
Comments on “Inter-comparison of statistical downscaling methods for projection of extreme 

precipitation in Europe” by M. A. Sunyer et al. 

 

General comments 

We would like to thank both reviewers for providing clear and relevant reviews and suggestions for 

improvement. We have tried our best to incorporate all the comments and suggestions from all the reviewers, 

which we think have improved the quality of the paper.  

 

In addition to the comments from the reviewers, and following the suggestions from the editors, we have 

extended our literature review and evaluated our results in more detail in relation to the existing literature, 

see changes in e.g.: second paragraph page 4, first paragraph page 5, page 18 line 13 – 31, page 21 line 

6 – 10, page 25 line 9 – 20. We have left the acronyms for the catchments in the manuscript. We have not 

created an appendix with a list of the acronyms as they are specified in Table 1, together with the main 

characteristics of the catchments. The marked-up manuscript version is included after the comments of the 

referees, all the changes have been highlighted in yellow.  

 

 

Anonymous Referee #1 

Received and published: 10 July 2014 

The authors apply different bias-correction/downscaling (BC/DS) methods to RCM simulated daily 

precipitation time series in 11 European catchments. They evaluate how the methods differ both 

with respect to the agreement with observations in the control period and with respect to future 

changes, in both cases with focus on extreme values of duration between 1 day and 1 month. 

Overall limited differences are found with weak dependence on e.g. location and duration. 

Precipitation BC/DS is generally a key activity in hydrological climate change impact studies and 

evaluation/comparison of methods is an important activity. The experiment is very comprehensive, 

spanning a wide range of climate projections, methods and catchments. The outcome must be worth 

sharing in the scientific community, but I think substantial revision of this manuscript is needed 

before publication, mainly for the reasons discussed in the following.  

 

1. The overall conclusion is essentially that there is no best method but we must use many, and on 

an as large an ensemble of RCM-projections as possible. In reality, however, it is extremely rare 

to have such resources but the impact study must be limited to one BC/DS method applied to a 

small RCM-ensemble (or even just one projection, it is not unusual). Thus I think that a key 

objective of this kind of study must be to provide advice and recommendations for real-world, 

limited-resource impact studies. If precipitation extremes are the key focus, what should we do? 

With all these results and all these (prominent) authors it must be possible to provide more useful 

knowledge, conclusions and advice than what is currently the case, only “highlight the need for 

considering an ensemble” is not of enough help. For example different methods are to various 

degree prone to different problems like (1) cannot be applied/create unrealistic extreme values 

under some circumstances, (2) increases the bias in precipitation extremes under some 

circumstances, (3) modifies the climate change signal with respect to changes in extreme 

precipitation under some circumstances, (4, 5: : :). Further different methods are more or less 



prone to deviate from the rest in other aspects. A systematic review of this kind of key issues 

would provide very useful information.  

 

- We have now extended the discussion on the selection of downscaling methods. It is 

difficult to point to a specific best method as it depends on several factors and the results 

might be different depending on the application, but we have pointed out some issues that 

arise from the use of some methods (such as BCM, BCMV, CFM,…), which implies that 

they should not be selected for some specific applications (see page 21 lines 21 –  26). 

Throughout the paper we have also extended the discussion regarding the ability of the 

models to correct the RCM outputs (page 23 lines 2 – 12, page 25 lines 23 – 24) as well as 

preserve the climate change signal (see page 17 lines 13 – 23 and page 21 lines 11 – 21) 

from the RCMs (as recommended in some other comments below). This helps to provide 

information on which methods should and should not be selected and why. We think that it 

is important to highlight the need of using (when possible) an ensemble of methods to be 

able to assess the uncertainty in extreme precipitation projections. We have described the 

main characteristics that the methods included in the ensemble should cover (different 

underlying assumptions, different RCM outputs, preserving climate change signal, …) (see 

also page 27 line 13 – page 28 line 4 and page 28 lines 11 – 15).  

 

2. As I understand it the authors have calibrated the methods on the full set of reference data 

available and then applied to the same set of data (as well as the future-period data). However, I 

think this type of study needs to also include some kind of cross-validation analysis for 

historical periods, i.e. calibrate on one period and verify for another. This may not be possible 

for all catchments but in many there are some 50 years of data so you could split equally, divide 

30/20 or something else. I think this kind of analysis is crucial for assessing the uncertainty 

when applying the methods to future periods. 

 

- We agree that the validation of these methods is crucial. However, the proper validation of 

statistical downscaling methods is difficult and should be carried out with care. As 

recommended in several studies (e.g. Refsgaard et al. 2014; Teutschbein and Seibert, 2013), 

it should be done using data that has different properties to be able to assess whether the 

downscaling methods can be used to project climate changes. It would be possible to carry 

out validation analyses with the data available, but if the observational data do not show a 

pronounced change in extremes, then the results of the validation analyses would be 

questionable. The validation of statistical downscaling methods is very relevant and needed 

but it would require an almost new study in itself. A range of recent studies (e.g. Räisänen 

and Räty 2013; Refsgaard et al. 2014; VALUE cost Action http://value-cost.eu/) focus 

exclusively on methods and techniques to properly validate statistical downscaling methods. 

We consider that further research continuing this study should focus on the validation of the 

methods used here. This discussion regarding the challenges in the validation of statistical 

downscaling methods has been added to the manuscript (see page 4 lines 3 – 6, page 22 

lines 19 – 31, and page 24 lines 9 – 19).  

http://value-cost.eu/


 

Räisänen, J. and Räty, O.: Projections of daily mean temperature variability in the future: cross-validation tests 

with ENSEMBLES regional climate simulations, Clim. Dyn., 41, 1553–1568, doi:10.1007/s00382-012-1515-

9, 2013. 

Refsgaard, J. C., Madsen, H., Andréassian, V., Arnbjerg-Nielsen, K., Davidson, T. A., Drews, M., Hamilton, 

D. P., Jeppesen, E., Kjellström, E., Olesen, J. E., Sonnenborg, T. O., Trolle, D., Willems, P. and Christensen, J. 

H.: A framework for testing the ability of models to project climate change and its impacts, Clim. Change, 122, 

271–282, doi:10.1007/s10584-013-0990-2, 2014. 

Teutschbein, C. and Seibert J.: Is bias correction of regional climate model (RCM) simulations possible for 

non-stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077, doi: 10.5194/hess-17-5061-2013, 2013. 

 

3. I find the presentation of results hard to follow. Results from different periods focusing on 

different aspects are mixed under the headings “all catchments” and “selected catchments”. I 

think the paper would benefit from being structured more like the bullets 1-4 on l 13-25, p 6181. 

 

- We agree that the headings used for the different sections are not very helpful for the reader 

to identify what is discussed in each section. The sections are organized as the 1-4 bullet 

points in page 13. We have renamed the sections in order to link their name with the bullet 

points. For example, the section 4.1 called “Statistical Downscaling methods” has been 

renamed to “Comparison of the downscaled time series for the control and future periods” 

so it matches the comparison in bullet point 1. Similar changes have been applied to the 

other headings in the results section.  

 

4.  Related, I think the paper would benefit substantially from more distinct objectives. Now they 

are rather vaguely and incompletely formulated like “comparing BC/DS methods” or “assess the 

changes in extreme precipitation”. It would be better to formulate some distinct hypotheses to 

investigate. Focus on apparent current knowledge gaps that this study can help filling. 

 

- We agree that the objectives were not clearly stated. We have now described more clearly 

the key objectives of this study and how they relate with the current knowledge gaps. The 

key objectives of this study are: to identify if there are general similarities and/or 

dissimilarities between the statistical downscaling methods; to assess whether there are 

common trends regarding changes in extreme precipitation over Europe; to assess the main 

sources that lead to the variability in the results. See changes in the text in page 5 line 10 

and lines 18 – 23. 

 

The Results section is largely a textual description of the tables and figures with little interpretation 

or explanation or speculation of the reasons behind the findings. Sometimes it is speculated, but in 

those cases they could often have gone back to the results and for verification. See further specific 

comments below.  

Specific comments: 

5. 20, 6169: It sounds puzzling that bias correction improves the agreement with observations only 

“in most cases”, clarify that is concerns the extremes.  

 



- The fact that some of the bias correction methods do not lead to an improvement compared 

to the RCMs is now discussed in more detail. See discussion in comment 22. 

 

6. 13-23, 6171: You need to indicate also what relevant knowledge that was found in these studies. 

 

- The main conclusions regarding the influence of different sources of uncertainty from these 

studies are now discussed in the text. These are: Bürger et al., (2013) concluded that the 

main influences on the overall results for different extreme indices were the downscaling 

method followed by the climate model used. Sunyer et al. (2012) and Hanel et al. (2013) 

highlighted that the influence of the statistical downscaling method used on the variation of 

the results is more pronounced in the case of extreme events (extreme precipitation in the 

case of Sunyer et al. (2012) and droughts in the case of Hanel et al. (2013)). Wilby and 

Harris (2006) concluded that the in the case of low flows the main sources of variation are 

the statistical downscaling methods (SDM) and climate models used. Lawrence and 

Haddeland (2011) showed that in rainfall dominated catchments, the uncertainty arising 

from the hydrological parameters was more significant than other sources. But in snow 

dominated catchments, climate scenarios and SDMs were the main source of uncertainty. 

This discussion has been added in the manuscript in page 4 lines 12 – 23, 26 – 28, and 29 – 

(page 5) 9. 

 

7. 24, 6171: Is not comparing BC/DS methods rather the main focus? 

 

- Yes, the comparison of statistical downscaling methods is one of the main objectives of this 

study. In addition, this study also addresses the main sources of variability in the results as 

well as comparing the magnitude and direction of the changes in eleven European 

catchments. See the comment 4 regarding the need for more distinct objectives. The 

different objectives of the study have been stated more clearly in the manuscript.  

 

8. 3-6, 6173: Was the gridded data not based on observations?, if so how were they derived? 

 

- The gridded data was based on observations. The information regarding the methods used to 

obtain the gridded data is given in the references specified in Table 1. It has been clarified in 

the text that the gridded data is based see page 6 line 20on observations from station data,. 

 

9. 2.1, 2.2: What was the volume resolution in the observations?, 0.1 mm?, was the same cut-off 

used for the RCM data for consistency?  

 

- The cut-off value in the observations varies depending on each catchment. The cut-off 

values were not applied to the RCMs as it is not relevant for the study of extreme 

precipitation. Nonetheless, several downscaling methods include a threshold of wet/dry days 

which addresses the issue of the cut-off values (in addition to accounting for changes in the 

frequency of wet/dry days in a future climate). The different cut-off values of the 



observations and the fact that they are not used in the RCMs is now discussed in the text 

(see page 6 line 21 – 25).  

 

10. 5, 6174: Rummukainen is misspelled and not in reference list, check carefully before 

submitting, should not be my task.  

 

- Corrected. 

 

11. 10-12, 6175: I think harmonisation would have been much better, why not used?  

 

- This paper is a result of a coordinated effort where different research groups contributed 

with the different methods that they use. We agree that harmonisation would have been 

nicer but the methods were applied as previously used in other studies by the group. The 

reason for the approach used is now mentioned in the manuscript (see page 8 line 20 – 23).  

 

12. 22-23, 6176: What if there are more wet days in OBS than in RCM? 

 

- This is not the case for any of the RCMs when the bias correction is applied to the full time 

series, without distinguishing months or seasons, as has been done in this application.   

 

13. 19, 6177 – 5, 6178: As acknowledged it seems questionable to train on RCM-ERA and then 

apply on RCM-GCM without any correction. Can you provide some information on the 

additional error introduced? 

 

- With respect to the downscaling, the XDS model is optimally trained given the available 

RCM data. With respect to the RCM data, however, better RCM realizations could be 

achieved by a second data assimilation with the RCM-ERA-40 runs (beyond the data 

assimilation which is already done for the ERA-40 reanalysis) in a similar way as done e.g. 

in the North American Regional Reanalysis (NARR) (Mesinger et al., 2010). The additional 

error introduced when applying XDS to RCM-GCM simulations cannot be quantified. For 

clarification we have added the following sentence to page 10 line 20 - 23: “A second data 

assimilation with the RCM-ERA-40 runs (beyond the data assimilation which is already 

done for the ERA-40 reanalysis) would overcome this problem to some degree. However, 

such runs are not available for the RCMs accessible from the ENSEMBLES archive.” 

 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, 

E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D. and Shi, 

W.: North American Regional Reanalysis, 2010.  

 

14. 9-12, 6179: The intervals are very small (and different from BCQM). It is well known that there 

may be an enormous variation in the very highest quantiles (above 99 or so), I think it needs to 



be demonstrated that using 0.0005 works well, instead of smoothing out the fluctuations a bit 

with larger intervals.  

