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Abstract 14 

The increased frequency and magnitude of extreme rainfall events due to anthropogenic 15 

climate change, and decadal and multi-decadal climate variability question the stationary 16 

climate assumption. The possible violation of stationarity in climate can cause erroneous 17 

estimation of design rainfalls derived from extreme rainfall frequency analysis. This may 18 

result in significant consequences for infrastructure and flood protection projects since design 19 

rainfalls are essential input for design of these projects. Therefore, there is a need to conduct 20 

frequency analysis of extreme rainfall events in the context of non-stationarity, when non-21 

stationarity is present in extreme rainfall events. A methodology consisting of, threshold 22 

selection, extreme rainfall data (peaks over threshold data) construction, trend and non-23 

stationarity analysis, and stationary and non-stationary Generalized Pareto Distribution (GPD) 24 

models was developed in this paper to investigate trends and non-stationarity in extreme 25 

rainfall events, and potential impacts of climate change and variability on Intensity-26 

Frequency-Duration (IFD) relationships. The developed methodology was successfully 27 

implemented using rainfall data from an observation station in Melbourne (Australia) for 28 

storm durations ranging from 6 minutes to 72 hours. Although statistically significant trends 29 
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were detected in extreme rainfall data for storm durations of 30 minute, and 3 and 48 hours, 1 

statistical non-stationarity tests and non-stationary GPD models did not indicate non-2 

stationarity for these storm durations and other storm durations. It was also found that the 3 

stationary GPD models were capable of fitting extreme rainfall data for all storm durations. 4 

Furthermore, the IFD analysis showed that urban flash flood producing hourly rainfall 5 

intensities have increased over time. 6 

Key words: Climate change, extreme rainfall, peaks over threshold, generalized pareto 7 

distribution  8 
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1 Introduction 10 

Over the last 100 years, global surface temperature has increased approximately by 0.75 °C, 11 

and this warming cannot be explained by natural variability alone (IPCC, 2007).   IPCC 12 

(2007) stated that excessive greenhouse gas emissions due to human activities is the main 13 

reason for current global warming.  Increasing frequency and magnitude of extreme weather 14 

events is one of the main concerns caused by global warming. Increases in extreme rainfall 15 

frequency and magnitude have already been recorded in many regions of the world (Mueller 16 

and Pfister, 2011; Dourte et al., 2013; Bürger et al., 2014; Jena et al. 2014), even in some 17 

regions where the mean rainfall has shown decreasing trends (Tryhon and DeGaetano, 2011). 18 

Moreover, the magnitude and frequency of extreme rainfall events are very likely to increase 19 

in the future due to global warming (IPCC, 2007).  20 

Increased frequency and magnitude of extreme rainfall events questions the stationary climate 21 

assumption (i.e. the statistical properties of the rainfall do not change over time), which is an 22 

underlying assumption of frequency analysis of extreme rainfalls. Khaliq et al. (2006) 23 

explained that the classical notions of probability of exceedence and return period are no 24 

longer valid under non-stationarity. The possible violation of stationarity in climate increases 25 

concerns amongst hydrologists and water resources engineers about the accuracy of design 26 

rainfalls, which are derived from frequency analysis of extreme rainfall events under the 27 

stationary climate assumption. Erroneous selection of design rainfalls can cause significant 28 

problems for water infrastructure projects and flood mitigation works, since the design 29 

rainfalls are an important input for design of these projects. Therefore, there is a need to 30 

conduct frequency analysis of extreme rainfall events under the context of the non-31 

stationarity.  32 
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Sugahara et al. (2009) carried out a frequency analysis of extreme daily rainfalls in the city of 1 

Sao Paulo using data over the period of 1933-2005. They considered non-stationarity in 2 

frequency analysis through introducing time dependency to the parameters of Generalized 3 

Pareto distribution (GPD), which is one of the widely used distributions in frequency analysis 4 

of extreme values. Park et al. (2011) developed non-stationary Generalized Extreme Value 5 

(GEV) distribution (another commonly used extreme value distribution) models for frequency 6 

analysis of extreme rainfalls in Korea considering non-stationarity similar to Sugahara et al. 7 

(2009). Tramblay et al. (2013) performed non-stationary heavy rainfall (it should be noted 8 

that “heavy” rainfall used here as same as “extreme” rainfall in Sugahara et al. (2009)) 9 

analysis using daily rainfall data of the period 1958-2008 in France. They incorporated the 10 

climatic covariates into the Generalized Pareto Distribution parameters to consider non-11 

stationarity. 12 

There are very few studies, which investigated extreme rainfall frequency analysis in the 13 

context of non-stationarity in Australia. Jakob et al. (2011a,b) investigated the potential 14 

effects of climate change and variability on rainfall intensity-frequency-duration (IFD) 15 

relationships in Australia, considering possible non-stationarity of extreme rainfall data in 16 

design rainfall estimates. Yilmaz and Perera (2014) developed stationary and non-stationary 17 

GEV models using a single station in Melbourne considering data for storm durations ranging 18 

from 6 minutes to 72 hours, to construct IFD curves through frequency analysis. They 19 

investigated the advantages of non-stationary models over stationary ones using graphical 20 

tests.  21 

In this paper, it is aimed to investigate extreme rainfall non-stationarity through trend 22 

analysis, non-stationarity tests and non-stationary GPD models (NSGPD). The extreme 23 

rainfall trend analysis was performed using data from a rainfall station in Melbourne 24 

considering storm durations of 6 and 30 minutes, and 1, 2, 3, 6, 12, 24, 48 and 72 hours. 25 

