO is similar 368 

to that by SCE-UA. The results indicated that multi-objective optimization can indeed 369 

enhance the performance of CoLM using either ASMO or SCE-UA method. The 370 

ASMO method get converged after 11 iterations, namely, the total number of model 371 

runs is 411, while the number of model runs for SCE-UA is 1000, which is the 372 

maximum model runs set for SCE-UA. Obviously ASMO is a more efficient method 373 

compared to SCE-UA in this case. 374 

 375 

[Figure 4] 376 

[Figure 5] 377 

 378 

We also used the Taylor diagram [Taylor, 2001] to compare the simulation results 379 

for the calibration period and the validation period (see figure 6 and 7). The 380 

optimization results given by SCE-UA and ASMO are compared against the 381 

performance of default parameterization scheme. Since only 2 years observation data 382 

of the 6 output variables are available, we use the first year (2008) data as the warm-up 383 
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period, use the second year (2009) data as calibration period, and then use the previous 384 

2008 year data as the validation period. The missing records have been removed from 385 

the comparison.  386 

As indicated in figure 6, the performance of optimized parameters given by both 387 

SCE-UA and ASMO (Case C and D in the Taylor diagram) are better than default 388 

parameterization scheme (Case B) except soil temperature. Even though soil 389 

temperature simulation is degraded, the correlation coefficients given by all the three 390 

cases are higher than 0.9, indicating that this imperfection will not cause significant 391 

inconsistency in the land surface modelling. In figure 7, the performance of the 392 

validation period is shown quite similar to that in the calibration period, indicating that 393 

the optimal parameters are well identified and the over-fitting problem is avoided. 394 

 395 

[Figure 6] 396 

[Figure 7] 397 

 398 

The four energy fluxes (sensible/latent heat, upward long-wave radiation, net 399 

radiation) and soil surface temperature have very good performance. However, the 400 

performance of soil moisture seems not satisfactory. The correlation coefficient of soil 401 

moisture of Case B(default parameter) is less than 0, while with the help of SCE-UA 402 

and ASMO optimization the correlation coefficient is only slightly larger than 0. The 403 

possible reasons might be as follows: (1) The default soil parameters of CoLM is 404 

derived from the soil texture in the 17-category FAO-STATSGO soil dataset [Ji and 405 

Dai, 2010], which provides top-layer (30cm) and bottom-layer (30-100cm) global soil 406 

textures and has a 30 seconds resolution. The resolution and accuracy of this dataset 407 

may be not accurate enough in A’rou station, where frequent freezing and thawing occur. 408 

A finer soil database, such as ‘The Soil Database of China for Land Surface Modeling’ 409 

[Shangguan et al., 2013], or an in-situ field survey for soil texture, should be used to 410 

improve the quality of default parameterization scheme; (2) Simulating 411 

freezing/thawing processes is a challenging task in land surface modeling, and we are 412 

still lack of knowledge about the details of the physical processes. Parameter 413 
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optimization can improve the model performance if the model physics are correct, but 414 

is helpless if the model structure is inconsistent with the true underlying physical 415 

processes. Although CoLM’s performance of simulating frozen soil and snow cover has 416 

been evaluated in the experiment in Valdai, Russia [Dai et al., 2003], the situation of 417 

Heihe in China can be very different. For instance, in CoLM the soil depth is set to 418 

2.86m globally, but actually the soil depth varies in different places. Fundamentally 419 

such a simplification may not introduce significant error to the simulation of energy 420 

flux, but it definitely influence the performance of hydrological processes such as soil 421 

moisture. Further, the altitude of Heihe is much higher than Valdai, and the influence 422 

of human activities is also significantly different. All these reasons can potentially 423 

influence the performance of CoLM and cannot be mitigated by parameter optimization.  424 

In the optimization results, five of the outputs were improved but only soil 425 

temperature became worse. In multi-objective optimization, a compromise is necessary. 426 