 

- The probability intervals are estimated using linear interpolation from the empirical 

quantiles, so as in the case of CFQP and BCQM the fluctuations in the CFs are due to the 

fluctuations in the empirical quantiles. The possibility of large fluctuations in the changes 

estimated using empirical quantiles is a disadvantage of using empirical methods as used in 

this study, but empirical methods have the advantage that there is no need to fit a 

distribution to the data. In methods where distributions are fitted changes would be 

smoothed; however, with a risk to over-smooth the changes and introduce a bias in the 

estimated quantiles. It should also be noted that in most catchments the results of CFQM 

and CFQP are virtually the same, and CFQP uses different intervals than CFQM (but also 

estimated from the empirical quantiles). This discussion on the problem of fluctuations in 

the CF has been added to the text, see page 12 line 23 – 26.  

 

15. 15, 6185: What is a “threshold return level”? 

 

- Corrected to only “thresholds”. 

 

16. 20-27, 6185: Assessing to which degree BC/CS modifies the CC signal is important and needs 

more attention. More analysis and interpretation is needed. What is the change increased after 

BC/DS? What is the reason for the regional changes? Dig in the results. 

 

- We agree that it is important to assess whether the difference in the change projected for 

extreme precipitation using the downscaled time series differs from the change projected by 

the uncorrected RCMs. This has now been discussed in more detail using the overall results 

for all the catchments (results in Figure 3) and in detail for each downscaling method for 

three of the catchments (results in Figure 4). Overall the change in signal introduced by the 

downscaled series is not significant compared to the change projected by the RCMs, but 

some SDMs (CFM and in some cases XDS, BCM, and BCMV) tend to lead to different 

values than the ones obtained from the RCMs. These methods do not specifically correct or 

take into account the changes in extremes which might lead to differences in CC signal. On 

the other hand, the methods that are expected to better account for changes in extremes tend 

to show more similar results to the ones obtained for the RCMs, especially the BCQM 

method. It is now discussed in the paper (in the description of the methods and further 

emphasised in the discussion of results) how the different methods are suited for handling 

changes in extremes. There are not specific regional differences in the change of the CC 

signal from the downscaled series and the RCM series, except the fact that larger differences 

are obtained for the catchments in Turkey and Cyprus, as already shown some downscaling 

methods do not work well in these catchments. See, for example, page 17 lines 13 – 23 and 

page 21 lines 11 – 21. 

 



17. 7, 6188: “most likely” – check in the data 

 

- The large EPI value found for this method in winter and in the Mulde catchment is due to 

the influence of two very large extremes created in the correction of the RCMs for the 

future. These are two events of 60 and 55 mm/day. From the BCM and BCQM the largest 

values obtained are approximately 40mm/day and the largest value obtained for the control 

period is 27mm/day. This is now described in a more clear way in the manuscript (see page 

20 lines 12 – 14). In addition, the fact that BCMV may lead to unrealistic results is 

discussed in the selection of downscaling methods in the summary and conclusions section.  

 

18. 21, 6188: “might be similar” – check in the data 

 

- We have checked that there are very few rainy days in the catchment in Turkey as in the 

case of the catchment in Cyprus, only approximately 20% of days are rainy days. This has 

been added to the text, see page 20 lines 29 – 31.  

 

19. 26-27, 6188: Why expect a larger impact in TR in summer? 

 

- Because in this catchment and in summer there are only very few rainy days. This implies 

that in some cases all the rainy days in a season are included in the selection of extreme 

events. Therefore, in this catchment the change in the number of wet days may have an 

effect on the changes in extreme precipitation. CFQM and CFQP differ in the way that 

CFQP accounts for the change in the number of wet days. This discussion has been added to 

the manuscript, see page 20 lines 29 - 31. 

 

20. 4.2: I think it would be more natural to have 4.2 before 4.1, i.e. first an evaluation in reference 

period and then results from future period. 

- We prefer to keep 4.2 after 4.1. We consider that the use and comparison of the 8 statistical 

downscaling methods is the main part of this study. 4.2 considers only four of the methods, 

and is an additional analysis which is only possible for the bias correction methods. 

 

21. 13, 6190: Not “extreme value index” but only “extreme values”, right? 

 

- Corrected.  

 

22. 5-15, 6191: Key paragraph which is far too compact. Only listing values is not very helpful; go 

much further, dig in the data, find out concretely why and under which circumstances the 

BC/DS methods decrease agreement with observations. 

 

- We agree that this is an important point to highlight. In order to address it in more detail we 

have discussed the issue from the summary of the results for all the catchments (Figure 6) 

and then in detail for three of the catchments. The results obtained from the RCMs have 



been added to Figure 7 in order to make this discussion possible. In general, in the 

catchments where the agreement between the observations and RCMs is good the 

downscaling methods used in this study are not able to improve it. In general, the simple 

BCM method tends to fail in improving the uncorrected RCMs more often than the other 

methods, but this should be tested for each case as it depends on the catchment.  See 

discussion in the manuscript in page 24 lines 2 – 12 page 25 lines 3 – 20.  

 

23. Table 3: Add the methods’ abbreviations. 

 

- The abbreviations of the downscaling methods have been added to Table 3. 

 

24. Table 3: That seasonality is not taking into account in BCQM is an application issue, not a 

disadvantage of the method. 

 

- This has been clarified in Table 3. In addition a note has been added to the table’s caption to 

point out that some of the advantages and disadvantages are specific to the application, 

which is now indicated in all cases in Table 3.  

 

25. Table 3: CFQP: ACF can be checked for all methods. 

 

- This has been clarified in Table 3. See comment also reply to comment 24.  

 

26. Fig 5: Add legend, referring to other figure is not sufficient. 

 

- The legend has now been added to both Figure 5 and 8. 

 

 

Anonymous Referee #2 

Received and published: 19 September 2014 

The paper evaluates and compares 8 different statistical downscaling methods applied to 11 

catchments in Europe using the ENSEMBLE projections. The study focused on extreme 

precipitation with return period of 1 and 5 years. The work is particularly useful for estimating 

hydrological impacts using climate model projections. I recommend moderate revision before it can 

be published. 

 

General comments: 

 

1. The discussion or results lacks critical thinking and interpretation. It largely discusses the 

figures in text but does not always provide reasons. Sometimes, the authors are speculating, e.g. 

“This is likely due to the fact that in Europe, extreme precipitation from convective storms 

occurs more frequently during summer, and this has a larger influence on the outputs from the 



RCMs and SDMs due to their higher spatial resolution.“ Do they know for sure extreme 

precipitation from convective storms occurs more frequently during summer in Europe and on 

what scales, daily, hourly? This needs to be supported by scientific evidence or citations. 

 

- We agree that more interpretation of the results would improve the paper. We now discuss 

and provide interpretation when possible to a few key results (in agreement with the 

comments from reviewer #1). These are: the discussion on the difference between the 

climate change signal obtained from the downscaled series and the uncorrected RCMs (this 

has been added see page 17 lines 13 – 23 and page 21 lines 11 – 21 and in agreement 

with the discussion in comment 16 from reviewer #1); the fact that some bias correction 

methods do not improve the performance of the uncorrected RCMs (this has been added in 

page 24 lines 2 – 12 page 25 lines 3 – 20 and in agreement with the discussion in 

comment 22 from reviewer #1); and discussion of the similarities and differences of the 

downscaling methods (discussion added in the summary and conclusions section). 

Regarding the convective storms in summer, we have added a few references addressing 

daily extremes over Europe and the fact that RCMs tend to perform worse in summer due to 

the difficulties in representing convective storms: 

 

Fowler, H. J. and Ekström, M.: Multi-model ensemble estimates of climate change impacts on UK seasonal 

precipitation extremes, Int. J. Climatol., 29, 385–416, doi:10.1002/joc.1827, 2009. 

Frei, C., Schöll, R., Fukutome, S., Schmidli, J. and Vidale, P. L.: Future change of precipitation extremes in 

Europe: Intercomparison of scenarios from regional climate models, J. Geophys. Res., 111, D06105, 

doi:10.1029/2005JD005965, 2006. 

Hofstra, N., Haylock, M., New, M. and Jones, P. D.: Testing E-OBS European high-resolution gridded data set 

of daily precipitation and surface temperature, J. Geophys. Res., 114, D21101, doi:10.1029/2009JD011799, 

2009. 

Lenderink, G.: Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model 

simulations, Clim. Res., 44, 151–166, doi:10.3354/cr00946, 2010. 

 

2. The conclusion is not very useful after lots of work put in the comparison of 8 different 

statistical downscaling methods. The authors state in the conclusion: “we recommend the use of 

a set of statistical downscaling methods as well as an ensemble of climate model projections.”. 

But the authors also state: “There is not a tendency in the performance of the bias correction 

methods depending on the mean and extreme precipitation regime. It also shows that the 

differences between the methods and the performance of the bias correction methods depends 

on the catchment studied.” It does not provide any insight to people who want to conduct impact 

studies and need to choose downscaling methods for a river catchment. If the methods do not 

show much difference, why should we use a set of downscaling methods? And if we do have the 

research capacity to use several of them, what should we do with the set of different methods? 

E.g. Do we use the mean value? Are certain types of downscaling methods more suitable for 

certain catchments? It seems the authors have rushed to the conclusion without critical thinking 

and interpretation of the results. 

 



- We have now extended the discussion on the selection of downscaling methods. It is 

difficult to point to a specific best method as it depends on several factors, but we have 

pointed out some issues that arise from the use of some methods (such as BCM, BCMV, 

CFM,…), which implies that they should not be selected for some specific applications. For 

example, in the case of BCMV it might lead to unrealistic precipitation events; CFM does 

not account for the fact that the change in extreme precipitation might be different than the 

change in mean precipitation; and BCM is in many cases not able to improve the 

representation of extremes compared to the uncorrected RCMs. Even if methods do not 

show large differences, if they are based on different assumptions they should be included in 

the ensemble of methods. When possible, we recommend using an ensemble of methods to 

be able to assess the uncertainty in extreme precipitation projections. See summary  of this 

discussion in page 27 line 13 – page 28 line 4 and page 28 line 11 – 15 and in the 

different sections in the manuscript in agreement with comments from both reviewer 

#1 and #2. 

 

3. The paper is full of acronyms (names of catchments and methods) which make it very hard to 

follow.  

 

- We agree that there are many acronyms in the paper and that in some cases it might be 

difficult to follow for the reader. In the revised version of the manuscript, the acronyms for 

the catchments have finally been maintained (see “General comments” in this document). 

However, the acronyms for the statistical downscaling methods have been kept. 

 

Specific comments: 

4. 6169-23: ’up to half’ is not strictly correct according to Figure 3. In the conclusion, authors use 

’at least 30%’ instead of ‘up to half’. The former is better.  

 

- The variance explained by the SDMs ranges from 30% to slightly more than 50%. It has 

now been made clearer in the text (see page 2 line 19) that at least 30% and up to 

approximately 50% of the total variance is due to the statistical downscaling methods used. 

 

5. 6170-18: ’approximately 25km’ but EURO-CORDEX is at a finer resolution.  

 

- True. It has been clarified in the text that the new EURO-CORDEX simulations have a 

higher spatial resolution (11 km) than most of the RCMs available which often have a 

resolution of approximately 25 km. See page 3 line 16 – 17. 

 

6. 6171-15: ‘Wetterhall et al. (2012) Conditioning model output statistics of regional climate 

model precipitation on circulation patterns’ provides another interesting comparison, worth 

adding to the literature review. 

 



- Wetterhall et al. (2012) provides an interesting comparison of downscaling methods. Their 

results showing that it was not possible to reject the hypothesis that all the SDMs perform 

equally well is interesting and relevant for this paper. This study has been included in the 

literature review in page 4 line 32. 

 

7. 6172-8: Hundecha et al., 2014. Is this already accepted or published? 

 

- The paper was submitted in September 2014. 

 

8. 6172-24: ‘where most extremes occur’. Throughout the paper, authors have not defined the 

extreme precipitation. Is it based on return period or percentile? 

 

- The season with more occurrences of extremes is estimated using the Extreme Precipitation 

Index. First the extreme events for the observational data sets are obtained using the 1 year 

return period threshold for the whole period. Then the season with more extremes is 

estimated from this extreme value series. Throughout the paper extremes are defined as 

described in the section “Extreme Precipitation Index”. This has been clarified in the text in 

page 6 line 13 – 15.  

 

9. 6173-5: ‘while the other catchments use’, change to ‘while the remaining use’ 

 

- Corrected for “while the remaining ones use” (page 6 line 21).  

 

10. 6176-11: ‘closed from’ change to ’closed form’ 

 

- Corrected. 

 

11. 6181-16/24: (i) and (iii) should be (1) and (3) 

 

- Corrected. 

 

12. 6184-3: ‘three source’ should be ‘three sources’ 

 

- Corrected. 