Trend analysis was used to determine if the extreme rainfall series have a general increase or 26 

decrease over time. However, trends do not necessarily mean non-stationarity.  The mean and 27 

variance of extreme rainfall data series may not change over time (i.e. stationarity), despite 28 

the presence of trends in extreme rainfall data series (Wang et al., 2006). Therefore, further 29 

analysis should be conducted to check if the detected trends may correspond to extreme 30 

rainfall non-stationarity. Non-stationarity analysis of the extreme rainfall data was further 31 

carried out using statistical non-stationarity tests and NSGPD models in this study.  32 



 4 

Potential effects of climate change on the IFD relationship were investigated through GPD 1 

models in this study following the stationarity analysis. Expected rainfall intensities for return 2 

periods of 2, 5, 10, 20, 50 and 100 years were derived and compared for two time slices: 3 

1925-1966 (i.e. cooler period) and 1967-2010 (warmer period)  after selecting 1967 as the 4 

change point based on the findings of Yilmaz and Perera (2014). Yilmaz and Perera (2014) 5 

conducted the change point analysis for extreme rainfall data for storm durations ranging 6 

from 6 minutes to 72 hours in Melbourne, and stated the year 1966 as change point. 7 

Moreover, Jones (2012) stated the period 1910-1967 as stationary and 1968-2010 as non-8 

stationary according to the observed minimum and maximum temperature and rainfall data in 9 

south eastern Australia (which includes the Melbourne region). Therefore, the entire data set 10 

was divided into two periods (i.e. 1925-1966 and 1967-2010) and the IFD information was 11 

generated for the two periods to understand if there are any changes in rainfall intensities 12 

between these cooler and warmer periods.  13 

Changes in rainfall intensities (i.e. IFD information) over time can occur due to both climate 14 

change and natural climate modes (i.e. natural climate variability). The ENSO with El Niño 15 

and La Niña phases (Verdon et al., 2004), the Indian Ocean Dipole (IOD) (Ashok et al., 16 

2003), the Southern Annual Mode (SAM) (Meneghini et al., 2007), and the Inter-decadal 17 

Pacific Oscillation (IPO) (Verdon-Kidd and Kiem, 2009) were expressed as significant 18 

climate modes, which have influence on the precipitation variability in Victoria (Australia), 19 

which includes the Melbourne region. IPO affects the precipitation variability in Victoria 20 

itself; also it modulates the association between ENSO and Australian climate (Power et al., 21 

1999; Kiem et al., 2003; Micevski et al., 2006). ENSO and Australian climate relationship 22 

was strong in particular during the IPO negative phases (i.e associated with wetter 23 

conditions). Moreover, Kiem et al. (2003) stated that La Niña events, which were increased 24 

during the negative IPO phases, are the primary driver for flood risk in Australia. It can be 25 

seen from the above studies that there is a need to investigate the IPO and extreme rainfall 26 

relationship due to its direct effects on Australian rainfall as well as effects of IPO on ENSO, 27 

which has a strong link to Australian rainfall. The effects of IPO on extreme rainfalls were 28 

investigated in this study through extreme rainfall IFD analysis during IPO negative and 29 

positive phases. Salinger (2005) and Dai (2013) defined time periods of IPO negative and 30 

positive phases as 1947-1976 and 1977-1998 respectively. Therefore, extreme rainfall IFD 31 

analysis was performed for these two periods to explain the relationship between IPO and 32 

extreme rainfalls. It should be noted that potential effects of climate change on design rainfall 33 
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intensities (IFD information) were investigated through GPD models developed for 1925-1 

1966 and 1967-2010 time periods, whereas IPO and extreme rainfall relationship was 2 

investigated with GPD models for the periods of IPO negative (1947-1976) and positive 3 

(1977-1998) phases.  4 

As mentioned earlier in this section, there are very limited studies in the literature 5 

investigating IFD relationships in Australia considering non-stationarity of extreme rainfall 6 

data (e.g. Jakob et al., 2011a,b; Yilmaz and Perera, 2014). However, Jacob et al. (2011 a,b) 7 

did not develop non-stationary extreme rainfall models to investigate their performances over 8 

stationary models, as it is done in this study. Although, Yilmaz and Perera (2014) developed 9 

non-stationary models for the same study area as in this study, they simply used annual 10 

maximums as extreme rainfall input to the stationary and non-stationary models. Several 11 

studies recommended the use of peaks over threshold (POT) data (derived by selecting values 12 

over a certain threshold) instead of annual maximums as extreme rainfall data input to 13 

frequency analysis (e.g. Re and Barros, 2009; Tramblay et al., 2013), since the POT approach 14 

results in larger data sets leading more accurate parameter estimations of extreme value 15 

distribution. Therefore, this study used POT data to develop stationary and non-stationary 16 

GPD models.   17 

 18 

2 Study Area and Data 19 

The Melbourne City in Australia was selected as the case study area. Data of the Melbourne 20 

Regional Office rainfall station (Site no: 086071; latitude of 37.81 °S and longitude of 144.97 21 

°E) were provided by Bureau of Meteorology in Australia. This station was selected for the 22 

study, since it has long rainfall records, which are essential for trend and extreme rainfall IFD 23 

analysis. Approximate location of the station is shown in Figure 1. 24 

 25 
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 1 

Figure 1. Approximate location of the Melbourne Regional Office Rainfall Station 2 

