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 1 

ABSTRACT 2 

During the last decade the opportunity and usefulness of using remote sensing data in hydrology, 3 

hydrometeorology and geomorphology has become even more evident and clear. Satellite based products 4 

often provide the advantage of observing hydrologic variables in a distributed way, offering a different view 5 

with respect to traditional observations that can help to understand and model the hydrological cycle. 6 

Moreover, remote sensing data are fundamental in scarce data environments. The use of satellite derived 7 

Digital Elevation Model (DEM), which are globally available now at 30 m resolution (e.g. from Shuttle 8 

Radar Topographic Mission, SRTM), have become standard practice in hydrologic model implementation, 9 

but other types of satellite derived data are still underutilized. As a consequence there is the need of 10 

developing and testing techniques that allow exploiting the opportunities given by remote sensing data to 11 

parameterize hydrological model and improving their calibration.  12 

In this work, Meteosat Second Generation Land Surface Temperature (LST) estimates and Surface Soil 13 

Moisture (SSM) available from EUMETSAT H-SAF are used together with streamflow observations to 14 

calibrate the Continuum hydrological model that computes such state variables in a prognostic mode. The 15 

first part of the work aims at proving that satellite observations can be exploited to reduce uncertainties in 16 

parameters calibration by reducing the parameters equifinality that can become an issue in forecast mode. In 17 

the second part four parameter estimation strategies are implemented and tested in a comparative mode: i) a 18 

multi-objective approach that includes both satellite and ground observations which is an attempt to use 19 

different source of data to add constraints to the parameters; ii and iii) two approaches solely based on 20 

remotely sensed data that reproduce the case of scarce data environment where streamflow observation are 21 

not available; iv) a standard calibration based on streamflow observations used as a benchmark for the 22 

others. 23 

Two Italian catchments are used as test-bed to verify the model capability in reproducing long-term (multi-24 

year) simulations. 25 

The results of the analysis evidence that, as a result of the model structure and the nature itself of the 26 

catchment hydrologic processes, some model parameters are only weakly dependent on discharge 27 

observations and prove the usefulness of using data from both ground stations and satellite to add constrains 28 

to the parameters in the calibration process and reducing the number of equifinal solutions. 29 
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1. INTRODUCTION 1 

The estimation of parameters in hydrological models is still a challenge in hydrology. Many works 2 

have been devoted to determining the best calibration strategy (Yapo et al 1998, Madesen, 2000; 3 

Kim et al., 2007; Singh and Bardossy, 2012, Xu et al., 2013) with some trying to evaluate the 4 

uncertainties associated with the parameters estimation process (Beven and Binley, 1992; Vrugt et 5 

al., 2003; Carpenter and Georgakakos, 2006; Zappa et al. 2010). This issue has become even more 6 

complex with the increasing use of continuous and distributed hydrological models. This trend led 7 

to a significant increase of the number of parameters that need calibration. A large number of 8 

parameters allow good performance in the calibration phase, but this can lead to a large number of 9 

equifinal parameter sets (Beven and Binley, 1992) sometimes hampering the forecast ability of the 10 

models.  11 

Traditionally, the calibration of hydrological models requires appropriate series of historical data, 12 

particularly of streamflow data, which are not easily available everywhere in the world; this 13 

condition aggravates the equifinality problem that is higher the lower the observation capacity. 14 

Such issues raised the attention of the scientific community becoming the focus of coordinated 15 

scientific initiatives (e.g. Prediction in Ungauged Basin (PUB), a science initiative of the 16 

International Association of Hydrological Sciences, that was developed in the period 2003-2012). 17 

In a world where the data sharing capacity is increasing, it seems that the problem of data shortage 18 

for hydrologic models calibration is not going to disappear; the level gauge stations can be a limited 19 

number and in some areas are very rare, additionally in some cases the access to river discharge 20 

information have been declining since the 1980s (Vörösmarty et al, 2001). 21 

As a consequence, the use of remote sensing for direct streamflow measurements has received 22 

increased attention lately and, even if promising in some cases, it faces various technological, 23 

physical and scale limits. The more straightforward approaches use statistical relationships between 24 

remotely sensed river widths and in situ measurements (Brakenridge et al, 2005; Pavelsky, 2014) 25 

making them suitable for the extension of existing historical data, but unusable for ungauged sites. 26 

The limits are mainly due to the fact that accurate estimates of stream flow require the availability 27 

of several hydraulic parameters (width, depth, slope, channel morphology), which are difficult to 28 

derive entirely from remote sensing. Simplified models that make use of some of these parameters 29 

introduce uncertainties that limit their applicability; moreover the detection of changes in hydraulic 30 

parameters has to deal with the spatiotemporal resolution of the satellite sensors. These models (see 31 
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Bjerklie et al, 2003 for a comprehensive review) are therefore not suitable for detecting changes in 1 

discharge for medium to small-scale basins (Brakenridge et al. 2012). 2 

It is therefore compulsory to look at other possibilities offered by satellite sensors. Nowadays, the 3 

remote sensing of other meteorological, hydrological and ecological variables is more reliable and 4 

widely available at the global scale. Satellite products such as precipitation, Short Wave and Long 5 

Wave radiation, atmospheric profiles, vegetation parameters, Land Surface Temperature (LST), 6 

evapotranspiration (ET), and Digital Elevation Models (DEM) are now operational and widely used 7 

in meteorological and hydrological modelling. 8 

Experiments to understand the accuracy of these products are quite popular (see e.g. Bitew and 9 

Gebremichael, 2011; Brocca et al., 2011a; Crow et al., 2012; Göttsche and Hulley 2012; Yu et al, 10 

2012; Murray et al, 2013; Zhang et al, 2013). This kind of data is by now available for a very high 11 

percentage of the earth’s surface, and covers most of the areas where the density of ground stations 12 

is poor. This leads to a panorama in which estimating the parameters of a hydrological model by 13 

using only satellite information is a real possibility (Silvestro et al., 2013). However, the ability to 14 

calibrate a model using satellite data, even in combination with traditional in-situ data, is still a 15 

challenging topic. Scientific work in this field goes in many directions: Rhoads and Dunayah (2001) 16 

used satellite-derived LST to validate a land surface model, Caparrini and Castelli (2004) and Sini 17 

et al. (2008) assimilated remote sensed measurements into a land-surface model to estimate the 18 

surface turbulent fluxes, Brocca et al. (2011a) analysed different remotely sensed soil humidity 19 

estimations with the perspective of using them in hydrological modeling, White and Lewis (2011) 20 

used satellite imagery to monitor the dynamics of wetlands of the Australian Great Artesian Basin, 21 

Khan et al. (2011) have recently proposed a procedure to calibrate a fully distributed hydrological 22 

model using satellite-derived flood maps.  23 

The objective of this work is to analyse the calibration skill of a distributed continuous hydrologic 24 

model by augmenting the model constraints with satellite-retrieved data. As a first analysis, in the 25 

context of a classical uncertainty analysis (Beven and Binley, 1992; Shen et al. 2012) it is shown 26 

that using satellite data together with ground stations observations can reduce both parameters’ 27 

uncertainty and equifinality. The uncertainty analysis is used here also to define parameters 28 

sensitivity to different types of observation, with the goal of underpinning the importance of having 29 

a plurality of observations that might influence different models parameters in different ways. 30 

After that, three simple calibration methods were applied in order to exploit the advantages of 31 

utilizing multi-sensor observations. The first method lies in the family of the multi-objective 32 

calibration approaches (Efstratiadis and Koutsoyiannis, 2010) and tries to exploit simultaneously 33 



5 

satellite and streamflow data. The second and third methods are two attempts to use only satellite 1 

data without any streamflow measurements, simulating the case of a basin in a scarce data 2 

environment. These last experiments are conceived along the lines of Silvestro et al., (2013), but 3 

with a more comprehensive approach that exploits both LST and SSM estimates from satellites. The 4 

results of the presented methods are then compared with those obtained using a fourth standard 5 

calibration methodology based on streamflow data. 6 

The hydrological model used in the study is Continuum (Silvestro et al., 2013). It is a distributed 7 

continuous model conceived to satisfy the principle of parsimony in parameterization (Perrin et al., 8 

2001; Coccia et al., 2009; Todini et al., 2009; Efstratiadis and Koutsoyiannis, 2010) and to be 9 

balanced between a good representation of physical processes and the simplicity of the 10 

schematizations and implementation.  11 

The article is organized as follows: chapter two provides a short overview of the Continuum 12 

hydrological model, the description of the data set used, the parameters uncertainty analysis and the 13 

proposed calibration methods. The application and the analysis of the results are presented in 14 

chapter three while chapter four contains discussion and conclusions. 15 

 16 

2. MATERIAL AND METHODS 17 

2.1. MODEL OVERVIEW 18 

Continuum is a continuous distributed hydrological model that relies on a morphological approach, 19 

based on drainage network components identification (Giannoni et al., 2000; Giannoni et al., 2005). 20 

