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Abstract

Information on extreme precipitation for future climate is needed to assess the changes
in the frequency and intensity of flooding. The primary source of information in climate
change impact studies is climate model projections. However, due to the coarse
resolution and biases of these models, they cannot be directly used in hydrological5

models. Hence, statistical downscaling is necessary to address climate change
impacts at the catchment scale.

This study compares eight statistical downscaling methods often used in climate
change impact studies. Four methods are based on change factors, three are bias
correction methods, and one is a perfect prognosis method. The eight methods are10

used to downscale precipitation output from fifteen regional climate models (RCMs)
from the ENSEMBLES project for eleven catchments in Europe. The overall results
point to an increase in extreme precipitation in most catchments in both winter and
summer. For individual catchments, the downscaled time series tend to agree on the
direction of the change but differ in the magnitude. Differences between the statistical15

downscaling methods vary between the catchments and depend on the season
analysed. Similarly, general conclusions cannot be drawn regarding the differences
between change factor and bias correction methods. The performance of the bias
correction methods during the control period also depends on the catchment, but in
most cases they represent an improvement compared to RCM outputs. Analysis of the20

variance in the ensemble of RCMs and statistical downscaling methods indicates that
up to half of the total variance is derived from the statistical downscaling methods. This
study illustrates the large variability in the expected changes in extreme precipitation
and highlights the need of considering an ensemble of both statistical downscaling
methods and climate models.25
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1 Introduction

Both the frequency and intensity of extreme precipitation are expected to increase
under climate change conditions in Europe (Christensen and Christensen, 2003; IPCC,
2012). Several climate studies have focused on assessing these changes (e.g. Fowler
and Ekström, 2009; Frei et al., 2006; Kendon et al., 2008) and their consequences5

in relation to the risk of flooding (Christensen and Christensen, 2003; IPCC, 2012;
Leander et al., 2008; Vansteenkiste et al., 2013). The main steps often followed in
these studies comprise the selection of one or several global climate models (GCM),
regional climate models (RCM) and/or statistical downscaling methods (SDM). In
climate change impact studies, hydrological models are then used to estimate changes10

in hydrological variables.
GCMs are the most comprehensive and widely used models for simulating the

response of the global climate system to changes in greenhouse gas emissions.
However, their spatial resolution (approximately 150 km) is often too coarse for
addressing climate change impacts at the local scale, and variables such as15

precipitation are often biased. RCMs are climate models that cover a specific region
(e.g. Europe) and use GCMs as boundary condition. RCMs have a higher spatial
resolution (approximately 25 km) than GCMs, which makes them more adequate for
assessing changes at the local scale. Nonetheless, RCMs often inherit the biases
from the GCMs and their spatial resolution might still be too coarse for some impact20

studies (Maraun et al., 2010). Hence, further statistical downscaling is often needed
to obtain bias-corrected projections at the local scale (Fowler et al., 2007). Statistical
downscaling is based on defining a relationship between the large scale outputs of the
RCMs (or GCMs) and the local scale variables required in impact studies (Fowler et al.,
2007; Wilby et al., 2004).25

In recent years, a relatively large number of RCM outputs have been made available,
but there is no consensus on the best way to assess their performance (Knutti et al.,
2010). There are several challenges in evaluating RCMs. For example, a RCM might
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perform well for some variables in some regions but not for other variables. Moreover,
even if a climate model performs well under present climate conditions it might not
perform equally well under future conditions (Knutti, 2010). For these reasons, it is
generally recommended to use a multi-model ensemble of RCMs (or GCMs) instead
of using a single model (Knutti et al., 2010; van der Linden and Mitchell, 2009; Tebaldi5

and Knutti, 2007).
Similarly, a large number of SDMs have been suggested in the literature, but there is

no consensus on the best SDM. Fowler et al. (2007) and Maraun et al. (2010) provide
comprehensive reviews of the methods existing in the literature and their suitability
for different applications. As in the case of climate models, the validation of SDMs is10

challenging. Only a few recent studies address this issue (e.g. Maraun et al., 2013;
Räisänen and Räty, 2013; Teutschbein and Seibert, 2012; Vrac et al., 2007).

In order to account for the uncertainties in climate change impact studies and due
to the lack of consensus on the best climate model and SDM, a number of studies
consider multiple climate models and SDMs. For example, Bürger et al. (2013) used15

eight SDMs to downscale six GCMs and three emission scenarios, Sunyer et al. (2012)
used five SDMs to downscale four RCMs driven by two GCMs, and Hanel et al. (2013)
used four SDMs and fifteen RCMs. In addition, some studies also consider hydrological
models in the chain of uncertainties. For example, Wilby and Harris (2006) used two
SDMs, four GCMs, and two emission scenarios combined with two hydrological model20

structures and two sets of hydrological model parameters. Lawrence and Haddeland
(2011) compared two SDMs, six RCMs driven by two GCMs, and two emission
scenarios and used multiple parameter sets for the hydrological impact model.

The main focus of this study is to assess the changes in extreme precipitation in
eleven European catchments using a range of SDMs and RCMs. For this purpose,25

precipitation outputs from fifteen RCMs driven by six GCMs from the ENSEMBLES
project (van der Linden and Mitchell, 2009) are downscaled using eight SDMs. Four
SDMs are change factor methods, three are bias correction methods and one is
a perfect prognosis method. Some previous studies have compared the results from
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change factors and bias correction methods (e.g. Hanel et al., 2013; Ho et al., 2012;
Räisänen and Räty, 2013) for mean temperature and mean precipitation. Here we focus
on changes in extreme precipitation.

The results presented here are based on a coordinated effort carried out as part of
the COST Action FloodFreq (European Procedures for Flood Frequency Estimation,5

www.cost-floodfreq.eu). The outputs from this study have been used as inputs to
hydrological impact modelling in order to assess the changes in extreme discharge
and flood frequency in the eleven catchments (Hundecha et al., 2014).

The next section describes the case study catchments and the data used, followed
by the methodology section. Section 4 presents and discusses the results, and Sect. 510

summarizes the findings and conclusions of the study.

2 Case study catchments and data

2.1 Observations

Figure 1 shows the location of the eleven catchments studied and the main properties
of each catchment are summarized in Table 1. The two most northern catchments are15

the Norwegian catchments Nordelva at Krinsvatn (NO2) and Atna at Atnasjø (NO1),
and the most southern catchment is Yermasoyia (CY) in Cyprus. The size of the
catchments varies from the 6171 km2 of Mulde (DE) in Germany to the 67 km2 of Upper
Metuje (CZ2) in the Czech Republic. Different precipitation patterns are represented
in the catchments. The mean precipitation ranges between 2437 mm yr−1 in NO2 to20

589 mm yr−1 in Nysa Kłodzka in Poland (PL). The season with more daily extreme
events is summer for most of the catchments: NO1, DE, Aarhus in Denmark (DK),
Merkys in Lithuania (LT), Grote Nete in Belgium (BE), and Jizera in the Czech Republic
(CZ1). In NO2 and CY, winter is the season where most extremes occur, while in the
Turkish catchment Omerli (TR) it is autumn.25
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The observational data used is daily catchment precipitation, as the data were
to be further used in catchment-based hydrological modelling in a separate work.
Different methods have been used to obtain these areal precipitation time series. The
catchments NO2, NO1, DK, and CZ2 use gridded data to obtain areal average daily
values for the catchment, while the other catchments use station data to construct areal5

values.

