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Abstract

For streamflow forecasting applications, rainfall–runoff hydrological models are often
augmented with updating procedures that correct streamflow predictions based on the
latest available observations of streamflow and their departures from model simula-
tions. The most popular approach uses autoregressive (AR) models that exploit the5

“memory” in hydrological model simulation errors. AR models may be applied to raw
errors directly or to normalised errors. In this study, we demonstrate that AR models
applied in either way can sometimes cause over-correction of predictions. In using an
AR model applied to raw errors, the over-correction usually occurs when streamflow
is rapidly receding. In applying an AR model to normalised errors, the over-correction10

usually occurs when streamflow is rapidly rising. Furthermore, when parameters of
a hydrological model and an AR model are estimated jointly, the AR model applied
to normalised errors sometimes degrades the stand-alone performance of the base
hydrological model. This is not desirable for forecasting applications, as predictions
should rely as much as possible on the base hydrological model, and updating should15

be applied only to correct minor errors. To overcome the adverse effects of the ordinary
AR models, a restricted AR model applied to normalised errors is introduced. The new
model is evaluated on a number of catchments and is shown to reduce over-correction
and to improve the performance of the base hydrological model considerably.

1 Introduction20

Rainfall–runoff models are widely used to generate streamflow forecasts, which pro-
vide essential information for flood warning and water resources management. For
streamflow forecasting, rainfall–runoff models are often augmented by updating proce-
dures that correct streamflow predictions based on the latest available observations of
streamflow and their departures from model predictions. Model prediction errors reflect25
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limitations of the hydrological models in reproducing physical processes as well as
inaccuracies in data used to force and evaluate the models.

The most popular updating approach uses autoregressive (AR) models, which ex-
ploit the “memory” – more precisely the autocorrelation structure – of prediction errors
(Kavetski et al., 2003). Essentially, AR updating uses a linear function of the known5

prediction errors at previous time steps to anticipate prediction errors in a forecast
period. Predictions are then updated according to these anticipated errors. AR updat-
ing is conceptually simple and yet generally leads to significantly improved predictions
(World Meteorological Organization, 1992). AR updating has been shown to provide
equivalent performance to more sophisticated non-linear and nonparametric updating10

procedures (Xiong and O’Connor, 2002).
In rainfall–runoff modelling, model errors are generally heteroscedastic (i.e., they

have heterogeneous variance over time) (Xu, 2001; Kavetski et al., 2003) and non-
Gaussian (Bates and Campbell, 2001; Schaefli et al., 2007; Shrestha and Solomatine,
2008). In many applications (Seo et al., 2006; Bates and Campbell, 2001; Salamon and15

Feyen, 2010; Morawietz et al., 2011), AR models are applied to normalised errors that
are considered homoscedastic and Gaussian. Normalisation is often achieved through
variable transformation by using, for example, the Box–Cox transformation (Thyer et al.,
2002; Bates and Campbell, 2001; Engeland et al., 2010) or, more recently, the log–
sinh transformation (Wang et al., 2012; Del Giudice et al., 2013). In other applications20

(Schoups and Vrugt, 2010; Schaefli et al., 2007), AR models are applied directly to
raw errors, but residual errors of the AR models may be explicitly specified as het-
eroscedastic and non-Gaussian.

There is no agreement on whether it is better to apply an AR model to normalised
or raw errors. Recent work by Evin et al. (2013) found that an AR model applied25

to raw errors may lead to poor performance with exaggerated predictive uncertainty.
They demonstrated that such instability can be mitigated by applying an AR model to
standardised errors (raw errors divided by standard deviations). Here, standardisation
has a similar effect to normalisation in that it homogenises the variance of the errors
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(but does not consider the non-Gaussian distribution of errors). Conversely, Schaefli
et al. (2007) pointed out that when an AR model is jointly estimated with a hydrological
model, there is a clear advantage in applying an AR model to raw errors rather than
normalised (or standardised) errors. Schaefli et al. (2007) found that using raw errors
leads to more reliable parameter inference and uncertainty estimation, because the5

mean error of the predictions is close to zero and therefore the predictions are free
of systematic bias. The same is not necessarily true when applying an AR model to
normalised errors.