Six minute pluviometer data are available from April 1873 to December 2010 at the 3 

Melbourne Regional Office station. These data were used to generate rainfall data for storm 4 

durations including 30 minute, and 1, 2, 3, 6 and 12 hours. Also, daily rainfall data are 5 

available at the Melbourne Regional Office station since April 1855. Daily rainfall data were 6 

used to produce 48 and 72 hours rainfall data. Although daily rainfall record is complete, 7 

there are missing periods in 6 minute data record. Missing periods in six minute data record 8 

were from January 1874 to July 1877 and from July 1914 to December 1924. Therefore, 9 

rainfall data over the period 1925-2010 from both sources (i.e. 6 minute and daily) were used 10 

for all storm durations in this study.  11 

 12 

3 Methodology 13 

The methodology of this study consists of the following four steps. 14 

(1) Extreme rainfall data were constructed based on the POT approach after selection of 15 

suitable thresholds for storms of different durations.  16 

(2) Trend analysis of POT data of all storm durations was carried out using non-parametric 17 

tests. Then, stationarity analysis was performed for the same data sets using statistical non-18 

stationarity tests and non-stationary GPD models.  19 

(3) Stationary GPD models were developed, and design rainfall estimates were derived for 20 

standard return periods considering two time slices (1925-1966 and 1967-2010) in order to 21 

investigate potential effects of climate change on design rainfall intensities (extreme rainfall 22 

IFD information).  23 
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(4) Stationary GPD models were constructed to obtain design rainfall intensities for IPO 1 

negative (1947-1976) and positive (1977-1998) phases to investigate the IPO and extreme 2 

rainfall relationship. 3 

 4 

3.1 Threshold Selection and Extreme Rainfall Data Set Construction 5 

The first step of the extreme rainfall frequency analysis is to construct the extreme rainfall 6 

data set. There are two widely used approaches to construct such data sets: block maxima and 7 

peaks over threshold, also called partial duration series approach (Thompson et al., 2009; 8 

Lang et al., 1999). In the block maxima approach, a sequence of maximum values is taken 9 

from blocks or periods of equal length, such as daily peak rainfall amount over an entire year 10 

or season. On the other hand, rainfall values that exceed a certain threshold are selected in the 11 

POT approach.  Although the block maxima approach is the commonly used method due to 12 

its simplicity, it has a very important shortcoming that it uses only one value from each block 13 

(Sugahara et al., 2009). This may cause loss of some important information, and also smaller 14 

sample sizes, which affect the accuracy of the parameter estimates. Moreover, the POT 15 

method has an advantage of investigation of changes in number of events per year as well as 16 

magnitude (Jakob et al., 2011a). Due to the above mentioned reasons, the POT approach is 17 

recommended for frequency analysis of extreme events (Re and Barros, 2009; Tramblay et 18 

al., 2013). It should be noted that “extreme rainfall data” and “POT data” terminology has 19 

been used interchangeably in the rest of the paper. 20 

Despite the above mentioned advantages of the POT method over the block maxima 21 

approach, the POT approach is prone to produce dependent data. Data independency is an 22 

underlying requirement for use of extreme value distributions in frequency analysis. 23 

Therefore, the data dependency was removed in this study from the POT data of all storm 24 

durations through the method recommended by Jakob et al. (2011a). They recommended that 25 

if there is a cluster of POT events, the POT values 24 hours prior to and after the peak rainfall 26 

event, should be removed from the data set. For example, if a peak rainfall value in a cluster 27 

of POT data is selected for 9 November 2013, rainfall values over the threshold on 8 and 10 28 

November 2013 are not considered in the POT data set.  None of the POT data sets (after the 29 

application of the method by Jakob et al. (2011a)) showed dependency even at 0.1 30 
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significance level according to the autocorrelation test as explained in Chiew and Siriwardena 1 

(2005).  2 

The critical step in the construction of POT data is the selection of the appropriate threshold 3 

value. Researchers have proposed several procedures for selecting the thresholds, but a 4 

general and objective method is yet to be emerged (Lang et al., 1999; Coles, 2001; Katz et al., 5 

2005). The threshold selection task is a compromise between bias and variance. If the 6 

threshold is too low, the asymptotic arguments underlying the derivation of the GPD model 7 

are violated. On the other hand, too high threshold will result in fewer excesses (i.e. rainfall 8 

values above threshold) to estimate the shape and scale parameter leading to high variance. 9 

Therefore, in the threshold selection it should be considered if the limiting model provides a 10 

sufficiently good approximation versus the variance of the parameter estimate (Coles, 2001; 11 

Katz et al., 2005).  12 

Beguer´ıa et al. (2011), Coles (2001) and Lang et al. (1999) recommended the mean residual 13 

plots to select the threshold. The mean residual plot indicates the relationship between mean 14 

excesses (i.e. mean of values above the threshold) and various thresholds. Mean excess is a 15 

linear function of threshold in GPD (Coles, 2001). Therefore, threshold value should be 16 

selected from the domain, where the mean residual plot shows linearity (i.e. linearity between 17 

mean excess and threshold) (Hu, 2013). The exact threshold value can be determined from the 18 

linear domain in such a way that on average 1.65 – 3.0 extreme events per year are selected 19 