These components are derived from DEMs. The DEM resolution drives the model spatial 21 

resolution. Flow in the soil is divided firstly into a sub-surface flow component that is based on a 22 

modified Horton schematization (see Gabellani et al., 2008 for details) and that follows the drainage 23 

network directions; and secondly, into a deep flow component that moves following the hydraulic 24 

head gradient obtained by the water-table modeling. The surface flow schematization distinguishes 25 

between channel and hillslope flows. The overland flow (hillslopes) is described by a linear 26 

reservoir scheme, while for the channel flow (channel) a schematization derived by the kinematic 27 

wave approach (Wooding, 1965; Todini and Ciarapica, 2001) is used. The energy  28 

balance is solved explicitly at cell scale by means of the force-restore equation, that allows having 29 

the LST as a distributed state variable of the model (e.g., Lin, 1980; Dickinson, 1988; Sini et al., 30 

2008). For further details on the model please refer to Silvestro et al. (2013). 31 
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Various authors highlighted the importance of reducing the model parameterization and maintaining 1 

a stable and simple structure (Montaldo et al., 2005; Coccia et al., 2009; Todini, 2009; Brocca et al., 2 

2011b). The design of Continuum follows the philosophy of finding a balance between a detailed 3 

description of the physical processes and a robust and parsimonious parameterization (Figure 1). 4 

Leaf Area Index (LAI) is used to parameterize the storage capacity of the vegetation (Kozak et al., 5 

2007) 6 

Continuum has six parameters that need calibration at basin scale: two for the surface flow, two for 7 

the sub-surface flow and two for deep flow and the water table. In Table 1 the calibration 8 

parameters are listed and linked to the physical processes parameterized. 9 

The hillslope flow motion parameter uh influences the general shape of the hydrograph, while the 10 

impact of uc on the hydrograph shape depends on the length of the channeled paths. These are two 11 

lumped parameters: uc represents the friction coefficient in the channel motion equation, uh 12 

accounts for the general characteristics of the hillslope that influence the motion (e.g. friction, 13 

slope) and is more an empirical parameter (see Figure 1).  14 

The parameter ct is related to the soil field capacity Vfc and identifies the fraction of water volume 15 

in the soil that can be extracted only through evapotranspiration. The relationship is: 16 

maxVcV tfc =
   (1) 

17 

Where Vmax is the maximum capacity of the soil to storage water in the root zone. 18 

The “infiltration capacity” parameter cf controls the velocity of subsurface flow (i.e, it is related to 19 

saturated hydraulic conductivity), defining the asymptotic minimum infiltration rate for saturated 20 

soils f1 with the following equation: 21 

01 fcf f=
   (2) 

22 

Where f0 is the maximum infiltration rate for completely dry soil.
 

23 

The parameters ct and cf regulate the dynamics of saturation at cell scale. Since both f0 and Vmax are 24 

distributed parameters estimated as functions of Curve Number (Gabellani et al., 2008) the pattern 25 

of f1 and Vfc is spatially modulated by the pattern of Curve Number maps (Silvestro et al., 2013) 26 

which are a synthetic representation of the local soil properties. 27 

The parameters VWmax and Rf govern the deep flow and the water table dynamic (Silvestro et al., 28 

2013). VWmax represents the absolute maximum water content of the aquifer on the whole 29 

investigated area, the maximum water content on each cell is estimated basing on VWmax and on the 30 

slope (Saulnier et al., 1997). Rf  is a multiplicative factor in the Darcy equation used to estimate the 31 
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flux per unit area between two contiguous cells and mainly takes care of differentiating the 1 

saturated vertical and horizontal conductivity. These two parameters have a reduced influence 2 

compared to the other four parameters because of the slow temporal dynamic of the water table. 3 

The sensitivity to Rf increases with the total basin drainage area when the effect of the interaction 4 

between the water table and the vadose zone becomes crucial in the formation of the recession 5 

curve between the rainfall events (Silvestro et al., 2013). 6 

Continuum accounts for LST as an explicit state variable and allows for the estimation of the soil 7 

moisture in the root zone as the saturation degree (SD) defined here by the ratio of the actual soil 8 

water content V(t) and the maximum storage capacity Vmax (see Figure 1): 9 

max

)(

V

tV
SD =

   (3)
 10 

 Both of these variables are represented at DEM spatial resolution. 11 

The snow melting process was not considered in Silvestro et al. (2013), since multi-year simulation 12 

are carried out in this work a simple snow melting model has been introduced and described in 13 

Appendix.A. 14 

  15 

2.2. DATASET 16 

The first test case is the Orba basin that is located in the Apennine part of the Piemonte region 17 

(Italy). It has a total area of approximately 800 km
2
 and it is a tributary of the Tanaro River (Figure 18 

2). 19 

The Piemonte and Liguria regions meteorological networks monitor the basin. Data from rain 20 

gauges, thermometers, hygrometers, shortwave radiometers and anemometers are available with a 21 

temporal resolution of 1 hour. Two stage-gauging stations are working with maintained stage-22 

discharge rating curves; the two stations are located quite far one from each other along the river: 23 

Tiglieto in a head catchment (drained area: 75 km
2
) and Casalcermelli near the basin outlet (drained 24 

area: 800 km
2
). 25 

For this application, we extended the data set used in Silvestro et al. (2013). The chosen period 26 

starts from June 1
st 

2006 and ends on December 31
st
 2011. The first five months of 2006 are used as 27 

the model “warm-up” period. 28 

The second test case is the Casentino basin (Figure 2). It is a head catchment of the Arno river basin 29 

located in Tuscany. The watershed is located in the Central Apennines with elevation that ranges 30 



 8 

between 200 to 1600 m a.s.l.. The mountainous part of the basin is mainly covered by forest, while 1 

cultivated fields or zones with low vegetation primarily make-up the flat areas. Urban areas cover a 2 

low percentage of territory. 3 

The two basins are only marginally impacted by snowfall and snow cover during winter. 4 

The meteorological network of the Tuscany Region provides rainfall, air temperature, air humidity, 5 

solar radiation and wind speed and direction with temporal resolution of 1 hour. Only one stage-6 

gauging station (Subbiano) is working with a maintained stage-discharge rating curve; the gauge is 7 

located in the flat area of the basin at about 10 km from the confluence of the Casentino River along 8 

the Arno River (drained area 670 km
2
). The period of simulation ranges from June 1

st 
2005 to 9 

December 31
st
 2011. The first five months of 2005 are used to warm-up the model. 10 

In both cases the period has been chosen based on the data availability and in order to have reliable 11 

stage-discharge curves to estimate the observed streamflow. 12 

The model temporal resolution is set to 1 hour as the micro-meteorological observations, the surface 13 

flow needs a finer time step for computational stability reasons and it was fixed to 30 s. 14 

The remote sensing data employed to implement the model and set additional constraints to the 15 

model parameters are:  16 

i) The Istituto Geografico Militare (IGM) DEM used to extract the basin morphological 17 

parameters (http://www.igmi.org/prodotti/dati_numerici/dati_matrix.php);  18 

ii) Land Surface Analysis Satellite Applications Facility (LSA-SAF) Land Surface 19 

Temperature (LST) product retrieved from Meteosat Second Generation (MSG) 20 

observations (landsaf.meteo.pt);  21 

iii) SM-OBS-1 Surface Soil Moisture retrieved from ASCAT (Wagner et al., 2013) and 22 

distributed within the EUMETSAT Satellite Application Facility on Support to 23 

Operational Hydrology and Water Management (H-SAF) program used as a benchmark 24 

to be compared with the model output (hsaf.meteoam.it);  25 

iv) LSA-SAF Leaf Area Index (LAI) to parameterize the vegetation cover.  26 

The DEM resolution is 0.0011 deg (about 100 m). The model spatial resolution is set equal to the 27 

DEM resolution. LST estimations are provided by LSA SAF of EUMETSAT (EUMETSAT, 2009). 28 

LST data are available every fifteen minutes with a spatial resolution of approximately 0.04 deg 29 

(about 4.5 km) since 2009. In order to compare model and satellite data, the approach followed by 30 

Silvestro et al. (2013) has been adopted. It allows projecting LST obtained from the model to the 31 

same geometry of the satellite observations. In order to carry out comparison at basin scale the 32 

mean of the pixel values has been used: 33 
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∑ =
=

N

i iLST
N

LST
1

1

   (4) 
1 

Where N is the number of cells of the spatial grid, and LSTi the LST of i-th cell. The comparison is 
2 

carried out at those instants where both model and satellite data are available (1 hour resolution) 
3 

and if at least 50% of satellite pixels that cover the basin have reliable data (e.g. in case of bad 
4 

weather no-data values can be found in satellite product).
 5 

The H-SAF SM-OBS-1 product consists of European maps of large scale Surface Soil Moisture 6 