 

13. 6193-9: ‘for higher return levels’. There are only 1 and 5 years return levels presented in this 

study, so this should be ‘for the higher return level, 5 years’. 

 

- Corrected. 
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Abstract 1 

Information on extreme precipitation for future climate is needed to assess the changes in the 2 

frequency and intensity of flooding. The primary source of information in climate change impact 3 

studies is climate model projections. However, due to the coarse resolution and biases of these 4 

models, they cannot be directly used in hydrological models. Hence, statistical downscaling is 5 

necessary to address climate change impacts at the catchment scale.  6 

This study compares eight statistical downscaling methods often used in climate change impact 7 

studies. Four methods are based on change factors, three are bias correction methods, and one is a 8 

perfect prognosis method. The eight methods are used to downscale precipitation output from 9 

fifteen regional climate models (RCMs) from the ENSEMBLES project for eleven catchments in 10 

Europe. The overall results point to an increase in extreme precipitation in most catchments in both 11 

winter and summer. For individual catchments, the downscaled time series tend to agree on the 12 

direction of the change but differ in the magnitude. Differences between the statistical downscaling 13 

methods vary between the catchments and depend on the season analysed. Similarly, general 14 

conclusions cannot be drawn regarding the differences between change factor and bias correction 15 

methods. The performance of the bias correction methods during the control period also depends on 16 

the catchment, but in most cases they represent an improvement compared to RCM outputs. 17 

Analysis of the variance in the ensemble of RCMs and statistical downscaling methods indicates 18 

that at least 30% and up to approximately half of the total variance is derived from the statistical 19 

downscaling methods. This study illustrates the large variability in the expected changes in extreme 20 

precipitation and highlights the need of considering an ensemble of both statistical downscaling 21 

methods and climate models. Recommendations are provided on selection of the most suitable 22 

statistical downscaling methods to include in the analysis. 23 

  24 
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1. Introduction 1 

Both the frequency and intensity of extreme precipitation are expected to increase under climate 2 

change conditions in Europe (Christensen and Christensen, 2003; IPCC, 2012). Several climate 3 

studies have focused on assessing these changes (e.g. Fowler and Ekström, 2009; Frei et al., 2006; 4 

Kendon et al., 2008) and their consequences in relation to the risk of flooding (Christensen and 5 

Christensen, 2003; IPCC, 2012; Leander et al., 2008; Vansteenkiste et al., 2013). The main steps 6 

often followed in these studies comprise the selection of one or several global climate models 7 

(GCM), regional climate models (RCM) and/or statistical downscaling methods (SDM). In climate 8 

change impact studies, hydrological models are then used to estimate changes in hydrological 9 

variables.  10 

GCMs are the most comprehensive and widely used models for simulating the response of the 11 

global climate system to changes in greenhouse gas emissions. However, their spatial resolution 12 

(approximately 150 km) is often too coarse for addressing climate change impacts at the local scale, 13 

and variables such as precipitation are often biased. RCMs are climate models that cover a specific 14 

region (e.g. Europe) and use GCMs as boundary condition. RCMs have a higher spatial resolution 15 

(often approximately 25 km, but the new EURO-CORDEX simulations (Jacob et al., 2013) have a 16 

resolution of approximately 11 km) than GCMs, which makes them more adequate for assessing 17 

changes at the local scale. Nonetheless, RCMs often inherit the biases from the GCMs and their 18 

spatial resolution might still be too coarse for some impact studies (Maraun et al., 2010). Hence, 19 

further statistical downscaling is often needed to obtain bias-corrected projections at the local scale 20 

(Fowler et al., 2007). Statistical downscaling is based on defining a relationship between the large 21 

scale outputs of the RCMs (or GCMs) and the local scale variables required in impact studies 22 

(Fowler et al., 2007; Wilby et al., 2004). 23 

In recent years, a relatively large number of RCM outputs have been made available, but there is no 24 

consensus on the best way to assess their performance (Knutti et al., 2010). There are several 25 

challenges in evaluating RCMs. For example, a RCM might perform well for some variables in 26 

some regions but not for other variables. Moreover, even if a climate model performs well under 27 

present climate conditions it might not perform equally well under future conditions (Knutti, 2010). 28 

For these reasons, it is generally recommended to use a multi-model ensemble of RCMs (or GCMs) 29 

instead of using a single model (Knutti et al., 2010; van der Linden and Mitchell, 2009; Tebaldi and 30 

Knutti, 2007).  31 
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Similarly, a large number of SDMs have been suggested in the literature, but there is no consensus 1 

on the best SDM. Fowler et al. (2007) and Maraun et al. (2010) provide comprehensive reviews of 2 

the methods suggested in the literature and their suitability for different applications. As in the case 3 

of climate models, the validation of SDMs is challenging. Only a few recent studies address this 4 

issue (e.g. Maraun et al., 2013; Räisänen and Räty, 2013; Teutschbein and Seibert, 2012; Vrac et 5 

al., 2007).  6 

In order to account for the uncertainties in climate change impact studies and due to the lack of 7 

consensus on the best climate model and SDM, a number of studies consider multiple climate 8 

models and SDMs. For example regarding extreme events, Bürger et al. (2012 and 2013) used eight 9 

SDMs to downscale six GCMs forced with three emission scenarios, Sunyer et al. (2012) used five 10 

SDMs to downscale four RCMs driven by two GCMs, Hanel et al. (2013) used four SDMs and 11 

fifteen RCMs, and Kidmose et al. (2013) used two SDMs and nine RCMs. Bürger et al. (2012 and 12 

2013) assessed the performance and variance arising from the SDMs and GCMs. They concluded 13 

that the main influence on the overall results for different extreme indices (including both 14 

precipitation and temperature indices) was the downscaling method used followed by the climate 15 

model selected. In their study, the main source of variance depended on the index considered, but 16 

overall the climate models had more influence on precipitation than on temperautre indices. Sunyer 17 

et al. (2012) and Hanel et al. (2013) showed that the variation in the results arising from the use of 18 

several statistical downscaling methods is larger in the case of extreme events (extreme 19 

precipitaiton in the case of Sunyer et al. (2012) and droughts in the case of Hanel et al. (2013)). 20 

Kidmose et al. (2013) found that in the case of extreme groundwater levels in Denmark the variance 21 

arising from the RCMs was larger than from the SDMs, but in this case only two SDMs were 22 

considered.  23 

Some studies also consider hydrological models in the chain of uncertainties. For example, Wilby 24 

and Harris (2006) used two SDMs, four GCMs, and two emission scenarios combined with two 25 

hydrological model structures and two sets of hydrological model parameters. They concluded that 26 

the main sources of variation in the case of low flows are associated with the SDMs and GCMs 27 

used. Lawrence and Haddeland (2011) compared two SDMs, six RCMs driven by two GCMs, and 28 

two emission scenarios and used multiple parameter sets for the hydrological impact model. They 29 

found that for rainfall dominated catchments, the uncertainty arising from the hydrological 30 

parameters was more significant than other sources.   In snowmelt dominated catchments, however, 31 

climate scenarios and SDMs were the main source of uncertainty. Wetterhall et al. (2012) assessed 32 
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the variability in extreme discharge using three SDMs, sixteen RCMs, one hydrological model and 1 

a set of model parameters. The performance of the SDMs was evaluated and a best method was 2 

found, but it was not possible to reject the hypothesis that all SDMs perform equally well. 3 

Wetterhall et al. (2012) also concluded that more complex SDMs performed better than simple 4 

methods. A similar conclusion was reached by Räty et al. (2014) and Teutschbein and Seibert 5 

(2012). These two studies mainly focused on the validation of SDMs. Teutschbein and Seibert 6 

(2012) considered six SDMs and eleven RCMs for five Swedish catchments, while Räty et al. 7 

(2014) considered nine SDMs and six RCMs and considered two regions, Northern and Southern 8 

Europe.     9 

The main focus of this study is to assess and compare the changes in extreme precipitation obtained 10 

using a range of SDMs and RCMs in eleven European catchments. For this purpose, precipitation 11 

outputs from fifteen RCMs driven by six GCMs from the ENSEMBLES project (van der Linden 12 

and Mitchell, 2009) are downscaled using eight SDMs based on different underlying assumptions. 13 

Four SDMs are change factor methods, three are bias correction methods and one is a perfect 14 

prognosis method. Some previous studies have compared the results from change factors and bias 15 

correction methods (e.g. Hanel et al., 2013; Ho et al., 2012; Räisänen and Räty, 2013) for mean 16 

temperature and mean precipitation for specific catchments. Here we focus on changes in extreme 17 

precipitation in a range of catchments over Europe with different climates. A key objective of this 18 

study is to assess whether it is possible to identify general advantages and deficiencies of the 19 

different SDMs when applied to the different catchments, and hence outline recommended use of 20 

SDMs. In addition, this study also focuses on whether there are common trends in projected 21 

changes in extreme precipitation over Europe and what the main sources of variation in the changes 22 

in extreme precipitation are.      23 

The results presented here are based on a coordinated effort carried out as part of the COST Action 24 

FloodFreq (European Procedures for Flood Frequency Estimation, www.cost-floodfreq.eu). The 25 

outputs from this study have also been used as inputs to hydrological impact modelling in order to 26 

assess the changes in extreme discharge and flood frequency in the eleven catchments (Hundecha et 27 

al., submitted).  28 

The next section describes the case study catchments and the data used, followed by the 29 

methodology section. Section 4 presents and discusses the results, and section 5 summarizes the 30 

findings and conclusions of the study. 31 



6 
 

2. Case study catchments and data 1 

2.1. Observations 2 

Figure 1 shows the location of the eleven catchments studied and the main properties of each 3 

catchment are summarized in Table 1. The two most northern catchments are the Norwegian 4 

catchments Nordelva at Krinsvatn (NO2) and Atna at Atnasjø (NO1), and the most southern 5 

catchment is Yermasoyia (CY) in Cyprus. The size of the catchments varies from the 6171 km
2
 of 6 

Mulde (DE) in Germany to the 67 km
2
 of Upper Metuje (CZ2) in the Czech Republic. Different 7 

precipitation patterns are represented in the catchments. The mean precipitation ranges between 8 

2437 mm yr
-1

 in NO2 to 589 mm yr
-1

 in Nysa Kłodzka in Poland (PL). The season with more 9 

extreme precipitation events is summer for most of the catchments: NO1, DE, Aarhus in Denmark 10 

(DK), Merkys in Lithuania (LT), Grote Nete in Belgium (BE), and Jizera in the Czech Republic 11 

(CZ1). In NO2 and CY, winter is the season where most extremes occur, while in the Turkish 12 

catchment Omerli (TR) it is autumn. The season which is most subject to extremes is estimated 13 

from the extreme value series obtained considering the 1-yr threshold level and the whole time 14 

series (see section 3.2 for more details on how extreme precipitation is defined).  15 

FIGURE 1 16 

The observational data used is daily catchment precipitation, as the data were to be further used in 17 

catchment-based hydrological modelling in separate work (Hundecha et al., submitted). Different 18 

methods have been used to obtain areal precipitation time series. The catchments NO2, NO1, DK, 19 

and CZ2 use gridded data (derived from station data) to obtain areal average daily values for the 20 

catchment, while the remaining ones use station data to construct areal values. The cut-off value 21 

(threshold for dry days) for the observational data differs somewhat between the catchments. These 22 

catchment specific thresholds were not applied to the RCMs as they are not considered relevant for 23 

the analysis of extreme precipitation. Nonetheless some of the SDMs use thresholds to define dry 24 

and wet days (see section 3). 25 

TABLE 1 26 

2.2. Regional Climate Models 27 

The climate model data used in this study is an ensemble of fifteen RCMs from the ENSEMBLES 28 

project (van der Linden and Mitchell, 2009). These fifteen simulations are based on eleven RCMs 29 

driven by six different GCMs. Table 2 shows the combinations of RCMs-GCMs used. The spatial 30 
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resolution of all the models is 0.22° (approximately 25 km). For all the models, daily precipitation 1 

time series are available for the time period 1951–2100. In this study, we consider the time period 2 

1961–1990 and 2071–2100 as the control and future time periods, respectively. It must be noted that 3 

six RCMs do not have data available for the year 2100. The future period used for these models is 4 

2071-2099; this is not expected to have an influence on the results of this study. For each 5 

catchment, daily precipitation has been extracted from the 15 RCMs for the two periods using 6 

nearest neighbour interpolation to the catchment centroid. It must be noted that to simplify the 7 

calculations, the same control period is used for all the catchments. Therefore, in some catchments, 8 

the time period with observations (see Table 1) and the control period used from the RCMs do not 9 

fully overlap.  10 

TABLE 2 11 

3. Methodology 12 

3.1. Statistical downscaling methods 13 

Eight SDMs are used to obtain downscaled RCM projections at the catchment scale. These methods 14 

are based on the idea that it is possible to define a relationship between the large scale variables 15 