In this study, we evaluate AR models applied to both raw and normalised errors in
four catchments. We show that when estimated jointly with a hydrological model, the10

AR model applied to normalised errors sometimes degrades the stand-alone perfor-
mance of the base hydrological model. We also identify that both of these ordinary AR
models can sometimes cause over-correction of predictions. We introduce a restricted
AR model applied to normalised errors and demonstrate its effectiveness in overcom-
ing the adverse effects of the ordinary AR models.15

2 Autoregressive error models

2.1 Formulations

We denote the observed streamflow and modelled streamflow at time t by Qt and
QS,t, respectively. A hydrological model is a function of forcing variables (precipitation
and potential evapotranspiration), initial catchment state, S0, and a set of hydrological20

model parameters, θH. An error model is used to describe the difference between QS,t
and Qt. In this study, we firstly examine two first-order AR error models:

i. an AR error model applied to normalised errors (referred to as AR-Norm) defined
by:

Z (N)(Qt) = Z (N)(QS,t)+ρ(N)
{
Z (N)(Qt−1)−Z (N)(QS,t−1)

}
+ε(N)

t , (1)25
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ii. an AR error model applied to raw errors (referred to as AR-Raw) defined by

Z (R)(Qt) = Z (R)
{
QS,t +ρ(R)(Qt−1 −QS,t−1)

}
+ε(R)

t , (2)

where

Z(Q) = b−1 log{sinh(a+bQ)} (3)

is the logarithmic, hyperbolic-sine (log–sinh) transformation (Wang et al., 2012), ρ5

is the lag-1 autoregression parameter and εt is an identically and independently
distributed Gaussian deviate with mean zero and standard deviation σ. We also
assume a > 0 and b > 0. We use superscript (N) and (R) to denote parameters of
AR-Norm and AR-Raw models, respectively.

The formulations given by Eqs. (1) and (2) look similar, however the updating pro-10

cedures differ significantly. Both models represent the lag-one autocorrelation by an
AR model structure and both employ the log–sinh transformation. However, the way
the log–sinh transformation is applied differs between the two models. The AR-Norm
model first applies the log–sinh transformation to the observed and modelled stream-
flow, and then applies the autoregression parameter ρ to the errors of the transformed15

streamflows. In contrast, the AR-Raw model applies the autoregression parameter ρ
to the raw errors to update the model prediction, and then applies the log–sinh trans-
formation to the observed streamflow and updated model prediction.

The median of the updated streamflow prediction (referred to as updated stream-
flow), QU,t, for the AR-Norm and AR-Raw models can be derived respectively by20

Q(N)
U,t = (Z (N))−1

[
Z (N)(QS,t)+ρ(N)

{
Z (N)(Qt−1)−Z (N)(QS,t−1)

}]
, (4)

Q(R)
U,t =QS,t +ρ(R)(Qt−1 −QS,t−1), (5)

where Z−1 is the inverse of log–sinh transformation (or back-transformation). The mag-
nitude of the error update by the AR-Raw model, Q(R)

U,t −QS,t, is dependent only on the25
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difference between Qt−1 and QS,t−1. In contrast, the magnitude of the error update by

the AR-Norm model, Q(N)
U,t −QS,t, is dependent not only on the difference between Qt−1

and QS,t−1, but also on QS,t. Put differently, the AR-Norm model uses errors calculated
in the transformed domain, and this means that the error in the original domain can
be amplified (or reduced) by the back-transformation (Eq. 4). The AR-raw model uses5

errors calculated in the original domain and no back-transformation is used in Q(R)
U,t

(Eq. 5), meaning that the error in the original domain cannot be amplified (or reduced).
In Appendix A, we show that the AR-Norm model gives greater error updates for larger
values of QS,t.

2.2 Estimation10

The maximum likelihood estimation is used to estimate the hydrological model param-
eters and the error model parameters jointly. The likelihood functions for the AR-Norm
and AR-Raw models can be written respectively as

L
(
θ(N),θH

)
=
∏
t

P (Qt |QS,t,QS,t−1;θ(N),θH)

=
∏
t

Jz→Qφ

Z (N)(Qt)−Z (N)(QS,t)−ρ(N)
{
Z (N)(Qt−1)−Z (N)(QS,t−1)

}
σ(N)

 (6)

L
(
θ(R),θH

)
=
∏
t

P (Qt |QS,t,QS,t−1;θ(R),θH)

=
∏
t

Jz→Qφ

Z (R)(Qt)−Z (R)
{
QS,t +ρ(R)(Qt−1 −QS,t−1)

}
σ(R)

 (7)15
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where Jz→Q = {tanh(a+bQt)}
−1 is the Jacobian determinant of the log–sinh transfor-

mation and φ(x) is the standard Gaussian probability density function. The probabil-
ity density function is replaced by the cumulative probability function when evaluating
events of zero flow occurrences (Wang and Robertson, 2011; Li et al., 2013).