In this case study, soil temperature requires small P6 and large 36, which conflict with 427 

all other outputs. Consequently, improving every output is impossible and some output 428 

might be sacrificed. If the cost is affordable and the gain is big enough, such 429 

compromise might be worthwhile. In this case study, the smallest weight was assigned 430 

to soil temperature. In the optimal solution, the RMSE of soil temperature increases 431 

from 2.66 degree to 2.90 degree (only 0.24 degrees larger), but other outputs RMSE 432 

can all be improved by about 10%. We think the sacrifice of soil temperature is 433 

worthwhile because a negligible degradation of one output can lead to significant 434 

improvement of all other outputs. 435 

5. Discussion and Conclusions 436 

We have carried out multi-objective parameter optimization for a land surface 437 

model, CoLM, at the Heihe river basin. Although there have been other studies, such 438 

as multi-objective calibration of hydrological models [Gupta et al., 1998; Vrugt et al., 439 

2003], land surface models [Gupta et al., 1999], single column land-atmosphere 440 

coupled model [Liu et al., 2005], and SVAT model [Pollacco et al., 2013], the novel 441 

contribution of this research lies in the significant reduction of model runs. In previous 442 

researches, a typical multi-objective optimization needs 105~106 or even more model 443 
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runs. For large complex dynamic models which are very expensive to run, parameter 444 

optimization is impractical because of lack of computational resources. In this research, 445 

we managed to achieve a multi-objective optimal parameter set with only 411 model 446 

runs. The performance of the optimal parameter set is similar with the one obtained by 447 

SCE-UA method using more than 1000 model runs. Such a result indicates that the 448 

proposed framework in this paper is able to provide optimal parameters much efficiently. 449 

In the future work, we are going to extend the uncertainty quantification framework to 450 

other large complex dynamic models, such as regional-scale land surface models, 451 

atmospheric models and climate models. We will look into testing the scalability of the 452 

screening, surrogate modelling and optimization techniques on more complex models 453 

with more adjustable parameters. We will also investigate the influence of uniformity 454 

and stochasticity of initial sampling points, and compare the suitability of different 455 

sampling methods. In addition to examining the main and total effects of the parameters, 456 

we will also evaluate the interactions among parameters. We will continue to improve 457 

the effectiveness, efficiency, flexibility and robustness of Gaussian Processes 458 

Regression approach for surrogate modelling, and test with more complex models. 459 

Since weighting function based multi-objective optimization methods are simple, 460 

intuitive and effective, an inter-comparison of different weighting systems can be an 461 

interesting topic worthy of further research. Further, we intend to investigate ways to 462 

identify Pareto optimal parameter sets using a surrogate based optimization approach. 463 

Discussion and collaborations are warmly welcomed on this and ongoing works. 464 

The computer code used in this study is available from the first author, which going to 465 

be published as part of the ‘UQlab’ software package in the future. 466 

 467 

Acknowledgements 468 

This research is supported by Natural Science Foundation of China (Grant 469 

No.41075075, No.41375139 and No.51309011), Chinese Ministry of Science and 470 

Technology 973 Research Program (No. 2010CB428402) and the Fundamental 471 

Research Funds for the Central Universities - Beijing Normal University Research 472 

Fund (No.2013YB47). Special thanks are due to “Environmental & Ecological Science 473 



Surrogate based parameter optimization of CoLM 

17 
 

Data Center for West China, National Natural Science Foundation of China” 474 

(http://westdc.westgis.ac.cn) for providing the meteorological forcing data, to the group 475 

of Prof. Shaomin Liu at State Key Laboratory of Remote Sensing Science, School of 476 