2.2 Regional climate models

The climate model data used in this study is an ensemble of fifteen RCMs from the
ENSEMBLES project (van der Linden and Mitchell, 2009). These fifteen simulations are
based on eleven RCMs driven by six different GCMs. Table 2 shows the combinations10

of RCMs-GCMs used. The spatial resolution of all the models is 0.22◦ (approximately
25 km). For all the models, daily precipitation time series are available for the time
period 1951–2100. In this study, we consider the time period 1961–1990 and 2071–
2100 as the control and future time periods, respectively. It must be noted that six
RCMs do not have data available for the year 2100. The future period used for these15

models is 2071–2099; this is not expected to have an influence on the results of this
study. For each catchment, daily precipitation has been extracted from the 15 RCMs
for the two periods using nearest neighbour interpolation to the catchment centroid.
It must be noted that to simplify the calculations, the same control period is used for
all the catchments. Therefore, in some catchments, the time period with observations20

(see Table 1) and the control period used from the RCMs do not fully overlap.

3 Methodology

3.1 Statistical downscaling methods

Eight SDMs are used to obtain downscaled RCM projections at the catchment scale.
These methods are based on the idea that it is possible to define a relationship25
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between the large scale variables (RCM outputs) and local scale variables (catchment
precipitation). Wilby and Wigely (1997) and Fowler et al. (2007) classify SDMs based
on the relationship used to link large and local scale. They consider three groups:
regression methods, weather type approaches and stochastic weather generators.
Rumukainen (1997) classifies SDMs based on the information used from the large5

scale variables and defines two groups: perfect prognosis (PP) and model output
statistics (MOS). Maraun et al. (2010) integrate both Rumukainen (1997) and Wilby
and Wigely (1997) classifications and consider three groups: PP, MOS, and weather
generators. According to this last classification, seven of the eight methods used here
are MOS methods, and one method is a PP method.10

Here we further classify the seven MOS methods into change factor (CF) methods
and bias correction (BC) methods. Four of the MOS methods considered are CF
and three are BC methods. CF methods estimate the change from control to future
period projected by the RCM in one or several statistics and apply this change to the
observations. These methods are based on the idea that RCMs represent the change15

from the control to the future climate better than the absolute values of the variables.
The BC methods define a transfer function for the RCM outputs for the control period
to match certain statistical properties of the observations. This transfer function is
then used to correct the RCM outputs for the future period. CF methods preserve the
temporal structure in the observed time series while BC methods preserve the temporal20

structure in the RCM outputs. It must be noted that both approaches are based on the
assumption that the bias for the future period is identical to the bias for the control
period, which may not be the case. Sunyer et al. (2014) show that the precipitation bias
of the RCMs depends on the precipitation intensity and might change in the future.

The following sub-sections briefly describe the eight SDMs. In the results section we25

refer to the SDMs as either CF or BC methods. For simplicity, the perfect prognosis
method will be grouped with the BC methods even though it does not strictly correct
the RCMs. It is included with the BC methods because it defines a transfer function

6174

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 6167–6214, 2014

Statistical
downscaling of

extreme precipitation
projections in Europe

M. A. Sunyer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

between the RCM for the control period and the observations and then applies this to
the RCM output for the future period.

A common terminology is used for describing the methods: P Obs and P Fut refer
to the observed precipitation and the downscaled precipitation for the future period,
respectively; and P RCMCon and P RCMFut refer to the precipitation output from the5

RCMs for the control and future time period, respectively. Similarly, ECDFObs and
ECDFFut refer to the empirical cumulative distribution function (ECDF) for the observed
precipitation and for the downscaled precipitation for the future while ECDFRCMCon and
ECDFRCMFut refer to the ECDF estimated from the RCMs for control and future time
period, respectively. The methods used here have been implemented as suggested in10

the literature, i.e. no harmonisation has been applied to enable, for example, a common
method for accounting for seasonality or the definition of wet days. Table 3 summarizes
the main advantages and disadvantages of each method.

3.1.1 Bias correction of mean

The bias correction of mean, BCM, is a simple method based on removing systematic15

errors in mean daily precipitation. It has been used in several hydrological applications
(e.g. Hanel et al., 2013; Leander and Buishand, 2007; Leander et al., 2008). Here
the method proposed by Leander and Buishand (2007) is used. This is based on the
transformation:

P Fut
y ,j = ajP

RCMFut
y ,j (1)20

where y is the year, j is the day of the year and aj is the transformation parameter. aj
is estimated in two steps. First, for all the years a subset of 61 days centred on day j
is created for P Obs

.,j and P RCMCon
.,j . Then, aj is estimated as the mean of P Obs

.,j divided by

the mean of P RCMCon
.,j .
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3.1.2 Bias correction of mean and variance

The bias correction of mean and variance method, BCMV, is an extension of the
previous method. It corrects the RCM outputs considering systematic errors in both
the mean and the variance. This method has been applied in several studies (e.g.
Hanel et al., 2013; Leander and Buishand, 2007; Leander et al., 2008). The method5

suggested by Leander and Buishand (2007) is followed here, which is based on the
transformation:

P Fut
y ,j = aj

(
P RCMFut
y ,j

)bj
(2)

where aj is estimated as described above for BCM, and bj is estimated by equating

the coefficient of variation of (ajP
RCMCon
.,j )bj and P Obs

.,j . bj is found by iteration since it is10

not possible to solve this equation in closed from.

3.1.3 Bias correction quantile mapping

Bias correction based on quantile mapping, BCQM, has been widely used to correct
RCM outputs over Europe (e.g. Dosio and Paruolo, 2011; Gudmundsson et al.,
2012; Piani et al., 2010). The non-parametric empirical quantile method suggested15

in Gudmundsson et al. (2012) is followed here. It is based on the concept that there
exists a transformation h, such that:

P Obs = h(P RCMCon) = ECDFObs−1
(ECDFRCMCon(P RCMCon)) (3)

First, all the probabilities in ECDFObs and ECDFRCMCon are estimated at a fixed interval
of 0.01. Then, h is estimated as the relative difference between the two ECDFs20

in each interval. Interpolation between the fixed intervals is based on a monotonic
tricubic spline interpolation. A threshold for the correction of the number of wet days is
estimated from the empirical probability of non-zero values in P Obs. All RCM values
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below this threshold are set to zero. The precipitation values for the full annual
daily series are corrected without subsampling by season or month, as suggested
by Piani et al., 2010. The method was implemented in R using the qmap package
(Gudmundsson, 2014).

3.1.4 Expanded downscaling5

Expanded Downscaling, XDS, is a perfect prognosis technique which maps large-scale
atmospheric fields to local station data. XDS was originally introduced for weather
forecasting purposes, but it has been recently used in climate change studies (e.g.
Bürger and Chen, 2005; Bürger et al., 2013; Dobler et al., 2012). The XDS approach
is based on defining a multivariate linear regression between predictors y (multivariate10

fields of atmospheric variables) and predictands x (local scale variables, i.e. catchment
precipitation), extended by the side condition that the local co-variability between the
variables (and stations) is preserved:

XDS = argmin
Q

‖xQ− y‖, subject to Q′x′xQ = y ′y , (4)

where XDS is the least square-solution of the matrix Q which is found among those15

that preserve the local covariance (Q′x′xQ = y ′y). By this approach, the estimation of
extremes is supposed to be improved compared to regular linear regression models.
See Bürger et al. (2009) for a detailed description of this method.