(RCM outputs) and local scale variables (catchment precipitation). Wilby and Wigely (1997) and 16 

Fowler et al. (2007) classify SDMs based on the relationship used to link large and local scale. They 17 

consider three groups: regression methods, weather type approaches and stochastic weather 18 

generators. Rummukainen (1997) classifies SDMs based on the information used from the large 19 

scale variables and defines two groups: perfect prognosis (PP) and model output statistics (MOS).  20 

Maraun et al. (2010) integrate both Rummukainen (1997) and Wilby and Wigely (1997) 21 

classifications and consider three groups: PP, MOS, and weather generators. According to this last 22 

classification, seven of the eight methods used here are MOS methods, and one method is a PP 23 

method.  24 

Here we further classify the seven MOS methods into change factor (CF) methods and bias 25 

correction (BC) methods. Four of the MOS methods considered are CF and three are BC methods. 26 

CF methods estimate the change from control to future period projected by the RCM in one or 27 

several statistics and apply this change to the observations. These methods are based on the idea 28 

that RCMs represent the change from the control to the future climate better than the absolute 29 

values of the variables. The BC methods define a transfer function for the RCM outputs for the 30 

control period to match certain statistical properties of the observations. This transfer function is 31 
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then used to correct the RCM outputs for the future period. CF methods preserve the temporal 1 

structure in the observed time series while BC methods preserve the temporal structure in the RCM 2 

outputs. It must be noted that both approaches are based on the assumption that the bias for the 3 

future period is identical to the bias for the control period, which may not be the case. Sunyer et al. 4 

(2014) show that the precipitation bias of the RCMs depends on the precipitation intensity and 5 

might change in the future.  6 

The following sub-sections briefly describe the eight SDMs. In the results section we refer to the 7 

SDMs as either CF or BC methods. For simplicity, the perfect prognosis method is grouped with 8 

the BC methods even though it does not strictly correct the RCMs. It is included with the BC 9 

methods because it defines a transfer function between the RCM for the control period and the 10 

observations and then applies this to the RCM output for the future period.  11 

A common terminology is used for describing the methods: P
Obs

 and P
Fut

 refer to the observed 12 

precipitation and the downscaled precipitation for the future period, respectively; and P
RCMCon

 and
  13 

P
RCMFut

 refer to the precipitation output from the RCMs for the control and future time period, 14 

respectively. Similarly, ECDF
Obs

 and ECDF
Fut

 refer to the empirical cumulative distribution 15 

function (ECDF) for the observed precipitation and for the downscaled precipitation for the future 16 

while ECDF
RCMCon

 and ECDF
RCMFut

 refer to the ECDF estimated from the RCMs for control and 17 

future time period, respectively. The methods used here have been implemented as suggested in the 18 

literature, i.e. no harmonisation has been applied to enable, for example, a common method for 19 

accounting for seasonality or the definition of wet days.  This is due to this study focused on the 20 

intercomparison of approaches in the way they are applied by the partners of FloodFreq COST 21 

Action, which was designed for the exchange and compilation of ideas and knowledge across 22 

participating countries. Table 3 summarizes the main advantages and disadvantages of each method. 23 

3.1.1. Bias correction of mean  24 

The bias correction of mean, BCM, is a simple method based on removing systematic errors in 25 

mean daily precipitation. It has been used in several hydrological applications (e.g. Hanel et al., 26 

2013; Leander and Buishand, 2007; Leander et al., 2008). Here the method proposed by Leander 27 

and Buishand (2007) is used. This is based on the transformation:  28 

RCMFutFut

jyjjy PaP ,,         (1) 29 
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where y is the year , j is the day of the year and aj  is the transformation parameter. aj is estimated in 1 

two steps. First, for all the years a subset of 61 days centred on day j is created for P.,j
Obs

 and 2 

P.,j
RCMCon

. Then, aj is estimated as the mean of P.,j
Obs

 divided by the mean of P.,j
RCMCon

.  3 

3.1.2. Bias correction of mean and variance  4 

The bias correction of mean and variance method, BCMV, is an extension of the BCM method. It 5 

corrects the RCM outputs considering systematic errors in both the mean and the variance. This 6 

method has been applied in several studies (e.g. Hanel et al., 2013; Leander and Buishand, 2007; 7 

Leander et al., 2008). The method suggested by Leander and Buishand (2007) is followed here, 8 

which is based on the transformation: 9 

  jb

jyjjy PaP RCMFutFut

,,          (2) 10 

where aj is estimated as described above for BCM,  and bj is estimated by equating the coefficient 11 

of variation of (ajP.,j
RCMCon

)
bj 

 and P.,j
Obs

. bj is found by iteration since it is not possible to solve this 12 

equation in closed form.  13 

3.1.3. Bias correction quantile mapping  14 

Bias correction based on quantile mapping, BCQM, has been widely used to correct RCM outputs 15 

over Europe (e.g. Dosio and Paruolo, 2011; Gudmundsson et al., 2012; Piani et al., 2010). The non-16 

parametric empirical quantile method suggested in Gudmundsson et al. (2012) is followed here. It is 17 

based on the concept that there exists a transformation h, such that: 18 

    RCMConRCMConObsRCMConObs
 PECDFECDFPhP 1      (3) 19 

First, all the probabilities in ECDF
Obs

 and ECDF
RCMCon

 are estimated at a fixed interval of 0.01. 20 

Then, h is estimated as the relative difference between the two ECDFs in each interval. 21 

Interpolation between the fixed intervals is based on a monotonic tricubic spline interpolation. A 22 

threshold for the correction of the number of wet days is estimated from the empirical probability of 23 

non-zero values in P
Obs

. All RCM values below this threshold are set to zero. The precipitation 24 

values for the full annual daily series are corrected without subsampling by season or month, as 25 

suggested by Piani et al., 2010. The method was implemented in R using the qmap package 26 

(Gudmundsson, 2014). 27 

3.1.4. Expanded downscaling 28 
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Expanded Downscaling, XDS, is a perfect prognosis technique which maps large-scale atmospheric 1 

fields to local station data. XDS was originally introduced for weather forecasting purposes, but it 2 

has been recently used in climate change studies (e.g. Bürger and Chen, 2005; Bürger et al., 2013; 3 

Dobler et al., 2012). The XDS approach is based on defining a multivariate linear regression 4 

between predictors y (multivariate fields of atmospheric variables) and predictands x (local scale 5 

variables, i.e. catchment precipitation), extended by the side condition that the local co-variability 6 

between the variables (and stations) is preserved: 7 

yxQXDS
Q

 minarg , subject to yyxQxQ '''  ,    (4) 8 

where XDS is the least square-solution of the matrix Q which is found among those that preserve 9 

the local covariance ( ). By this approach, the estimation of extremes is supposed to 10 

be improved compared to regular linear regression models.  See Bürger et al. (2009) for a detailed 11 

description of this method.  12 

The XDS model is first trained on RCM atmospheric fields driven by the ECMWF ERA-40 13 

reanalysis (Uppala et al., 2005) and local scale observations with at least 10 yrs of data. Then, RCM 14 

outputs for the control and future periods are used to generate time series at the local scale. 15 

Generally XDS allows for exploring a range of large scale variables as predictors. Large-scale 16 

reanalyses, however, are generally in better agreement with local observations than an RCM 17 

simulation driven by those reanalyses, simply because that the simulation likely differs from the 18 

actual weather realization which is used for XDS calibration. This has the consequence that a 19 

perfect prognosis approach is no longer perfect. A second data assimilation based on the RCM-20 

ERA-40 runs (in addition to the data assimilation which has already been done for the ERA-40 21 

reanalysis) would overcome this problem to some degree. However, such runs are not available for 22 

the RCMs accessible from the ENSEMBLES archive. For this study, the predictors were therefore 23 

chosen rather 'conservatively', with predictor variables being limited to large-scale total and 24 

convective precipitation. The result is a set of predictors that is, moreover, unique across all 25 

catchments. The XDS source code and documentation can be downloaded from: 26 

http://xds.googlecode.com. 27 

3.1.5. Change factor of mean 28 

The change factor of mean, CFM, is a simple method which has been widely applied in 29 

hydrological applications (Hanel et al., 2013; Prudhomme et al., 2002; Sunyer et al., 2012). It is 30 

yyxQxQ ''' 
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based on applying the change in mean precipitation projected by the RCMs to the observed data. 1 

The method described in Sunyer et al. (2012) is followed here. Similarly to BCM, this method is 2 

based on the transformation: 3 

ObsFut

tmmtm PaP ,,         (5) 4 

where m refers to the month and t to each time step in the observations; am is the relative change in 5 

the precipitation mean for month m. am  is estimated as the mean of P m,.
RCMFut

 divided by the mean 6 

of P m,.
RCMCon

.  7 

3.1.6. Change factor of mean and variance 8 

The change factor of mean and variance, CFMV, is an extension of CFM. It has been applied in 9 

several studies (e.g. Hanel et al., 2013; Räisänen and Räty, 2013; Sunyer et al., 2012). CFMV 10 

modifies the observed time series using the change in both the mean and variance. The method 11 

described in Sunyer et al. (2012) is followed here. Similar to BCMV, the method is based on the 12 

transformation: 13 

  mb

tmmtm PaP ObsFut

,,         (6) 14 

where am is estimated as described for CFM. bm is estimated by equating the coefficient of variation 15 

of the time series (amPm,.
Obs

)
bm

  and the coefficient of variation estimated for the future period. As in 16 

BCMV, this is solved by iteration. The coefficient of variation for the future period is calculated 17 

from the relative change in the mean and variance projected by the RCMs.  18 

3.1.7. Change factor quantile mapping 19 

The change factor quantile mapping, CFQM, is based on using the relative change in the ECDF 20 

projected by the RCMs to modify the observed data. It has been applied in several climate change 21 

studies (e.g. Boé et al., 2007; Olsson et al., 2009).   22 

This method uses the ECDF of wet days estimated for each month m for the observations, and the 23 

RCM output for the control and future periods. The probability intervals considered are 0.001 for 24 

quantiles lower than 0.9 and 0.0005 for higher quantiles (linear interpolation between intensities is 25 

applied to obtain the precipitation intensity for all the quantiles). Wet days are defined as days with 26 

precipitation higher than 1 mm. The perturbation of the observed time series is carried out in three 27 

steps. First, for each wet day in each month m, ECDFm
Obs

 is used to estimate the probability of the 28 

precipitation intensity. Second, the relative change in the intensity for this probability is estimated 29 
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from ECDFm
RCMFut

 and ECDFm
RCMCon

. This change is then multiplied to the observed precipitation 1 

intensity to obtain the intensity for the future period. Dry days in the observations are not modified. 2 

3.1.8. Change factor quantile perturbation 3 

The change factor quantile perturbation, CFQP, is similar to CFQM but it also accounts for changes 4 

in the number of wet days. Quantile perturbation methods can be performed either in a non-5 

parametric way (Ntegeka et al., 2014; Vansteenkiste et al., 2014; Taye et al., 2011; Willems and 6 

Vrac, 2011) or in a parametric way based on distribution calibration (Willems, 2013; Rana et al., 7 

2014). The version used here is the non-parametric one that was applied by Willems and Vrac 8 

(2011).  9 

The observations are perturbed using a two-step approach. First, the number of wet days (days with 10 

precipitation higher than 0.1 mm day
-1

) is changed for each month. The relative change in the 11 

frequency of wet days is estimated from the RCM output. If the frequency increases, dry days are 12 

randomly selected and replaced by random wet day intensities from the time series. Otherwise, wet 13 

days are randomly replaced by zero precipitation. In the second step, the wet day intensities are 14 

perturbed in a similar way as in the CFQM method. The empirical probability of each intensity is 15 

estimated, and the relative change in the intensity for each probability is then calculated (linear 16 

interpolation is applied when different probabilities are obtained for the control and future period) 17 

and used to perturb the observations.  18 

These two steps are repeated 10 times. The repetition that leads to the results closest to the mean 19 

monthly precipitation value of all the repetitions is selected. See Willems and Vrac (2011) for more 20 

details on this method, including checks of the coefficient of variation, skewness and 21 

autocorrelation for the results.  22 

It must be noted that in the case of BCQM, CFQM, and CFQP the use of empirical quantiles may 23 

lead to large fluctuations representing a lack of robustness in the values of the CF (or correction 24 

factors in the case of BCQM) for the highest quantiles. This is due to the fact that the highest 25 

quantiles are estimated using a limited number of values.  26 

3.2. Extreme precipitation Index  27 

The outputs from all the statistical downscaling methods are analysed using an extreme 28 

precipitation index (EPI). This is defined as the average change in extreme precipitation higher than 29 

a defined return period. In this study, the return period is set equal to 1 and 5 yrs. EPI is estimated 30 
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separately for each SDM, RCM, catchment, threshold return period, season and temporal 1 

aggregation. Four seasons are considered: winter (December to February), spring (March to May), 2 

summer (June to August), and autumn (September to November). Additionally, the index is 3 

estimated considering the whole time series, i.e. without dividing in seasons. The temporal 4 

aggregations considered are 1, 2, 5, 10, and 30 days. These are estimated using a moving average 5 

from the daily time series. 6 

The first step in the calculation of EPI is the extraction of the extreme value series from the 7 

precipitation time series using a Peak Over Threshold (POT) approach. Peaks are extracted by using 8 

the 1- and 5-yr threshold return periods. For example, with a 30-yr record, the 30 and 6 most 9 

extreme events are included in the extreme series for the 1- and 5-yr threshold levels, respectively. 10 