Geography and Remote Sensing Science of Beijing Normal University for providing 477 

the surface flux validation data. 478 

 479 

 480 

Appendix A. Surrogate modelling approaches 481 

A.1 Multivariate Adaptive Regression Splines (MARS) 482 

The Multivariate Adaptive Regression Splines (MARS) model is a kind of flexible 483 

regression model of high dimensional data [Friedman, 1991]. It automatically divide 484 

the high-dimensional input space into different partitions with several knots and carry 485 

out linear or nonlinear regression in each partition. It takes the form of an expansion in 486 

product spline basis functions as follows: 487 

 𝑦 = 𝑓(𝐱) = 𝑎0 + ∑ 𝑎𝑚 ∏[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]+

𝐾𝑚

𝑘=1

𝑀

𝑚=1

 (A.1) 

where 𝑦  is the output variable and 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the n-dimensional input 488 

vector; 𝑎0 is a constant, 𝑎𝑚 are weightings of each basis functions, 𝑚 is the index 489 

of basis functions and 𝑀 is the total number of basis functions; in each basis function 490 

𝐵𝑚(𝒙) = ∏ [𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]+
𝐾𝑚
𝑘=1 , 𝑘 is the index of knots and 𝐾𝑚 is the total 491 

number of knots; 𝑠𝑘𝑚 take on value ±1 and indicate the right/left sense of associated 492 

step function, 𝑣(𝑘, 𝑚)  is the index of the input variable in vector 𝐱 , and 𝑡𝑘𝑚 493 

indicates the knot location of the k-th knot in the m-th basis function. 494 

MARS model is built in two stages: the forward pass and the backward pass. The 495 

forward pass builds an over-fitting model includes all input variables, while the 496 

backward pass removes the insensitive input variables one at a time. According to 497 

statistical learning theory, such a build-prune strategy can extract information from 498 

training data and meanwhile avoid the influence of noise [Hastie et al., 2009]. Because 499 

of its pruning and fitting ability, MARS method can be used as parameter screening 500 
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method[Gan et al., 2014; Li et al., 2013; Shahsavani et al., 2010], and also surrogate 501 

modeling method[Razavi et al., 2012; Song et al., 2012; Zhan et al., 2013].  502 

A.2 Gaussian Processes Regression (GPR) 503 

Gaussian Processes Regression (GPR) [Rasmussen and Williams, 2006] is a new 504 

machine learning method based on statistical learning theory and Bayesian theory. It is 505 

suitable for high-dimensional, small-sample nonlinear regression problems. In the 506 

function-space view, a Gaussian process can be completely specified by its mean 507 

function and covariance function: 508 

 {
𝑚(𝐱) = E[𝑓(𝐱)]                                                      

𝑘(𝐱, 𝐱′) = E[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))]
 (A.2) 

where 𝑓(𝐱)  is the Gaussian process with n-dimensional input vector 𝐱 =509 

(𝑥1, 𝑥2, … , 𝑥𝑛) , 𝑚(𝐱) is its mean function and 𝑘(𝐱, 𝐱′) is its covariance function 510 

between two input vectors 𝐱 and 𝐱′. For short this Gaussian process can be written as 511 

𝑓(𝐱) = 𝐺𝑃(𝑚(𝐱), 𝑘(𝐱, 𝐱′)).  512 

Suppose a nonlinear regression model 513 

 𝑦 = 𝑓(𝐱) + 𝜀 (A.3) 

where 𝐱  is the input vector, 𝑦  is the output variable, and 𝜀  is the independent 514 

identically distributed Gaussian noise term with zero mean and variance 𝜎𝑛
2. Suppose 515 

𝐲 is the training outputs, 𝑋 is the training input matrix in which each column is an 516 

input vector, 𝐟∗ is the test outputs, 𝑋∗ is the test input matrix, 𝐾(𝑋, 𝑋), 𝐾(𝑋, 𝑋∗) 517 

and 𝐾(𝑋∗, 𝑋∗) denote covariance matrixes of all pairs of training and test inputs. We 518 

can easily write the joint distribution of training and testing inputs and outputs as a joint 519 

Gaussian distribution: 520 

 [
𝐲
𝐟∗

] ~𝑁 (𝟎, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

]) (A.4) 

We can derive the mean and variance of predicted outputs from Bayesian theory. The 521 

predictive equations are presented as follows: 522 

 E(𝐟∗) = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐲 (A.5) 

 cov(𝐟∗) =  𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗) (A.6) 

In this example, the outputs 𝒚 is centered to zero so that the mean function is 𝑚(𝐱) =523 

0, while each element of covariance matrixes equals to the covariance function 𝑘(𝐱, 𝐱′) 524 
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of input pairs. 525 

The covariance function is the crucial ingredient of Gaussian Processes Regression, 526 

as it encodes the prior knowledge about the input-output relationship. There are many 527 

kinds of covariance functions to choose and users can construct special type of cov-528 

function depending on their prior knowledge. In this paper, we choose Martérn 529 

covariance function: 530 

 𝑘(𝑟) =
21−𝜈

Γ(𝜈)
(

√2𝜈𝑟

𝑙
)

𝜈

𝐾𝜈 (
√2𝜈𝑟

𝑙
) (A.7) 

where 𝑟 = |𝐱 − 𝐱′| is the Euclidian distance between input pair 𝐱 and 𝐱′, 𝐾𝜈(. ) is 531 

a modified Bessel function, 𝜈 and 𝑙 are positive hyper parameters, 𝜈 is the shape 532 

factor and 𝑙  is the scale factor (or characteristic length). The Martérn covariance 533 

function is an isotopic cov-function that the covariance only depends on the distance 534 

between 𝐱 and 𝐱′. The shape scale 𝜈 controls the shape of cov-function: larger 𝜈 535 

leads to a smoother process while small 𝜈 leads to a rougher one. If the shape scale 536 

𝜈 → ∞ we obtain squared exponential covariance function 𝑘(𝑟) = exp (−𝑟2/2𝑙2), 537 

which is also called radial basis function (RBF). The Martérn covariance function 538 

becomes a product of a polynomial and an exponential when 𝜈 is half-integer: 𝜈 =539 

𝑝 + 1/2. The most widely used cases are 𝜈 = 3/2 and 𝜈 = 5/2, as follows: 540 

 𝑘𝜈=3/2(𝑟) = (1 +
√3𝑟

𝑙
) exp (−

√3𝑟

𝑙
)             (A.8) 

 𝑘𝜈=5/2(𝑟) = (1 +
√5𝑟

𝑙
+

5𝑟2

3𝑙2
) exp (−

√5𝑟

𝑙
) (A.9) 

In this paper, a value of 𝜈 = 5/2 was used. 541 

To adaptively determine the values of hyper parameters 𝑙  and 𝜎𝑛 , we use 542 

maximum marginal likelihood method. Because of the properties of Gaussian 543 

distribution, the log-marginal likelihood can be easily obtained as follows: 544 

 log[𝑝(𝐲|𝑋)] = −
1

2
𝐲𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝐲 −
1

2
log|𝐾 + 𝜎𝑛

2𝐼| −
𝑛

2
log2𝜋 (A.10) 

where 𝐾 = 𝐾(𝑋, 𝑋). In the training process of GPR, we used SCE-UA optimization 545 

method [Duan et al., 1993] to find the best 𝑙 and 𝜎𝑛.  546 
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A.3 Random Forests (RF) 547 

Random Forest (RF) [Breiman, 2001] is a combination of Classification and 548 

Regression Trees (CART) [Breiman et al., 1984]. Generally speaking, Tree-based 549 

methods split the feature space into a set of rectangles and fit the samples in each 550 

rectangle with a class label (for classification problems) or a constant value (for 551 

regression problems). In this paper only regression tree was discussed. Suppose 𝐱 =552 

(𝑥1, 𝑥2, … , 𝑥𝑛) is the n-dimensional input feature vector and 𝑦 is the output response, 553 

the regression tree can be expressed as follows: 554 

 𝑓(𝐱) = ∑ 𝑐𝑚𝐼(𝐱 ∈ 𝑅𝑚)

𝑀

𝑚=1

 (A.11) 