The XDS model is first trained on RCM atmospheric fields driven by the ECMWF
ERA-40 reanalysis (Uppala et al., 2005) and local scale observations with at least20

10 yrs of data. Then, RCM outputs for the control and future periods are used to
generate time series at the local scale. Generally XDS allows for exploring a range
of large scale variables as predictors. Large-scale reanalyses, however, are generally
in better agreement with local observations than an RCM simulation driven by those
reanalyses, simply because that the simulation likely differs from the actual weather25

realization which is used for XDS calibration. This has the consequence that a perfect
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prognosis approach is no longer perfect. For this study, the predictors were therefore
chosen rather “conservatively”, with predictor variables being limited to large-scale total
and convective precipitation. The result is a set of predictors that is, moreover, unique
across all catchments. The XDS source code and documentation can be downloaded
from: http://xds.googlecode.com.5

3.1.5 Change factor of mean

The change factor of mean, CFM, is a simple method which has been widely applied
in hydrological applications (Hanel et al., 2013; Prudhomme et al., 2002; Sunyer et al.,
2012). It is based on applying the change in mean precipitation projected by the RCMs
to the observed data. The method described in Sunyer et al. (2012) is followed here.10

Similarly to BCM, this method is based on the transformation:

P Fut
m,t = amP

Obs
m,t (5)

where m refers to the month and t to each time step in the observations; am is the
relative change in the precipitation mean for month m. am is estimated as the mean of
P RCMFut
m,. divided by the mean of P RCMCon

m,. .15

3.1.6 Change factor of mean and variance

The change factor of mean and variance, CFMV, is an extension of CFM. It has been
applied in several studies (e.g. Hanel et al., 2013; Räisänen and Räty, 2013; Sunyer
et al., 2012). CFMV modifies the observed time series using the change in both the
mean and variance. The method described in Sunyer et al. (2012) is followed here.20

Similar to BCMV, the method is based on the transformation:

P Fut
m,t = am

(
P Obs
m,t

)bm
(6)

where am is estimated as described for CFM. bm is estimated by equating the
coefficient of variation of the time series (amP

Obs
m,. )bm and the coefficient of variation
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estimated for the future period. As in BCMV, this is solved by iteration. The coefficient
of variation for the future period is calculated from the relative change in the mean and
variance projected by the RCMs.

3.1.7 Change factor quantile mapping

The change factor quantile mapping, CFQM, is based on using the relative change in5

the ECDF projected by the RCMs to modify the observed data. It has been applied in
several climate change studies (e.g. Boé et al., 2007; Olsson et al., 2009).

This method uses the ECDF of wet days estimated for each month m for the
observations, and the RCM output for the control and future periods. The probability
intervals considered are 0.001 for quantiles lower than 0.9 and 0.0005 for higher10

quantiles (linear interpolation between intensities is applied to obtain the precipitation
intensity for all the quantiles). Wet days are defined as days with precipitation higher
than 1 mm. The perturbation of the observed time series is carried out in three steps.
First, for each wet day in each month m, ECDFObs

m is used to estimate the probability of
the precipitation intensity. Second, the relative change in the intensity for this probability15

is estimated from ECDFRCMFut
m and ECDFRCMCon

m . This change is then multiplied to the
observed precipitation intensity to obtain the intensity for the future period. Dry days in
the observations are not modified.

3.1.8 Change factor quantile perturbation

The change factor quantile perturbation, CFQP, is similar to CFQM but it also accounts20

for changes in the number of wet days. This method has been applied in a number of
hydrological studies analysing the effects of climate change (e.g. Ntegeka et al., 2014;
Taye et al., 2011; Vansteenkiste et al., 2013; Willems and Vrac, 2011). The version
used here has been applied in Willems and Vrac (2011).

The observations are perturbed in a two-step way. First, the number of wet days25

(days with precipitation higher than 0.1 mm day−1) is changed for each month. The
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relative change in the frequency of wet days is estimated from the RCM output. If
the frequency increases, dry days are randomly selected and replaced by random
wet day intensities from the time series. Otherwise, wet days are randomly replaced
by zero precipitation. In the second step, the wet day intensities are perturbed in
a similar way as in the CFQM method. The empirical probability of each intensity is first5

estimated. The relative change in the intensity for each probability is then calculated
(linear interpolation is applied when different probabilities are obtained for the control
and future period) and used to perturb the observations.

These two steps are repeated 10 times. The repetition that leads to the results
closest to the mean monthly precipitation value of all the repetitions is selected. See10

Willems and Vrac (2011) for more details on this method and the checks done on the
coefficient of variation, skewness and autocorrelation.

3.2 Extreme precipitation Index

The outputs from all the statistical downscaling methods are analysed using an extreme
precipitation index (EPI). This is defined as the average change in extreme precipitation15

higher than a defined return period. In this study, the return period is set equal to
1 and 5 yr. EPI is estimated separately for each SDM, RCM, catchment, threshold
return period, season and temporal aggregation. Four seasons are considered: winter
(December to February), spring (March to May), summer (June to August), and autumn
(September to November). Additionally, the index is estimated considering the whole20

time series, i.e. without dividing in seasons. The temporal aggregations considered are
1, 2, 5, 10, and 30 days. These are estimated using a moving average from the daily
time series.

The first step in the calculation of EPI is to extract the extreme value series from
the precipitation time series using a Peak Over Threshold (POT) approach. Peaks are25

extracted by using the 1 and 5 yr threshold return periods. For example, with a 30 yr
record, the 30 and 6 most extreme events are included in the extreme series for the 1
and 5 yr threshold levels, respectively. An independence criterion based on the inter-

6180

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 6167–6214, 2014

Statistical
downscaling of

extreme precipitation
projections in Europe

M. A. Sunyer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

event time is applied to make sure that extreme values are independent, i.e. only
values separated by more than ∆t days are considered. ∆t is set equal to the temporal
aggregation, i.e. for an aggregation time of 1 day, events must be separated by more
than one day. EPI is then estimated as:

EPI =
POT2

POT1

(7)5

where POT1 and POT2 are the averages of the selected POT values used as reference
and scenario, respectively. EPI takes the value of 1 if no change is estimated from
reference to scenario and greater (less) than 1 if the average extreme precipitation is
higher (lower) in the scenario time series.

In the results section, EPI is used to compare the changes in the downscaled time10

series from control to future. Additionally, three further comparisons are carried out. In
total EPI is calculated for four different cases:

1. Comparison of the downscaled time series for the control and future periods.

2. Comparison of the RCM outputs for control and future periods. This allows us
to compare the changes estimated from the downscaled precipitation, estimated15

in (i), to the changes projected by the RCMs.

