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Abstract

For streamflow forecasting, rainfall-runoff model® often augmented with updating
procedures that correct forecasts based on th& katailable streamflow observations
of streamflow. A popular approach for updating t@sts is autoregressive (AR)
models, which exploit the “memory” in hydrologicalodel simulation errors. AR
models may be applied to raw errors directly an@gomalised errors. In this study, we
demonstrate that AR models applied in either way sametimes cause over-
correction of forecasts. In using an AR model aplio raw errors, the over-
correction usually occurs when streamflow is rapidiceding. In applying an AR
model to normalised errors, the over-correctionallguoccurs when streamflow is
rapidly rising. In addition, when parameters ofyddological model and an AR model
are estimated jointly, the AR model applied to nalised errors sometimes degrades
the stand-alone performance of the base hydrolbgiocdel. This is not desirable for
forecasting applications, as forecasts should aslymuch as possible on the base
hydrological model, with updating only used to eatrminor errors. To overcome the
adverse effects of the conventional AR models, siricked AR model applied to
normalised errors is introduced. We show that & model reduces over-correction

and improves the performance of the base hydradgiodel considerably.

1. Introduction
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Rainfall-runoff models are widely used to generateeamflow forecasts, which
provide essential information for flood warning amdter resources management. For
streamflow forecasting, rainfall-runoff models aoffen augmented by updating
procedures that correct streamflow forecasts basdte latest available observations
of streamflow and their departures from model satiahs. Model errors reflect
limitations of the hydrological models in reprodugiphysical processes as well as

inaccuracies in data used to force and evaluatetuzls.

The most popular updating approach uses autoregeggsR) models, which exploit
the “memory” - more precisely the autocorrelatitnucture - of errors in hydrological
simulations (Morawietz et al., 2011). Essentialg updating uses a linear function
of the known errors at previous time steps to gdie errors in a forecast period.
Forecasts are then updated according to theseipatéid errors. AR updating is
conceptually simple and yet generally leads to iB@antly improved forecasts
(World Meteorological Organization, 1992). AR upgdgthas been shown to provide
equivalent performance to more sophisticated nogali and nonparametric updating
procedures (Xiong and O'Connor, 2002).

In rainfall-runoff modelling, model errors are gealey heteroscedastic (i.e., they
have heterogeneous variance over time) (Xu, 200&ts&i et al., 2003;Pianosi and
Raso, 2012) and non-Gaussian (Bates and Campb@D]l;2chaefli et al.,

2007;Shrestha and Solomatine, 2008). In many aypits (Seo et al.,, 2006;Bates
and Campbell, 2001;Salamon and Feyen, 2010;Moraveietl., 2011), AR models

are applied to normalised errors that are considé@moscedastic and Gaussian.
Normalisation is often achieved through variablansformation by using, for

example, the Box-Cox transformation (Thyer et &002;Bates and Campbell,
2001;Engeland et al., 2010) or, more recently,ltigesinh transformation (Wang et
al., 2012;Del Giudice et al.,, 2013). In other apgiions (Schoups and Vrugt,
2010;Schaefli et al., 2007), AR models are apptireectly to raw errors, but residual
errors of the AR models may be explicitly specifiag heteroscedastic and non-

Gaussian.

There is no agreement on whether it is better flyagn AR model to normalised or
raw errors. Recent work by Evin et al. (2013) fodinat an AR model applied to raw
errors may lead to poor performance with exaggdratecertainty. They

demonstrated that such instability can be mitigdtgdapplying an AR model to
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standardised errors (raw errors divided by standaxdations). Here, standardisation
has a similar effect to normalisation in that itegenises the variance of the errors
(but does not consider the non-Gaussian distributioerrors). Conversely, Schaefli
et al. (2007) pointed out that when an AR modeljomtly estimated with a
hydrological model, there is a clear advantagepplyang an AR model to raw errors
rather than normalised (or standardised) errorsa&t et al. (2007) found that using
raw errors leads to more reliable parameter infsgeand uncertainty estimation,
because the mean error is close to zero and theréfie simulations are free of
systematic bias. The same is not necessarily thoenvapplying an AR model to

normalised errors.

In this study, we evaluate AR models applied tchbetw and normalised errors on
four Australian catchments and three United Stétk3) catchments. We show that
when estimated jointly with a hydrological modehet AR model applied to

normalised errors sometimes degrades the stand-gbenformance of the base
hydrological model. We also identify that both bése conventional AR models can
sometimes cause over-correction of forecasts. Witedace a restricted AR model
applied to normalised errors and demonstrate ifisc@feness in overcoming the

adverse effects of the conventional AR models.