 𝐼(𝐱 ∈ 𝑅𝑚) = {
1,     𝐱 ∈ 𝑅𝑚

0,     𝐱 ∉ 𝑅𝑚
 (A.12) 

where 𝑀 is the total number of rectangles, 𝑚 is the index of rectangle, 𝑅𝑚 is its 555 

corresponding region, 𝑐𝑚 is a constant value equals to the mean value of 𝑦 in region 556 

𝑅𝑚. To effectively and efficiently find the best binary partition, a greedy algorithm is 557 

used to determine the feature to split and the location of split point. This greedy 558 

algorithm can be very fast especially for large dataset. 559 

Because of the major disadvantages of a single tree, such as over-fitting, lack of 560 

smoothness and high variance, many improved methods have been proposed, such as 561 

MARS and random forests. A random forest construct many trees using randomly 562 

selected outputs and features, and synthetic the outputs of all the trees to give the 563 

prediction result. A random forest only have two parameters: the total number of trees 564 

𝑡, and the selected feature number 𝑚̂. Constructing random forests needs following 565 

steps: 566 

1) Bootstrap aggregating (Bagging): From total N samples (𝐱𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑁 , 567 

randomly select one point at one time with replacement, and replicate N times to 568 

get a resample set containing N points. This set is called a bootstrap replication. We 569 

need 𝑡 bootstrap replications for each tree. 570 

2) Tree construction: For each splitting of each tree, randomly select 𝑚̂ features from 571 

the total M, and select the best fitting feature among the 𝑚̂  to split. The 𝑚̂ 572 
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selected features should be replaced in every splitting step.  573 

3) The prediction result of a random forest is given by averaging the output of 𝑡 trees. 574 

 𝑓𝑟𝑓(𝐱) = ∑ 𝑓𝑗(𝐱)

𝑡

𝑗=1

 (A.13) 

Random forests have outstanding performance for very high dimensional problems, 575 

such as medical diagnosis and document retrieval. Such problems usually have 576 

hundreds or thousands of input variables (features), but each feature provides only a 577 

little information. A single classification or regression model usually has very poor skill 578 

that only slightly better than random prediction. However, by combining many trees 579 

trained with random features, a random forest can give improved accuracy. For big-data 580 

problems that have more than 100 input features and more than one million training 581 

samples, random forests become the only choice because of its outstanding efficiency 582 

and effectiveness. 583 

A.4 Support Vector Machine (SVM) 584 

Support Vector Machine (SVM) is an appealing machine learning method for 585 

classification and regression problems depending on the statistical learning theory 586 

[Vapnik, 1998; 2002]. The SVM method can avoid over-fitting problem because it 587 

employs the structural risk minimization principle. It is also efficient for big-data 588 

because of its scarcity. A brief introduction to support vector regression is presented 589 

below. 590 

The aim of SVM is to find a function 𝑓(𝐱)  that can fit the output 𝑦  with 591 

minimum risk given a N point training set (𝐱𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑁. Take a simple linear 592 

regression model for example, the function 𝑓(𝐱) can be: 593 

 𝑓(𝐱) = 𝐰𝑇𝐱 + 𝑏 (A.14) 

where 𝐰 is the weighting vector and 𝐱 is the n-dimensional input feature vector. This 594 

function is actually determined by a small subset of training samples called support 595 

vectors (SVs).  596 

Nonlinear problems can be transferred to linear problems by applying a nonlinear 597 

mapping from low-dimensional input space to some high-dimensional feature space: 598 
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 𝑓(𝐱) = 𝐰𝑇𝜙(𝐱) + 𝑏 (A.15) 

where 𝜙(𝐱) is the mapping function. The inner product of mapping function is called 599 

Kernel Function: 𝐾(𝐱, 𝐱′) = 𝜙(𝐱)𝑇𝜙(𝐱′) and this method is called Kernel method. 600 