(e.g. Jakob et al., 2011a; Cunnane, 1973). This study adopted the mean residual plot method 20 

for selection of appropriate thresholds for all storm durations. 21 

 22 

3.2 Trend and Non-stationarity Tests 23 

Trends tests can be broadly grouped into two categories: parametric and non-parametric 24 

methods. Non-parametric tests are more appropriate for non-normally distributed and 25 

censored hydro-meteorological time series data (Bouza-Deano et al., 2008). However, data 26 

independency is still a requirement of these tests.  Mann-Kendall (MK) and Spearman’s rho 27 

(SR) are non-parametric rank based trend tests, which are commonly used for trend detection 28 

of hydro-meteorological data (Yue et al., 2002). Formulation and details of the MK and SR 29 

tests can be found in Kundzewicz and Robson (2000). MK and SR tests were applied to POT 30 
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data sets of all storm durations (6, 30 minutes, and 1, 2, 3, 6, 12, 24, 48, 72 hours) over the 1 

period of 1925-2010 after applying the autocorrelation test as explained earlier. 2 

Trend tests are used to determine if the time series data has a general increase or decrease in 3 

trend. However, increasing or decreasing trends do not guarantee non-stationarity even if they 4 

are statistically significant. Therefore, it is useful to conduct further analysis in order to 5 

investigate non-stationarity of the data sets. In this study, three statistical tests, namely 6 

augmented Dickey-Fuller (ADF), Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Phillips-7 

Perron (PP), were employed to investigate the non-stationarity in extreme rainfall data. These 8 

tests were selected due to their proven capability in hydrological studies (Wang et al., 2005; 9 

Wang et al., 2006; Yoo, 2007). Sen and Niedzielski (2010) and van Gelder et al. (2007) 10 

explain the details of these tests. Non-stationarity of data is the null hypothesis of ADF and 11 

PP tests, whereas the null hypothesis of the KPSS test is stationarity of the data series. Tests 12 

were performed at 0.05 significance level in this study. Whenever the significance level is 13 

higher than the p-value (probability) of the test statistic, the null hypothesis is rejected. 14 

 15 

3.3 Stationary GPD Models 16 

Several studies recommended use of GPD for frequency analysis of POT data (e.g. Beguer´ia 17 

et al. 2011). Therefore, GPD is used in this study to derive the extreme rainfall IFD 18 

relationships. GPD is a flexible, long-tailed distribution defined by shape (γ) and scale (σ) 19 

parameters. Eq. (1) shows the cumulative distribution function of GPD.  It should be noted 20 

that stationary GPD model corresponds to conventional GPD models with constant shape and 21 

scale parameters. 22 
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The scale parameter (σ in Eq. (1)) characterizes the spread of distribution, whereas the shape 24 

parameter (γ in Eq. (1)) characterizes the tail features (Sugahara et al., 2009). Rainfall 25 

intensities in mm/hr for different return periods (2, 5, 10, 20, 50 and 100 years in this study) 26 
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are calculated using the inverse cumulative distribution function. Details of GPD can be found 1 

in Sugahara et al. (2009), Coles (2001) and Rao and Hamed (2000).  2 

There are different approaches such as maximum likelihood and L-moments to estimate the 3 

parameters of GPD. In this study, the L-moments method was used to estimate GPD 4 

parameters since it is less affected by data variability and outliers (Borijeni and Sulaiman, 5 

2009). Hosking (1990) described the details of the L-moments method. 6 

Goodness of fit of the stationary GPD models was determined using the graphical diagnostics 7 

and statistical tests.  The probability (P-P) and the quantile (Q-Q) plots are common 8 

diagnostic graphs. In P-P plot, the x-axis is empirical cumulative distribution function (CDF) 9 

values, whereas the y-axis is theoretical CDF values. In Q-Q plot, the x-axis include input 10 

(observed) data values, whereas the y-axis is the theoretical (fitted) distribution quantiles 11 

calculated by         12 

)
5.0

)((1

n
xFF in            (2) 13 

where F-1(x) is inverse CDF, Fn(x) is empirical CDF, and n is sample size. 14 

Close distribution of the points of probability and quantile plots around the unit diagonal 15 

indicates a successful fit. Probability and quantile plots explain similar information, however, 16 

different pairs of data are used in probability and quantile plots. It is beneficial to use both 17 

plots to assess the goodness of fit, since one plot can show a very good fit while the other can 18 

show a poor fit. Coles (2001) explains the details of the diagnostic graphs.  When probability 19 

and quantile plots show different results, statistical tests are useful to determine adequacy of 20 

the fit.  21 

In addition to diagnostic graphs, Kolmogorov-Simirnov (KS), Anderson-Darling (AD), and 22 

Chi-square (CS) statistical tests were used in this study to check the goodness of fit. These 23 

tests were used in the past hydrological applications of extreme value analysis (Laio, 2004; 24 

Salarpour et al., 2012). They are used to determine if a sample comes from a hypothesized 25 

continuous distribution (GPD in this study). Null hypothesis (H0) of the tests is “data follow 26 

the specified distribution”. If the test statistic is larger than the critical value at the specified 27 

significance level, then the alternative hypothesis (HA),which is “data do not follow GPD”, is 28 

accepted (Yilmaz and Perera, 2014).Details of these tests can be seen in Di Baldassarre et al. 29 

(2009) and Salarpour et al. (2012).  30 
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As explained in Section 1, the extreme rainfall data of all storm durations were fitted to the 1 

stationary GPD models for 1925-1966 and 1967-2010 periods to investigate the climate 2 

change effects on IFD information, and for 1947-1976 (IPO negative phase) and 1977-1998 3 