2. Autoregressive error models

2.1 Formulations

A hydrological model is a function of forcing vablas (precipitation and potential

evapotranspiration), initial catchment stafg, and a set of hydrological model
parametersf],. We denote the observed streamflow and model siealistreamflow
at timet by Q andQ, respectively. An error model is used to descititeedifference

betweenQ anth. The log-sinh transformation defined by Wang e{2012)
f (x) =b™log{ sinh@+bx } (1)
is applied to stabilise variance and normalise.data

In this study, we firstly examine two first-ordeRAerror models:

(1) An AR error model applied to normalised err@referred to a®\R-Norm) defined

by:
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Z, = Z~t P (Zt—l - Zt—l) & (2)

whereZ, and Z, are the log-sinh transformed variables@fand Q ;

(2) An AR error model applied to raw errors (regerto asAR-Raw) defined by

Z =f {Qt + p(Qt—l _Q~t—l)} té 3)

For both modelsp is the lag-1 autoregression parameter, g§nds an identically

and independently distributed Gaussian deviate withean of zero and a constant

standard deviatiow .

Both the AR-Norm and AR-Raw models represent tigeolae autocorrelation by an
AR process and both employ the log-sinh transfaonaHowever, the way the log-
sinh transformation is applied differs between tthe models. The AR-Norm model
first applies the log-sinh transformation to thesetved and model simulated
streamflow, and then assumes that the error itrémsformed space follows an AR(1)
process. In contrast, the AR-Raw model essentatlyjumes that the error in the
original space follows an AR(1) process and onlglias the log-sinh transformation

to fit the asymmetric and non-Gaussian error digtron.

The median of the updated streamflow forecast rfrefleto asupdated streamflow)
for the AR-Norm and AR-Raw models (see Appendixoh firoof), denoted by,

are respectively

Q =12z +p(z.-2.)}, (4)
and
Q =Q +p(Q.-Qu). 5)

where f () is the inverse of log-sinh transformation (or ba@nsformation). The
magnitude of the error update by the AR-Raw mo@él,—@t , Is dependent only on
the difference betwee®)_, and Q_l. In contrast, the magnitude of the error update by
the AR-Norm model is dependent not only on theedéffice betweef)_; and Q_l,

but also onQ, . Put differently, the AR-Norm model uses errorécakated in the
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transformed domain, and this means that the errahé original domain can be
amplified (or reduced) by the back-transformatibguation (4)). The AR-Raw model
uses errors calculated in the original domain aodack-transformation is used in
calculating@t* (Equation (5)), meaning that the error in the ioafjdomain cannot be

amplified (or reduced). In Appendix B, we show titaé AR-Norm model gives

greater error updates for larger valuespf

We will demonstrate in Section 4 that the AR-Normd aAR-Raw models can
sometimes cause over-correction of forecasts. Mt/ to overcome the potential for
over-correction, we introduce a modification of tA&R-Normm model, called the

restricted AR-Norm model (referred to afRAR-Norm). A condition

‘Q: —Qt‘s ‘Qt_l—(jt_l‘ is used to limit the correction to an amount nateeding the

raw error at the last time step. The updated stileams given by

Q: :{il{zt +:0(~Zt—1 _Zt—l)} -if D, =< ‘Q—l_ét—l‘ (6)
Q+(Q.,—-Q_,) otherwise.
where
D, :‘f_l{zt +p(zt—l_zt—l)} _Ql : (7)
The full RAR-Norm model in the transformed spacgiien by
Z — Zt tp(zt—l_%l—l +£l If Dt < Qt—l_él—l (8)
o f (Qt +Q_,-Q_)+&  otherwise.

2.2 Estimation

The AR-Norm, AR-Raw and RAR-Norm models are eadibed jointly with the
hydrological model. The method of maximum likelildois used to estimate the error

model parameter§]. and the hydrological model parametéts. Using a similar

derivation as given by Li et al. (2013), the likelod functions can be written as

(a) for AR-Norm

L(6:.8.) = [1P@1Q Qiibe 8:)=[] Iz, 9|2 12 +5(20:-24) 07), 9

(b) for AR-Raw
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I‘(HE’HH ) = |_| P@Q1Q Qb 6,)= |_| ‘Jz,ﬁq¢(zt |f{Q~t +p(Qt—l_Qt—1)} ’0.2) ,
(10)

(c) for RAR-Norm

L(eE'HH)Z |_| P(Q |Qt 'Qt—l;HE 64 )= |_| . JZkaqp(Zt |Z~t +'0(Zt‘1_z~t‘1) ’02)
t D =[Q4 — Q)

“ kL Jzﬁoﬁ"(zt |f{Q+p(Qt‘l_Qt’l)} '02)'
t:D>Q 1 Q-
(11)

where “'Izﬁ(?l:{tanh(a+th}_l is the Jacobian determinant of the log-sinh

transformation ando(x|,u,0'2) is the probability density function of a Gaussian

random variablex with meany and standard deviatiom. The probability density

function is replaced by the cumulative probabifilpction when evaluating events of
zero flow occurrences (Wang and Robertson, 201é&tLal.,, 2013). The Shuffled
Complex Evolution (SCE) algorithm (Duan et al., 49% used to minimize the log
likelihood.