3 Description of case study5

We test four catchments in southeast Australia, spanning temperate to subtropical cli-
mates (Fig. 1, Table 1). The Abercrombie River intermittently experiences periods of
very low (to zero) flow, while the other four rivers flow perennially (Table 1). Stream-
flow data are taken from the Catchment Water Yield Estimation Tool (CWYET) dataset
(Vaze et al., 2011). All catchments have high-quality streamflow records with very few10

missing data. Rainfall and potential evaporation data are derived from the Australian
Water Availability Project (AWAP) dataset (Jones et al., 2009).

We predict daily streamflow with the GR4J rainfall–runoff model (Perrin et al., 2003).
We apply updating procedures to correct model predictions. We use data from 1992
to 2005 (14 years) and generate 14-fold cross-validated streamflow predictions. The15

data from 1990–1991 are only used to warm up the GR4J model. For a given year, we
leave out the data from that year and the following year when estimating the parame-
ters of GR4J and error models. For example, if we wish to predict flows for 1999, we
leave out data from 1999 and 2000. The removal of data from the following year (2000)
is designed to minimise the impact of hydrological memory on model parameter esti-20

mation. We then predict streamflows in that year (1999) from the remaining data. All
results presented in this paper are based on this cross-validation instead of calibration
in order to ensure the results can be generalised to independent data.

To demonstrate the problems of over-correction of errors in updating and poor stand-
alone performance of the base hydrological model, we consider only streamflow pre-25

dictions for one time step ahead. We will consider longer lead times in future work.
Predictions are generated using observed rainfall (i.e., a perfect rainfall forecast) as
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input. In streamflow forecasting, forecasts may be generated from rainfall information
that comes from a different source (e.g., a numerical weather prediction model). Our
study is aimed at streamflow forecasting applications, so we preserve the distinction
between observed and forecast forcings by referring to streamflows modelled with ob-
served rainfall as simulations and those modelled with forecast rainfall as predictions.5

As the forecast rainfall we use is observed rainfall, the terms predictions and simula-
tions are interchangeable.

4 Two adverse effects of ordinary AR error models

4.1 Over-correction

The first adverse effect of the ordinary AR models is over-correction of errors in10

updating. By over-correction, we mean that the AR model updates the hydrological
model predictions too greatly. Over-correction is difficult to define precisely, however
we will demonstrate the concept with two examples: the first example illustrates over-
correction by the AR-Norm model, the second example illustrates over-correction by
the AR-Raw model.15

To illustrate the problem of over-correction caused by the AR-Norm model, Fig. 2
presents a 1 week time series for the Mitta Mitta catchment, showing flow predictions
with GR4J before error updating (referred to as flows predicted with the base hydro-
logical model) and after error updating (Note that the RAR-Norm model included in
Fig. 2 will be introduced and discussed in Sect. 4. The same applies to Figs. 3–7.).20

Figure 2 shows that the base hydrological models consistently under-estimate the flow
from 23 September 2000 to 25 September 2000, and the corresponding updating pro-
cedures successfully identify the need to compensate for this under-estimation. For
the AR-Norm model, however, the correction amount for 26 September 2000 is unrea-
sonably large. Because the predicted flow on 26 September 2000 is much higher than25

that on the previous day, the correction based on the error in the transformed flow on
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the previous day is greatly amplified by the back-transformation, leading to the over-
correction. In contrast, the AR-Raw model works better in this situation because the
magnitude of the error update never exceeds the prediction error on the previous day
regardless of whether the predicted flow is high or low.

Figure 3 shows that about 15–25 % AR-Norm updated predictions have an error5

update that is larger than the prediction error on the previous day and therefore are
susceptible to over-correction. Figure 4 presents a time-series plot for the Orara catch-
ment and shows the instances susceptible to over-correction of the AR-Norm model by
the vertical inward facing tick-marks. These instances all occur when the flow rises.