(IPO positive phase) to investigate the IPO and extreme rainfall relationship.  4 

 5 

3.4 Non-stationary GPD (NSGPD) Models 6 

NSGPD models were used along with statistical non-stationarity tests in this study to identify 7 

if the detected trends based on MK and SR tests correspond to non-stationarity. If it is proven 8 

that extreme rainfall data show non-stationarity over time, it is preferable to use NSGPD 9 

models instead of stationary GPD models. Non-stationary GPD models can be developed 10 

through the incorporation of non-stationarity feature (i.e. time dependency or climate 11 

covariates) into the scale parameter of the stationary GPD model in Eq. (1) (Coles, 2001; 12 

Khaliq et al., 2006). Thus, the scale parameter is not constant and varies with time in non-13 

stationary models. It is also possible to incorporate the non-stationarity into the shape 14 

parameter. However, it is very difficult to estimate the shape parameter of the extreme values 15 

distribution with precision when it is time dependent, and thereby it is not realistic to attempt 16 

to estimate the shape parameter as a smooth function of time (Coles, 2001).  17 

In this study, two types of non-stationary GPD models were developed with parameters as 18 

explained below: 19 

 Model NSGPD1 σ= exp (β0 + β1 x t), γ (constant) 20 

 Model NSGPD2 σ= exp (β0 + β1 x t + β2 x t2),   γ (constant) 21 

In the above models, β0, β1 and β2 modify the scale parameters of NSGPD models. It should 22 

be noted that the exponential function has been adopted to introduce time dependency in the 23 

scale parameter to ensure the positivity of scale parameter. There are other functions, which 24 

result in positive scale parameter; however exponential function was used in this study, since 25 

it was recommended by some studies (e.g. Furrer et al., 2010) in literature. NSGPD1 and 26 

NSGPD2 were applied to POT data of all storm durations in this study over the two periods 27 

(1925-1966 and 1967-2010). 28 

The maximum likelihood method was used for parameter estimation of NSGPD models 29 

because of its suitability for incorporating non-stationary features into the distribution 30 
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parameters as covariates (Sugahara et al., 2009). Shang et al. (2011) explain the details of the 1 

maximum likelihood method.  2 

Superiority of the NSGPD models over the stationary GPD models were investigated through 3 

the deviance statistic test. Let M0 and M1 be the stationary and the non-stationary models, 4 

respectively such that M0 ⊂ M1. The deviance test is used to compare the superiority of M1 5 

over M0 using the log-likelihood difference (D) using the following equation (Coles, 2001, El 6 

Adlouni et al., 2007):   7 

 )}()(2 0011 MlMlD               (3) 8 

where l1 (M1) and l0 (M0) denote the maximised log–likelihood under models M1 and M0 9 

respectively. The test of the validity of one model against the other (in this case M1 against 10 

M0) is based on the probability distribution of D, which is approximated by chi-square 11 

distribution. For instance, consider comparing NSGPD1 model with three parameters (i.e. β0, 12 

β1, γ) denoted by M1 in Eq. (3) with stationary GPD model with two constant parameters (i.e. 13 

σ and γ) denoted by M0 in Eq. (3). Under the null hypothesis, the statistic D is approximately 14 

chi square distributed with 1 degree of freedom (degree of freedom is decided based on 15 

difference between the number of parameters of M0 and M1 models).  Stationary GPD model 16 

(M0) should be rejected in favor of NSGPD1 (M1) if D > cα, where cα is the (1 − α) quantile of 17 

a chi square distribution at the significance level of α. Large values of D suggest that model 18 

M1 explains substantially more of the variation in the data than M0. More detailed information 19 

about deviance statistic test can be found in Coles (2001), Tramblay et al. (2013) and 20 

Beguer´ıa et al. (2011). Superiority of M1 is an evidence of non-stationarity of extreme 21 

rainfall data. In this case, NSGPD models should be used to generate rainfall intensity 22 

estimates.   23 

 24 

4 Results and Discussion           25 

4.1 Threshold Selection 26 

The thresholds for all storm durations were selected using the mean residual plots based on 27 

the linearity of data in these plots as explained in Section 3.1. A range of different threshold 28 

values in the linear domain of the mean residual plots were tested to select the final threshold 29 

so that the number of extreme rainfall events per year is in the range of 1.65 to 3.0 events 30 
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(Cunnane, 1973; Jakob et al., 2011a). For example, thresholds of 3.6 mm and 9.8 mm were 1 

selected for 6 minute and 1 hour storm durations respectively using the mean residual plots as 2 

shown in Figure 2. Selected threshold values for all other storm durations are listed in Table 3 

1. 4 

 5 

Figure 2. Mean residual plots for 6 minute and 1 hour storm durations 6 

 7 

Table 1. Threshold values obtained by using mean residual plot 8 

Storm Duration Threshold (mm) 

6 min 3.6 

30 min 8.0 

1 hr 9.8 

2 hr 15 

3 hr 17 

6 hr 22 

12 hr 25 

24 hr 30 

48 hr 35 

72 hr 40 

 9 
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4.2 Trend and Non-stationarity Tests Results 1 