The commonly used kernel functions are: linear kernel function, polynomial, sigmoid 601 

and radial basis function (RBF). In this paper we use RBF kernel:  602 

 𝐾(𝐱, 𝐱′) = exp (−𝛾|𝐱 − 𝐱′|2) (A.16) 

where |𝐱 − 𝐱′| is the Euclidian distance between 𝐱  and 𝐱′ , 𝛾  is a user defined 603 

parameter that controls the smoothness of 𝑓(𝐱).  604 

To qualify the ‘risk’ of function 𝑓(𝐱), a loss function is defined as follows: 605 

 |𝑦 − 𝑓(𝐱)|𝜀 = {
0,                       𝑖𝑓 |𝑦 − 𝑓(𝐱)| ≤ 𝜀
|𝑦 − 𝑓(𝐱)| − 𝜀,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.17) 

The loss function means regression errors less than tolerance 𝜀 are not penalized. The 606 

penalty-free zone is also called 𝜀 -tube or 𝜀 -boundary. As explained in statistical 607 

learning theory[Vapnik, 1998], the innovative loss function is the key point that SVM 608 

can balance empirical risk (risk of large error in the training set) and structure risk (risk 609 

of an over-complex model, or over-fitting). The problem of simultaneously minimizing 610 

both empirical risk (represented by regression error) and structure risk (represented by 611 

the width of 𝜀-tube) can be written as a quadratic optimization problem: 612 

 

min
𝐰,𝑏,𝝃,𝝃∗

     
1

2
𝐰𝑇𝐰 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1
+ 𝐶 ∑ 𝜉𝑖

∗
𝑛

𝑖=1
 

subject to    𝐰𝑇𝜙(𝐱𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 

                       𝑦𝑖 − 𝐰𝑇𝜙(𝐱𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖
∗ 

                       𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛 

(A.18) 

The problem can be transferred to the dual problem: 613 

 

min
𝐰,𝑏,𝝃,𝝃∗

     
1

2
(𝜶 − 𝜶∗)𝑇𝑲(𝜶 − 𝜶∗) + 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖

∗)
𝑛

𝑖=1

+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1
 

subject to    𝒆𝑇(𝜶 − 𝜶∗) = 0 

                       𝑦𝑖 − 𝐰𝑇𝜙(𝐱𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖
∗ 

                       0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,2, … , 𝑛 

(A.19) 

where K is the kernel function matrix with 𝐾𝑖𝑗 = 𝐾(𝐱𝑖, 𝐱𝑗). Solving the dual problem 614 
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and we can get the predictive function: 615 

 𝑓(𝐱) = ∑ (−𝛼𝑖 + 𝛼𝑖
∗)

𝑛

𝑖=1
𝐾(𝐱𝑖, 𝐱) + 𝑏 (A.20) 

where the vectors (𝜶∗ − 𝜶) are the support vectors (SVs). 616 

A.5 Artificial Neural Network (ANN) 617 

Artificial Neural Network (ANN) [Jain et al., 1996] is time-hornored machine 618 

learning method comparing to the former four. It is a data-driven process that can solve 619 

complex nonlinear relationships between input and outpur data. A nerual network is 620 

constructed by many interconnected neurons. Each neuron can be mathematically 621 

described as a linear weighing function and a nonlinear activation function: 622 

 𝐼𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 (A.21) 

 𝑓𝑖(𝐼) =
1

1 + exp (−𝐼𝑖)
 (A.22) 

where 𝑥𝑗 is the j-th input variable, 𝑤𝑖𝑗 is the weight and 𝐼𝑖 is the weighted sum of 623 

the i-th neuron. The output of the i-th neuron 𝑓𝑖(𝐼) is given by the nonlinear activation 624 

function of the weighted sum input. Here we use Sigmoid function. 625 

[Minsky and Papert, 1969] shows that single layer neural network can only solve 626 

linear problem. [Cybenko, 1989] extended ANN to multiple layer and demostrated that 627 

multi-layer ANN can infinitely approximate any nonlinear function (the universal 628 

approximation theorem). The training procedure of ANN is optimizing the value of 629 

weights. There are many training methods for ANN and we use the Levenberg-630 

Marquardt (LM) [Marquardt, 1963] algorithm, a modification of the classic Newton 631 

algorithm provided in matlab ANN toolbox. 632 

 633 
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Figure list: 797 

Figure 1: Inter-comparison of 5 surrogate modelling methods, error of training set. 798 