A converse example is presented in Fig. 5 where the AR-Raw model causes over-10

correction. Here, the base hydrological model significantly under-estimates the peak
on 6 July 1998. The magnitude of the error update given by the AR-Raw model cannot
adjust according to the value of the prediction. As a result, the AR-Raw model updates
the prediction on 7 July 1998 with a very large amount, resulting in over-estimation.
In contrast, the AR-Norm model does a better job in this example, giving a smaller15

magnitude of error update by recognising that the hydrograph is moving downward. It
is generally true that in applying the AR-Raw model, over-correction may occur when
the flow is receding. Figure 6 provides more examples of the over-correction caused by
the AR-Raw model from a longer time-series plot for the Abercrombie catchment. There
are three clear instances of over-correction, all occurring on the time step immediately20

after large peaks in observed flows.

4.2 Poor stand-alone performance of the base hydrological model

The second issue with conventional AR error models is the stand-alone performance of
the base hydrological model (GR4J). As noted above, the parameters of the base hy-
drological model are those estimated jointly with an AR model. For streamflow forecast-25

ing, we expect to obtain a reasonably accurate prediction from the base hydrological
model followed by an updating procedure as an auxiliary means to improve the predic-
tive accuracy. At long lead times (e.g., streamflow forecasts generated from medium-
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range rainfall forecasts) error updating becomes less effective, and the performance of
the base hydrological model is crucial for realistic forecasts. While we investigate only
forecasts at a lead time of one timestep in this study, we aim to develop methods that
can be applied to forecasts at longer lead times. Further, if the base hydrological model
does not replicate important catchment processes realistically, the performance of the5

hydrological model outside the calibration period may be less robust.
Figure 7 presents the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) cal-

culated from the base hydrological model and the error models. When the AR-Norm
model is used, the predicted flows from the base hydrological model are very poor for
the Orara catchment (NSE< 0). The scatter plot in Fig. 8 shows further detail about10

the streamflow prediction for the Orara catchment. When the AR-Norm model is used,
the base hydrological model greatly over-estimates discharge and the AR-Norm model
then attempts to correct this systematic over-estimation. This is also shown in Fig. 4
where the base hydrological model has a strong tendency to over-estimate flows for
a range of flow magnitudes. The base hydrological model with the AR-Norm model15

also performs poorly for the Abercrombie catchment (Fig. 7). In this case, the base hy-
drological model tends to under-estimate flows (results not shown). For the other three
catchments, however, the base hydrological model with the AR-Norm model performs
reasonably well.

In general, the AR-Raw base hydrological model performs as well or better than20

the AR-Norm base hydrological model. The AR-Raw base hydrological model is no-
tably better than the AR-Norm base hydrological model in the Abercrombie and Orara
catchments (Fig. 7). This suggests that more robust performance can be expected of
base hydrological models when AR models are applied to raw errors.

We note that for both the AR-Raw model and the AR-Norm models, the updated25

predictions are not always better than predictions generated by the base hydrological
models (Fig. 7). For the Abercrombie catchment, the updated AR-Raw predictions are
not as good as the predictions generated by the AR-Raw base hydrological model.
Similarly, the AR-Norm updated predictions perform worse than predictions from the
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AR-Norm base hydrological model in the Tarwin catchment. This points to a tendency to
overfit the parameters to the calibration period, resulting in the error model undermining
the performance of the base hydrological model under cross-validation. Such a lack
of robustness is highly undesirable in forecasting applications, where the hydrological
models should be able to operate in conditions that differ from those experienced during5

calibration.

5 Restricted AR error model

Motivated to overcome the potential for over-correction, we modify the AR-Norm model
by restricting the magnitude of its corrections. This is a restricted AR–Norm model,
which we call the RAR-Norm model. The RAR-Norm model is defined by10

Z (R)(Qt) =


Z (R)(QS,t)+ε(R)

t +

ρ(R)
{
Z (R)(Qt−1)−Z (R)(QS,t−1)

} if |QM,t −QS,t | ≤ |Qt−1 −QS,t−1|

Z (R)(QS,t +Qt−1 −QS,t−1)+ε(R)
t otherwise

(8)

where the superscript (R) is used to denote the parameters of the RAR-Norm model and