3. Data

We use daily data from four Australian catchmemntd three catchments from the
United States (US; Figure 1, Table 1). Australiaeanflow data are taken from the
Catchment Water Yield Estimation Tool (CWYET) datagVaze et al., 2011).
Australian rainfall and potential evaporation dat@ derived from the Australian
Water Availability Project (AWAP) dataset (Jonesakt 2009). All data for the US
catchments come from the Model Intercomparison Ewpnt (MOPEX) dataset
(Duan et al., 2006). The selected US catchmentsraangst the 12 catchments used
by Evin et al. (2014) to compare joint and postpesor approaches to estimate
hydrological uncertainty, and allows us to compasults with that study (the other
catchments used by Evin et al. (2014) are infludnisg snowmelt, which is not
considered in the hydrological model used in thiglg). The Abercrombie River and
the Guadalupe River intermittently experience pisiof very low (to zero) flow,
while the other rivers flow perennially (Table Such dry catchments are challenging
for hydrological simulations and error modellingll Batchments have high-quality

streamflow records with very few missing data.
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We forecast daily streamflow with the GR4J rainfaihoff model (Perrin et al.,
2003). We apply updating procedures to correctettiesecasts. All results presented
in this paper are based on cross-validation torenthe results can be generalised to
independent data. We use different cross-validasidmeemes for the Australian and
US catchments, because of the shorter streamfloards available for the Australian

catchments:

i.  For the Australian catchments we use data from 1892005 (14 years) for
these catchments. We then generate 14-fold crdskted streamflow
forecasts. The data from 1990-1991 are only usedhaton up the GR4J model.
For a given year, we leave out the data from tlear yand the following year
when estimating the parameters of GR4J and erralelaoFor example, if we
wish to forecast streamflows at any point in 1998 Jleave out data from 1999
and 2000 when we estimate parameters. The remdvala@m from the
following year (2000) is designed to minimise tmepact of hydrological
memory on model parameter estimation. We then gémestreamflow
forecasts in that year (1999) with model parametssmated from the
remaining data.

ii. For the US catchments we follow the split-samplvaidation scheme
suggested by Evin et al. (2014) to make our resuitsparable to that study:
(1) an 8-year calibration (09/09/1973- 26/11/198%). 3000 days) with an 8-
year warm-up period and (2) a 17-year validatio/12/1981-01/05/1998)
(i.e. 6000 days) with an 8-year warm-up period.

To demonstrate the problems of over-correctionradrs in updating and poor stand-
alone performance of the base hydrological mod@, consider only streamflow

forecasts for one time step ahead. We will condioleger lead times in future work.

Forecasts are generated using observed rainfal] &.‘perfect’ rainfall forecast) as
input. In streamflow forecasting, forecasts maybeerated from rainfall information

that comes from a different source (e.g., a nurakneather prediction model). Our
study is aimed at streamflow forecasting applicetjcso we preserve the distinction
between observed and forecast forcings by refeiingtreamflows modelled with

observed rainfall asmulations and those modelled with forecast rainfalf@®casts.

In this study the forecast rainfall is observednfal, so the termdorecast and

simulation are interchangeabile.
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4. Results

4.1 Over-correction of forecasts as the hydrograph rises

The first adverse effect of the conventional AR eleds over-correction of errors in
updating as streamflows are rising. By over-coroectwe mean that the AR model
updates the hydrological model simulations too mu@wer-correction is difficult to
define precisely, however we will demonstrate tbacept with two examples in the
Mitta Mitta catchment: the first example illustratever-correction by the AR-Norm
model, and the second example illustrates oveecbon by the AR-Raw model.

To illustrate the problem of over-correction caubgdhe AR-Norm model, Figure 2
presents a 1-week time series for the Mitta Mitscloment, showing streamflow
forecasts with GR4J before error updating (refeteeds streamflows forecast with
the base hydrological model) and after error updating. Figure 2 shows thatlthse
hydrological models consistently under-estimate stieamflow from 23/09/2000 to
25/09/2000, and the corresponding updating proesdsumccessfully identify the need
to compensate for this under-estimation. For the-Md®m model, however, the
correction for 26/09/2000 is unreasonably largecdBse the forecast streamflow on
26/09/2000 is much higher than that of the previdag, the correction is greatly
amplified by the back-transformation, leading te thver-correction. In contrast, the
AR-Raw model works better in this situation becatls® magnitude of the error
update never exceeds the simulation error on teeiqus day regardless of whether
the forecast streamflow is high or low. The RAR-Momodel behaves similarly to
the AR-Raw model for correcting the peak on 26/00( and avoids the over-

correction made by the AR-Norm model.