Table 2 summarizes the results of the trend tests. The trend tests (i.e. MK and SR) showed 2 

that extreme rainfall data of 30 minute, 3 and 48 hours exhibited statistically significant 3 

increasing trends at different significance levels. The 30 minute data set showed the most 4 

significant data trend according to both MK and SR tests. It should be noted that only SR test 5 

indicated statistically significant trend for 48 hour data set. Data sets of all other storm 6 

durations except 6 hour also showed increasing trends, however these trends are not 7 

statistically significant even at 0.1 significance level.  8 

 9 

Table 2. Trend analysis results 10 

  Test Statistic Result 

Storm Durations 

Mann-Kendal 

(MK) 

Spearman's Rho 

(SR) 

 6 min 0.953 0.99 NS 

30 min 2.138 (0.05) 2.052 (0.05) S (0.05) 

1 hr 1.1 1.105 NS 

2 hr 1.387 1.333 NS 

3 hr 1.674 (0.1) 1.689 (0.1) S(0.1) 

6 hr -0.058 -0.084 NS 

12 hr 0.05 0.046 NS 

24 hr 0.587 0.67 NS 

48 hr 1.58 1.647 (0.01) S(0.1)[SR] 

72 hr 0.133 0.16 NS 

Critical values at 0.1, 0.05, and 0.01 significance levels are 1.645, 1.96, and 2.576 respectively.  11 

S = statistically significant trends at different significance levels shown within brackets. 12 

NS = statistically insignificant trends even at 0.1 significance level. 13 

Trends in number of POT events per year were also investigated in this study. It was found 14 

that there is an increasing trend in the number of POT events for storm durations less than or 15 

equal to 2 hours, whereas the number of POT events per year for storm durations greater than 16 

2 hours showed decreasing trends.  However, none of these trends were statistically 17 

significant even at 0.1 significance level. Furthermore, the ADF, KPSS and PP non-18 

stationarity tests did not indicate non-stationarity in any of the extreme rainfall data sets. 19 
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4.3 NSGPD Models 1 

Non-stationary models (NSGPD1 and NSGPD2) for all storm durations were developed for 2 

1925-1966 and 1967-2010 time slices. The deviance statistic test showed that there was no 3 

evidence that any of the non-stationary models outperformed their counterpart stationary 4 

models. For example, for the extreme rainfall data set of 3 hour storm duration over period 5 

1967-2010, the maximised log–likelihood of stationary GPD model (M0 in Eq. (3)) is 189.4, 6 

whereas the maximised log–likelihood of NSGPD1 and NSGPD2 (M1 in Eq. (3)) are 189.3 7 

and 189.1 respectively. D, calculated by Eq. (3), is smaller than cα for both non-stationary 8 

cases (NSGPD1 and NSGPD2). Therefore, it can be stated that non-stationary models do not 9 

outperform stationary models for these data sets. This is the case for all other storm durations 10 

(including the durations, in which extreme rainfall data showed statistically significant 11 

increasing trends) in both time periods (i.e. 1925-1966 and 1967-2010). As explained in 12 

Section 4.2, the statistical non-stationarity tests (i.e. ADF, KPSS and PP) also showed that 13 

there was no evidence for non-stationarity of extreme rainfall data sets used in this study. 14 

Therefore, the stationary GPD models were used for the frequency analysis of extreme 15 

rainfall data sets to compare rainfall intensity estimates. 16 

 17 

4.4 Stationary GPD Models 18 

POT data were used in stationary GPD models for two different pairs of periods:  19 

• 1925-1966 and 1967-2010 (to investigate the effects of climate change),  20 

• IPO negative (1947-1976) and positive (1977-1998) phases (to investigate the IPO and 21 

extreme rainfall relationship), 22 

to compute IFD information under stationary conditions.  23 

This section explains the results of stationary GPD models over 1925-1966 and 1967-2010 24 

periods, whereas Section 4.5 shows the results of GPD models developed for the IPO 25 

analysis. 26 

The graphical diagnostic and statistical tests showed that all extreme data sets (for all storm 27 

durations) were successfully fitted with the stationary GPD models. As examples, Figure 3 28 

shows the diagnostic graphs (i.e. probability and quantile plots) of stationary GPD models for 29 

the extreme rainfall data of 6 minute, and 3 and 24 hours storm durations over the 1925-1966 30 
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period. Table 3 indicates the results of the stationary GPD analysis (i.e. rainfall intensity 1 

estimates), whereas Figure 4 illustrates the same information graphically for all storm 2 

durations. 3 

 4 

Figure 3. Goodness of fit for extreme rainfall data of 6 minute, 3 hour and 24 hour over 1925-5 

1966 period  6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 3. Rainfall intensity (mm/hr) estimates derived from stationary GPD models over 1 

periods 1925-1966 and 1967-2010  2 

Durations/Return Period 2 year 5 year 10 year 

  1925-1966 1967-2010 1925-1966 1967-2010 1925-1966 1967-2010 

6 min 47.1 47.3 64.9 66.4 80.7 85.3 

30 min 22.4 25.2 31.5 35.2 40.6 43.2 

1 hr 12.1 12.8 16.4 17.3 20.6 21.2 

2 hr 9.3 9.8 12.3 12.9 15.0 15.5 

3 hr 7.1 7.5 9.2 9.8 10.9 11.7 

6 hr 4.5 4.7 5.8 6.1 6.8 7.3 

12 hr 2.5 2.6 3.4 3.5 4.1 4.2 

24 hr 1.6 1.6 2.2 2.1 2.6 2.5 

48 hr 1.0 0.9 1.4 1.3 1.7 1.6 

72 hr 0.8 0.7 1.0 0.9 1.2 1.1 

 