QM,t = (Z (R))−1
[
Z (R)(QS,t)+ρ(R)

{
Z (R)(Qt−1)−Z (R)(QS,t−1)

}]
is the updated stream-

flow prediction median given by the AR-Norm model without restriction. The actual15

updated streamflow prediction median of the RAR-Norm model is given by

Q(R)
U,t =

{
QM,t if |QM,t −QS,t | < |Qt−1 −QS,t−1|
QS,t +Qt−1 −QS,t−1 otherwise

(9)

The RAR-Norm model parameters may be jointly estimated with the hydrological model
parameters using the maximum likelihood method, in the same as for the AR-Norm and20

AR-Raw models.
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The idea behind the RAR-Norm model is simple. We use the AR-Norm model for
error updating if the magnitude of the error update is not too large. Otherwise, we
adopt a naïve updating scheme, which applies the raw error from the previous time
step to correct the current prediction. At any time t, the magnitude of the error update
is restricted to a maximum of |Qt−1 −QS,t−1|.5

Because the RAR-Norm model imposes an upper limit on the size of the correc-
tion, it effectively reduces the tendency for over-correction. Figure 2 shows that the
RAR-Norm model behaves similarly to the AR-Raw model for correcting the peak on
26 September 2000 and avoids the over-correction made by the AR-Norm model. The
RAR-Norm model is also able to adjust the magnitude of the error update accord-10

ing to QS,t and this is particularly useful when the hydrograph is moving downward.
Figure 5 shows that when the hydrograph recedes rapidly, the RAR-Norm model pro-
duces updated streamflow similar to the AR-Norm model. In this case, the RAR-Norm
model avoids the over-correction by the AR-Raw model on 7 July 1998. Similarly, the
RAR-Norm works better than the AR-Raw model to avoid the three instances of over-15

correction for the Abercrombie catchment (Fig. 6). Overall, the RAR-Norm model takes
a conservative position when flow changes rapidly, either rising or falling. When flow
changes rapidly, it is difficult to anticipate the magnitude of prediction error. Accordingly
the AR models are prone to over-correction in such instances.

Figure 3 provides the proportion of the instances where |QM,t −QS,t | > |Qt−1 −QS,t−1|.20

These instances are susceptible to over-correction by the AR-Norm model. The fre-
quency of these instances varies somewhat from catchment to catchment. The RAR-
Norm model identifies 15–30 % of the time series as possible instances of problematic
updating, and the AR-Norm model identifies a similar number of instances (slightly
fewer – they are not identical because the parameters for each model are inferred in-25

dependently). This is illustrated in the Orara catchment in Fig. 4, which shows that
the number of instances where |QM,t −QS,t | > |Qt−1 −QS,t−1| is nearly identical for the
AR-Norm model and the RAR-Norm model. In other words, the restriction defined in
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the RAR-Norm model is largely applied to the instances where the AR-Norm model is
susceptible to over-correction.

The RAR-Norm model generally improves the performance of the base hydrological
model, in particular compared to the AR-Norm model (Fig. 7). The RAR-Norm base
hydrological model performs similarly to, or better than, the base hydrological models5

of the AR-Norm and AR-Raw model. The improvement over the AR-Norm base hy-
drological model is especially evident for the Orara (Figs. 4 and 7) and Abercrombie
catchments (Figs. 7).

In general, the updated predictions from the RAR-Norm model show similar or bet-
ter predictive accuracy, as measured by NSE, than both the AR-Raw model and the10

AR-Norm model (Fig. 7). We note that the Orara catchment is an exception: here the
AR-Raw model shows slightly better performance than both the AR-Norm and RAR-
Norm models. Conversely, the RAR-Norm model shows notably better performance
than both the AR-Norm and AR-Raw models in the Abercrombie catchment. This sug-
gests the RAR-Norm model may work better in intermittently flowing catchments, al-15

though further testing is required to establish that this is true for a greater range of
catchments.