(SSM) retrieved from Advanced Scatterometer (ASCAT), the active microwave sensor, which flies 7 

on-board two polar-orbiting Meteorological Operational (METOP) satellites. This product gives 8 

soil moisture estimates across different test sites in Europe, Americas and Africa (Brocca et al., 9 

2010; Albergel et al., 2012). EUMETSAT makes the product available, from June 3, 2009, in near 10 

real-time with a spatial resolution of approximately 25 km and revisit time of twice a day. 11 

The SSM have been re-sampled to the model resolution using the nearest neighbour method. SM-12 

OBS-1 (H07) data with quality flag, provided with the product, greater than 15 were discarded. 13 

Since the product is referred to the first centimetres of soil, the Soil Water Index (SWI) method, 14 

developed by Wagner et al. (1999), was applied to SSM satellite data to obtain an estimate of the 15 

saturation degree in the root zone. This filter allows relating the surface soil moisture estimates to 16 

the profile soil moisture content. It relies on the assumption that the variation in time of the average 17 

value of the soil moisture profile is linearly related to the difference between the surface and the 18 

profile values. In this study a simple recursive formulation of the method was used (Stroud, 1999; 19 

Albergel et al., 2008) and the characteristic time length T, which represents the time scale of soil 20 

moisture variation (Wagner et al., 1999), was considered equal to 10 days. Since in situ soil 21 

moisture measurements are not available and the soil properties are not known quantitatively with 22 

high detail, the parameter T has been set to a priori value that has been estimated, as order of 23 

magnitude, using the definition of T of Wagner et al. (1999) and used also in Parajka et al. (2006) 24 

based on the mean soil characteristics of the considered catchments as described in the model (the 25 

average potential soil moisture capacity of the considered basins is around 150-170 mm, assuming a 26 

porosity of 0.3, a pseudo diffusivity of 10 days would then translate into a wetting front celerity 27 

around 50 mm per day that is a reasonable value for these soils). The SWI has been then rescaled to 28 

model climatology using a min-max correction technique (Brocca et al., 2013). After the rescaling 29 

the mean SWI at basin scale has been computed as a simple average of the values of pixels that 30 

cover the basin and used for comparison with model saturation degree SD. The comparison is 31 

carried out at those instants where both model and satellite data are available (twice a day) and if at 32 
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least 50% of satellite pixels that cover the basin have reliable data (quality flag greater than 15) LAI 1 

maps were produced with temporal update of fifteen days as averaged values of daily LSA-SAF 2 

maps at spatial resolution of 0.04 deg. (EUMETSAT, 2008) and gridded with nearest neighbour 3 

method on model resolution. 4 

2.3. STATISTICS AND SCORES 5 

A series of statistics and scores are used in the following sections to carry out the uncertainty 6 

analysis, the calibration and the validation of the Continuum model. They are presented and 7 

described in this section. A different subsection is used for each of the three considered observable 8 

variables: streamflow, LST and SWI. 9 

2.3.1. Streamflow 10 

The Nash Sutcilffe (NS) coefficient (Nash and Sutcilffe, 1970) was chosen as main likelihood 11 

function since it is one of the most widely used measures to evaluate model performances in 12 

hydrology: 13 

( )

( )∑
= −

−
−=

max

1
2

2
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)()(
1

t

t
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om

QtQ

tQtQ
NS

  (5)

 14 

Where Qm(t) and Qo(t) are the modeled and observed streamflows at time t. oQ
 is the mean 15 

observed streamflow. 16 

Five other scores were evaluated to assess the model performance (Madsen et al., 2000; Batholomes 17 

and Todini, 2005). 18 

 Chiew McMahon (CM) coefficient (Chiew and McMahon, 1994): 19 

( )
( )∑

= −
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     (6)

 20 

 Root Mean Square Error (RMSE): 21 
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=
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t
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    (7)

 22 
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 Correlation coefficient (CORR): 1 
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2 

mQ

 is the mean modeled streamflow.

 3 

Relative Error (Rel. Err.): 4 

∑
=
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     (9) 

5 

Peak Flow Relative Error (PFRE): 6 

∑
=

−
=

Npeaks

tp po
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tpQ

tpQtpQ

Npeaks
PFRE

1 )(

)()(1

    (10)

 7 

Where Qpm(tp) and Qpo(tp) are the modeled and observed peak flows. The peak flows are selected 8 

considering the values larger of a fixed threshold Qth.  9 

NS, CM and CORR indicate good matching between model and observations when they are next to 10 

1, while RMSE, Rel.Err. and PFRE when they tend to 0. 11 

2.3.2. LST 12 

The Bias between modelled and satellite derived LST was considered as a skill score: 13 

∑
=

−=
max

1

)()(
max

1 t

t

sm tLSTtLST
t

BIAS

  (11) 

14 

Where 
)(tLSTm  and 

)(tLSTs

 are the modelled and satellite LST averaged at basin scale at the time 15 

t. 16 

We used the BIAS in order to check the capability of the model to reproduce the mean LST on the 17 

selected period, more than it would for the overall shape of the time series. 18 
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2.3.3. SWI 1 

As for the hydrograph, we considered NS as a score to evaluate the performances of the model in 2 

reproducing the SWI derived by the satellite observations. In this case, considering SD and SWI 3 

directly comparable (SD≡SWI) NS is defined as: 4 

( )
( )∑

= −

−
−=

max

1
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)()(
1

t

t
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SWItSWI

tSWItSWI
NS

  (12)

 5 

SWI�(t)����������� and 	
��(
)�����������are the modeled

 

and satellite SWI averaged at basin scale at the time t.

 

6 

	
��������� is the satellite SWI averaged in space and time. 7 

 8 

2.4. EXPERIMENTAL SET-UP 9 

2.4.1. Uncertainty analysis 10 

The issue of model parameter uncertainty and sensitivity has been one of the main themes of 11 

scientific discussions over the last 30 years. Many authors faced the problem following different 12 

approaches (see e.g. Beven and Binley, 1992; Liu et al., 2005; Carpenter and Georgakakos, 2006; 13 

Zappa et al., 2010; Rakovec et al., 2014), but it is widely accepted and recognized that parameter 14 

uncertainty is inevitable and rarely an optimal set of parameters that allows the best performance of 15 

the model in every condition exists; generally, there are multiple sets of parameters able to give 16 

similar results and which are therefore equivalent if the final aim is identified, that is the so-called 17 

equifinality (Savenije, 2001). 18 

In this work, we did not carry out a full predictive uncertainty analysis, but we analysed the 19 

parameter uncertainty based on equifinal realizations obtained by a Monte Carlo experiment; to do 20 

that some concepts of the GLUE method (Beven and Binley, 1992) are used, similarly to what was 21 

done by Zappa et al. (2010) and Shen et al. (2012). Finally, we made reference to the work of Liu et 22 

al. (2005) in order to estimate the probability of parameter couples conditioned to the observations. 23 

The concepts of GLUE approach are applied using objective functions (scores) based on 24 

streamflow, LST and SWI in order to analyse how these variables, that are modeled by Continuum 25 

and measured through ground based or remote measurement systems, are related to the model 26 

parameters. The main objective of the analysis is to study the dependence of each single parameter 27 



13 

from the observed variables in order to pinpoint the importance of the different observations in 1 

determining the parameter set performing best in reproducing the full set of observations. 2 

The uncertainty analysis has been done in the Orba basin by considering the four most sensitive 3 

parameters of the model as in Liu et al. (2005) (ct, cf, uc, uh, for Continuum, see Silvestro et al., 4 

2013, for details).  5 

Firstly the analysis based on streamflow is done using NS as likelihood function (equation 5). The 6 

sampling space of the four parameters was defined by combining the literature (Beven and Binley, 7 

1991; Liu et al., 2005; Zappa et al., 2010, Shen et al., 2012) with the results of the preliminary 8 

sensitivity analysis done by Silvestro et al. (2013) and considerations on the role and physical 9 

meaning of the parameters themselves. In Table 2 the range of variability of the parameters is 10 

reported. 11 

The other two parameters were set based on physically reasonable values (due to the morphology 12 

and the soil type of the basins) assuming that there is no additional information about them. Vwmax 13 

is set equal to 2000 mm, and Rf is set equal to 1, which indicates a weak anisotropy between 14 

vertical and horizontal saturated conductivity. These two parameters, which represent deep soil 15 

processes, are only weakly related to the processes that influence LST and SWI observations and 16 

hence, they are unlikely to be influenced by the chosen calibration strategy. 17 

The analysis was done by simulating the four parameters ct, cf, uc, uh, and generating a set of 3000 18 

streamflow simulations for the sub-period 16/8/2006 to 30/9/2006. The parameters have been 19 

extracted from a multi-uniform distribution bound in the domain of the parameters. The chosen sub-20 

period includes various streamflow regimes. 21 

As a further method to deepen the parameter uncertainty assessment the original data were 22 

transformed into a Gaussian space and ranked in increasing order once standardized (see Liu et al., 23 