Figure 3 shows instances of possible over-cormrectiy the AR-Norm model,

identified by the conditiorD, >‘Qt_1 —Qt_l‘. Figure 3 shows that about 10-25% of the

AR-Norm updated forecasts have an error updateigHatger than the forecast error
on the previous day and therefore are susceptbdedr-correction. The frequency of
these instances varies somewhat from catchmemtti¢broent. The RAR-Norm model

identifies 10-30% of the forecasts as possibleaimsts of problematic updating, and
the AR-Norm model identifies a similar number odtences (slightly fewer — they are

not identical because the parameters for each namdehferred independently).
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Figure 4 presents a time-series for the Orara psah that shows the instances
susceptible to over-correction for the AR-Norm modehese instances all occur
when the streamflow rises. The RAR-Norm model ¢ifety rectifies the problem of
over-correction caused by the AR-Norm model. Weenbiat there is nothing that
forces the instances susceptible to over-corredtientified by the AR-Norm model
to be the same as those identified by the RAR-Nmiwdels because the two models
are calibrated independently (and therefore basgeolygical model simulations may
be different). However, the restriction definedtire RAR-Norm model is largely

applied to the instances where the AR-Norm modsligceptible to over-correction.
4.2 Over-correction of forecasts as the hydrograph recedes

The second adverse effect of conventional AR modets/er-correction of forecasts
as streamflows recede. An example is presentedjurd-5 where the AR-Raw model
causes over-correction. Here, the base hydrologicalel over-estimates the receding
hydrograph on 05/10/1993. The magnitude of thererpalate given by the AR-Raw
model cannot adjust according to the value of tredast. As a result, the AR-Raw
model updates the forecast on 06/10/1993 by a larmgeunt, resulting in serious
under-estimation (the forecast streamflow is neadso), and an artificial distortion
of the hydrograph. (We note that we have seenpitublem become much worse in
unpublished experiments of forecasts made for séuene-steps into the future,
sometimes resulting in forecasts of zero flows mydiarge floods.) In contrast, the
AR-Norm model performs better in this example, ggva smaller magnitude of error
update by recognising that the hydrograph is modognward. It is generally true
that in applying the AR-Raw model, over-correctiaay occur when the streamflow
is receding. The RAR-Norm model produces updateshstflow similar to the AR-
Norm model when the hydrograph recedes rapidlyamids the over-correction by
the AR-Raw model on 06/10/1993.

Figure 6 provides more examples of the over-caoeaaused by the AR-Raw model

from a longer time-series plot for the Abercrombachment. There are three clear
instances of over-correction, all occurring on time step immediately after large

peaks in observed streamflows. The RAR-Norm modeks/better than the AR-Raw

model to avoid the three instances of over-comector the Abercrombie catchment.

Overall, the RAR-Norm model takes a conservativesitmm when streamflow

changes rapidly, either rising or falling. Wheneainflow changes rapidly, it is
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difficult to anticipate the magnitude of forecastoe. Accordingly the conventional

AR models are prone to over-correction in suchaimsts.
4.3 Poor stand-alone performance of the base hydrological model

The third adverse effect with conventional AR ermodels is the stand-alone
performance of the base hydrological model (GRA3)noted above, the parameters
of the base hydrological model are estimated jpintith each error modelFor
streamflow forecasting, we expect to obtain a reaBly accurate forecast from the
base hydrological model followed by an updatingcpdure as an auxiliary means to
improve the forecast accuracy. At lead times of yname-steps (e.g., streamflow
forecasts generated from medium-range rainfallcasts) the magnitude of AR error
updates becomes rapidly smaller (tending to zenadl, thus the performance of the
base hydrological model is crucial for realisticeicasts at longer lead times. While
we investigate only forecasts at a lead time of ime step in this study, we aim to
develop methods that can be applied to forecadtsnger lead times. Further, if the
base hydrological model does not replicate importatchment processes realistically,
the performance of the hydrological model outsluke ¢alibration period may be less

robust.

Figure 7 presents the Nash-Sutcliffe efficiency BYENash and Sutcliffe, 1970)
calculated from the base hydrological model anddtrer models. When the AR-
Norm model is used, the forecasts from the baseolygical model are very poor for
the Orara catchment (NSE<O0). The scatter plot gufe 8 shows a serious over-
estimation of the streamflow simulation for the @raVhen the AR-Norm model is
used, the base hydrological model greatly overregtis discharge and the AR-Norm
model then attempts to correct this systematic-egémation. This is also shown in
Figure 4 where the base hydrological model hagangttendency to over-estimate
streamflows for a range of streamflow magnituddése Base hydrological model with
the AR-Norm model also performs poorly for the Advembie catchment (Figure 7).
In this case, the base hydrological model tendsmtier-estimate streamflows (results
not shown). For the other three catchments, howefier base hydrological model

with the AR-Norm model performs reasonably well.

In general, the AR-Raw base hydrological model grent as well or better than the
AR-Norm base hydrological model. The AR-Raw baseérblpgical model is notably
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better than the AR-Norm base hydrological modekha Abercrombie and Orara
catchments (Figure 7). This suggests that morestgierformance can be expected of

base hydrological models when AR models are apphiedw errors.