Importantly, the updated predictions of the RAR-Norm model outperform the base
hydrological model predictions in all catchments. This shows that for the RAR-Norm
model, both the base hydrological model and the error updating perform robustly under20

cross-validation. This is not true of the AR-Raw model in the Abercrombie catchment
or for the AR-Norm model in the Tarwin catchment. As noted above, robust perfor-
mance under cross-validation, and consistent interaction between the base hydrolog-
ical model and the error updating, are critically important for forecasting applications,
where models should perform well in conditions that may differ substantially from those25

experienced during calibration.
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6 Discussion and conclusions

For streamflow forecasting, rainfall–runoff models are often augmented with an updat-
ing procedure that corrects the prediction using information from recently observed
prediction errors. The most popular updating approach uses autoregressive (AR) mod-
els that exploit the “memory” in model prediction errors. AR models may be applied to5

raw errors directly or to normalised errors.
We demonstrate two adverse effects of AR error updating procedures by case stud-

ies of four catchments. The first adverse effect is possible over-correction. The updating
procedure may correct hydrological predictions too much at some events. The over-
correction often happens at the peak or on the rise of a hydrograph for the AR-Norm10

model and when the hydrograph is receding for the AR-Raw model.
The second adverse effect is poor stand-alone performance of base hydrological

models when the parameters of rainfall–runoff and error models are jointly estimated
with the AR parameters. We show that poor base hydrological model performance is
particularly prevalent in the AR-Norm model. The poor performance appears to occur15

in catchments with highly skewed streamflow observations (the Abercrombie, an inter-
mittent river, and the Orara, a catchment in a subtropical climate). For example, in the
Orara River, the base hydrological model tends to greatly over-estimate streamflows,
and then relies on the error updating to correct the over-estimates. This is not desirable
in real-time forecasting applications for two major reasons. First, modern streamflow20

forecasting systems often extend forecast lead-times with rainfall forecast information
(e.g. Bennett et al., 2014). Updating becomes less effective at longer lead times, and
predictions at longer lead times rely on the performance of the base hydrological model.
Second, hydrological models are designed to simulate various components of natural
systems, such as baseflow processes or overland flow. In theory, simulating these pro-25

cesses correctly will allow the model to perform well for climate conditions that may
substantially differ from those experienced during the parameter estimation period. If
the hydrological model parameters do not reflect the natural processes for a given
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catchment, the hydrological model may be much less robust outside the parameter
estimation period.

In addition, our results for the AR-Norm and AR-Raw models indicate that the in-
teraction between the error updating and the base hydrological model may not always
be robust under cross-validation. In some catchments, the updated predictions of the5

AR-Norm and AR-Raw models were actually worse than the predictions generated by
their respective base hydrological models. In forecasting applications, both the base
hydrological model and the error updating should perform robustly outside the calibra-
tion period, as forecasts are always generated with forcing data that are independent
of the calibration period.10

The adverse effects of AR-Norm error correction discussed in this study are proba-
bly generic. In particular, transformations other than the log–sinh transformation may
still lead to over-correction at the peak of hydrograph. The proof in Appendix A shows
that if a transformation satisfies some conditions (first derivate is positive and second
derivate is negative), it will tend to correct more for higher predicted flow and can cause15

the problem of over-correction. The conditions given by Appendix A are generally true
for many other transformations used for data normalization and variance stabilization
in hydrological applications, such as logarithm transformation and Box–Cox transfor-
mation with the power parameter less than 1.

We use joint parameter inference to calibrate hydrological model and error model20

parameters, in order to address the true nature of underlying model errors. Inferring
parameters of the error model and the base hydrological model independently – i.e.,
first inferring parameters of the base hydrological model, holding these constant and
then inferring the error model parameters – relies on simplified and often invalid er-
ror assumptions (it assumes independent, homoscedastic and Gaussian errors), but25

nonetheless could be a pragmatic alternative to the joint parameter inference to reduce
computational demands. The over-correction of ordinary AR models is independent of
the parameter inference, whether the error and base hydrological model parameters
are inferred jointly or independently.
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In order to mitigate the adverse effects of ordinary AR updating procedures, we intro-
duce a new updating procedure called the RAR-Norm model. The RAR-Norm model
is essentially a modification of the AR-Norm model. This new model is able to adjust
the magnitude of the error update according to the value of the hydrological predic-
tion, which is similar to the AR-Norm model. However, it limits the magnitude of the5

error update to the prediction error at the previous time step. We show that the new
model indeed guards against over-correction and at the same time leads to more ro-
bust performance by the base hydrological models. In addition, the performance of the
base hydrological model and the error updating are robust under cross validation. Ac-
cordingly, we contend that the RAR-Norm model is preferable to both AR-Norm and10

AR-Raw models for streamflow forecasting applications.