2005, for details).  Observed and modelled data are then related as follows: 24 

ξηη += so    (13)
 25 

Where ηo and ηs are the normalized vectors of observed and modelled streamflow with 0 mean and 26 

unit variance, ξ is the error vector. The Likelihood function Lj for the j-th parameter set after Imax 27 

simulation steps can be expressed as (Xu et al., 2013): 28 

( )∑
=

⋅−=
ax

i

jijL
Im

1

2

,
2

1
exp( ξ

  (14)

 29 



 14 

This function, when properly scaled, can be considered as the posterior parameter probability 1 

density. 2 

Similarly to what has been done with streamflow data, by comparing modeled and satellite derived 3 

LST and SWI (mean at basin scale) it is possible to carry out the uncertainty analysis to understand 4 

how these two variables are related to the model parameters. 5 

In the case of LST the considered analysis period is August-September, 2009. The BIAS between 6 

modelled and satellite derived LST was considered as a skill score. 7 

The procedure was then applied to the ASCAT SSM data after their transformation in SWI (Wagner 8 

et al., 1999). The considered period is August-October 2011. The model saturation degree SD and 9 

the satellite SWI maps have been averaged at basin scale and the resulting time series have been 10 

used to compute the NS that, as for the hydrograph, has been considered as a score to evaluate the 11 

performances of the model in reproducing the SWI derived by the satellite observations. 12 

2.4.2. Parameters estimation methodologies 13 

To investigate the different ability of traditional streamflow-based and satellite-based calibration 14 

methods in identifying soil parameters is one of the objectives of this study. For this purpose, three 15 

satellite-driven calibration methodologies have been designed and benchmarked to a standard 16 

sreamflow-based one for the detection of the most sensitive and impacting parameters of the model 17 

(uc, uh, ct, cf).  18 

2.4.2.1 Calibration based on streamflow observations (S.N.): the benchmark 19 

A methodology based on the maximization of the Nash Sutcliffe coefficient between observed and 20 

modeled streamflow time series has been considered as a benchmark in order to compare the 21 

methods described in sections 2.4.2.2 and 2.4.2.3 with a more standard approach; hereafter we will 22 

call this method S.N. 23 

2.4.2.2 Multi objective calibration (M.O.) 24 

The M.O. approach has been designed in order to exploit the use of all the information available for 25 

the calibration process that is generally represented by different observed variables. The method is 26 

based on the set up of a multiple objective function such that: 27 

{ })(),...(),( 21 θθθ nFFFMin  with Θ∈θ   (15) 28 
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θ is restricted to the feasible parameter space Θ (Madsen, 2000; Kim et al., 2007; Efstratiadis and 1 

Koutsoyiannis, 2010).  2 

This calibration approach is based, in our case, on the comparisons of (ground or satellite) observed 3 

vs simulated streamflow, LST and SWI.  4 

The multi-objective function is designed through the following single objective function: 5 
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Where Q is the streamflow, LST the mean Land Surface Temperature at basin scale, SWI and SD 10 

are the mean of Soil Water Index and Saturation Degree at basin scale; subscripts m, o and s 11 

indicate model, gauge observations and satellite estimation respectively, t is the time, and QT is a 12 

discharge threshold. Different periods for LST, SWI and Q could be considered in order to choose 13 

the most suitable time window in terms of availability of data and good representativeness of the 14 

variable dynamic.  15 

Following Madsen (2000), the n (where n=4) contributors Fi have been combined in the following 16 

way: 17 

( ) ( )[ ] 5.022

11 ... nn AFAFFadj +++=
   (20)

 18 

Where the transformation factor Ai is calculated as: 19 

min,min, ),...2,1;( iji FnjFMAXA −==
  (21)

 20 

Fadj (equation 20) consists of four terms and Ai,..An have the role of balancing the weights of the 21 

different objectives that can have, has in the presented application, different ranges and units.  22 

The term F1 depends on the streamflow and it is the complement to 1 of the Nash Sutcliffe 23 

coefficient, the term F2 depends on LST and it is the mean of the absolute errors (absolute BIAS) 24 

calculated at each time step, F3 is a relative error estimated on streamflow values larger than a 25 
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threshold and it is useful to reproduce flow peaks, and F4 depends on the soil humidity and it is the 1 

complement to 1 of the Nash Sutcliffe coefficient. The different terms have also been chosen to be 2 

consistent with the results shown in the uncertainty analysis. All the components tend to 0 when 3 

simulated and observed variables coincide, so that the calibration process consists in the 4 

minimization of the function Fadj. The resulting parameters set is representative of a balance point 5 

of multi-dimensional Pareto front due to the different components of the multi-objective function 6 

(Madsen, 2000, 2003). 7 

The introduction of remotely sensed LST and SWI in a multi-objective calibration is a new 8 

approach since objective functions are usually based on parameters related to observed hydrographs  9 

(e.g. total volume as in Yapo et al., 1998; Efstratiadis and Koutsoyiannis, 2010). This approach 10 

follows and improves the investigations carried out by other authors (Crow et al., 2003; Santanello 11 

et al., 2007; Koren et al., 2008; Flores et al., 2010; Montzka et al., 2011; Ridler et al., 2012; Corbari 12 

and Mancini, 2014; Sutanudjaja et al., 2014; Wanders et al., 2014) who attempted to combine, in 13 

the calibration process, remote sensed and in situ observations of variables other than streamflow. 14 

The target here is not applying and testing quite sophisticated or complex algorithms for calibration, 15 

like those described in Yapo et al. (1998) or Vrugt et al. (2003), but rather to assess if the use of 16 

satellite observations leads to an advantage in model calibration with respect to its capability of 17 

simulating discharge values. Here, a very simple brute-force calibration approach was used. 18 

2.4.2.3 Remote sensing data calibration approach (R.S.) 19 

When no streamflow data are available, we can still calibrate the model on satellite data, LST or 20 

SWI (derived by SSM), and on the morphologic characteristics of the basin extracted from the 21 

DEM. This methodology was presented in Silvestro et al. (2013) with respect to LST and it 22 

investigates the possibility of calibrating a sub-set of model parameters in an ungauged basin. Since 23 

it can be applied using LST or SWI we have two calibration methods to be tested. 24 

The morphologic characteristics mainly influence the surface flow while LST and SWI are more 25 

related to subsurface flow.  26 

The estimation of the overland and channel flow parameters is carried out by using 27 

geomorphological information derived from the DEM. The methodology is described in Silvestro et 28 

al. (2013), and we synthetically report its description in the following steps and in Figure 3: 29 

Step 1. Identify a formulation to estimate the typical lag time (tlo: temporal distance between the 30 

centre of mass of the hydrograph and the centre of mass of the mean hyetograph) of a basin based 31 

on its main morphologic characteristics. The soil was considered to be completely impermeable so 32 

that the subsurface and deep flow parameters (ct, cf, Rf and Vwmax) therefore become irrelevant. 33 



Step 2. Identify two sections along the streamline of the basin, one at the head of the basin and the 1 

other downstream. Estimate the lag2 

Step 3. Generate a set of synthetic events with constant intensity in space and in time having 3 

duration equal to the typical response time of the basin closed at 4 

Table 3). 5 

Step 4. Set a first estimate for the value of u6 

upstream section, using the objective function to minimize:7 

   (22)8 

Where tlo is the tl derived by the ge9 

obtained from the model simulations. Calculate the average of the u10 

Step 5. Fix uh and calibrate uc as in Steps 3 and 4, referring 11 

Step 6. Iterate the process until it converges.12 

According to Silvestro et al. (2013), it is possible to separate the calibration of the two surface flow 13 

parameters. In the case of head section with reduced paths in channelized network, the influence of 14 

uc is scarce; as a consequence, an average value of u15 

only for uh. The value of uc is then calibrated16 

longer channelized network. This procedure is iterated as shown in Figure 17 

are sufficient for a good convergence of the process.18 

Once the surface flow parameters are estimated, the subsurface soil parameters can be evaluated 19 

optimizing a proper score between satellite derived and modelled LST (Silvestro et 20 

SWI. In this case we considered the BIAS and Nash21 

LST for SWI respectively. 22 

2.4.3. Calibration settings 23 

In both test cases a calibration period has been chosen for each variable (Streamflow, LST, SWI). 24 

Using a same period for all the variables is not always the best option, in fact they describe 25 

components of the hydrological cycle that need to be sampled in26 

in certain cases data are available on different periods that not always overlap. Furthermore it is 27 

interesting to understand what kind of results can be achieved reducing the length of calibration 28 

periods but augmenting the number of observed variables. Alternatively, in the case data are 29 

17 

Step 2. Identify two sections along the streamline of the basin, one at the head of the basin and the 

other downstream. Estimate the lag-time, tlo based on the DEM and geographical informatio

Step 3. Generate a set of synthetic events with constant intensity in space and in time having 

duration equal to the typical response time of the basin closed at the above mentioned

Step 4. Set a first estimate for the value of uc and calibrate uh for each value of P

upstream section, using the objective function to minimize: 

) 

derived by the geomorphologic characteristics of the basin while t

obtained from the model simulations. Calculate the average of the uh values. 

as in Steps 3 and 4, referring this time to the downstream section.
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According to Silvestro et al. (2013), it is possible to separate the calibration of the two surface flow 

parameters. In the case of head section with reduced paths in channelized network, the influence of 

onsequence, an average value of uc can be set and the calibration can be done 

is then calibrated based on data from a downstream section with a 

longer channelized network. This procedure is iterated as shown in Figure 3. 

are sufficient for a good convergence of the process. 