3. For the four BC methods: comparison of the observations and the bias corrected
RCMs for the control period. The value of the index for this comparison is
a measure of the error of the BC methods in bias correcting the RCM outputs
for extreme precipitation.20

4. Comparison of the observations and RCM outputs for the control period. This
comparison evaluates the performance of the RCMs in simulating extreme
precipitation, and allows us to assess whether the error in the bias corrected time
series, estimated in (iii), is smaller than in the RCMs.
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3.3 Variance decomposition

The variability in the EPI values found when comparing the downscaled time series
for control and future arises mainly from three sources: GCMs, RCMs and SDMs.
A variance decomposition approach is used to address the influence of each of these
sources on the total variance for each catchment, return level, season and temporal5

aggregation. The approach described in Déqué et al. (2007, 2012) is followed here.
The total variance of EPI, V , can be split into the different contributions as:

V = R +G +S +RG+RS+GS+RGS (8)

where R, G, and S are the individual parts of the variance explained by the RCMs,
GCMs, and SDMs, respectively; RG, RS, and GS are the variance due to the interaction10

of RCM–GCM, RCM–SDM, and GCM–SDM, respectively; and RGS is the variance due
to the interaction of all three sources. The part of the total variance explained by the
RCMs, V (R) is:

V (R) = R +RG+RS+RGS (9)

The part of the total variance due to the GCMs, V (G), and SDMs, V (S), can be obtained15

in a similar way. The variances in Eqs. (8) and (9) can be estimated as:

R =
1

11

11∑
i=1

(
EPIi .. −EPI...

)2
;

RG =
1

11
1
6

11∑
i=1

6∑
j=1

(
EPIi j . −EPIi .. −EPI.j . +EPI...

)2
; (10)

RGS =
1

11
1
6

1
8

11∑
i=1

6∑
j=1

8∑
k=1

(
EPIi jk −EPIi j . −EPIi .k −EPI.jk +EPIi .. +EPI.j . +EPI..k −EPI...

)2

20
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where EPIi jk is value of the index for RCM i , GCM j and SDM k, EPI represents the
average of EPI with respect to the subscripts that are replaced by a dot. The rest of the
terms in Eq. (9) are estimated in a similar way as shown in Eq. (10). For more details
see Déqué et al. (2007, 2012). Note that the observation errors in this approach are
neglected in comparison with the other error sources.5

As in Déqué et al. (2007), not all the terms in Eq. (10) can be estimated. This is
because not all the combinations of RCM–GCMs are available (see Table 2). Déqué
et al. (2007) suggested a simple method to reconstruct the missing data in the matrix
of RCM–GCMs. This is based on minimizing the full interaction term RGS. However,
this approach cannot be directly used here. This is because for the combinations of10

RCM i and GCM j that are not available there is no information on any of these SDM
k values. Hence, in some cases it is not possible to estimate EPIi j ., which is needed to
minimize the full interaction term RGS. For this reason, a slight modification is made to
the approach suggested by Déqué et al. (2007). The approach followed here consists
of two steps: (i) for all the combinations of i and j missing, EPIi j . is estimated by15

minimizing RG; and (ii) the values of EPIi jk missing are estimated by minimizing RGS.
A large number of gaps must be filled using this procedure. Two simple verifications

have been carried out to check that the results are not largely affected by the
matrix reconstruction approach. The first verification procedure is a simple comparison
of the results from the variance decomposition described above with a variance20

decomposition approach, which considers only two sources of variance (climate
models and SDMs). In the approach considering only these two sources, matrix
reconstruction is not needed because all the elements in the matrix are known.
The second verification procedure is similar to the verification carried out in Déqué
et al. (2007). The two verification approaches and their results are described in25

Appendix A.
The results from the first verification procedure show that the conclusion as to which

is the most important source of variance is nearly the same when considering two or
three sources for all catchments. Conversely, the results from the second verification
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show that the reconstruction approach can influence the results. From the results of the
first verification, we decide to analyse the variance explained by the GCMs and RCMs
separately (i.e. considering three source of variance) because, in our opinion, it adds
value to separate the influence of the GCMs and RCMs. Nonetheless, we acknowledge
that the results must be treated with caution due to the uncertainty added in the matrix5

reconstruction procedure.

4 Results and discussion

This section is divided into two main parts. The first part analyses the results of all
SDMs. The second part focuses on the performance of the three BC methods and
perfect prognosis method. All the results are shown for winter and summer as these are10

the two seasons where most of the extremes occur under present conditions. However,
it should be noted that in some catchments changes in other seasons might also be
important due to their influence on floods, see examples in Hundecha et al. (2014).

4.1 Statistical downscaling methods

This subsection analyses the results of the eight SDMs driven by all RCMs. A summary15

of the results obtained for all the catchments is first presented followed by a more
detailed analysis of the differences between the SDMs for three selected catchments.

4.1.1 Summary for all catchments

Figure 2 summarizes the results of all the SDMs and RCMs for all the catchments for
winter and summer for a temporal aggregation of 1 day. Additionally, it compares the20

results of the SDMs with the changes from control to future projected by the RCMs.
For the catchment CY for some SDMs, two special situations are encountered. For the
methods BCM and BCMV for both winter and summer periods, due to the few rainy
days in some of the RCM simulations, some of the parameters take unrealistic values
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which lead to unrealistic values of EPI. Similarly, it is not possible to estimate the CFs
used in the case of CFM, CFMV and CMQM in the summer period. The results of these
methods are not included in the analysis for CY. For the other catchments no problems
with the SDMs methods were encountered and all results are included in the analysis.

For winter, extreme precipitation is expected to increase in all the catchments (the5

median of EPI is greater than 1) except in CY. The median of EPI is similar for all
catchments except for the two most northern (NO1 and NO2) and the most southern
catchment (CY). The EPI values range between 1.11 and 1.2 for the 1 yr threshold,
and 1.14 and 1.22 for the 5 yr threshold. For this season, a similar variability is found
for all catchments, except for CY, where the variability is slightly larger than in the10

other catchments. For summer, the median is also greater than 1 for all the catchments
except for the two most southern catchments (CY and TR). These two catchments also
have a larger variability. In general, there are larger differences between and within the
catchments in summer than in winter.

In most catchments, and for both threshold return levels, larger changes are15

expected for winter. Only in the case of NO2 are the changes obtained for summer
larger than in winter. In LT, CZ2 and CZ1, larger changes are obtained for winter for the
1 yr level and for summer for the 5 yr level. In both seasons and in most catchments,
larger changes and variability are obtained for the 5 yr level.

Comparing the changes obtained from the SDMs with the mean changes projected20

by the RCMs (see Fig. 2) there is a general tendency that slightly smaller changes are
estimated from the uncorrected RCM projections. However, there are some significant
differences. For example, for NO2 in winter and the 5 yr level, the uncorrected RCM
projections point to a decrease of extreme precipitation but the SDMs point to an
increase. The opposite situation is obtained for CY for the same season and 1 yr25

level. For CY in summer, there is also a rather large difference between the changes
estimated from the uncorrected RCM projections and the SDMs.