Figure 2: Inter-comparison of 5 surrogate modelling methods, error of testing set. 799 

Figure 3: Single-objective optimization result: optimal parameters. 800 

Figure 4: Optimal value of CoLM given by multi-objective optimization (comparing default 801 

parameter, optimal parameter given by ASMO and SCE-UA) 802 

Figure 5: Comparing the improvements given by ASMO and SCE. 803 

Figure 6: Taylor diagram of simulated fluxes during calibration period (Jan-1-2009 to Dec-31-804 

2009). 805 

Figure 7: Taylor diagram of simulated fluxes during validation period (Here we use warm-up period 806 

as validation period, Jan-1-2008 to Dec-31-2008). 807 
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Table 1: Adjustable parameters and their categories, meanings and ranges.  812 

Num Para Units Category Physical meaning Feasible range 

P1 dewmx  canopy maximum dew ponding of leaf area  [0.05, 0.15] 

P2 hksati mm/s soil maximum hydraulic conductivity [0.001, 1] 

P3 porsl - soil porosity [0.25, 0.75] 

P4 phi0 mm soil minimum soil suction [50, 500] 

P5 wtfact  soil fraction of shallow groundwater area [0.15, 0.45] 

P6 bsw -- soil Clapp and Hornberger "b" parameter [2.5, 7.5] 

P7 wimp  soil water impermeable if porosity less than wimp [0.01, 0.1] 

P8 zlnd m soil roughness length for soil surface [0.005, 0.015] 

P9 pondmx mm soil maximum ponding depth for soil surface [5, 15] 

P10 csoilc -- soil drag coefficient for soil under canopy [0.002, 0.006] 

P11 zsno m snow roughness length for snow [0.0012, 0.0036] 

P12 capr  soil tuning factor of soil surface temperature [0.17, 0.51] 

P13 cnfac  canopy Crank Nicholson factor [0.25, 0.5] 

P14 slti  canopy slope of low temperature inhibition function [0.1, 0.3] 

P15 hlti  canopy 1/2 point of low temperature inhibition 

function 

[278, 288] 

P16 shti  canopy slope of high temperature inhibition function [0.15, 0.45] 

P17 sqrtdi m-0.5 canopy the inverse of square root of leaf dimension [2.5, 7.5] 

P18 effcon mol CO2/ 

mol quanta 

canopy quantum efficiency of vegetation 

photosynthesis 

[0.035, 0.35] 

P19 vmax25 mol CO2/ 

m2s 

canopy maximum carboxylation rate at 25℃ [10-6, 200-6] 

P20 hhti  canopy 1/2 point of high temperature inhibition 

function 

[305, 315] 

P21 trda  canopy temperature coefficient of conductance-

photosynthesis model 

[0.65,1.95] 

P22 trdm  canopy temperature coefficient of conductance-

photosynthesis model 

[300, 350] 

P23 trop  canopy temperature coefficient of conductance-

photosynthesis model 

[250, 300] 

P24 gradm  canopy slope of conductance-photosynthesis model [4, 9] 

P25 binter  canopy intercept of conductance-photosynthesis 

model 

[0.01, 0.04] 

P26 extkn  canopy coefficient of leaf nitrogen allocation [0.5, 0.75] 

P27 chil  canopy leaf angle distribution factor [-0.3, 0.1] 

P28 ref(1,1)  canopy VIS reflectance of living leaf  [0.07, 0.105] 

P29 ref(1,2)  canopy VIS  reflectance of dead leaf [0.16, 0.36] 

P30 ref(2,1)  canopy NIR reflectance of living leaf [0.35, 0.58] 

P31 ref(2,2)  canopy NIR reflectance of dead leaf [0.39, 0.58] 