Once the surface flow parameters are estimated, the subsurface soil parameters can be evaluated 

optimizing a proper score between satellite derived and modelled LST (Silvestro et 

SWI. In this case we considered the BIAS and Nash Sutcliffe coefficient at basin scale as 

In both test cases a calibration period has been chosen for each variable (Streamflow, LST, SWI). 

Using a same period for all the variables is not always the best option, in fact they describe 

components of the hydrological cycle that need to be sampled in different periods of time, moreover 

in certain cases data are available on different periods that not always overlap. Furthermore it is 

interesting to understand what kind of results can be achieved reducing the length of calibration 

g the number of observed variables. Alternatively, in the case data are 
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Step 3. Generate a set of synthetic events with constant intensity in space and in time having 

above mentioned sections (See 
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to the downstream section. 
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parameters. In the case of head section with reduced paths in channelized network, the influence of 

can be set and the calibration can be done 

based on data from a downstream section with a 

. Usually 3-4 iterations 

Once the surface flow parameters are estimated, the subsurface soil parameters can be evaluated 

optimizing a proper score between satellite derived and modelled LST (Silvestro et al., 2013) or 

at basin scale as scores for 

In both test cases a calibration period has been chosen for each variable (Streamflow, LST, SWI). 

Using a same period for all the variables is not always the best option, in fact they describe 

different periods of time, moreover 

in certain cases data are available on different periods that not always overlap. Furthermore it is 

interesting to understand what kind of results can be achieved reducing the length of calibration 

g the number of observed variables. Alternatively, in the case data are 
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available, one could work on longer periods of time that ensure to catch the seasonality of the 1 

hydrological processes but with the disadvantage of lengthening the calculation time. 2 

The calibration strategies that have been compared are four: 3 

• The standard approach S.N. described in section 2.4.2.1.  4 

• The M.O. strategy described in section 2.4.2.2 (in this case the calibration periods of the 5 

different observations are merged) 6 

• The R.S. approach described in section 2.4.2.3 using as comparison data the satellite LST. 7 

Hereafter we will call this strategy R.S. (LST) 8 

• The R.S. approach described in section 2.4.2.3 using as comparison data SWI estimation 9 

derived from satellite SSM. Hereafter we will call this strategy R.S. (SWI) 10 

The periods used for calibration are chosen in order to balance the following characteristics: 11 

• have the presence of different streamflow regimes and soil moisture conditions  12 

• presence of extreme conditions: e.g. flood and drought periods  13 

• presence of reliable data, especially for SWI and LST comparison 14 

• having periods’ length manageable in terms of computational time 15 

In the case of Orba basin the calibration was carried out considering the period July – October, 16 

2009 for LST comparison, July – November, 2011 for SWI comparison and August – October, 17 

2006 for streamflow comparison (in this latter period, two intense events preceded by periods of 18 

droughts occurred; as a result, the model is forced to work under extreme conditions). The 19 

streamflow threshold used in the third component of the M.O. function is QT = 200 m
3
/s. Validation 20 

of multi-annual simulations were carried out using the parameters calibrated with the proposed 21 

methodologies. The validation period is from January 1
st
,
 
2006 to December 31

th
, 2011; the first 22 

five months were used for the model warm up.  23 

In the case of Casentino basin the calibration was carried out considering the July – October, 2009 24 

for LST comparison, July – November, 2011 for SWI comparison and September – December, 25 

2005 for streamflow comparison. The periods were chosen based on the same constraints presented 26 

for the Orba case study (see previous paragraph). The streamflow threshold used in the third 27 

component of the M.O. function was QT = 200 m
3
/s. The validation period is from January 1

st
,
 
2005 28 

to December 31
th

, 2011; the first five months were used for the model warm up. 29 

Table 4 summarizes the calibration periods for the two test cases. 30 

 31 
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3. RESULTS 1 

3.1. UNCERTAINTY ANALYSIS 2 

Each score based on streamflow data, and presented in section 2.3.1, can be influenced differently 3 

by different flow regimes and hydrograph characteristics, therefore for each simulation the NS was 4 

plotted against the other scores (Zappa et. al, 2010); the results are reported in Figure 4 and the 5 

graphs show that in all cases there are sets of behavioral parameters (Beven and Binley, 1992) that 6 

give similarly good values of the scores, indicating good simulation of the observed streamflow 7 

series.  8 

In Figure 5, the dotty plots of the four parameters are reported. Each graph shows the NS value as a 9 

function of the parameter values. The variability of NS for a single parameter is quite high. In the 10 

case of the two surface parameters uc and uh (upper subplots in the figure) a maximum for NS can 11 

be identified, while for ct and cf the behavior of NS is quite homogeneous for all the values in the 12 

physically acceptable range. This indicates that uc and uh are closely linked to the streamflow 13 

simulation in the model regardless of the other parameters value, while the impact of cf and ct in the 14 

discharge follows more complex paths, and it is hard to identify such parameters by matching the 15 

streamflow time series alone. For values of uc greater than 30÷35 m
0.5

s
-1

 and values of uh greater 16 

than 7÷9 s
-1

 the values of the NS coefficient seem to be uniformly distributed over a large range, 17 

this indicates that different combinations of the two parameters can lead to very different 18 

performances. For lower values of uc and uh the NS coefficient converges to high values 19 

highlighting a minor variability of the score and general better performances. 20 

Simulations with NS lower than a fixed threshold (NS=0.4) are considered “non-behavioural” 21 

according to Shen et al., (2012). By sorting the discharge time series according to NS values it is 22 

possible to evaluate the percentiles at each time step and show the uncertainty in terms of 23 

confidence intervals. In Figure 6, the 10% and 90% confidence limits are reported for two time 24 

windows across the main streamflow events, which occurred in the considered period. The results 25 

show that the observed streamflow lays in the 90% limit, therefore a parameter configuration that 26 

allows reproducing the flow observations exists at any time. Most of the observed hydrographs, and 27 

specifically the peak flow, lay in the 10% limits. Part of the receding curve is not included showing 28 

some limited ability of the model in the representation of the processes related to the drainage of the 29 

soil and aquifers. 30 

The results of the analysis done using the Likelihood function represented by equation 14 are 31 

presented in Figures 7 and 8 where the probability density is plotted considering two parameters at 32 
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a time. In this case, a more evident concentration of the Likelihood function appears when 1 

compared to the dotty plots representation of the NS score presented in Figure 5. This is again valid, 2 

especially if the case of parameters uc versus uh is considered (Figure 7). Anyway various relative 3 

maximums of the Likelihood function are present.  4 

The uncertainty analysis using skill scores based on streamflow provides evidence of the presence 5 

of equifinal sets of model parameters, this behaviour can be found in other continuous and 6 

distributed models; nevertheless, there is a reduced number of parameter sets that generate 7 

evidently better performances among all the possible configurations randomly generated. This 8 

raises the necessity of finding additional constraints to improve the estimation of the parameters. 9 

The focus was then placed on two meteo-hydrological variables whose observations are now widely 10 

available from remote sensing techniques: LST and SWI. 11 

By comparing modelled and satellite derived LST (mean at basin scale) it is possible to build dotty-12 

plot representations similar to those presented in Figure 5 but using the BIAS score (equation 11). 13 

Figure 9 shows that it is almost impossible to find a well-defined or unique set of surface 14 

parameters that minimize BIAS on LST. Same considerations can be done for cf. The ct shows an 15 

evident trend: this is reasonable since this parameter strongly influences the time of permanence of 16 

water in the soil and the LST diurnal dynamics (Caparrini et al., 2004; Sini et al., 2008; Silvestro et 17 

al., 2013). 18 

Finally the time series obtained by averaging at basin scale the model saturation degree SD and the 19 

satellite SWI maps have been used to build a dotty-plot graph using NS described by equation 12 as 20 

score (Figure 10). The maximum of NS lies in the range 0.45-0.55 of the parameter ct; and a weak, 21 

but quite evident independence of cf arises with optimal values around 0.015-0.025 (close to the 22 

lower limit of the parameter range). In both cases the NS values are in a quite narrow range in 23 

correspondence of the aforementioned parameters range. 24 

The parameters values individuated by the LST and SWI analysis are consistent with some of the 25 

best equifinal parameters combinations on the basis of the streamflow analysis. 26 