Figure 2 does not differentiate between the variability due to the use of different
SDMs and different RCM–GCM simulations. The variance decomposition approach is
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used to assess each of the sources of variance individually. Figure 3 shows the total
variance decomposed in the variance arising from the GCMs, RCMs, SDMs and the
interaction terms for all catchments for the 1 and 5 yr levels and temporal aggregation
of 1 day. The results for CY for the summer are not shown because for a large number
of cases EPI could not be calculated (due to the few rainy days in some of the RCM5

simulations), and the results for winter for CY do not include the results from BCM and
BCMV

As shown in Fig. 2, the variance for the 5 yr level is higher for all catchments and
seasons than is the variance for the 1 yr level. In summer, the variance tends to
increase from north to south for the 5 yr level, and to some extent also for the 1 yr level.10

This trend is not observed in winter. The larger variance in the southern catchments
and in the 5 yr level may be partially caused due to higher sampling variance (less
number of extreme events). Figure 3 shows that in most cases the variance due to
the RCM–GCM simulations is larger than the variance from the SDMs. However, the
interaction term is in both seasons and in most catchments similar or larger than the15

individual sources of variance.
Figure 3 also shows the percentage explained by V (G), V (R), and V (S), scaled

to sum up to 100 %. The scaling of the percentages to obtain a total of 100 % is
needed because some interaction terms are repeated in these three factors. As already
mentioned, the percentage explained by the RCM–GCM simulations is in most cases20

larger than the percentage explained by the SDMs. The only exception is TR for
summer and PL for winter for the 1 yr level. However, in all cases, the percentage
explained by the SDMs is at least 30 % of the total variance, which is considerable.
Similar results are obtained for winter and summer and 1 and 5 yr levels. For both
seasons and return levels, there are no clear spatial patterns in the percentages.25

In all cases the percentage of the variance explained by the RCMs is larger than
the percentage explained by the GCMs. For both return levels, in winter the average
percentage explained by the GCMs is approximately 20 % while in summer it is
approximately 15 %. The smaller percentage for the GCMs in the summer is due to
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the larger relative influence of both the RCMs and SDMs. This is likely due to the fact
that in Europe, extreme precipitation from convective storms occurs more frequently
during summer, and this has a larger influence on the outputs from the RCMs and
SDMs due to their higher spatial resolution.

The results of the variance decomposition obtained for aggregation levels larger than5

1 day (not shown) point towards a smaller total variance. For this temporal aggregation,
the main source of variation is also the RCM–GCMs but the percentage explained
by SDMs is slightly higher than in a temporal aggregation of 1 day. The decrease in
total variance and in the percentage explained by RCM–GCMs is mainly due to the
model outputs are more similar for larger temporal aggregations. The results from the10

variance decomposition highlight the need for considering both a range of SDMs and
an ensemble of RCMs driven by different GCMs for assessing the uncertainty in the
projection of changes in extreme precipitation.

4.1.2 Results for selected catchments

The previous section summarizes the main results regarding the expected changes in15

extreme precipitation when considering all the RCMs and SDMs. This section focuses
on the differences between the statistical downscaling methods. For this purpose, three
catchments have been selected: NO2, DE, and TR (distributed north to south and with
different precipitation patterns). Figure 4 shows the median, 25th, and 75th quantile of
EPI for each SDM for the three catchments for the 1 yr level and a temporal aggregation20

of 1 day.
In NO2, for both seasons the SDMs based on BC show a lower EPI than the methods

based on CFs. This could be because some RCMs under future conditions show
a change in weather patterns, which causes extreme events to occur in a different
season than under the control period. This would have an influence on the changes25

in extreme precipitation obtained from the BC methods. In winter, all the CF methods
point towards an increase in extreme precipitation, but some of the BC methods show
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a decrease for some RCMs. In summer, all methods point to an increase except XDS;
this method leads to a small EPI and a large variability.

In DE, all the SDMs lead to similar median values except the BCMV in winter and
CFM in summer. The differences between BCMV and the other two BC methods are
due to some RCMs leading to very large changes when they are downscaled with5

BCMV, e.g. for RCA-ECHAM5, the values of EPI are 1.18 for BCM, 1.16 for BCQM
and 1.63 for BCMV. This large value of EPI is most likely caused by unexpectedly large
precipitation intensities obtained from the non-linear transformation in BCMV, which is
one of the disadvantages of this method (see Table 3).

CFM leads to the lowest value of EPI obtained in summer. This is also the case for10

all the catchments considered in this study except NO2 and CY (results not shown).
It indicates that mean precipitation is likely to increase less than the more extreme
precipitation intensities. In addition, it illustrates that this method is not suitable for
regions where the expected changes in extreme precipitation are different to the
changes in mean precipitation.15

In TR, the results of the SDMs vary more than in DE and NO2. For this catchment,
CFM leads to the lowest EPI in both seasons, which indicates a lower increase in
mean precipitation than in extreme precipitation, as in DE. In summer, all SDMs point
to a decrease of extreme precipitation except BCM and BCMV, which do not show
a change in extreme precipitation. These two methods show the largest variability for20

both winter and summer. The high variability for these two methods might be similar
to the issues identified in CY, i.e. only a few rainy days in some periods in the RCM
simulations.

For all catchments and both seasons, very similar results are obtained for CFQM
and CFQP. This is expected since the main difference between the two methods is the25

treatment of wet day frequency. This is expected to have a minor impact, except for TR
in summer. Similar results to those illustrated in Fig. 4 were obtained for the 5 yr level
(results not shown).
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The results for the three catchments show that there is not a clear tendency in
the differences between CF and BC methods. In addition, there is no evidence that
methods that are based on the same statistics for the correction (e.g. BCM and CFM
or BCMV and CFMV) will lead to similar results. Hence, it is not possible to generalize
the results with respect to the use of SDM.5

Figure 5 analyses the eight SDMs for the three catchments for two temporal
aggregations: 1 and 30 days. In general, the variability in EPI in the RCM ensemble
decreases for increasing temporal aggregation, except for a few cases, e.g. XDS in
NO2 and BCM for DE in summer. There is not a general indication that EPI either
increases or decreases with increasing temporal aggregation.10

In NO2, EPI is larger for a temporal aggregation of 30 days for BCM, BCMV and
BCQM and it is lower for the CF methods and XDS for summer. In winter, EPI for BCM,
BCMV and BCQM is also slightly larger for a temporal aggregation of 30 days (in the
case of BCM and BCMV, this means a smaller reduction of extreme precipitation). In
DE, most methods show a lower EPI for 30 days except CFM in summer and CFM,15

CFMV and XDS in winter. Similarly, in TR all the methods show lower EPI for 30 days
except for CFM, XDS and CFQM in summer. For all catchments, the results of the
SDMs at 30 days temporal aggregation are more similar than for 1 day aggregation.

In most cases, EPI at 1 and 30 days are not considerably different and show the same
signal (except in the case of TR for BCM and BCMV for both seasons and BCQM in20

winter). As for the 1 day aggregation, the results with temporal aggregation of 30 days
do not allow general conclusions with respect to the use of the SDM.

4.2 Bias correction in the control period

The previous section focuses on the analysis of the expected changes in extreme
precipitation. This section uses EPI to compare the results from the BC methods for the25

control period and the observations. This allows us to evaluate how well the different
BC methods correct extreme precipitation from the RCMs. As in the previous section,
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a summary of the results found for all the catchments is first presented, followed by
a more detailed analysis of the results found for each BC method.

For BE, CY, CZ2, DK, and PL, the control period considered for the RCMs does not
fully overlap with the observation period. In the case of DK, for example, there is only an
overlap of 2 yrs. The use of different periods assumes that the statistics are stationary5

between the periods. However, some of the disagreements between the observations
and bias corrected results may well be due to non-stationary statistics between the two
periods.