Appendix A:

We will analytically show that the AR-Norm model gives a larger magnitude of the error
update for a higher predicted flow.

Firstly, we will show that the first derivate of the log–sinh transform Z defined by15

Eq. (3) is positive and the second derivate is negative (i.e. Z ′(Q) > 0 and Z ′′(Q) < 0) for
any b > 0 and any Q. Following some simple manipulation, we have

Z ′(Q) =
cosh(a+bQ)

sinh(a+bQ)
> 0 and Z ′′(Q) =

−b
sinh2(a+bQ)

< 0 (A1)

Using the differentiation of inverse functions, we find the first and second derivates of
the inverse transform Z−1

20

[Z−1]′(Q) =
1

Z ′{Z−1(Q)}
> 0 and [Z−1]′′(Q) =

−Z ′′{Z−1(Q)}
[Z ′{Z−1(Q)}]3

> 0, (A2)

for any b > 0 and any Q.
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Next, we will derive the difference of magnitudes of the error update between low
and high predicted flows. For the sake of notation simplicity, we rewrite q = Z(QS,t)

and u = ρ(T){Z(Qt−1)−Z(QS,t−1)} and assume that u > 0. Using Eq. (4), the updated

streamflow can be written as Q(N)
U,t = Z−1(q+u). The magnitude of the error update can

be written as5 ∣∣∣QS,t −Q(N)
U,t

∣∣∣ =
∣∣Z−1(q+u)−Z−1(q)

∣∣ =

{∫u
0 [Z−1]′(x+q)dx if u > 0∫0
u[Z−1]′(x+q)dx otherwise.

(A3)

Suppose that we have two predicted streamflows Q(1)
S,t ≤Q(2)

S,t and denote the nor-

malised predicted streamflow by q1 = Z
(
Q(1)

S,t

)
and q2 = Z

(
Q(2)

S,t

)
and the updated

streamflow by Q(N,1)
U,t and Q(N,2)

U,t . Because Z is an increasing function, we have q1 ≤ q2.10

The difference in the magnitude of the error update between Q(1)
S,t and Q(2)

S,t can be
derived as

∣∣∣Q(1)
S,t −Q(N,1)

U,t

∣∣∣− ∣∣∣Q(2)
S,t −Q(N,2)

U,t

∣∣∣ =


∫u

0

{
[Z−1]′(x+q1)− [Z−1]′(x+q2)

}
dx if u > 0∫0

u

{
[Z−1]′(x+q1)− [Z−1]′(x+q2)

}
dx otherwise.

(A4)

From Eq. (A2), we have shown that [Z−1]′ is a positive increasing function and this15

ensures that [Z−1]′(x+q1)− [Z−1]′(x+q2) ≤ 0. Finally we have∣∣∣Q(1)
S,t −Q(N,1)

U,t

∣∣∣ ≤
∣∣∣Q(2)

S,t −Q(N,2)
U,t

∣∣∣ . (A5)

Therefore, the error update at larger predicted flows is always larger than error update
at lower predicted flows.
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Table 1. Basic catchment characteristics.

Name Gauge Site Area Rainfall Streamflow Runoff Zero
(km2) (mm yr−1) (mm yr−1) coefficient flows

Abercrombie Abercrombie River at Hadley no. 2 1447 783 63 0.08 14.4 %
Mitta Mitta Mitta Mitta River at Hinnomunjie 1527 1283 261 0.20 0
Orara Orara River at Bawden Bridge 1868 1176 243 0.21 0.6 %
Tarwin Tarwin River at Meeniyan 1066 1042 202 0.19 0
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Figure 1. Map of catchments used in this study.
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Figure 2: An example of over-correction caused by the AR-Norm model in the Mitta 2 

Mitta catchment. Dashed lines: predictions from the base hydrological model (i.e., 3 

without error updating). Solid lines: predictions with error updating.  4 

 5 

 6 

  7 

Figure 2. An example of over-correction caused by the AR-Norm model in the Mitta Mitta catch-
ment. Dashed lines: predictions from the base hydrological model (i.e., without error updating).
Solid lines: predictions with error updating.