3.2. CALIBRATION AND VALIDATION ON MULTI-YEARLY SIMULATIONS 27 

The results of the uncertainty analysis presented in section 3.1 show that it is possible to use ground 28 

and remote sensing observations in order to reduce equifinality of the parameters defining the 29 
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hydrological model. The analysis evidences that is possible to identify relatively narrow ranges of 1 

parameters’ values that optimize the scores based on different observations, each parameter being 2 

mainly linked to one or more observed variables and less to others. The uncertainty analysis also 3 

highlights that streamflow based calibration offers very limited capability to detect soil parameters and 4 

that satellite based observations deliver a complementary capability in this respect. To exploit this 5 

opportunity the three parameters estimation methodologies presented in section 2.4.2 that use satellite 6 

data have been tested and compared with the more standard calibration method based on streamflow 7 

data described as well in Section 2.4.2. 8 

3.2.1. Orba basin 9 

The sets of parameters obtained by the four calibration strategies are reported in Table 5. 10 

The surface flow parameters obtained with the R.S. and M.O. calibration methodologies are similar, 11 

while the S.N. method produces slightly lower uc and higher uh values. In the case of sub-surface 12 

flow, the values are a little bit different for the three considered cases probably because they are 13 

more sensitive to the different adopted approaches (Efstratiadis and Koutsoyiannis, 2010). 14 

In the case of R.S. (SWI) the calibrated ct and cf values confirm the results of section 3.1, even if 15 

the dotty plot in Figure 10 does not show a really strong independence of ct and cf from the other 16 

parameters, but more a range of the two parameters that shows good simulations of SWI. 17 

In the case of R.S. (LST) results are different in respect to the results of section 3.1 (Figure 9). The 18 

ct optimal parameter has a different value respect to the optimal range found in uncertainty analysis; 19 

this is probably related to the fact that the simulations show a complex inter-dependency between 20 

the parameter ct and the parameter cf both closely related to LST. This ends up increasing the 21 

equifinal parameter sets when only LST is used, on the other hand ct and cf influence in a complex 22 

way the different terms of the multi objective function during the calibration process driving to the 23 

direction of a reduction of equifinality. When using the R.S (LST) strategy the benefit of exploiting 24 

LST data seems more related to opportunity of doing a calibration in case of lack of streamflow 25 

data than in reducing equifinality as already noted in Silvestro et al. (2013).  26 

Figure 11 reports values of the Nash Sutcliffe coefficient (that depends only on the streamflow) 27 

versus values of the objective function of the M.O. approach. The parameter values that optimize 28 

the single score (S.N.) are not the same that optimize the M.O. function. 29 
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M.O. approach appears to be a good way to reduce equifinalty. Looking at the dotty plot 1 

representations in section 3.1 built with streamflow, LST and SWI data, it is evident that even when 2 

graphs show an independence of a parameter from the others, this independence is not very 3 

pronounced. In other cases there is no evident independence. Combining the different objectives 4 

showed in section 2.4.2.2 we should eliminate those solutions (parameters combinations) that give 5 

good values for a certain metric (for example NS on streamflow) but not optimal values for another 6 

one (for example BIAS on LST), thus obtaining an overall better calibration. 7 

Obviously, the choice of the single components of the M.O. function influences the way the various 8 

variables impact on the final results, but the applied methodology proposed by Madsen (2000) helps 9 

to normalize and balance the weights of the components.  10 

In Table 6 the values of the scores for the validation period are reported while Figures 12 and 13 11 

show the comparison between modeled and observed streamflow. The calibration period belongs to 12 

the validation period but it is considerable shorter, we thus decided to estimate the scores on the 13 

entire time window. In each figure some significant sub-periods are reported on small panels while 14 

in the bottom panel the entire simulation period using a logarithmic scale is shown. 15 

The values of the scores are good in all the cases. The Casalcermelli section performances are better 16 

than those for Tiglieto, this may be due to the fact that the first section corresponds to a larger 17 

drainage area and therefore the integration effects smooth the uncertainties of the rainfall fields. The 18 

M.O. approach leads to score values on the streamflow similar to the S.N. method in the validation 19 

period, while the R.S. approach produced poorer performance with respect to the other two 20 

approaches. In the case of PFRE the two best sets of parameters are S.N. and R.S.(SWI). 21 

Notwithstanding, all the parameters sets led to good results in terms of the modelled hydrographs. 22 

The M.O. calibration strategy leads to good performances in reproducing the observed streamflows 23 

despite the fact that these latter measurements are not the only ones used in the calibration process; 24 

there are good performances over long periods of simulation for both of the considered outlet 25 

sections. The peak flows and the time of the peak flows are generally well reproduced as well as the 26 

periods of flow recession and drought between the most relevant events. In general M.O. produces 27 

better results with respect to S.N. when it comes to Correlation and CM, especially in the Tiglieto 28 

section where the uncertainty in rainfall input hampers the S.N. calibration strategy performance 29 

and the advantage of having more sources of observation is more evident. 30 

The series of mean LST at basin scale were compared with LST satellite estimation. A similar 31 

comparison was made between the satellite SWI and modelled SD. Tables 7 and 8 show the values 32 

of the scores for the four considered parameters sets. 33 
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The classic calibration obtained with the maximization of the Nash Sutcliffe coefficient of the 1 

streamflow (S.N.) allows obtaining good performances in terms of streamflow simulation, but it 2 

produces higher values of LST BIAS, while the M.O. approach balances between the different 3 

components. The reproduction of SWI is quite good for both the M.O. and S.N. cases. 4 

The accumulated discharge volume simulated by the model was compared with that derived from 5 

the streamflow observations in order to verify the behavior of the model in terms of total runoff 6 

volumes. The results are reported in Figure 14. The model reproduces with fine approximation the 7 

observed volumes; the error on the entire period is approximately -1.9 %, -1.3 %, -3.0% and -2.5 % 8 

for M.O, R.S.(LST), R.S.(SWI) and S.N., respectively. These errors are probably lower than the 9 

uncertainties introduced by the level-discharge transformation.  10 

 11 

3.2.2. Casentino basin 12 

The sets of parameters obtained by the four calibration strategies are reported in Table 9. 13 

In Table 10 the scores are reported, while Figures 15 and 16 show the comparison between modeled 14 

and observed streamflow. The Figures report on small panels different significant events, while in 15 

the bottom panel the entire simulation period is shown using a logarithmic scale. 16 

Tables 11 and 12 shows the values of the scores for the variables LST and SWI. The values of the 17 

scores are good in all the cases; they are better for M.O. with respect to S.N. for both LST and SWI 18 

variables. 19 

The model delivers good performances over long periods for all the four considered calibration 20 

strategies. As in the case of Orba basin, M.O. finds a compromise parameter set that allow to obtain 21 

a good modeling of all the three variables involved in the objective functions, while the two R.S: 22 

method shows that is possible to obtain a reasonable calibration even in the case of ungauged 23 

basins. The peak flows are better reproduced by the configurations S.N. and R.S.(SWI) which show 24 

PFRE values smaller than 0.1 (10%). 25 

The accumulated volume over the 7 years of simulation is generally well simulated (Figure 17); in 26 

this case, there is a larger difference between the total volumes obtained with the four different 27 

parameter sets, the errors are in fact of the order of 9%, 8.8%, 5.3% and 4% for M.O., R.S.(LST), 28 

R.S.(SWI) and N.S., respectively. The errors on the total volume are a larger than the case of Orba 29 

basin. 30 

 31 
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4. DISCUSSION AND CONCLUSIONS 1 

This paper shows that satellite data are useful in reducing the uncertainty of the parameterization of 2 

a distributed hydrological model and that they can be used in calibration strategy to improve model 3 

representation of hydrological processes.  4 

The uncertainty analysis (Zappa et al, 2010; Shen et al., 2012) of the most sensitive parameters 5 

shows that the equifinality can be reduced using Land Surface Temperature and Soil Water Index 6 

satellite estimations. The independence of surface flow parameters seem to be linked in a clear way 7 

to streamflow, while soil parameters are more directly linked to LST and SWI. 8 

Three methodologies to estimate a subset of the parameters of the model by exploiting remote 9 

sensing were applied. The first methodology consists of the minimization of a multi-objective 10 

function that depends on streamflow, LST and SWI and it is inspired by the work of Sutanudjaja et 11 

al. (2014) and Wanders et al. (2014). The second and third methodologies simulate the case when 12 

no streamflow data are available and the calibration is carried out based only on LST and SWI 13 

retrieved from satellite data and information derived from a DEM. A multi-year period validation 14 

was done in terms of reproduction of both streamflow time series and total volume over the 15 

considered period. A comparison with a fourth standard calibration strategy based on streamflow 16 

data was also carried out. 17 

The skill scores on streamflow show good performances when satellite data are involved in the 18 

calibration process (M.O. and R.S. methods), comparable with values obtained using only the 19 

streamflow in the objective function (S.N. method); even if the observed and simulated streamflow 20 

are in some cases quite different, the general trend is good and there are not large biases in terms of 21 

runoff volumes over long simulation periods. The largest errors seem to be more related to the 22 

uncertainties of the input rainfall fields rather than on the model parameterization. Moreover, the 23 

skill scores on LST and SWI have generally better values in the case of parameter sets derived by 24 

the multi objective approach with respect to those obtained by the streamflow based calibration 25 

strategy. 26 

Both the results of calibration, especially M.O. approach, and uncertainty analysis confirm that a 27 

way to reduce equifinality and to augment the parameter constraints is related to the increase of 28 

model state variables and model output variables that can be derived from both gauge and remote 29 

sensing data. This helps to reduce the possibility of obtaining similar results with a large number of 30 

parameter sets. We can thus state that the presented work explored the direction proposed by 31 