            

Durations/Return Period 20 year 50 year 100 year 

  1925-1966 1967-2010 1925-1966 1967-2010 1925-1966 1967-2010 

6 min 98.9 109.2 127.1 150.9 152.2 192.2 

30 min 52.2 51.4 72.8 62.8 93.5 71.8 

1 hr 25.9 25.7 35.1 32.4 44.2 38.2 

2 hr 18.1 18.5 23.1 22.8 27.5 26.5 

3 hr 12.9 13.7 15.9 16.6 18.5 19.0 

6 hr 8.0 8.7 9.8 10.7 11.2 12.4 

12 hr 4.8 5.0 6.0 6.1 6.9 7.1 

24 hr 3.1 3.0 3.8 3.6 4.5 4.1 

48 hr 2.1 1.9 2.7 2.3 3.2 2.7 

72 hr 1.5 1.4 2.0 1.8 2.4 2.1 

 3 
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 1 

Figure 4. Rainfall intensity estimates from stationary GPD models  2 

 3 

Primary findings of the stationary GPD analysis are listed below: 4 

- Rainfall intensity estimates of the stationary GPD models over the period 1925-1966 5 

were larger than those estimates of the period 1967-2010 for all storm durations equal or 6 

greater than 24 hours (i.e. 24, 48 and 72 hours) except 24 hour storm duration of 2 year return 7 

period. 8 

- For return periods less than or equal to 10 years, rainfall intensity estimates of sub-9 

daily storm durations for the period of 1967-2010 were larger than those estimates of the 10 

1925-1966 period.  11 



 19 

- For the return periods above 10 year, majority of hourly rainfall intensity estimates 1 

over the period 1967-2010 were larger than those estimates for the period of 1925-1966. 2 

 It is possible to conclude then that urban flash flood (i.e. flooding occurring in less than 6 3 

hours of rain (Hapuarachchi et al., 2011)) producing hourly rainfall intensities have increased 4 

over time (i.e. from 1925-1966 to 1967-2010) with minor exceptions (i.e. 1 hour storm 5 

durations of return periods above 10 years, and 2 hour storm duration of 50 and 100 year 6 

return periods). It should be noted that 90% confidence limits of rainfall intensity estimates 7 

were also calculated, but they are not shown in Figure 4 to remove the clutter in the plots. 8 

 9 

4.5 IPO Analysis 10 

The relationship between extreme rainfall data and IPO was investigated through IFD analysis 11 

for the periods of IPO negative (1947-1976) and positive (1977-1998) phases. Results of the 12 

IPO analysis are shown in Table 4 and Figure 5.  13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 
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Table 4.  Rainfall intensity (mm/hr) estimates derived from IPO Analysis 1 

Durations/ Return 

Periods 

2 year 5 year 10 year 

IPO 

Negative 

Phase 

IPO 

Positive 

Phase 

IPO 

Negative 

Phase 

IPO  

Positive 

Phase 

IPO  

Negative 

Phase 

IPO  

Positive 

Phase 

6 min 44.2 49.3 58.6 65.8 73.0 78.0 

30 min 22.2 25.4 30.2 34.1 38.7 40.3 

1 hr 11.9 12.8 15.7 17.1 19.8 20.5 

2 hr 9.1 9.9 12.1 12.9 15.0 15.1 

3 hr 7.2 7.6 9.5 9.7 11.7 11.3 

6 hr 4.7 4.8 6.1 6.2 7.6 7.3 

12 hr 2.6 2.7 3.5 3.6 4.3 4.2 

24 hr 1.7 1.6 2.2 2.1 2.7 2.4 

48 hr 1.0          0.9 1.4 1.2 1.8 1.5 

72 hr 0.8 0.7 1.0 0.9 1.3 1.0 

Durations/ Return 

Periods 

20 year 50 year 100 year 

IPO 

Negative 

Phase 

IPO  

Positive 

Phase 

IPO 

Negative 

Phase 

IPO  

Positive 

Phase 

IPO 

Negative 

Phase 

IPO  

Positive 

Phase 

6 min 91.3 89.9 123.5 105.3 155.7 116.6 

30 min 50.3 46.3 71.9 53.6 94.9 58.9 

1 hr 25.3 24.0 35.4 28.8 46.0 32.7 

2 hr 18.9 17.2 25.5 20.0 32.0 22.0 

3 hr 14.3 12.9 18.9 14.9 23.2 16.3 

6 hr 9.3 8.3 12.2 9.7 14.9 10.6 

12 hr 5.3 4.8 6.9 5.6 8.4 6.2 

24 hr 3.3 2.7 4.1 3.2 4.8 3.5 

48 hr 2.2 1.7 2.8 2.0 3.3 2.2 

72 hr 1.6 1.2 2.1 1.4 2.5 1.6 

 2 
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 1 

Figure 5. Graphical illustration of results of IPO negative and positive phase analysis 2 

 3 

Results of the IPO analysis (Table 4 and Figure 5) can be summarized as follows: 4 