An independence criterion based on the inter-event time is applied to make sure that extreme values 11 

are independent, i.e. only values separated by more than t days are considered. t is set equal to 12 

the temporal aggregation, i.e. for an aggregation time of 1 day, events must be separated by more 13 

than one day. EPI is then estimated as: 14 

 

1

2

POT

POT
EPI         (7) 15 

where and are the averages of the selected POT values for reference and scenario, 16 

respectively. EPI takes the value of 1 if no change is estimated from reference to scenario and 17 

greater (less) than 1 if the average extreme precipitation is higher (lower) in the scenario time 18 

series.  19 

In the results section, EPI is used to compare the changes in the downscaled time series from 20 

control to future. Additionally, three further comparisons are carried out. In total EPI is calculated 21 

for four different cases:   22 

1. Comparison of the downscaled time series for the control and future periods. 23 

2. Comparison of the RCM outputs for control and future periods. This allows us to compare 24 

the changes estimated from the downscaled precipitation, estimated in (1), to the changes 25 

projected by the RCMs. 26 

3. For the four BC methods: comparison of the observations and the bias corrected RCMs for 27 

the control period. The value of the index for this comparison is a measure of the error of the 28 

BC methods in bias correcting the RCM outputs for extreme precipitation.  29 

1POT 2POT
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4. Comparison of the observations and RCM outputs for the control period. This comparison 1 

evaluates the performance of the RCMs in simulating extreme precipitation, and allows us to 2 

assess whether the error in the bias corrected time series, estimated in (3), is smaller than in 3 

the RCMs. 4 

3.3. Variance decomposition  5 

The variability in the EPI values found when comparing the downscaled time series for control and 6 

future arises mainly from three sources: GCMs, RCMs and SDMs. A variance decomposition 7 

approach is used to address the influence of each of these sources on the total variance for each 8 

catchment, return level, season and temporal aggregation. The approach described in Déqué et al. 9 

(2007, 2012) is followed here.  10 

The total variance of EPI, V, can be split into the different contributions as:  11 

 RGSGSRSRG  SGRV       (8) 12 

where R, G, and S are the individual parts of the variance explained by the RCMs, GCMs, and 13 

SDMs, respectively; RG, RS, and GS are the variance due to the interaction of RCM-GCM, RCM-14 

SDM, and GCM-SDM, respectively; and RGS is the variance due to the interaction of all three 15 

sources. The part of the total variance explained by the RCMs, V(R) is: 16 

RGSRSRG)(  RRV          (9) 17 

The part of the total variance due to the GCMs, V(G), and SDMs, V(S), can be obtained in a similar 18 

way. The variances in Eq. (8) and Eq. (9) can be estimated as: 19 
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where EPIijk is value of the index for RCM i, GCM j and SDM k, represents the average of EPI 21 

with respect to the subscripts that are replaced by a dot. The rest of the terms in Eq. (9) are 22 

estimated in a similar way as shown in Eq. (10). For more details see Déqué et al. (2007, 2012). 23 

Note that the observation errors in this approach are neglected in comparison with the other error 24 

sources.  25 

EPI
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As in Déqué et al. (2007), not all the terms in Eq. (10) can be estimated. This is because not all the 1 

combinations of RCM-GCMs are available (see Table 2). Déqué et al. (2007) suggested a simple 2 

method to reconstruct the missing data in the matrix of RCM-GCMs. This is based on minimizing 3 

the full interaction term RGS. However, this approach cannot be directly used here. This is because 4 

for the combinations of RCM i and GCM j that are not available there is no information on any of 5 

these SDM k values. Hence, in some cases it is not possible to estimate , which is needed to 6 

minimize the full interaction term RGS. For this reason, a slight modification is made to the 7 

approach suggested by Déqué et al. (2007). The approach followed here consists of two steps: (i) 8 

for all the combinations of i and j missing, is estimated by minimizing RG; and (ii) the values 9 

of EPIijk missing are estimated by minimizing RGS.  10 

A large number of gaps must be filled using this procedure. Two simple verifications have been 11 

carried out to check that the results are not largely affected by the matrix reconstruction approach. 12 

The first verification procedure is a simple comparison of the results from the variance 13 

decomposition described above with a variance decomposition approach, which considers only two 14 

sources of variance (climate models and SDMs). In the approach considering only these two 15 

sources, matrix reconstruction is not needed because all the elements in the matrix are known. The 16 

second verification procedure is similar to the verification carried out in Déqué et al. (2007). The 17 

two verification approaches and their results are described in Appendix A.  18 

The results from the first verification procedure show that the conclusion as to which is the most 19 

important source of variance is nearly the same when considering two or three sources for all 20 

catchments. Conversely, the results from the second verification show that the reconstruction 21 

approach can influence the results. From the results of the first verification, we decide to analyse the 22 

variance explained by the GCMs and RCMs separately (i.e. considering three sources of variance) 23 

because, in our opinion, it adds value to separate the influence of the GCMs and RCMs. 24 

Nonetheless, we acknowledge that the results must be treated with caution due to the uncertainty 25 

added in the matrix reconstruction procedure. 26 

 27 

TABLE 3 28 

.EPI ij

.EPI ij
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4. Results and discussion 1 

This section is divided into two main parts. The first part analyses the results of all SDMs. The 2 

second part focuses on the performance of the three BC methods and perfect prognosis method. All 3 

the results are shown for winter and summer as these are the two seasons where most of the 4 

extremes occur under present conditions. However, it should be noted that in some catchments 5 

changes in other seasons might also be important due to their influence on floods, see examples in 6 

Hundecha et al. (submitted). 7 

4.1. Comparison of the downscaled time series for the control and future periods 8 

This subsection analyses the results of the eight SDMs driven by all RCMs. A summary of the 9 

results obtained for all the catchments is first presented followed by a more detailed analysis of the 10 

differences between the SDMs for three selected catchments. 11 

4.1.1. Extreme precipitation index and variance decomposition for all catchments 12 

Figure 2 summarizes the results of all the SDMs and RCMs for all the catchments for winter and 13 

summer for a temporal aggregation of 1 day. Additionally, it compares the results of the SDMs with 14 

the changes between the control and future periods projected by the RCMs. For the catchment CY 15 

for some SDMs, two special situations are encountered. For the methods BCM and BCMV for both 16 

winter and summer periods, due to the few rainy days in some of the RCM simulations, some of the 17 

parameters take unrealistic values which lead to unrealistic values of EPI. Similarly, it is not 18 

possible to estimate the CFs used in the case of CFM, CFMV and CFQM in the summer period. 19 

The results of these methods are, therefore, not included in the analysis for CY. For the other 20 

catchments such problems with the SDMs were not encountered and all results are included in the 21 

analysis. 22 

For winter, extreme precipitation is expected to increase in all catchments (the median of EPI is 23 

greater than 1) except in CY. The median of EPI is similar for all catchments except for the two 24 

most northern catchments (NO1 and NO2) and the most southern catchment (CY). The EPI values 25 

range between 1.11 and 1.2 for the 1 yr threshold, and 1.14 and 1.22 for the 5 yr threshold. For this 26 

season, a similar variability is found for all catchments, except for CY, where the variability is 27 

slightly larger than in the other catchments. For summer, the median is also greater than 1 for all the 28 

catchments except for the two most southern catchments (CY and TR). These two catchments also 29 

have a larger variability. In general, there are larger differences between and within the catchments 30 

in summer than in winter.  31 
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In most catchments, and for both threshold (1 and 5 yrs), larger changes are expected for winter. 1 

Only in the case of NO2 the changes obtained for summer are larger than in winter. In the 2 

catchment in LT, CZ1 and CZ2, larger changes are obtained for winter for the 1 yr level and for 3 

summer for the 5 yr level. In both seasons and in most catchments, larger changes and variability 4 

are obtained for the 5 yr level.  5 

Comparing the changes obtained from the SDMs with the mean changes projected by the RCMs 6 

(see Fig. 2), there is a general tendency that slightly smaller changes are estimated from the 7 

uncorrected RCM projections. However, there are some significant differences. For example, for 8 

NO2 in winter and the 5 yr level, the uncorrected RCM projections point to a decrease of extreme 9 

precipitation but the SDMs point to an increase. The opposite situation is obtained for CY for the 10 

same season and 1 yr level. For this catchment (CY) in summer, there is also a rather large 11 

difference between the changes estimated from the uncorrected RCM projections and the SDMs. 12 

The largest difference between the uncorrected RCMs and downscaled results is obtained in CY. 13 

The maximum difference is obtained in summer for the 5 yr level where the downscaled values lead 14 

to a change 20% higher than the uncorrected RCMs. Excluding CY, the average difference of the 15 

change between the downscaled and uncorrected series is small. For example, for the 1 yr level the 16 

average difference is 0.013 for winter and 0.022 for summer. The smallest difference in both 17 

seasons is obtained for the Danish catchment for which the difference is 0.003 in winter and 0.009 18 

in summer. These overall results show that, in general, the SDMs do not modify the change 19 

projected by the uncorrected RCMs significantly. Nonetheless, in some cases the use of some 20 

downscaling methods might modify the magnitude of the change projected by the uncorrected 21 

RCMs. The influence of the SDM used with respect to the difference between the change projected 22 

by the uncorrected RCMs and the downscaled data is analysed in more detail in the next section.  23 

 24 

FIGURE 2 25 

 26 

Figure 2 does not differentiate between the variability due to the use of different SDMs and 27 

different RCM-GCM simulations. The variance decomposition approach is used to assess each of 28 

the sources of variance individually. Figure 3 shows the total variance decomposed in the variance 29 

arising from the GCMs, RCMs, SDMs and the interaction terms for all catchments for the 1 and 5 30 

yr levels and temporal aggregation of 1 day. For CY the results for the summer are not shown and 31 



18 
 

results for the winter do not include BCM and BCMV because EPI could not be calculated for a 1 

large number of cases (due to the few rainy days in some of the RCM simulations). 2 

As shown in Fig. 2, the variance for the 5 yr level is higher for all catchments and seasons than the 3 

variance for the 1yr level. In summer, the variance tends to increase from north to south for the 5 yr 4 

level, and to some extent also for the 1 yr level. This trend is not observed in winter. The larger 5 

variance in the southern catchments for the 5 yr level may be partially caused by larger sampling 6 

variance (smaller number of extreme events). Figure 3 shows that in most cases the variance due to 7 

the RCM-GCM simulations is larger than the variance from the SDMs. However, the interaction 8 

term is in both seasons and in most catchments similar or larger than the individual sources of 9 

variance.  10 

Figure 3 also shows the fractional percentage explained by V(G), V(R), and V(S), such that the three 11 

terms sum to 100%. The scaling of the percentages to obtain a total of 100% is needed because 12 

some interaction terms are included in several factors. As already mentioned, the percentage 13 

explained by the RCM-GCM simulations is in most cases larger than the percentage explained by 14 

the SDMs. The only exception is TR for summer and PL for winter for the 1 yr level. However, in 15 

all cases, the percentage explained by the SDMs is at least 30% of the total variance, which is 16 

considerable. Similar results are obtained for winter and summer for the 1 and 5 yr levels. For both 17 

seasons and return levels, there are no clear spatial patterns in the percentages. These results are in 18 

agreement with the results obtained by Räty et al. (2014). They carried out a similar variance 19 

decomposition to study the variance arising from climate models and statistical downscaling 20 

methods over northern and southern Europe. For northern Europe, they found that for the 70
th

 and 21 

higher precipitation percentiles, the climate models are the main source of variance and the variance 22 

arising from the SDMs is at least 20% and the interaction term accounts for approximately 20%. 23 

For southern Europe, the contribution of the SDMs is also at least 20%, but the variance arising 24 

from the interaction term is higher (it ranges between 20 and 50% for all percentiles). In addition, 25 

and also in agreement with the results shown here, Kidmose et al. (2013) found that for extreme 26 

groundwater levels in a Danish catchment the variance arising from the ensemble of climate models 27 

is higher than the variance arising from the SDMs, although only two downscaling methods were 28 

considered. They also highlighted the importance of natural variability, which in their case was 29 

higher than the variability related to climate models and downscaling methods. The results for 30 