Seibert and McDonnel (2002) and Efstratiadis and KoutsoYiannis (2010), which consisted of 32 



25 

obtaining a better overall performance of the model and ensure consistency across its various 1 

aspects. 2 

In addition, remote sensing data (in this specific case the LST and SSM) offer alternative ways to 3 

carry out parameter calibration in cases where no streamflow data might be available. Satellite 4 

derived data such as DEM, SSM and LST are generally universally available.  5 

The described methodologies can be adapted and applied to other hydrological models that have 6 

characteristics similar to Continuum and that can simulate LST and soil moisture as state variables 7 

in a prognostic way; moreover, these methods can be extended by referring to other remote sensing 8 

data, and in general observed data, that can be reproduced by the model. More the model has the 9 

capability of reproducing observable quantities (e.g. evapotranspiration, soil humidity) more the 10 

constraints that can be imposed to the model can increase. 11 

Finally, the results of the presented work can be read from two different points of view. On one 12 

hand, they highlight the advantages of using distributed hydrological models that allow for the 13 

reproducing with some degree of detail the physical processes, such models in fact, simulate a 14 

larger number of variables which can also be observed. On the other hand, similarly to what 15 

demonstrated by other authors (Corbari and Mancini (2014); Montzka et al., 2011; Sutanudjaja et 16 

al., 2014; Wanders et al., 2014), they highlight the opportunities given by remote sensing and the 17 

necessity of augmenting the number (and the quality) of these data. Remotely sensed data can in 18 

fact be used to parameterize hydrological models and to set up constraints to the parameters in the 19 

calibration process, while offering an alternative way of calibrating these models where standard 20 

observation are lacking. 21 
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6. APPENDIX A 1 

The snow accumulation-melting module was introduced in order to carry out multi2 

in alpine climates. It is a simple 3 

1992) and it is forced by meteorological observations.4 

The equations that describe the snow mass conservation and its melting are the following:5 

   (A16 

where SWE is the snow water equivalent, Sf is the solid precipitation and SM is the snow melting 7 

estimated as: 8 

   9 

Where Rn is the net radiation, ρ10 

temperature. T0 and mc are two parameters that represent the temperature at which the melting 11 

starts and the melting coefficient, respectively. These two parameters are estimated using values 12 

from the literature  (Maidment, 1992), T13 

The mass balance is applied at cell scale for the entire domain of the model, so that a snow cover 14 

map can be generated with the same resolution of the DEM. The energy balance and, as a 15 

consequence, the evapotranspiration are inhibited for those cells where snow cover is present.16 

The applied approach is very simple and neglects the heat exchanges between the soil and the snow 17 

cover, but it is generally sufficient if the goal is the estimation of the snow co18 

runoff, especially when the regime of the basin is not strongly influenced by snow melting. 19 

The precipitation is partitioned into solid or liquid if the air temperature is below or above a fixed 20 

threshold. 21 
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melting module was introduced in order to carry out multi

in alpine climates. It is a simple model that is derived from commonly used equations (Maidment, 

1992) and it is forced by meteorological observations. 

ations that describe the snow mass conservation and its melting are the following:

A1) 

where SWE is the snow water equivalent, Sf is the solid precipitation and SM is the snow melting 

(A2) 

Where Rn is the net radiation, ρw the water density, λf the latent heat of melting, Ta the air 

temperature. T0 and mc are two parameters that represent the temperature at which the melting 

starts and the melting coefficient, respectively. These two parameters are estimated using values 

rature  (Maidment, 1992), T0=0 °C and mc=4 mm/day. 

The mass balance is applied at cell scale for the entire domain of the model, so that a snow cover 

map can be generated with the same resolution of the DEM. The energy balance and, as a 

apotranspiration are inhibited for those cells where snow cover is present.

The applied approach is very simple and neglects the heat exchanges between the soil and the snow 

cover, but it is generally sufficient if the goal is the estimation of the snow co

runoff, especially when the regime of the basin is not strongly influenced by snow melting. 

The precipitation is partitioned into solid or liquid if the air temperature is below or above a fixed 

melting module was introduced in order to carry out multi-year simulations 

used equations (Maidment, 

ations that describe the snow mass conservation and its melting are the following: 

where SWE is the snow water equivalent, Sf is the solid precipitation and SM is the snow melting 

f the latent heat of melting, Ta the air 

temperature. T0 and mc are two parameters that represent the temperature at which the melting 

starts and the melting coefficient, respectively. These two parameters are estimated using values 

The mass balance is applied at cell scale for the entire domain of the model, so that a snow cover 

map can be generated with the same resolution of the DEM. The energy balance and, as a 

apotranspiration are inhibited for those cells where snow cover is present. 

The applied approach is very simple and neglects the heat exchanges between the soil and the snow 

cover, but it is generally sufficient if the goal is the estimation of the snow contribution to the 

runoff, especially when the regime of the basin is not strongly influenced by snow melting.  

The precipitation is partitioned into solid or liquid if the air temperature is below or above a fixed 
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8. TABLES 3 

Parameter Physical process parameterized 

uh [s
-1

] Flow motion in hillslopes 

uc [m
0.5

s
-1

] Friction in channels  

cf [-] Infiltration capacity at saturation 

ct [-] Mean field capacity 

Rf [-] Anisotropy between the vertical and horizontal saturated 

conductivity and soil porosity 

VWmax [mm] Maximum storage capacity of the aquifer  

Table 1:the parameters of Continuum model that need calibration at basin scale are reported 4 

with a brief description. 5 
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Parameter Unit Min Max 

ct [-] 0.15 0.65 

cf [-] 0.015 0.1 

uc  m
0.5

/s  15 55 

uh 1/s 0.0002 0.0015 

Table 2 range of variability of the parameters used in the calibration and uncertainty analysis. 1 
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Parameter Pcum [mm] Reference 

Section 

Area 

[km
2
] 

tlo [hours] Duration [hours] 

uh [s
-1

] 10, 20,…, 60, 70 Tiglieto 75 4.5 4 

uc [m
0.5

s
-1

] 10, 20,…, 60, 70 Casalcermelli 800 11.6 10 

uh [s
-1

] 10, 20,…, 60, 70 Upstream (no 

Gauge) 

58 2.98 4 

uc [m
0.5

s
-1

] 10, 20,…, 60, 70 Subbiano 670 8.4 9 

Table 3: characteristics of the synthetic rainfall events used for the estimation of the two surface 1 

parameters in the R.S. approach. The event length is set depending on the considered basins and 2 

sections. Sections with smaller upstream drainage area are used to estimate uh while sections with 3 

larger area to estimate uc. 4 

  5 
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Basin Q LST SWI 

Orba 08-10/2006 07-10/2009 07-11/2011 

Casentino 09-12/2005 07-10/2009 07-11/2011 

Table 4: summary of the periods considered for the calibration process for each variable. In the case 1 

of M.O. approach the 3 periods are merged. 2 

 3 

 4 

  5 
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Basin Orba 

Parameter S.N. R.S.(LST) R.S.(SWI) M.O. 

uc [m
0.5

/s] 29.0 29.42 29.42 29.92 

uh [1/s] 0.00052 0.000458 0.000458 0.00041 

ct [-] 0.52 0.56 0.58 0.40 

cf [-] 0.020 0.030 0.018 0.020 

Table 5: The Orba basin parameters were calibrated following the different approaches: using the 1 

multi-objective function (M.O.), remote sensing data and morphologic characteristics (R.S.), and 2 

the standard hydrographs comparison (S.N.). The table reports the values obtained by the 4 different 3 

calibration strategies.  4 

  5 
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Basin Section Parameter 

set 

N.S. CM RMSE CORR PFRE 

Orba Casalcermelli M.O.  0.82 0.81 1.67 0.91 -0.162 

R.S.(LST) 0.81 0.83 1.41 0.90 -0.133 

R.S. 