6057

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6035/2014/hessd-11-6035-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6035/2014/hessd-11-6035-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 6035–6063, 2014

Adverse effects of
autoregressive

updating of
streamflow
predictions

M. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Page 22 of 29 

 1 

Figure 3: The fraction of instances where , , 1 , 1>M t S t t S tQ Q Q Q− −− −  (i.e., instances where 2 

over-correction may occur in the AR-Norm model and where error updating is 3 

restricted in the RAR-Norm model) for the AR-Norm and RAR-Norm models.  4 

  5 

Figure 3. The fraction of instances where |QM,t −QS,t | > |Qt−1 −QS,t−1| (i.e., instances where
over-correction may occur in the AR-Norm model and where error updating is restricted in the
RAR-Norm model) for the AR-Norm and RAR-Norm models.
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 1 

Figure 4: Predicted streamflows for the Orara catchment for an example 1-year period. 2 

Top panel shows flows predicted with AR-Norm model, bottom panel shows flows 3 

predicted with the RAR-Norm model. Dashed lines: predictions from the base 4 

Figure 4. Predicted streamflows for the Orara catchment for an example 1 year period. Top
panel shows flows predicted with AR-Norm model, bottom panel shows flows predicted with
the RAR-Norm model. Dashed lines: predictions from the base hydrological model (i.e., without
error updating). Solid lines: predictions with error updating. Tick marks in the x-axis denote the
instance of updating where |QM,t −QS,t | > |Qt−1 −QS,t−1|.
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Figure 5: An example of over-correction caused by the AR-Raw model in the Mitta 2 

Mitta catchment. Dashed lines: predictions from the base hydrological model (i.e., 3 

without error updating). Solid lines: predictions with error updating.  4 
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Figure 5. An example of over-correction caused by the AR-Raw model in the Mitta Mitta catch-
ment. Dashed lines: predictions from the base hydrological model (i.e., without error updating).
Solid lines: predictions with error updating.

6060

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/6035/2014/hessd-11-6035-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/6035/2014/hessd-11-6035-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 6035–6063, 2014

Adverse effects of
autoregressive

updating of
streamflow
predictions

M. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

P
ag

e 
26

 o
f 2

9
 

 
1 

F
ig

u
re

 
6:

 
P

re
di

ct
ed

 
st

re
am

flo
w

s 
fo

r 
th

e 
A

be
rc

ro
m

bi
e

 
ca

tc
hm

en
t 

fo
r 

th
e 

pe
rio

d 
2 

be
tw

ee
n

 0
1/

08
/1

99
7 

an
d

 1
5/

09
/1

99
7.

 T
op

 p
an

el
 s

ho
w

s 
flo

w
s 

p
re

di
ct

ed
 w

ith
 A

R
-R

aw
 

3 

m
od

el
, 

bo
tt

om
 p

an
el

 s
ho

w
s 

flo
w

s 
pr

ed
ic

te
d 

w
ith

 th
e 

R
A

R
-N

or
m

 m
od

el
. 

D
as

he
d 

lin
es

: 
4 

Figure 6. Predicted streamflows for the Abercrombie catchment for the period between 1 Au-
gust 1997 and 15 September 1997. Top panel shows flows predicted with AR-Raw model,
bottom panel shows flows predicted with the RAR-Norm model. Dashed lines: predictions from
the base hydrological model (i.e., without error updating). Solid lines: predictions with error up-
dating. Red circles denote the instances of the over-correction caused by the AR-Raw model.
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 2 

Figure 7: NSE of streamflows predicted with the AR-Norm, AR-Raw and RAR-Norm 3 

models (colours). Performance of the corresponding base hydrological models is 4 

shown by hatched blocks. 5 
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  7 

Figure 7. NSE of streamflows predicted with the AR-Norm, AR-Raw and RAR-Norm models
(colours). Performance of the corresponding base hydrological models is shown by hatched
blocks.
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Figure 8: Comparison of the observed streamflows (Qt) and predicted streamflows 2 

(Qs), as predicted 1) with the base hydrological model (circles), and 2) with the base 3 

hydrological model and error updating models (dots) for the Orara catchment.  4 

 5 

Figure 8. Comparison of the observed streamflows (Qt) and predicted streamflows (Qs), as
predicted (1) with the base hydrological model (circles), and (2) with the base hydrological
model and error updating models (dots) for the Orara catchment.
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