Norway (NO2 and NO1) are also in agreement with the results found by Lawrence and Haddeland 31 
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(2011). The influence of the SDMs is larger in the snow dominated catchment, NO1, than in the 1 

rainfall dominated catchment, NO2.   2 

In all cases the percentage of the variance explained by the RCMs is larger than the percentage 3 

explained by the GCMs. For both return levels, in winter the average percentage explained by the 4 

GCMs is approximately 20% while in summer it is approximately 15%. The smaller percentage for 5 

the GCMs in the summer is due to the larger relative influence of both the RCMs and SDMs. This 6 

is likely due to the fact that in Europe, extreme precipitation from convective storms occurs more 7 

frequently during summer (e.g. Lenderink, 2010; Hofstra et al., 2009), and this has a larger 8 

influence on the outputs from the RCMs and SDMs due to their higher spatial resolution. Several 9 

studies have shown that the errors of the RCMs are larger in the representation of daily extreme 10 

precipitation in summer over Europe (e.g. Frei et al., 2006; Fowler and Ekström, 2009).   11 

The results of the variance decomposition obtained for aggregation levels larger than 1 day (not 12 

shown) point towards a smaller total variance. For these temporal aggregations, the main source of 13 

variation is also the RCM-GCMs, although the percentage explained by SDMs is slightly larger 14 

than for the 1 day aggregation. The decrease in total variance and in the percentage explained by 15 

RCM-GCMs mainly reflects that the model outputs being more similar for larger temporal 16 

aggregations. The results from the variance decomposition highlight the need for considering both a 17 

range of SDMs and an ensemble of RCMs driven by different GCMs for assessing the uncertainty 18 

in the projection of changes in extreme precipitation. 19 

FIGURE 3 20 

4.1.2. Extreme precipitation index for three selected catchments 21 

The previous section summarizes the main results regarding the expected changes in extreme 22 

precipitation when considering all the RCMs and SDMs. This section focuses on the differences 23 

between the statistical downscaling methods. For this purpose, three catchments have been selected: 24 

NO2, DE, and TR (distributed north to south and with different precipitation patterns). Figure 4 25 

shows the median, 25
th

, and 75
th

 quantile of EPI for each SDM for the three catchments for the 1 yr 26 

level and a temporal aggregation of 1 day.  27 

In NO2, for both seasons, the SDMs based on BC show a lower EPI than the methods based on 28 

CFs. In winter, all the CF methods point towards an increase in extreme precipitation, although 29 

some of the BC methods show a decrease for some RCMs. In summer, all methods point to an 30 

increase except XDS, which produces a small EPI and a large variability. There are several factors 31 
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which may contribute to these differences.  As this region is projected to generally have an increase 1 

in winter precipitation, use of change factor methods that do not correct for changes in the number 2 

of wet days will automatically produce higher values for extreme precipitation in winter.  If this 3 

precipitation increase is, however, also associated with a change in storm patterns, such that the 4 

increase simply reflects an increase in wet days rather than wet day extremes, then this difference 5 

would be reflected in the results for the BC methods.  6 

In DE, all the SDMs lead to similar median values except the BCMV in winter and CFM in 7 

summer. The differences between BCMV and the other two BC methods are due to some RCMs 8 

leading to very large changes when they are downscaled with BCMV, e.g. for RCA-ECHAM5, the 9 

values of EPI are 1.18 for BCM, 1.16 for BCQM and 1.63 for BCMV. This large value of EPI is 10 

caused by unexpectedly large precipitation intensities obtained from the non-linear transformation 11 

in BCMV, which is one of the disadvantages of this method (see Table 3). For the BCMV method 12 

two events of 55 and 60 mm/day are obtained while the largest events for the two other BC methods 13 

are below 40 mm/day (for the control period all the events are lower than 30 mm/day). 14 

CFM leads to the lowest value of EPI obtained in summer. This is also the case for all the other 15 

catchments considered in this study except NO2 and Yermasoyia in Cyprus (results not shown). It 16 

indicates that mean precipitation is likely to increase less than the more extreme precipitation 17 

intensities. In addition, it illustrates that the CFM method is not suitable for regions where the 18 

expected changes in extreme precipitation are different than the changes in mean precipitation.  19 

In TR, the results of the SDMs vary more than in DE and NO2. For this catchment, CFM leads to 20 

the lowest EPI in both seasons, which indicates a lower increase in mean precipitation than in 21 

extreme precipitation, as in DE. In summer, all SDMs point to a decrease of extreme precipitation 22 

except BCM and BCMV, which do not show a change in extreme precipitation. These two methods 23 

show the largest variability for both winter and summer. The high variability for these two methods 24 

is due to the same issue identified in CY, i.e. only a few rainy days in the RCM simulations, the 25 

annual percentage of rainy days ranges between 12% and 28% rainy days. 26 

For all catchments and both seasons, very similar results are obtained for CFQM and CFQP. This is 27 

expected since the main difference between the two methods is the treatment of wet day frequency. 28 

This is expected to have a minor impact, except for TR in the summer, where there are only very 29 

few rainy days during the summer period. This implies that in some cases all the rainy days are 30 

included in the selection of extreme events. Hence, the change in the number of wet days may have 31 
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an effect on the changes in extreme precipitation. Similar results to those illustrated in Fig. 4 were 1 

also obtained for the 5 yr level (results not shown). 2 

The results for the three catchments show that there is not a clear tendency in the differences 3 

between CF and BC methods. In addition, there is no evidence that methods that are based on the 4 

same statistics for the correction (e.g. BCM and CFM or BCMV and CFMV) will lead to similar 5 

results. Hence, it is not possible to generalize the results with respect to the use of SDM. This result 6 

contrasts with the findings in Hanel et al. (2013) for low flows in the Czech Republic. They found 7 

that, in general, the SDMs which account for changes in variance (such as BCMV and CFMV) led 8 

to larger changes in runoff. In addition, they also found larger changes in runoff for BC than for CF 9 

methods.   10 

The EPI estimated using the uncorrected RCMs can be used as a reference to assess whether the 11 

downscaled data preserves the changes projected by the RCMs and the differences depending on the 12 

SDM. In the case of NO2, the EPI estimated using the uncorrected RCMs lie in between the values 13 

from the BC and CF methods. The downscaling method that shows the closest agreement with the 14 

changes projected by the RCMs is BCQM. Overall for the three catchments and both seasons this 15 

method is the one that shows values of EPI closest to the ones estimated from the uncorrected 16 

RCMs. This points towards the suitability of this method to downscale extreme precipitation as it 17 

corrects the properties of interest for representing extreme precipitation. On the other hand, EPI 18 

obtained from CFM tend to produce the largest deviations from the EPI of the uncorrected RCMs 19 

(except in the case of TR in summer), which again shows that this method is not suitable for 20 

projecting changes in extreme precipitation. In addition, problems of producing unrealistic extreme 21 

precipitation values with some of the methods, such as BCM and BCMV in TR in summer, XDS in 22 

TR in winter and NO2 in summer are clearly seen when comparing their EPI values with those 23 

obtained from the uncorrected RCMs. The above examples illustrate that some SDMs are better 24 

suited for downscaling extreme precipitation and some SDMs are less robust with respect to 25 

downscaling various precipitation patterns.  26 

FIGURE 4 27 

Figure 5 analyses the eight SDMs for the three catchments for two temporal aggregations: 1 and 30 28 

days. In general, the variability in EPI in the RCM ensemble decreases with increasing temporal 29 

aggregation, except for a few cases, e.g. XDS in NO2 and BCM for DE in summer. There is no 30 

general indication that EPI either increases or decreases with increasing temporal aggregation.  31 
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In NO2, EPI is larger for a temporal aggregation of 30 days for BCM, BCMV and BCQM, and it is 1 

lower for the CF methods and XDS for summer. In winter, EPI for BCM, BCMV and BCQM is 2 

also slightly larger for a temporal aggregation of 30 days (in the case of BCM and BCMV, this 3 

means a smaller reduction of extreme precipitation). In DE, most methods show a lower EPI for 30 4 

days except CFM in summer and CFM, CFMV and XDS in winter. Similarly, in TR all the methods 5 

show lower EPI for 30 days except for CFM, XDS and CFQM in summer. For all catchments, the 6 

results of the SDMs at 30 days temporal aggregation are more similar than for 1 day aggregation.  7 

In most cases, EPI at 1 and 30 days are not considerably different and show the same signal (except 8 

in the case of TR for BCM and BCMV for both seasons and BCQM in winter). As for the 1 day 9 

aggregation, the results with temporal aggregation of 30 days do not allow general conclusions with 10 

respect to the use of SDM. 11 

FIGURE 5 12 

4.2. Comparison of observations and bias corrected RCMs for the control period 13 

The previous section focuses on the analysis of the expected changes in extreme precipitation. This 14 

section uses EPI to compare the results from the BC methods for the control period and the 15 

observations. This allows us to evaluate how well the different BC methods correct extreme 16 

precipitation from the RCMs. As in the previous section, a summary of the results found for all the 17 

catchments is first presented, followed by a more detailed analysis of the results found for each BC 18 

method for three of the catchments. It must be noted that this comparison of the results for the 19 

control period does not provide a validation of the downscaling methods. The data used to 20 

downscale the RCMs for the control period is the same as the data used for the calibration of these 21 

methods. Nonetheless, it should be noted that the validation of downscaling methods is crucial and 22 

relevant for assessing how well we can estimate changes in extreme precipitation. However, the 23 

validation of SDMs is challenging as it requires either observational data that have different 24 

properties to enable assessing whether the downscaling methods can be used to project climate 25 

changes (e.g. Refsgaard et al. 2014; Teutschbein and Seibert, 2012) or, alternatively, the use of 26 

pseudo-realities (e.g. Räisänen and Räty 2013; Vrac et al. 2007; Maraun et al., 2015). If the 27 

observational data do not show pronounced changes in extremes, then the results of the validation 28 

analyses are questionable with respect to the suitability of the methods for use in climate change 29 

analyses. There is, thus, a clear need for further research on validation methods for SDMs and will 30 

not be addressed in this paper. 31 
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For BE, CY, CZ2, DK, and PL, the control period considered for the RCMs does not fully overlap 1 

with the observation period. In the case of DK, for example, there is only an overlap of 2 yrs. The 2 

use of different periods assumes that the statistics are stationary between the periods. However, 3 

some of the disagreements between the observations and bias corrected results may well be due to 4 

non-stationary statistics between the two periods. 5 

4.2.1. Extreme precipitation index for all catchments 6 

Figure 6 shows EPI estimated using the observations and the bias corrected RCM. In this figure 7 

(and the rest of the figures in this section), a value of 1 indicates that there is no difference between 8 

the extreme value statistics from the observations and the bias corrected RCM. A value greater 9 

(less) than one indicates that the bias corrected RCM overestimates (underestimates) extreme 10 

precipitation. It must be noted that for the catchments LT and TR there is a perfect overlap between 11 

the time period of the observations and RCMs, while for the other catchments the observation 12 

period includes the RCM period or there is only a partly overlap between the time period of the 13 

observations and RCMs (see Table 1 for details).  14 

FIGURE 6 15 

For extreme winter precipitation there is no clear tendency across catchments for under- or 16 

overestimation with the bias corrected data. The catchments that have the largest underestimation 17 

are for the most northern and southern catchments (NO2, NO1, DK and CY), whereas LT, BE and 18 

PL have the largest overestimation. For extreme summer precipitation, there is a pronounced 19 

underestimation for a number of catchments. The three most northern catchments (NO2, NO1, and 20 

DK) show the lowest mean bias based on the median values for all downscaled projections. The 21 

most southern catchment (CY) has the largest underestimation of extreme summer precipitation. 22 

Both the median and variance of EPI depend on the catchment and the season. For example, the 23 

bias corrected data for LT, BE and PL tend to overestimate extreme precipitation in winter, but 24 

underestimate this in summer. CZ1 in winter and NO2 in summer are the catchments that lead to the 25 

median closest to 1. The largest variability is found for PL in winter and TR and CY in summer.  26 