4.2.1 Summary for all catchments

Figure 6 shows EPI estimated using the observations as reference time series and10

the bias corrected RCM for the control period as scenario. In this figure (and the
rest of the figures in this section), a value of 1 indicates that there is no difference
between the extreme value index from the reference and scenario time series.
A value larger (smaller) than one indicates that the scenario time series overestimates
(underestimates) extreme precipitation. It must be noted that for the catchments LT and15

TR there is a perfect overlap between the time period of the observations and RCMs,
while for the other catchments the observation period includes the RCM period or there
is a mismatch between the time period of the observations and RCMs (see Table 1 for
details). This does not appear to have a clear influence on the results.

For extreme winter precipitation there is no clear tendency across catchments for20

under- or overestimation with the bias corrected data. The catchments that have the
largest underestimation are for the most northern and southern catchments (NO2,
NO1, DK and CY), whereas LT, BE and PL have the largest overestimation. For
extreme summer precipitation, there is a pronounced underestimation for a number
of catchments. The three most northern catchments (NO2, NO1, and DK) show the25

lowest mean bias based on the median values for all downscaled projections. The most
southern catchment (CY) has the largest tendency to underestimate extreme summer
precipitation. Both the median and variance of EPI depend on the catchment and the

6190

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6167/2014/hessd-11-6167-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 6167–6214, 2014

Statistical
downscaling of

extreme precipitation
projections in Europe

M. A. Sunyer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

season. For example, the bias corrected data for LT, BE and PL tend to overestimate
extreme precipitation in winter, but underestimate this in summer. CZ1 in winter and
NO2 in summer are the catchments that lead to the median closest to 1. The largest
variability is found for PL in winter and TR and CY in summer.

The comparison of the error in the RCMs before and after bias correction shows5

that, in general, the error after bias correction is smaller than before bias correction.
This shows that the BC methods improve the representation of extremes. However,
in a few cases the error of the RCMs before bias correction is smaller than after bias
correction, e.g. BE in winter and LT in summer. This is because some of the RCMs
result in large errors after bias correction. For example for BE with the HadRM3Q3-10

HadCM3Q3 model, values of 1.18 for BCM, 1.37 for BCMV, 1.24 for BCQMP, and 1.23
for XDS are obtained, while a value of 0.98 is obtained from the uncorrected data.
Similar results are obtained for LT, for example with the RACMO2-ECHAM5 model,
values of 0.91 for BCM, 1.19 for BCMV, 0.81 for BCQM and 0.73 for XDS are obtained,
while the uncorrected data gives a value of 1.05.15

4.2.2 Results for selected catchments

Figure 7 shows the results of the three BC methods and XDS for NO2, DE, and TR for
the 1 yr level and 1 day temporal aggregation. The performance of each method varies
depending on the season and catchment. For example, BCM overestimates extremes
in NO2 in winter and TR in summer and underestimates them in NO2 in summer and20

TR in winter. In DE, BCM performs equally well as BCMV. This is an example of the
fact that simple BC methods can, in some cases perform similarly or better than more
advanced methods. In the catchments considered in this study, there is not a clear
tendency in the performance of the BC methods depending on the mean and extreme
precipitation regime.25

In winter, the errors obtained for DE are smaller than in the other two catchments.
EPI ranges from an underestimation of 4 % (EPI equal to 0.96) for BCM and BCMV, to
an overestimation of approximately 6 % for BCQM and XDS. For this catchment and
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both seasons, BCM and BCMV lead to better results than BCQM and XDS. In summer,
the errors in NO2 are smaller than in the other two catchments. For this catchment and
this season, XDS is the method that leads to the smallest error and variability.

The largest errors and variability in the results are obtained for TR in both seasons.
For this catchment and in the winter period, the median of all methods underestimate5

except XDS, while in summer BCM and BCMV overestimate extremes and the other
two methods underestimate. A very large variability is obtained for BCM and BCMV in
summer (the 25th and 75th percentiles range from 0.4 to 1.5).

Figure 8 shows the error of each BC method for two temporal aggregations, 1 and
30 days, for the 1 yr level. In general, the performance of the BC methods for the winter10

period improves for large temporal aggregation (except for XDS in TR). However, in
summer this is not the case. For this season, the difference between the results for
1 and 30 day aggregations depends on the catchment and the method. In NO2, the
results for 1 day are better than for 30 days for BCQM and XDS, although the reverse
is true for TR. In DE, the results for 1 day are better than for 30 days for all the methods15

except XDS.
As in Fig. 7, TR has the largest variability for 30 days followed by NO2 for both

seasons. The results for DE, appear to be the least dependent on the temporal
aggregation. This may be the result of spatially averaging the observations from 43
stations to catchment precipitation. For such a large basin (6171 km2, see Table 1), this20

may simultaneously lead to temporally-averaged precipitation values from the gauged
nested sub-catchments. In all cases, the variability for 30 days is smaller than for 1 day,
indicating that the RCMs lead to more similar results for large temporal aggregations.

5 Summary and conclusions

This study analyses the expected changes in extreme precipitation in eleven European25

catchments. It focuses on the variability in the changes arising from the use of different
statistical downscaling methods as well as different RCM–GCM simulations. Fifteen
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RCMs driven by six GCMs are downscaled using eight statistical downscaling methods.
The statistical downscaling methods rely on different assumptions and different RCM
outputs. The outputs from all the statistical downscaling methods are analysed using
an extreme precipitation index.

Extreme precipitation is expected to increase in most catchments in both winter5

and summer. A decrease in extreme precipitation is only expected for both winter and
summer in Cyprus and for summer in Turkey. In most catchments, larger changes are
expected in winter than in summer. Additionally, in all cases, higher increases and
higher variability in the results are obtained for higher return levels.

In most catchments and for both winter and summer, the RCM–GCM projections are10

the main source of variability in the results when compared to the differences between
SDMs, although variability due to the SDMs explains at least 30 % of the total variance
in all cases. Additionally, in all cases, the RCMs represent a larger percentage of the
total variability than the GCMs, especially in summer. For this season, the total variance
tends to be higher for the most southern catchments.15

In general, the eight statistical downscaling methods agree on the direction of
the change but not the magnitude of the change. It is not possible to draw
general conclusions regarding differences between the downscaling methods, as the
differences depend on the physical geographical characteristics of the catchment
and season analysed. For example, for one of the Norwegian catchments the bias20

correction methods lead to lower changes than the change factor methods, but this
is not the case for the other catchments. The main common aspect to all catchments
except NO2 and CY is that the change factor of mean method leads to the smallest
value of the extreme precipitation index for summer. This indicates that this method
is not suitable for regions where the expected changes in extreme precipitation are25

different to the changes in mean precipitation. The changes obtained for different
temporal aggregations also depend on the physical geographical characteristics of the
catchment and season analysed, i.e. there is no general tendency for an increase or
decrease in the index with increasing temporal aggregation.
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Overall, the bias correction methods improve the representation of extreme
precipitation, as compared with the uncorrected RCM outputs. However, the bias
corrected time series tend to underestimate extreme precipitation. The magnitude of
the errors depends on the catchment and season analysed. For example, the results
of the bias correction of mean are worse than the other methods for the Norwegian5

catchment but not for the other catchments. There is not a tendency in the performance
of the bias correction methods depending on the mean and extreme precipitation
regime. There is also no clear indication for an increase or decrease in the error with
increasing temporal aggregation.