The RAR-Norm model generally improves the perforosanf the AR-Norm base
hydrological model to a level similar to the AR-R&ase hydrological model (Figure
7). The improvement over the AR-Norm base hydraahimodel is especially

evident for the Orara (Figures 4 and 7) and Abentrie catchments (Figures 7).

We note that for the AR-Norm models, the updata@gdasts are not always better
than forecasts generated by the base hydrologicadets. For the Tarwin and
Guadalupe catchments, AR-Norm forecasts are ngbas as the forecasts generated
by the AR-Norm base hydrological model. This poitdsa tendency to overfit the
parameters to the calibration period, resultingha error model undermining the
performance of the base hydrological model undesswalidation. Such a lack of
robustness is highly undesirable in forecastingliegions, where the hydrological
models should be able to operate in conditions diér from those experienced
during calibration. Note that this problem also wscin the RAR-Norm model
(Guadalupe) and in the AR-Raw model (Abercrombieadalupe) but to a much

smaller degree.

In general, the updated forecasts from the RAR-Noradel show similar or better
forecast accuracy, as measured by NSE, than beth®iRaw model and the AR-
Norm model (Figure 7). We note that the Orara cattt is an exception: here the
AR-Raw model shows slightly better performance thBRAR-Norm model.
Conversely, the RAR-Norm model shows notably beterformance than both the
AR-Norm and AR-Raw models in the Abercrombie ancda@lupe catchments. This
suggests the RAR-Norm model may work better inrmittently flowing catchments,
although further testing is required to establist this is true for a greater range of

catchments.
4.4 Further analyses

We further evaluate the NSE of the three differembr models calibrated when
streamflows are receding (1.6, <Q_,) and rising (i.,eQ >Q_,) (Table 2). For the

receding streamflows (constituting 70-85% of strilaws), the AR-Raw model leads

to the overall worst forecast accuracy becausehefaver-correction explained in
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Section 4.1. This is especially evident for the vebembie catchment (and, to a lesser
degree, the Guadalupe catchment). The RAR-Norm hwigeificantly outperforms
the other two models for the Abercrombie catchmemd shares similar forecast
accuracy to the (strongly performing) AR-Norm modet the other catchments.
When streamflows are rising (which also includesasnflow peaks), the AR-Norm
model can cause over-correction and leads to Hst Bccurate forecasts (in terms of
NSE), and the RAR-Norm model behaves similarlylte AR-Raw model, which
consistently provides the most accurate forecafibe only exception is the
Guadalupe River, where the AR-Raw model clearlypedbrms the RAR-Norm
model when streamflows are rising. This is somewt@npensated for by the
markedly better performance the RAR-Norm model rsfifever the AR-Raw model
when streamflows are receding for this catchmeaidihg to better forecasts overall
(Figure 7).) We conclude that the AR-Norm modelegafly tends to perform least
well when streamflows recede, and that the AR-Ravdehtends to perform least
well when streamflows rise. We also conclude that RAR-Norm model tends to
combine the best elements of the AR-Norm and AR-Ramlels, leading to the best

overall performance.

We have shown that over-corrections can lead tocunate deterministic forecasts,
and we now discuss the consequences for the pitialpredictions given by each
of the error models. We assess probabilistic fateskill with skill scores derived
from two probabilistic verification measures: therfinuous Rank Probability Score
(CRPS) and the Root Mean Square Error in Probgb{RMSEP) (denoted by
CRPS_SS and RMSEP_SS, respectively) (Wang and ®oher2011). Both skill
scores are calculated with respect to a refereaxdst. The reference forecast is
generated by resampling historical streamflows: doforecast issued for a given
month/year (e.g. February 1999), we randomly drawsample of 1000 daily
streamflows that occurred in that month (e.g. Fatyufrom other years with
replacement (e.g. years other than 1999). Tablem3pares these two skill scores
calculated for the all catchments. The RAR-Norm eigaerforms best across the
range of skill scores and catchments, attaininghigpest CRPS_SS in 4 of the 7
catchments and the highest RMSEP_SS in 4 of 7 mesticts. Even where RAR-Norm
was not the best performed model, it performs wemyilarly to the best performing

model in all cases. Interestingly, the AR-Raw moulds to outperform the AR-
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Norm model in CRPS_SS while the reverse is trueRISEP_SS. The CRPS tests
how appropriate the spread of uncertainty is farheprobabilistic forecast, while

RMSEP puts little weight on this. The results siggdgkat while the median forecasts
of AR-Norm tends to be slightly more accurate thawse of the AR-Raw model, the
forecast uncertainty is represented slightly bditethe AR-Raw model.