-The rainfall intensities of storm durations equal to or greater than 24 hours (24, 48 5 

and 72 hours) for all return periods during the IPO negative phase were larger than the 6 

corresponding rainfall intensities during the IPO positive phase.  7 

-The rainfall intensities of all storm durations for the return periods greater than or 8 

equal to 20 years (i.e. 20, 50 and 100 years) during the IPO negative phase exhibited larger 9 
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values relative to those rainfall intensities for the IPO positive phase as can be seen Table 4 1 

and Figure 5 (a). 2 

-Rainfall intensities of storm durations below 3 hours for the return periods less than 3 

or equal to 10 years (i.e. 2, 5 and 10 years) during the IPO negative phase were lower than 4 

those design rainfall intensities for the positive phase. This was also the case for the rainfall 5 

intensity estimates for storm durations between 3 and 12 hours for return periods of 2 and 5 6 

years.   7 

In summary, increases in rainfall intensities were observed during the IPO negative phase for 8 

storms with long durations and high return periods, which are consistent with the literature 9 

(Kiem et al., 2003). In other words, the IPO negative phase can be the driver for higher 10 

rainfall intensities for long durations and high return periods. However, the trends in extreme 11 

rainfall data and differences in rainfall intensities for short storm durations and return periods 12 

cannot be explained with the IPO influence.      13 

In this study, only the relationship of IPO and extreme rainfall was investigated since the 14 

literature indicated IPO as very influential climate mode on extreme rainfall events in 15 

Victoria. However, there is a need to examine relationships between extreme rainfalls and 16 

other climate modes to correctly identify the primary driver for the extreme rainfall trends and 17 

differences in rainfall intensity estimates. Also, it is necessary to conduct similar analysis 18 

using data of other stations to assess the findings of this study. 19 

 20 

4.6 Climate Change and Extreme Rainfalls 21 

Anthropogenic climate change may be the reason for the findings of this study (differences in 22 

rainfall intensity estimates over time and detected trends). Anthropogenic climate change can 23 

impact not only the extreme rainfalls directly, but also the dynamics of key climate modes. 24 

Climate change causes increases in intensity and frequency of extreme rainfalls, since 25 

atmosphere can hold more water vapour in a warmer climate (Chu et al. 2013). Increase in 26 

rainfall extremes is larger than changes in mean rainfall in a warmer climate, because extreme 27 

precipitation relates to increases in moisture content of atmosphere (Kharin and Zwier 2005).     28 

Some studies (e.g. Murphy and Timbal, 2008; CSIRO, 2010) on rainfall changes in south 29 

eastern Australia stated that although there is no clear evidence to attribute rainfall change  30 
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directly to the anthropogenic climate change, it still cannot be ignored. Rainfall changes are 1 

linked at least in part to the climate change in south eastern Australia. Nevertheless, it is very 2 

difficult to attribute extreme rainfall trends and rainfall intensity differences to anthropogenic 3 

climate change due to the limited historical data records and strong effects of natural climate 4 

variability (Westra et al., 2010). Further analysis to investigate the reasons of the extreme 5 

rainfall trends and design rainfall intensity differences is beyond the scope of this paper. 6 

 7 

5 Conclusions 8 

A methodology consisting of, threshold selection, extreme rainfall data (peaks over threshold 9 

data) construction, trend and non-stationarity tests, and stationary and non-stationary 10 

Generalized Pareto Distribution (GPD) models was developed in this paper to investigate the 11 

potential effects of climate change and variability on extreme rainfalls and Intensity-12 

Frequency-Duration (IFD) relationships. The developed methodology was successfully 13 

implemented using extreme rainfall data of a single observation station in Melbourne 14 

(Australia). Same methodology can be adopted for other stations in order to develop larger 15 

spatial scale studies by analysing data of multiple stations. Major findings and conclusions of 16 

this study are as follows:  17 

- Statistically significant extreme rainfall (in mm) trends were detected for storm 18 

durations of 30 minute, 3 and 48 hours, considering the data from 1925 to 2010.  19 

- Statistically insignificant increasing trends in the number of POT events were found  20 

for storm durations less than or equal to 2 hours, whereas statistically insignificant decreasing 21 

trends were detected in the number of POT events per year for storm durations greater than 2 22 

hours. 23 

- Despite to the presence of trends in extreme rainfall data for above storm durations 24 

(i.e. 30 minute, 3 and 48 hours), there was no evidence of non-stationarity according to 25 

statistical non-stationarity tests and non-stationary GPD models. The developed non-26 

stationary GPD models did not show any advantage over the stationary models. 27 

- The stationary GPD models were capable of fitting extreme rainfall data for all storm 28 

durations according to the graphical and statistical tests. 29 

- Urban flash flood producing hourly rainfall intensities have increased between the 30 

time periods 1925-1966 and 1967-2010. 31 
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- Analysis on relationship between the Inter-decadal Pacific Oscillation (IPO) and 1 

extreme rainfalls showed that the IPO can be responsible for higher rainfall intensities for 2 

long durations and high return periods. On the other hand, the IPO cannot be shown as a 3 

driver for the trends in extreme rainfall data and differences in rainfall intensities for short 4 

storm durations and return periods.   5 

 6 

It should be noted that this study used data from a single station to demonstrate the 7 

methodology for future studies. It is not realistic to extrapolate the findings of this study for 8 

larger spatial scales such as even the entire Melbourne metropolitan area without further 9 

analysis using rainfall data from multiple observation stations within the area. It is 10 

recommended applying the methodology developed in this study using data from multiple 11 

stations for larger spatial scales. It is also recommended conducting similar analysis of this 12 

study for future time periods using future rainfall data derived from climate models, since 13 

several studies highlighted very likely increases in intensity and frequency of extreme 14 

rainfalls in future.  15 

 16 
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