P32 tran(1,1)  canopy VIS transmittance of living leaf [0.04, 0.08] 

P33 tran(1,2)  canopy VIS transmittance of dead leaf [0.1, 0.3] 

P34 tran(2,1)  canopy NIR transmittance of living leaf [0.1, 0.3] 
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P35 tran(2,2)  canopy NIR transmittance of dead leaf [0.3, 0.5] 

P36 z0m m canopy aerodynamic roughness length [0.05, 0.3] 

P37 ssi  snow irreducible water saturation of snow [0.03, 0.04] 

P38 smpmax mm soil wilting point potential [-2.e5, -1.e5] 

P39 smpmin mm soil restriction for min of soil potential  [-1.e8, -9.e7] 

P40 trsmx0 mm/s canopy maximum transpiration for vegetation [1.e-4, 1. e-2] 
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Table 2: Screened parameters of CoLM in A’rou Station [Li et.al., 2013] 815 

Output variables (fluxes) Screened parameters 

Sensible Heat P2, P4, P6, P30, P34, P36 

Latent Heat  

P3, P4, P6, P18, P19, P23, P25, P36 

Upward Longwave Radiation P6, P17, P36 

Net radiation P6, P17, P30, P34, P36 

Soil Temperature P3, P6, P36 

Soil Moisture P3, P6 

 816 

  817 
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 818 

Table 3: The NRMSE between simulated and observed outputs after single objective optimization 819 

 
Sensible 

heat 

Latent 

heat 

Upward 

longwave 

radiation 

Net 

radiation 

Soil 

Temperature 

Soil 

Moisture 

Default 0.8586 0.5833 0.0590 0.2357 0.0096 0.4527 

SCE 

Optimized 

0.7450 

(1492) 

0.4921 

(1354) 

0.0380 

(458) 

0.1963 

(982) 

0.0073 

(473) 

0.3900 

(210) 

LH50 0.7672 0.5255 0.0377 0.1913 0.0080 0.4222 

LH100 0.7841 0.5785 0.0372 0.1908 0.0077 0.4130 

LH200 0.7821 0.5885 0.0374 0.1928 0.0069 0.3947 

LH400 0.7798 0.5627 0.0374 0.1928 0.0070 0.3971 

LH800 0.7683 0.5024 0.0377 0.1909 0.0068 0.3956 

LH1200 0.7760 0.5150 0.0374 0.1919 0.0068 0.3962 

LH2000 0.7705 0.5048 0.0375 0.1912 0.0070 0.3946 
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 822 

Table 4: Weights assigned to each output variables. 823 

Flux name Label Unit RMSE NRMSE Weights 

Sensible heat fsena W/m2 49.14 0.8586 0.3905 

Latent heat lfevpa W/m2 43.59 0.5833 0.2653 

Upward longwave radiation orlg W/m2 19.43 0.0590 0.0268 

Net radiation sabvg W/m2 42.78 0.2357 0.1072 

Soil temperature tss K 2.66 0.0096 0.0044 

Soil moisture wliq kg/m2 21.14 0.4527 0.2059 
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 826 

Figure 1: Inter-comparison of 5 surrogate modelling methods, error of training set. 827 
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 829 

Figure 2: Inter-comparison of 5 surrogate modelling methods, error of testing set. 830 
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 832 

Figure 2: Single-objective optimization result: optimal parameters. 833 
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 835 

Figure 3: Optimal value of CoLM given by multi-objective optimization (comparing default 836 

parameter, optimal parameter given by ASMO and SCE-UA) 837 
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 839 

 840 

Figure 4: Comparing the improvements given by ASMO and SCE. 841 
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 843 

Figure 5: Taylor diagram of simulated fluxes during calibration period (Jan-1-2009 to Dec-31-844 

2009). 845 
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 847 

 848 

Figure 6: Taylor diagram of simulated fluxes during validation period (Here we use warm-up 849 

period as validation period, Jan-1-2008 to Dec-31-2008). 850 
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