The comparison of the error in the RCMs before and after bias correction shows that, in general, the 27 

error after bias correction is smaller than before bias correction. This shows that the BC methods 28 

improve the representation of extremes. However, in a few cases the error of the RCMs before bias 29 

correction is smaller than after bias correction. This is because some of the RCMs result in large 30 

errors after bias correction. For example for BE in winter with the HadRM3Q3-HadCM3Q3 model, 31 
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values of 1.18 for BCM, 1.37 for BCMV, 1.24 for BCQM, and 1.23 for XDS are obtained, while a 1 

value of 0.98 is obtained from the uncorrected data. In fact, the average over all the RCMs shows 2 

that none of the downscaling methods improves the results of the uncorrected RCMs for this 3 

catchment. A similar result is obtained for the DE catchment. In the summer period, the results after 4 

bias correction for all the downscaling methods in the LT catchment show larger differences 5 

compared to the observations than the uncorrected RCMs. In both seasons, these results (error of 6 

the RCMs before bias correction is smaller than after bias correction) are obtained for catchments 7 

where the RCMs have the lowest error in representing observed extreme precipitation (i.e. EPI 8 

closer to 1). This indicates that if the agreement between the observations and RCMs is high, the 9 

downscaling methods considered in this study are not able to improve it. The next section describes 10 

in more detail the difference between EPI of the uncorrected RCMs and the downscaled series for 11 

each bias correction method.  12 

4.2.2. Extreme precipitation index for each bias correction method for three 13 

selected catchments  14 

Figure 7 shows the results of the three BC methods and XDS for NO2, DE, and TR for the 1 yr 15 

level and 1 day temporal aggregation. The performance of each method varies depending on the 16 

season and catchment. For example, BCM overestimates extremes in NO2 in winter and TR in 17 

summer and underestimates them in NO2 in summer and TR in winter. In DE, BCM performs 18 

equally well as BCMV. This illustrates that simple BC methods can, in some cases perform 19 

similarly or better than more advanced methods. In the catchments considered in this study, there is 20 

no clear relationship between the performance of the BC methods and the precipitation regime for 21 

the catchments.  22 

In winter, the errors obtained for DE are smaller than in the other two catchments. EPI ranges from 23 

an underestimation of 4% (EPI equal to 0.96) for BCM and BCMV, to an overestimation of 24 

approximately 6% for BCQM and XDS. For this catchment and both seasons, BCM and BCMV 25 

lead to better results than BCQM and XDS. In summer, the errors in NO2 are smaller than in the 26 

other two catchments. For this catchment and this season, XDS is the method that leads to the 27 

smallest error and variability.  28 

The largest errors and variability in the results are found for the TR catchment in both seasons. For 29 

this catchment and in the winter period, the median of all methods underestimate extremes except 30 

XDS, while in summer BCM and BCMV overestimate extremes and the other two methods 31 
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underestimate. A very large variability is obtained for BCM and BCMV in summer (the 25
th

 and 1 

75
th

 percentiles range from 0.4 to 1.5).  2 

Comparison of the results of the SDMs with EPI obtained from the uncorrected RCMs shows that 3 

in the case of NO2 all the SDMs clearly agree better with the observations. But for the other two 4 

catchments, the results depend on the downscaling method. In DE, BCM and BCMV lead to better 5 

results than the other two methods for both seasons. In the TR catchment, BCQM leads to the best 6 

result in winter but not in summer, where BCMV produces the best result. Even though the results 7 

depend on the catchment analysed, the BCM is the method leads to the least improvements in most 8 

cases compared to the results of the uncorrected RCM. This is in agreement with the main 9 

conclusion from the validation study carried out by Teutschbein and Seibert (2012). They 10 

concluded that the linear bias correction (equivalent to the BCM method used here) together with 11 

the delta-change method (equivalent to the CFM used here) are less reliable than other more 12 

complex methods. Similarly, the cross-validation study carried out by Räty et al. (2014) showed 13 

that the linear bias correction method tends to perform more poorly than the other more complex 14 

bias correction methods, especially for high percentiles (between 75
th

 and 97
th

 percentile) in 15 

southern Europe and between the 50
th

 and 70
th

 percentile in northern Europe. Nonetheless, it should 16 

be noted that even if in some cases it is possible to identify a method that performs better than 17 

others it might not be possible to reject the hypothesis that all SDMs perform equally well 18 

(Wetterhall et al., 2012). This points towards the advantage of using an ensemble of SDMs to 19 

represent the uncertainty related to the statistical downscaling.    20 

FIGURE 7 21 

 22 

The results from Figure 7 indicate that the bias correction methods do not in all cases improve the 23 

time series from the RCMs. This must be tested for each application. Figure 8 shows the error of 24 

each BC method for two temporal aggregations, 1 and 30 days, for the 1 yr level. In general, the 25 

performance of the BC methods for the winter period improves for large temporal aggregation 26 

(except for XDS in TR). However, in summer this is not the case. For this season, the difference 27 

between the results for 1 and 30 day aggregations depends on the catchment and the method. In 28 

NO2, the results for 1 day are better than for 30 days for BCQM and XDS, although the reverse is 29 

true for TR. In DE, the results for 1 day are better than for 30 days for all the methods except XDS.  30 
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As shown in Fig. 7, TR has the largest variability for 30 days followed by NO2 for both seasons. 1 

The results for DE appear to be the least dependent on the temporal aggregation. This may be the 2 

result of spatially averaging the observations from 43 stations to derive the catchment precipitation. 3 

For such a large basin (6171 km², see Table 1), this may simultaneously lead to temporally-4 

averaged precipitation values from the gauged nested sub-catchments. In all cases, the variability 5 

for 30 days is smaller than for 1 day, indicating that the RCMs lead to more similar results for large 6 

temporal aggregations.  7 

FIGURE 8 8 

5. Summary and conclusions 9 

This study analyses the expected changes in extreme precipitation in eleven European catchments. 10 

It focuses on the variability in the changes arising from the use of different statistical downscaling 11 

methods as well as different RCM-GCM simulations. Fifteen RCMs driven by six GCMs are 12 

downscaled using eight statistical downscaling methods. The statistical downscaling methods rely 13 

on different assumptions and different RCM outputs. The outputs from all the statistical 14 

downscaling methods are analysed using an extreme precipitation index.  15 

Extreme precipitation is expected to increase in most catchments in both winter and summer. A 16 

decrease in extreme precipitation is only expected for both winter and summer in CY and for 17 

summer in TR. In most catchments, larger changes are expected in winter than in summer. 18 

Additionally, in all cases, larger increases and larger variability in the results are obtained for the 19 

higher return level, 5 years.  20 

In most catchments and for both winter and summer, the RCM-GCM projections are the main 21 

source of variability in the results when compared to the differences between SDMs, although 22 

variability due to the SDMs explains at least 30% of the total variance in all cases.  Additionally, in 23 

all cases, the RCMs represent a larger percentage of the total variability than the GCMs, especially 24 

in summer. For this season, the total variance tends to be higher for the most southern catchments.  25 

In general, the eight statistical downscaling methods agree on the direction of the change but not the 26 

magnitude of the change. It is not possible to draw general conclusions regarding differences 27 

between the downscaling methods, as the differences depend on the physical geographical 28 

characteristics of the catchment and the season analysed. For example, for NO2 the bias correction 29 

methods lead to lower changes than the change factor methods, but this is not the case for the other 30 

catchments. A common result for all catchments except NO2 and CY is that the CFM method leads 31 
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to the smallest increase of extreme precipitation in summer.  This indicates that this method is not 1 

suitable for regions where the expected changes in extreme precipitation differ from the changes in 2 

mean precipitation. The changes obtained for different temporal aggregations also depend on the 3 

physical geographical characteristics of the catchment and season analysed, i.e. there is no general 4 

tendency for an increase or decrease in the index with increasing temporal aggregation. 5 

Overall, the bias correction methods improve the representation of extreme precipitation, as 6 

compared with the uncorrected RCM outputs. However, the bias corrected time series tend to 7 

underestimate extreme precipitation. The magnitude of the errors depends on the catchment and 8 

season analysed. For example, the results of the bias correction of mean are worse than the other 9 

methods for the NO2 but not for the other catchments. There is no clear relationship between the 10 

performance of the bias correction methods and the precipitation regime of the catchment. There is 11 

also no clear indication of an increase or decrease in the error with increasing temporal aggregation.  12 

The results from the statistical downscaling methods have been compared with the extreme 13 

precipitation obtained from the uncorrected RCMs. Although the results depend on the catchment 14 

and season as in the other comparisons discussed before, some overall conclusions can be extracted 15 

from this comparison. Regarding the comparison of the change in extreme precipitation projected 16 

by the uncorrected RCMs and the downscaled series, the SDM that showed the smallest differences 17 

relative to the RCM projections is the BCQM method, while the method that led to the largest 18 

differences is the CFM method. These differences between the methods are more pronounced for 19 

the summer period. From the comparison of the SDMs and the uncorrected RCMs in representing 20 

the current period it was found that in general the BCM method fails in more cases than the other 21 

SDMs in improving the representation of extreme precipitation from the uncorrected RCMs.  22 

From the results of all these comparisons, it is possible to draw some general recommendations 23 

when selecting SDMs from the ones considered here for downscaling extreme precipitation. 24 

Downscaling methods that do not explicitly correct or take into account changes in extreme 25 

precipitation may lead to different climate change signals than the ones projected by the RCMs and 26 

should not be used. In this study, this occurs mainly with CFM. In addition, some methods fail to 27 

correct the errors in the RCMs in representing extreme precipitation. In this study, this occurred in 28 

more cases when using BCM than with the other methods. Finally, in catchments with long dry 29 

periods the BCM, BCMV, CFM, CFMV, and CFQM methods produce unrealistic results and 30 

should not be used (or should be configured differently than done in this study with respect to 31 
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describing the seasonal patterns). BCMV may also lead to unrealistic results in other catchments as 1 

seen in the case of DE. The ability of the downscaling methods to improve the representation of 2 

extreme precipitation from the RCMs and to preserve the climate change signal should be assessed 3 

for each case study in order to select the most suitable SDMs.  4 

This study illustrates that there is a large variability in the changes estimated from different 5 

statistical downscaling methods and RCMs. It also shows that the differences between the methods 6 

and the performance of the bias correction methods depend on the catchment studied. Hence, for a 7 

specific case study, the selection of a suitable statistical downscaling method may depend on the 8 

physical geographical characteristics of the catchment. However, we recommend the use of a set of 9 

statistical downscaling methods as well as an ensemble of climate model projections. The selection 10 

of statistical downscaling methods should include: methods that are able to project changes in 11 

extreme precipitation if they are expected to be different from other precipitation properties; 12 

methods based on different underlying assumptions, for example BC and CF methods; and methods 13 

that use different outputs from the RCMs as, for example, XDS, CF or BC methods including mean 14 

and variance of precipitation, and methods including a range of quantiles. 15 
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Appendix A - Verification of matrix reconstruction approach 1 

A.1 Comparison of results using 2 and 3 sources of variance 2 

This verification approach assesses the influence of the matrix reconstruction procedure on the 3 

percentage of the total variance explained by climate models (influence of GCM-RCM simulations) 4 

and SDMs. For this purpose, the variance decomposition approach has been applied considering 5 

two sources of uncertainty: SDMs and climate models (the 15 RCM-GCM simulations). In the case 6 

of two sources of variance, there is no need to reconstruct the matrix.  7 

Table A1 shows the percentage explained by the climate models and SDMs estimated considering 8 

two and three sources of variance.  The percentages for CY are not shown for summer because EPI 9 

could not be calculated for a large number of cases, and the percentages for winter do not include 10 

the results from BCM and BCMV. The percentage explained by the GCM-RCM simulations and 11 

the SDMs is similar when considering two or three sources of variances. Additionally, the 12 

conclusion on which is the most important source of variance is the same for all catchments except 13 

for DE and PL in winter. For these two catchments, the percentage explained by the GCM-RCM 14 

simulations is approximately 50%.  15 

TABLE A1 16 

A.2 Comparison of reconstructed and original values 17 

A similar verification approach as the one carried out in Déqué et al. (2007) has also been used. It 18 

consists in removing the data for one combination of RCM-GCM and using the matrix 19 

reconstruction approach to estimate its values for all SDMs. The reconstructed values are then 20 

compared with the original values and also with two other combinations of RCM-GCMs (one using 21 

the same RCM and one using the same GCM). This test is applied to two RCM-GCM simulations: 22 

RCA-ECHAM5 and HIRHAM-BCM.  23 

The reconstructed vector for these combinations is referred to as EPIRG. In the case of RCA-24 

ECHAM5, EPIRG is compared with the vectors found for: (i) the original EPI values found for 25 

RCA-ECHAM5; (ii) the combination RCA-BCM (EPIR in Table A2); (iii) and the combination 26 

REMO-ECHAM5 (EPIG in Table A2). In the case of HIRHAM-ARPEGE, EPIRG is compared with 27 

the original values, with HIRHAM-ARPEGE (EPIR), and RCA-BCM (EPIG). Table A2 shows the 28 

average of the RMSE obtained for all the catchments, T-yr levels, seasons, and temporal 29 

aggregations. 30 
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Table A2 shows that in the case of RCA-ECHAM5, the difference between the reconstructed and 1 

the original values is smaller than the difference between the reconstructed values and the other two 2 