This study illustrates that there is a large variability in the changes estimated from10

different statistical downscaling methods and RCMs. It also shows that the differences
between the methods and the performance of the bias correction methods depends on
the catchment studied. Hence, for a specific case study, the selection of a statistical
downscaling method might depend on the physical geographical characteristics of
the catchment. However, we recommend the use of a set of statistical downscaling15

methods as well as an ensemble of climate model projections. The selection of
statistical downscaling methods should include methods able to represent changes
in the precipitation property studied as well as methods based on different underlying
assumptions.

Appendix A: Verification of matrix reconstruction approach20

A1 Comparison of results using 2 and 3 sources of variance

This verification approach assesses the influence of the matrix reconstruction
procedure on the percentage of the total variance explained by climate models
(influence of GCM–RCM simulations) and SDMs. For this purpose, the variance
decomposition approach has been applied considering two sources of uncertainty:25
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SDMs and climate models (the 15 RCM–GCM simulations). In the case of two sources
of variance, there is no need to reconstruct the matrix.

Table A1 shows the percentage explained by the climate models and SDMs
estimated considering two and three sources of variance. The percentages for CY
are not shown for summer because EPI could not be calculated for a large number of5

cases, and the percentages for winter do not include the results from BCM and BCMV.
The percentage explained by the GCM–RCM simulations and the SDMs is similar when
considering two or three sources of variances. Additionally, the conclusion on which is
the most important source of variance is the same for all catchments except for DE and
PL in winter. For these two catchments, the percentage explained by the GCM–RCM10

simulations is approximately 50 %.

A2 Comparison of reconstructed and original values

A similar verification approach as the one carried out in Déqué et al. (2007) has also
been used. It consists in removing the data for one combination of RCM–GCM and
using the matrix reconstruction approach to estimate its values for all SDMs. The15

reconstructed values are then compared with the original values and also with two
other combinations of RCM–GCMs (one using the same RCM and one using the
same GCM). This test is applied to two RCM–GCM simulations: RCA-ECHAM5 and
HIRHAM-BCM.

The reconstructed vector for these combinations is referred to as EPIRG. In the case20

of RCA-ECHAM5, EPIRG is compared with the vectors found for: (i) the original EPI
values found for RCA-ECHAM5; (ii) the combination RCA-BCM (EPIR in Table A2);
(iii) and the combination REMO-ECHAM5 (EPIG in Table A2). In the case of HIRHAM-
ARPEGE, EPIRG is compared with the original values, with HIRHAM-ARPEGE (EPIR),
and RCA-BCM (EPIG). Table A2 shows the average of the RMSE obtained for all the25

catchments, T-yr levels, seasons, and temporal aggregations.
Table A2 shows that in the case of RCA-ECHAM5, the difference between the

reconstructed and the original values is smaller than the difference between the
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reconstructed values and the other two RCM–GCM combinations. However, in the case
of HIRHAM-BCM, the difference between the reconstructed and the original values is
higher than the difference between the reconstructed and the other two RCM–GCM
combinations.

This results show that in some cases the reconstructed values can differ more from5

the original values than they differ from other models. Hence, the variances estimated
in the variance decomposition approach are likely to be affected by the reconstructed
values.
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Table 1. Summary of the main characteristics of each catchment. The column with label
“extremes” indicates the season where most precipitation extremes occur. The catchments
are sorted from north to south, being the top row the most northern catchment.

Name River Area Median Data used for Mean annual Extremes Observation
[km2] altitude calculation of precipitation period

[m] catchment [mm yr−1]
precipitation

NO2 Nordelva 207 349 1×1 km grid 2437 Winter 1957–2010
Tveito et al. (2005)

NO1 Atna 463 1204 1×1 km grid 852 Summer 1957–2010
Tveito et al. (2005)

DK Aarhus Å 119 65 10×10 km grid 868 Summer 1989–2010
DMI (2012)

LT Merkys 4416 109 1 station 658 Summer 1961–1990
BE Grote Nete 383 32 6 stations 828 Summer 1986–2003
DE Mulde 6171 414 43 stations 937 Summer 1951–2003
CZ2 Upper Metuje 67 588 1×1 km grid 788 Summer 1980–2007

Šercl (2008)
CZ1 Jizera 2180 365 10 stations 860 Summer 1951–2003
PL Nysa Kłodzka 1083 316 2 stations 589 Summer 1965–2000
TR Gocbeylidere 609 153 1 station 850 Autumn 1960–1990
CY Yermasoyia 157 575 2 stations 640 Winter 1986–1997
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Table 2. Matrix of RCM–GCM combinations considered in this study and source of the RCMs.
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16
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0

A
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P
E

G
E

RCM–GCM Institute

RM5.1 × National Centre for Meteorological Research in France
RACMO2 × Royal Netherlands Meteorological Institute

RCA × × × Swedish Meteorological and Hydrological Institute
REMO × Max Planck Institute for Meteorology
RCA3 × Community Climate Change Consortium for Ireland
CLM × Swiss Federal Institute of Technology

HadRM3Q0 × UK Met Office
HadRM3Q3 × UK Met Office

HadRM3Q16 × UK Met Office
HIRHAM5 × × × Danish Meteorological Institute
RegCM3 × International Centre for Theoretical Physics
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Table 3. Summary of the advantages and disadvantages of each statistical downscaling
method. The name of the institution that undertook the downscaling work is included in the
first column.

SD method Advantages Disadvantages

Bias correction
of mean
(T. G. Masaryk Water Re-
search Institute, Faculty of
Environmental Sciences)

Easy to apply and little computer time required.
Preserves the sequences of dry/wet days from the RCMs.
It accounts for different corrections in different time
windows.

It only corrects the mean precipitation of the RCMs.

Bias correction
of mean and variance
(T. G. Masaryk Water Re-
search Institute, Faculty of
Environmental Sciences)

(same as bias correction of mean)
It allows for distinct corrections between mean and
variance.

The non-linear transformation may lead to unexpectedly large
precipitation amounts.
The autocorrelation from the RCMs is not corrected, but it is
affected by the bias correction approach.

Bias correction
quantile mapping
(NVE)

Easy to apply and little computer time required.
Preserves the sequences of dry/wet days from the RCMs.
Distinction between corrections in mean and extreme
precipitation.
The frequency of precipitation is corrected.
No theoretical distribution is assumed.

The correction of the upper tail is based on relatively few values
(empirical distribution based).
The same correction is applied for all the seasons.
The autocorrelation from the RCMs is not corrected, but it is
affected by the bias correction approach.

Expanded downscaling (U.
Potsdam)

Generates realistic weather consistent with large-scale
atmospheric patterns.
Able to employ full range of predictor variables.
It preserves co-variability between the predictands.

High demand for climate model accuracy; systematic biases
can cause large errors.
Requires large computation time and data preparation.
No fully objective way of selecting the predictors.

Change factor
of mean
(DHI, DTU)

Easy to apply and little computer time required.
It accounts for different changes in different months.