To better understand how reliably the forecast tac#y is quantified by each model,
we produce Probability Integral Transform (PIT)formn probability plots (Wang and
Robertson, 2011) in Figure 9. There are two maimtpado draw from these plots.
First, the curves are very similar for all errordets (a partial exception is the San
Marcos catchment, where the AR-Raw model is shgtitbser to the one-to-one line
than the other models). This demonstrates thag¢mel the models produce similarly
reliable uncertainty distributions. Second, all miscshow an inverted S-shaped curve,
which indicates that the uncertainty ranges arewate. This underconfidence is a
result of using a Gaussian distribution to charsxethe error. The Gaussian
distribution is not flexible enough to represeng thigh degree of kurtosis in the
distribution of the residuals after error updatifpartly because the errors become
very small after updating). We are presently experiting with other distributions in
order to address this issue, and will seek to phbthis work in future. For the
purposes of the present study, we conclude thathilee error models are similarly
reliable.

5. Discussion and conclusions

For streamflow forecasting, rainfall-runoff modedse often augmented with an
updating procedure that corrects the forecast usilogmation from recent simulation
errors. The most popular updating approach usesreyressive (AR) models that
exploit the “memory” in model errors. AR models mhg applied to raw errors

directly or to normalised errors.

We demonstrate three adverse effects of AR erralatiupy procedures on seven
catchments. The first adverse effect is possibkr-gerrection on the rising limb of
the hydrograph. The AR-Norm model can exhibit teedency to over-correct the
peaks or on the rise of a hydrograph, because epaating can be (overly) amplified
by the back-transformation. The second adversetefiehe tendency to over-correct
receding hydrographs. This tendency is most prevatethe AR-Raw model, which
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can fail to recognise that a large error update maty be appropriate for small

streamflows.

The third adverse effect is that the stand-alondopeance of base hydrological
model can be poor when the parameters of the tamfsoff model and the error

model are jointly estimated. We show that poor bgsiological model performance
is particularly prevalent in the AR-Norm model. Theor performance appears to
occur in catchments with highly skewed streamfloeseryvations (the intermittent
Abercrombie River, and the Orara River, a catchnerg subtropical climate). For

example, in the Orara River, the base hydrologmaldel tends to greatly over-
estimate streamflows, and then relies on the ewpmtating to correct the over-
estimates. This is not desirable in real-time fasting applications for two major
reasons. First, modern streamflow forecasting systeften extend forecast lead-
times with rainfall forecast information (Bennettad., 2014). The magnitude of AR
updating decays with lead time, and forecastsraidolead times rely heavily on the
performance of the base hydrological model. Secdndirological models are

designed to simulate various components of natayatems, such as baseflow
processes or overland flow. In theory, simulatingse processes correctly will allow
the model to perform well for climate conditionsathmay substantially differ from

those experienced during the parameter estimagoiog If the hydrological model

parameters do not reflect the natural processes §oren catchment, the hydrological

model may be much less robust outside the pararestienation period.

We note that the poor performance of the hydrokmgicodel may be specific to the
GR4J model, and may not occur in other hydrologioadels. Evin et al. (2014)
estimated hydrological model and error model patamsejointly using GR4J and
another hydrological model, HBV, for the three U&chments tested here. While
they did not assess the performance of the bas®lbgital models, they found that
HBV tended to perform more robustly when combineth wifferent error models. It
Is possible that we may have achieved more stadde Imodel performance had we
used HBV or another hydrological model. We noteyéwer, that our conclusions can
probably be generalised to other hydrological medeat do not offer robust base
model performance under joint parameter estimgigog. GR4J). Because the RAR-
Norm model limits the range of updating that carapplied, it will tend to rely more

heavily on the base hydrological model, and theeefwill tend to favour parameter
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sets that encourage good stand-alone performandbeobase model. For those
hydrological models that already produce robusebasdel performance under joint
parameter estimation (perhaps HBV), RAR-Norm isikaly to undermine this
performance for the same reasons. We see somenegi@dé this in our experiments
with GR4J: when the performance of the base hydio& model is already strong
relative to the updated forecasts for the AR-Nomd #&AR-Raw models (e.g. the
Tarwin, Mitta Mitta, or Guadalupe catchments), tRAR-Norm model base
hydrological model also performs strongly.

The tendency of the AR-Norm model to over-corrégsing streamflows is probably
generic. In particular, transformations other thfam log-sinh transformation may still
lead to over-correction at the peak of hydrografte proof in Appendix A shows
that if a transformation satisfies some conditiffirst derivate is positive and second
derivate is negative), it will tend to correct mdoe higher forecast streamflows and
can cause the problem of over-correction. The ¢mmdi given by Appendix A are
generally true for many other transformations ug$ed data normalisation and
variance stabilisation in hydrological applicatipssich as logarithm transformation

or the Box-Cox transformation with the power parten&ess than 1.