RCM-GCM combinations. However, in the case of HIRHAM-BCM, the difference between the 3 

reconstructed and the original values is higher than the difference between the reconstructed and the 4 

other two RCM-GCM combinations.  5 

TABLE A2 6 

This results show that in some cases the reconstructed values can differ more from the original 7 

values than they differ from other models. Hence, the variances estimated in the variance 8 

decomposition approach are likely to be affected by the reconstructed values.  9 

  10 
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Table 1 - Summary of the main characteristics of the catchments. The column with label “extremes” indicates the season where most 1 

precipitation extremes occur. The catchments are sorted from north to south, with the most northern catchment in the top row. 2 

Name River, Country 
Area 

[km
2
] 

Median 

altitude 

[m] 

Data used for 

calculation of 

catchment 

precipitation 

Mean  

annual 

precipitation 

[mm yr
-1

] 

Extremes 
Observation 

period 

NO2 
Nordelva, 

Norway 
207 349 

1x1 km grid 

(Tveito et al., 2005) 
2437 Winter 1957 – 2010 

NO1 Atna, Norway 463 1204 
1x1 km grid 

(Tveito et al., 2005) 
852 Summer 1957 – 2010 

DK 
Aarhus Å, 

Denmark 
119 65 

10x10 km grid (DMI, 

2012) 
868 Summer 1989 – 2010 

LT 
Merkys, 

Lithuania 
4416 109 1 station 658 Summer 1961 – 1990 

BE 
Grote Nete, 

Belgium 
383 32 6 stations 828 Summer 1986 – 2003 

DE 
Mulde, 

Germany 
6171 414 43 stations 937 Summer 1951 – 2003 
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CZ2 

Upper Metuje, 

Czech 

Republic 

67 588 
1x1 km grid (Šercl, 

2008) 
788 Summer 1980 – 2007 

CZ1 

Jizera, 

Czech 

Republic 

2180 365 10 stations 860 Summer 1951 – 2003 

PL 
Nysa Kłodzka, 

Poland 
1083 316 2 stations 589 Summer 1965 – 2000 

TR 
Gocbeylidere, 

Turkey 
609 153 1 station 850 Autumn 1960 – 1990 

CY 
Yermasoyia, 

Cyprus 
157 575 2 stations 640 Winter 1986 – 1997 

 1 

  2 



39 
 

Table 2 – Matrix of RCM-GCM combinations used in this study and source of the RCMs. 1 

RCM\GCM ECHAM5 BCM 
HadCM3-

Q3 

HadCM3-

Q16 

HadCM3-

Q0 
ARPEGE Institute 

RM5.1 
     

X National Centre for Meteorological Research in France 

RACMO2 X 
    

 Royal Netherlands Meteorological Institute 

RCA X X X 
  

 Swedish Meteorological and Hydrological Institute 

REMO X 
    

 Max Planck Institute for Meteorology 

RCA3 
   

X 
 

 Community Climate Change Consortium for Ireland 

CLM 
    

X  Swiss Federal Institute of Technology 

HadRM3Q0 
    

X  UK Met Office 

HadRM3Q3 
  

X 
  

 UK Met Office 

HadRM3Q16 
   

X 
 

 UK Met Office 

HIRHAM5 X X 
   

X Danish Meteorological Institute 

RegCM3 X 
    

 International Centre for Theoretical Physics 

 2 

  3 
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Table 3 – Summary of the advantages and disadvantages of each statistical downscaling method. The name of the institution that undertook 1 

the downscaling work in this study is included in the first column.  The advantages and/or disadvantages which are specific to the way the 2 

methods are applied in this application are stated.  3 

SD method Advantages Disadvantages 

Bias correction  

of mean, BCM  

(T. G. Masaryk Water 

Research Institute, 

Faculty of 

Environmental 

Sciences) 

Easy to apply and little computer time required. 

Preserves the sequences of dry/wet days from the 

RCM. 

It accounts for different corrections in different time 

windows. 

It only corrects the mean precipitation of the RCM. 

Bias correction  

of mean and variance, 

BCMV  

(T. G. Masaryk Water 

Research Institute, 

Faculty of 

Environmental 

Sciences) 

(same as bias correction of mean) 

It allows for distinct corrections between mean and 

variance. 

 

The non-linear transformation may lead to 

unexpectedly large precipitation amounts. 

The autocorrelation from the RCM is not corrected, 

but it is affected by the bias correction approach. 

Bias correction  Easy to apply and little computer time required. The correction of the upper tail is based on relatively 
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quantile mapping, 

BCQM  

(NVE) 

 

Preserves the sequences of dry/wet days from the 

RCM. 

Distinction between corrections in mean and extreme 

precipitation.  

The frequency of precipitation is corrected. 

No theoretical distribution is assumed.  

few values (empirical distribution based). 

In this application, the same correction is applied for 

all seasons.  

The autocorrelation from the RCM is not corrected, 

but it is affected by the bias correction approach. 

Expanded downscaling, 

XDS (U. Potsdam) 

Generates realistic weather consistent with large-scale 

atmospheric patterns. 

Able to employ full range of predictor variables. 

It preserves co-variability between the predictands. 

High demand for climate model accuracy; systematic 

biases can cause large errors. 

Requires large computation time and data preparation. 

No fully objective way of selecting the predictors. 

Change factor  

of mean, CFM  

(DHI, DTU) 

Easy to apply and little computer time required. 

It accounts for different changes in different months. 

It only accounts for changes in mean precipitation. 

Does not account for changes in the length of dry/wet 

spells. 

Change factor  

of mean and variance, 

CFMV (DHI, DTU) 

(same as change factor of mean) 

Distinction between changes in mean and variance. 

Does not account for changes in the length of dry/wet 

spells. 

The autocorrelation of precipitation may be disturbed. 

The non-linear transformation may lead to 

unexpectedly large precipitation amounts. 
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Change factor  

quantile mapping, 

CFQM  

(DTU) 

(same as change factor of mean) 

Distinction between changes in mean and extreme 

precipitation. 

No theoretical distribution is assumed.   

Does not account for changes in the length of dry/wet 

spells. 

The changes in the tails are based on relatively few 

values. 

The autocorrelation of precipitation may be disturbed. 

Change factor  

quantile perturbation, 

CFQP (KU Leuven) 

(same as change factor quantile mapping) 

Changes in the frequency of precipitation are 

accounted for. 

The changes in the tails are based on relatively few 

values. 

The autocorrelation of precipitation may be disturbed 

(in this application, this is checked). 
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Table A1 – Percentage of the total variance explained by the GCM-RCM simulations (G+R) and 1 

SDMs (S) considering 2 and 3 sources of variance.  The contribution of the GCMs and RCMs is 2 

shown in brackets.  3 

  
Winter Summer 

 

Nr. sources G+R S G+R S 

NO2 
2 68 32 51 49 

3 69 (29+40) 31 52 (14+38) 48 

NO1 
2 51 49 60 40 

3 51 (13+38) 49 61 (13+48) 39 

DK 
2 60 40 65 35 

3 62 (22+40) 38 67 (26+41) 33 

LT 
2 59 41 60 40 

3 57 (20+37) 43 57 (10+47) 43 

BE 
2 69 31 51 49 

3 71 (30+41) 29 52 (15+37) 48 

DE 
2 49 51 62 38 

3 51 (18+33) 49 61 (16+45) 39 

CZ2 
2 54 46 61 39 

3 55 (15+41) 45 57 (14+43) 43 

CZ1 

2 60 40 64 36 

3 58 (24+34) 42 59 (19+40) 41 

PL 
2 51 49 55 45 

3 48 (21+28) 52 50 (19+30) 50 

TR 
2 57 43 46 54 

3 55 (19+35) 45 42 (19+23) 58 

CY 
2 55 45 

  
3 55 (21+34) 45 

  4 



44 
 

Table A2 – Average RMSE from the comparison of the reconstructed and original values and the 1 

comparison with other combinations of GCM-RCM 2 

RCM\GCM Original EPIR EPIG 

RCA-ECHAM5 0.47 0.60 0.61 

HIRHAM-BCM 2.49 1.46 2.45 

 3 

  4 
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Figure 1 - Location of the eleven catchments studied. 1 

 2 

Figure 2 – EPI estimated from the comparison of the downscaled time series for control and future 3 

period for 1 yr (light grey boxes) and 5 yr levels (dark grey boxes). The boxes indicate the 25, 50 4 

and 75
th

 percentiles and the whiskers the 5 and 95
th

 percentiles. The circles show the median of all 5 

the values of EPI estimated from the comparison of the RCM outputs for the control and future 6 

periods. All the results are for a temporal aggregation of 1 day.  7 

 8 

Figure 3 – In the top row, total variance decomposed in variance from GCMs, RCMs, SDMs and all 9 

the interaction terms (darkest to lighter grey colours). In the bottom row, percentage of the total 10 

variance explained by GCMs, RCMs, and SDMs (darkest to lighter grey colours). All the results are 11 

shown for 1 and 5 yr levels in the left and right column of each catchment, respectively. All the 12 

results are for a temporal aggregation of 1 day. 13 

 14 

Figure 4 – EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 15 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 16 

percentiles. All results are for the 1 yr level and temporal aggregation of 1 day. Note the different 17 

scales used in the y-axis for winter and for summer. 18 

 19 

Figure 5 - EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 20 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 21 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 22 

aggregation. The same symbols are used for the different downscaling methods as in Fig. 4. Note 23 

the different scales used in the y-axis for winter and for summer. 24 

  25 
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Figure 6 – EPI estimated from the comparison of the observations and the downscaled time series 1 

by all BC methods for the control period for 1 yr (light grey boxes) and 5 yr levels (dark grey 2 

boxes). The boxes indicate the 25, 50 and 75
th

 percentiles and the whiskers the 5 and 95
th

 3 

percentiles. The circles show the median of all the values of EPI estimated from the comparison of 4 

the observations and the uncorrected RCM outputs for the control period. All the results are for a 5 

temporal aggregation of 1 day. 6 

 7 

Figure 7 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 8 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 9 

percentiles. All the results are for the 1 yr level and temporal aggregation of 1 day. Note the 10 

different scales used in the y-axis for winter and for summer. 11 

 12 

Figure 8 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 13 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 14 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 15 

aggregation. All the results are for 1 yr threshold. The same symbols are used for the different 16 

downscaling methods as in Fig. 7. Note the different scales used in the y-axis for winter and for 17 

summer. 18 

  19 
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 1 

Figure 1 - Location of the eleven catchments studied. 2 

 3 
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 1 

Figure 2 – EPI estimated from the comparison of the downscaled time series for control and future 2 

period for 1 yr (light grey boxes) and 5 yr levels (dark grey boxes). The boxes indicate the 25, 50 3 

and 75
th

 percentiles and the whiskers the 5 and 95
th

 percentiles. The circles show the median of all 4 

the values of EPI estimated from the comparison of the RCM outputs for the control and future 5 

periods. All the results are for a temporal aggregation of 1 day.  6 

 7 
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 1 

Figure 3 – In the top row, total variance decomposed in variance from GCMs, RCMs, SDMs and all 2 

the interaction terms (darkest to lighter grey colours). In the bottom row, percentage of the total 3 

variance explained by GCMs, RCMs, and SDMs (darkest to lighter grey colours). All the results are 4 

shown for 1 and 5 yr levels in the left and right column of each catchment, respectively. All the 5 

results are for a temporal aggregation of 1 day. 6 
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 1 

Figure 4 – EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 2 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. All results are for the 1 yr level and temporal aggregation of 1 day. Note the different 4 

scales used in the y-axis for winter and for summer. 5 
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 1 

Figure 5 - EPI for each SDM for NO2, DE, and TR for winter (top) and summer (bottom). The 2 

markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 4 

aggregation. The same symbols are used for the different downscaling methods as in Fig. 4. Note 5 

the different scales used in the y-axis for winter and for summer. 6 
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 1 

Figure 6 – EPI estimated from the comparison of the observations and the downscaled time series 2 

by all BC methods for the control period for 1 yr (light grey boxes) and 5 yr levels (dark grey 3 

boxes). The boxes indicate the 25, 50 and 75
th

 percentiles and the whiskers the 5 and 95
th

 4 

percentiles. The circles show the median of all the values of EPI estimated from the comparison of 5 

the observations and the uncorrected RCM outputs for the control period. All the results are for a 6 

temporal aggregation of 1 day. 7 
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 1 

Figure 7 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 2 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. All the results are for the 1 yr level and temporal aggregation of 1 day. Note the 4 

different scales used in the y-axis for winter and for summer. 5 
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 1 

Figure 8 - EPI for each BC method for NO2, DE, and TR for winter (top) and summer (bottom). 2 

The markers indicate the median and the lines represent the range covered by the 25
th

 and 75
th

 3 

percentiles. The results are shown for 1 day (filled markers) and 30 days (hollow markers) temporal 4 

aggregation. All the results are for 1 yr threshold. The same symbols are used for the different 5 

downscaling methods as in Fig. 7. Note the different scales used in the y-axis for winter and for 6 

summer. 7 
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