(SWI) 

0.82 0.82 1.35 0.90 -0.063 

S.N. 0.83 0.82 1.31 0.91 -0.095 

Tiglieto M.O. 0.69 0.65 0.80 0.87 -0.251 

R.S. 

(LST) 

0.67 0.62 0.78 0.83 -0.245 

R.S. 

(SWI) 

0.66 0.63 0.76 0.81 -0.143 

S.N. 0.66 0.62 0.70 0.80 -0.213 

Table 6: Orba basin skill scores on hydrographs for the entire validation period (2006 - 2011) and 1 

for the different parameters sets. The scores value is calculated for the two sections with available 2 

streamflow observations. PFRE is calculated with Qth=200 m
3
/s for Casalcermelli section and with 3 

Qth=50 m
3
/s for Tiglieto section 4 
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 40 

Variable Parameter Set BIAS  

LST M.O. 0.89 

R.S. (LST) 0.58 

R.S.(SWI) 0.92 

S.N. 1.02 

Table 7: Orba basin. Values of Bias on LST series obtained with the different parameters sets. The 1 

basin scale mean has been considered. 2 

  3 
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 1 

Variable Parameter Set NS 

SWI M.O. 0.74 

R.S.(LST) 0.56 

R.S.(SWI) 0.80 

S.N. 0.77 

Table 8: Orba basin. Values of NS on SWI series obtained with the different parameters sets. The 2 

basin scale mean has been considered. 3 

  4 
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Basin Casentino 

Parameter S.N. R.S. (LST) R.S. (SWI) M.O. 

uc [m
0.5

/s] 28.51 43.02 43.02 47.43 

uh [1/s] 0.00052 0.00047 0.00047 0.00043 

ct [-] 0.44 0.49 0.52 0.51 

cf [-] 0.018 0.032 0.018 0.029 

Table 9: The Casentino basin parameters were calibrated following the different approaches: using 1 

the multi-objective function (M.O.), remote sensing data and morphologic characteristics (R.S.), 2 

and the standard hydrographs comparison (S.N.). The table reports the values obtained by the 4 3 

different calibration strategies. 4 

  5 



43 

Basin Section Parameter 

set 

NS CM RMSE CORR PFRE 

Casentino Subbiano M.O. 0.80 0.77 2.37 0.89 -0.251 

R.S. (LST) 0.78 0.74 2.39 0.88 -0.311 

R.S. (SWI) 0.79 0.75 2.25 0.88 0.092 

S.N. 0.81 0.75 2.23 0.89 0.075 

Table 10: Casentino basin skill scores on hydrographs on the entire validation period (2005-2011) 1 

for the different parameters sets. The scores value is calculated for the Subbiano section. PFRE is 2 

calculated with Qth=200 m
3
/s. 3 
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Variable Parameter Set BIAS 

LST M.O. 1.83 

R.S. (LST) 1.79 

R.S. (SWI) 1.87 

S.N. 1.88 

Table 11: Casentino basin. Values of BIAS on LST series obtained with the different parameters 1 

sets. The mean basin scale has been considered 2 
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Variable Parameter Set NS 

SWI M.O. 0.80 

R.S. (LST) 0.63 

R.S. (SWI) 0.83 

S.N. 0.73 

Table 12: Casentino basin. Values of NS on SWI series obtained with the different parameters sets. 1 

The mean basin scale has been considered 2 
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9. FIGURES  1 

 2 

Figure 1. Representation of the different processes described in Continuum model and how 3 

different cells are connected. Surface flow is described by non-linear and linear motion 4 

equations respectively on channels (qc) and hillslopes (qh). Two consecutive cells are 5 

represented, each cell has the x and y dimensions that correspond with the spatial resolution 6 

of the model.  7 
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 1 

Figure 2. Location of the study areas. The Orba basin (in red) in north west of Italy and the 2 

Casentino basin (in yellow) in central Italy.  3 

  4 
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 1 

Figure 3: Scheme of calibration of the surface parameters in R.S. approach based on the 2 

reproduction of the basin lag time at two different closure sections using synthetic rainfall events. A 3 

first guess uc is used to calibrate uh on section S1, this latter is used to calibrate uc on S2, then the 4 

procedure is iterated for N times. 5 

 6 
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 1 

Figure 4: Orba basin, August-September 2006. NS on the hydrographs (X axis) versus other 2 

statistics (Y axis): Chiew McMahon coefficient (CM), Root Mean Square Error (RMSE), the 3 

correlation coefficient (CORR) and the relative error (Rel. Err.). The graphs show that in all cases 4 

there are sets of parameters that give similarly good values of the compared scores. 5 
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 1 

Figure 5: Orba basin, August-September 2006. Dotty plot representation of the NS on the 2 

hydrographs. Each subplot reports the parameter value on X axis and the value of NS statistic on Y 3 

axis. The surface parameters, subplots a) and b), have quite clear ranges where NS reaches 4 

maximum values independently from other parameters. This not occur for sub-surface flow 5 

parameters, subplots c) and d). 6 
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 1 

Figure 6: Orba basin, August-September 2006. Confidence intervals compared with observed 2 

streamflow. Two representative periods are shown. X axis reports time while Y axis reports 3 

streamflow. Observed streamflow is compared with the confidence intervals based on NS statistic 4 

and the ensemble mean. 5 

  6 
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 1 

Figure 7: Orba basin, August-September 2006. Example of a two by two sensitivity analysis: 2 

Surface parameters, uc versus uh. On X and Y axis the values of the two parameters are reported 3 

while on Z axis the parameter likelihood is shown. 4 

  5 
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 1 

Figure 8: Orba basin, August-September 2006. Example of a two by two sensitivity analysis: 2 

Subsurface parameters, ct versus cf. On X and Y axis the values of the two parameters are reported 3 

while on Z axis the parameter likelihood is shown. 4 
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 1 

Figure 9: Orba basin, August-September 2009. Dotty plot representation of the BIAS on mean LST 2 

at basin scale. Each subplot reports the parameter value on X axis and the value of BIAS statistic on 3 

Y axis. The parameter ct (subplot c) has a quite clear range where BIAS reaches minimum values 4 

independently from the other parameters, This not occur for the other parameters (subplots a, b and 5 

d ) 6 
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Figure 10: Orba basin, August-October 2011. Dotty plot representation of the NS on mean SWI at 2 

basin scale. Each subplot reports the parameter value on X axis and the value of NS statistic on Y 3 

axis. The parameter ct (subplot c) has a quite clear range where NS reaches maximum values 4 

independently from the other parameters. This occurs even for parameter cf although the 5 

independence is weaker (subplot d). No independence is evident for the surface parameters 6 

(subplots a and b) 7 
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 1 

Figure 11: Nash Sutcliffe coefficient of hydrographs (X axis)  versus the Multi Objective Function 2 

(Fadj on Y axis). The maximum of NS does not correspond with the minimum of the Fadj because 3 

this latter is influenced by the component that depends on LST ad SWI. Anyway in correspondence 4 

of the minimum of Fadj the NS value is high. 5 
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 1 

Figure 12: Observed streamflow for the Orba basin compared with simulations obtained using the 2 

M.O. and S.N. parameter sets for the period 2006 to 2008. Time is reported on X axis and 3 

streamflow on Y axis. The bottom subpanel shows the entire period with log scale on Y axis. The 4 

other subpanels show the main flood event with linear scale on Y axis. 5 
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 2 

Figure 13: Observed streamflow for the Orba basin compared with simulations obtained using the 3 

M.O. and S.N. parameter sets for the period 2009 to 2011. Time is reported on X axis and 4 

streamflow on Y axis. The bottom subpanel shows the entire period with log scale on Y axis. The 5 

other subpanels show the main flood event with linear scale on Y axis. 6 

 7 
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 1 

Figure 14: Accumulated runoff volumes for the Orba basin obtained with the M.O. and S.N. 2 

parameters sets for the period 2006-2011. Time is reported on X axis and total accumulated volume 3 

on Y axis. 4 
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Figure 15: Observed streamflow for the Casentino basin compared with simulations obtained using 2 

the M.O. and S.N.  parameter sets for the period 2005 to 2007. Time is reported on X axis and 3 

streamflow on Y axis. The bottom subpanel shows the entire period with log scale on Y axis. The 4 

other subpanels show the main flood event with linear scale on Y axis. 5 

 6 
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 1 

Figure 16: Observed streamflow for the Casentino basin compared with simulations obtained using 2 

M.O. and S.N.  parameter sets for the period 2008 to 2011. The bottom subpanel shows the entire 3 

period with log scale on Y axis. Time is reported on X axis and streamflow on Y axis. The other 4 

subpanels show the main flood event with linear scale on Y axis. 5 

 6 
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Figure 17: Accumulated runoff volumes of the Casentino basin obtained with the M.O. and S.N. 2 

parameters sets for the period 2005-2011. Time is reported on X axis and total accumulated volume 3 

on Y axis. 4 