We use joint parameter inference to calibrate hgdioal model and error model
parameters, in order to address the true natutena@érlying model errors. Inferring
parameters of the error model and the base hydoalommodel independently — i.e.,
first inferring parameters of the base hydrologiteddel, holding these constant and
then inferring the error model parameters - ratiesimplified and often invalid error
assumptions (it assumes independent, homoscedastic Gaussian errors), but
nonetheless could be a pragmatic alternative tgoiheparameter inference to reduce
computational demands. The over-correction of cotieeal AR models is
independent of the parameter inference, whetherether and base hydrological

model parameters are inferred jointly or indepetigien

In order to mitigate the adverse effects of conweeral AR updating procedures, we
introduce a new updating procedure called the RAIRINmModel. The RAR-Norm
model is a modification of the AR-Norm model: in shanstances it operates as the
AR-Norm model, but in instances of possible ovar@ction it relies on the error in
untransformed streamflows at the previous time .st€pat is, RAR-Norm is

essentially a more conservative error model thanN®RM: in situations where
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streamflows change rapidly, it opts to update withichever error (transformed or
untransformed) is smaller. This forces greateanele on the base hydrological model
to simulate streamflows accurately, leading to ntotgust performance in the base
hydrological model. The RAR-Norm model clearly cerfiorms the AR-Norm model
in both the updated and base model forecasts, hasvameliorating the problem of
over-correcting rising streamflows. The RAR-Normdabs advantage over the AR-
Raw model is less clear: both the base hydrologreadel and the updated forecasts
produced by the AR-Raw model perform similarly to §ometimes slightly better
than) the RAR-Norm model. However, the RAR-Norm mlodearly addresses the
problem of over-correcting receding streamflows tecurs in the AR-Raw model.
As we show, this type of over-correction can sesipulistort event hydrographs, and
cause forecasts of near zero streamflows whenmabBosubstantial streamflows are
observed. While these instances are not very comtherfailure in the forecast is a
serious one. As we note earlier, the over-corraatibreceding streamflows is likely
to be exacerbated when producing forecasts attliesd of more than one time step.
Accordingly, we contend that the RAR-Norm modepreferable to both AR-Norm

and AR-Raw models for streamflow forecasting aians.
Appendix A

For brevity we only show the case of the AR-Normdeldp analogous arguments can
be used to prove the cases of the AR-Raw and RARANDodels. The streamflow

ensemble forecasd, given by the AR-Norm model defined by (1) can béten as

Q =max tZ +p(2.,-Z.)+&} 0. (A1)
where negative values after the back-transformatrerassigned zero values. Because
we assume that is a standard normal random variable, to show @jats the
median ofQ, we need only show thalfP(Qt s@f)zo.s, which can be proved as
follows:

P(Q <Q)=P(maq 1{Z +p(2.-2.)+e} 0]=Q)

: (A2)
= P(f'l{Zt +10(Zt—1 _Zt—l)+£t} SQt* and OSQI)

BecauseQ always has a non-negative value, we have
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(A3)

Appendix B

We will show analytically that the AR-Norm modelvgs a larger magnitude of the
error update for a higher forecast streamflow.

Firstly, we will show that the first derivate ofetiog-sinh transformf defined by (3)
is positive and the second derivate is negative {i\(x) >0 and f"(x) <0) for any

b >0 and anyx. Following some simple manipulation, we have

_ cosh(a+bx) S
sinh@+bx)

b
———— )
sinh? (@ +bx)

f'(X) and f"(x)= (B1)

Using the differentiation of inverse functions, fared the first and second derivates of

the inverse transfornf

-f"{ (%)

({17} ]

Eht _ 1 a7 _
[ f ](x)_mw and [ 7] ()= >0, (B2)
for anyb >0 and anyx.

Next, we will derive the difference in magnitudddlee error update between low and

high forecast streamflows. For the sake of notasiomplicity, we rewriteq=Z, and

us= p(Zt_1 —Zt_l) and assume that> 0. Using Equation (4), the updated streamflow

can be written aQ: = f*(q+u) . The magnitude of the error update can be wrigen

1] (x+a)dx if u>0
Q-G =] *(@+u) - (a)|= (B3)

[ f ‘1}' (x+Qg)dx otherwise

C — O O
1

Suppose that we have two forecast streamfl@y=Q , and denote the normalised
forecast streamflow by, = Zt‘l andq, = Z,Z and the updated streamflow @1 and
QZ Becausef is an increasing function, we hage< qg,. The difference in the

magnitude of the error update betwe@n andQ, , can be derived as
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(7] (xra)-[ 7] (X+q2)}dx if u>0

‘Qt,l_ét*,l‘_‘ét,2_©:1‘ - (B4)

C O O C
—

{[ 4] () [ 7] (x+ qz)} dx otherwise

From (A2), we have shown thétf ‘1]' is a positive increasing function and this
ensures thaE f ‘1]’ (x+q,) —[ f ‘1]' (x+q,) <0. Finally we have
‘Q~t,l _Q~t*,l‘ s ‘Qt,Z_Q:,Z‘ y (85)

Therefore, the error update at larger forecastsifilews is always larger than the

error update at lower forecast streamflows.
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655 Table 1: Catchment characteristics.