It only accounts for changes in mean precipitation.
Does not account for changes in the length of dry/wet spells.

Change factor
of mean and variance (DHI,
DTU)

(same as change factor of mean)
Distinction between changes in mean and variance.

Does not account for changes in the length of dry/wet spells.
The autocorrelation of precipitation may be disturbed.
The non-linear transformation may lead to unexpectedly large
precipitation amounts.

Change factor
quantile mapping
(DTU)

(same as change factor of mean)
Distinction between changes in mean and extreme
precipitation.
No theoretical distribution is assumed.

Does not account for changes in the length of dry/wet spells.
The changes in the tails are based on relatively few values.
The autocorrelation of precipitation may be disturbed.

Change factor
quantile perturbation (KU
Leuven)

(same as change factor quantile mapping)
Changes in the frequency of precipitation are accounted
for.

The changes in the tails are based on relatively few values.
The autocorrelation of precipitation may be disturbed, although
this is checked.
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Table A1. Percentage of the total variance explained by the GCM–RCM simulations (G+R) and
SDMs (S) considering 2 and 3 sources of variance. The contribution of the GCMs and RCMs
is shown in brackets.

Nr. Winter Summer

sources G +R S G +R S

NO2
2 68 32 51 49
3 69 (29+40) 31 52 (14+38) 48

NO1
2 51 49 60 40
3 51 (13+38) 49 61 (13+48) 39

DK
2 60 40 65 35
3 62 (22+40) 38 67 (26+41) 33

LT
2 59 41 60 40
3 57 (20+37) 43 57 (10+47) 43

BE
2 69 31 51 49
3 71 (30+41) 29 52 (15+37) 48

DE
2 49 51 62 38
3 51 (18+33) 49 61 (16+45) 39

CZ2
2 54 46 61 39
3 55 (15+41) 45 57 (14+43) 43

CZ1
2 60 40 64 36
3 58 (24+34) 42 59 (19+40) 41

PL
2 51 49 55 45
3 48 (21+28) 52 50 (19+30) 50

TR
2 57 43 46 54
3 55 (19+35) 45 42 (19+23) 58

CY
2 55 45
3 55 (21+34) 45
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Table A2. Average RMSE from the comparison of the reconstructed and original values and
the comparison with other combinations of GCM–RCM.

RCM–GCM Original EPIR EPIG

RCA-ECHAM5 0.47 0.60 0.61
HIRHAM-BCM 2.49 1.46 2.45
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Figure 1 - Location of the eleven catchments studied. 4 

  5 

Figure 1. Location of the eleven catchments studied.
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 1 

Figure 2 – EPI estimated from the comparison of the downscaled time series for control and future 2 

period for 1 yr (light grey boxes) and 5 yr levels (dark grey boxes). The boxes indicate the 25, 50 3 

and 75
th

 percentiles and the whiskers the 5 and 95
th

 percentiles. The circles show the median of all 4 

the values of EPI estimated from the comparison of the RCM outputs for the control and future 5 

periods. All the results are for a temporal aggregation of 1 day.  6 
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Figure 2. EPI estimated from the comparison of the downscaled time series for control and
future period for 1 yr (light grey boxes) and 5 yr levels (dark grey boxes). The boxes indicate the
25th, 50th and 75th percentiles and the whiskers the 5th and 95th percentiles. The circles show
the median of all the values of EPI estimated from the comparison of the RCM outputs for the
control and future periods. All the results are for a temporal aggregation of 1 day.
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 1 

Figure 3 – In the top row, total variance decomposed in variance from GCMs, RCMs, SDMs and all 2 

the interaction terms (darkest to lighter grey colours). In the bottom row, percentage of the total 3 

variance explained by GCMs, RCMs, and SDMs (darkest to lighter grey colours). All the results are 4 

shown for 1 and 5 yr levels in the left and right column of each catchment, respectively. All the 5 

results are for a temporal aggregation of 1 day. 6 
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Figure 3. In the top row, total variance decomposed in variance from GCMs, RCMs, SDMs
and all the interaction terms (darkest to lighter grey colours). In the bottom row, percentage
of the total variance explained by GCMs, RCMs, and SDMs (darkest to lighter grey colours).
All the results are shown for 1 and 5 yr levels in the left and right column of each catchment,
respectively. All the results are for a temporal aggregation of 1 day.
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 1 

Figure 4 – EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 2 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. All results are for the 1 yr level and temporal aggregation of 1 day. Note the different 4 

scales used in the y-axis for winter and for summer. 5 

  6 

NO2 DE TR

0.8

1

1.2

1.4

E
P

I

NO2 DE TR

0.5

1

1.5

2

E
P

I

BCM

BCMV

BCQM

XDS

CFM

CFMV

CFQM

CFQP

Figure 4. EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The
markers indicate the median and the lines represent the range covered by the 25th and 75th
percentiles. All results are for the 1 yr level and temporal aggregation of 1 day. Note the different
scales used in the y axis for winter and for summer.
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 1 

Figure 5 - EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 2 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 4 

aggregation. The same symbols are used for the different downscaling methods as in Fig. 4. Note 5 

the different scales used in the y-axis for winter and for summer. 6 
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Figure 5. EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The
markers indicate the median and the lines represent the range covered by the 25th and 75th
percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers)
temporal aggregation. The same symbols are used for the different downscaling methods as in
Fig. 4. Note the different scales used in the y axis for winter and for summer.
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 1 

Figure 6 – EPI estimated from the comparison of the observations and the downscaled time series 2 

by all BC methods for the control period for 1 yr (light grey boxes) and 5 yr levels (dark grey 3 

boxes). The boxes indicate the 25, 50 and 75
th

 percentiles and the whiskers the 5 and 95
th

 4 

percentiles. The circles show the median of all the values of EPI estimated from the comparison of 5 

the observations and the uncorrected RCM outputs for the control period. All the results are for a 6 

temporal aggregation of 1 day. 7 
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Figure 6. EPI estimated from the comparison of the observations and the downscaled time
series by all BC methods for the control period for 1 yr (light grey boxes) and 5 yr levels (dark
grey boxes). The boxes indicate the 25th, 50th and 75th percentiles and the whiskers the 5th
and 95th percentiles. The circles show the median of all the values of EPI estimated from the
comparison of the observations and the uncorrected RCM outputs for the control period. All the
results are for a temporal aggregation of 1 day.
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 1 

Figure 7 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 2 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. All the results are for the 1 yr level and temporal aggregation of 1 day. Note the 4 

different scales used in the y-axis for winter and for summer. 5 
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Figure 7. EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom).
The markers indicate the median and the lines represent the range covered by the 25th and
75th percentiles. All the results are for the 1 yr level and temporal aggregation of 1 day. Note
the different scales used in the y axis for winter and for summer.
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 1 

Figure 8 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 2 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 4 

aggregation. All the results are for 1 yr threshold. The same symbols are used for the different 5 

downscaling methods as in Fig. 7. Note the different scales used in the y-axis for winter and for 6 

summer. 7 
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Figure 8. EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom).
The markers indicate the median and the lines represent the range covered by the 25th and
75th percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers)
temporal aggregation. All the results are for 1 yr threshold. The same symbols are used for
the different downscaling methods as in Fig. 7. Note the different scales used in the y axis for
winter and for summer.
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