Name Country  Gauge Site Area Rainfall Streamflow  Runoff Zero
(kmz) (mm/yr)  (mm/yr) coefficient flows
Abercrombie  Aus Abercrombie River 1447 783 63 0.08 14.4%

at Hadley no. 2

Mitta Mitta Aus Mitta Mitta River at 1527 1283 261 0.20 0

Hinnomunjie

Orara Aus Orara River at 1868 1176 243 0.21 0.6%

Bawden Bridge

Tarwin Aus Tarwin  River at 1066 1042 202 0.19 0
Meeniyan

Amite us 07378500 3315 1575 554 0.3 0

Guadalupe us 08167500 3406 772 104 0.13 1.7%

San Marcos us 08172000 2170 844 165 0.20 0%

656

657
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658 Table 2: Comparison of the NSE calculated at (@yéteding limb and (b) the rising
659 limb of the hydrograph for three different error dets.

660

@ Q<Q., ) Q >Q.,
Proportion AR- AR- RAR- Proportion AR- AR- RAR-
of flows Norm Raw Norm of flows Norm Raw Norm
Abercrombie 82% 0.11 -0.41 0.52 19% 0.58 0.66 0.65
Mitta Mitta 82% 0.95 0.91 0.95 18% 0.81 0.86 0.86
Orara 85% 0.94 0.91 0.95 15% 0.86 0.86 0.83
Tarwin 71% 0.90 0.91 0.90 29% 0.18 0.77 0.76
Amite 69% 0.76 0.82 0.84 31% 0.82 0.82 0.85
Guadalupe 83% 0.75 0.35 0.77 15% 0.24 0.55 0.45
San Marcos 82% 0.80 0.66 0.80 17% 0.63 0.64 0.64

661
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662 Table 3: Comparison of the skill scores based oRERNd RMSEP (denoted by
663 CRPS_SS and RMSEP_SS) for three different erroretsod
664

CRPS_SS (%) RMSEP_SS (%)
AR- RAR- AR- RAR-
Norm AR-Raw Norm Norm AR-Raw Norm
Abercrombie  64.1 62.3 66.3 75.1 73.7 74.7
Mitta Mitta 80.3 79.7 80.7 84.1 83.2 84.0
Orara 74.0 75.7 75.5 81.7 80.7 81.4
Tarwin 74.9 79.3 78.8 86.1 85.1 86.1
Amite 67.5 68.3 69.5 71.0 70.9 71.2
Guadalupe 57.4 60.9 59.8 76.3 75.2 77.2
San Marcos  68.8 66.0 68.9 73.9 73.9 74.3

665
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Figure 1: Map of Utop) and Australian (bottom) catchments.
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Figure 2: An example of over-correction causedhi®/AR-Norm model in the Mitta
Mitta catchment. Dashed lines: forecasts from thsebhydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.
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Figure 4: Forecast streamflows for the Orara ca@stirfor an example 1-year period.
Top panel shows streamflows forecast with AR-Normdsel, bottom panel shows
streamflows forecast with the RAR-Norm model. Dakliges: forecasts from the
base hydrological model (i.e., without error upd@}i Solid lines: forecasts with error

updating. Tick marks in the x-axis denote the insta of updating where

D, > ‘Qt—l - Qt—l‘ .
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Figure 5: An example of over-correction causedigyAR-Raw model in the Mitta
Mitta catchment. Dashed lines: forecasts from @eethydrological model (i.e.,

without error updating). Solid lines: forecastshwétrror updating.



Page 32 of 36

Q(m®/s)

Q(m*/s)

15 20 25 30

5 10

0

15 20 25 30

5 10

0

Observed
AR-Raw

04/08/1997

11/08/1997

18/08/1997

25/08/1997

01/09/1997

08/09/1997 15/09/1997

Observed
RAR-Norm

I
04/08/1997

11/08/1997

18/08/1997

25/08/1997

01/09/1997

08/09/1997 15/09/1997

694

Figure 6: Forecast streamflows for the Abercrondatehment for the period between

695

696 01/08/1997 and 15/09/1997. Top panel shows strearsfliforecast with AR-Raw

697

model, bottom panel shows streamflows forecast thighRAR-Norm model. Dashed
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698 lines: forecasts from the base hydrological model,(without error updating). Solid
699 lines: forecasts with error updating. Gray shadlagotes instances of over-correction

700 caused by the AR-Raw model.
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Figure 7: NSE of streamflows forecast with the ABFHM, AR-Raw and RAR-Norm
models (colours). Performance of the correspondiage hydrological models is
shown by hatched blocks.
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Figure 8: Comparison of the observed streamfldg3 &nd forecast streamflowQ(),

as forecast: 1) with the base hydrological modéicl@s), and 2) with the base

hydrological model and error updating models (dfs}the Orara catchment.
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Figure 9: PIT-uniform probability plots.

reliable forecasts.
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