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Abstract 9 

For streamflow forecasting, rainfall-runoff models are often augmented with updating 10 

procedures that correct forecasts based on the latest available streamflow observations 11 

of streamflow. A popular approach for updating forecasts is autoregressive (AR) 12 

models, which exploit the “memory” in hydrological model simulation errors. AR 13 

models may be applied to raw errors directly or to normalised errors. In this study, we 14 

demonstrate that AR models applied in either way can sometimes cause over-15 

correction of forecasts. In using an AR model applied to raw errors, the over-16 

correction usually occurs when streamflow is rapidly receding. In applying an AR 17 

model to normalised errors, the over-correction usually occurs when streamflow is 18 

rapidly rising. In addition, when parameters of a hydrological model and an AR model 19 

are estimated jointly, the AR model applied to normalised errors sometimes degrades 20 

the stand-alone performance of the base hydrological model. This is not desirable for 21 

forecasting applications, as forecasts should rely as much as possible on the base 22 

hydrological model, with updating only used to correct minor errors. To overcome the 23 

adverse effects of the conventional AR models, a restricted AR model applied to 24 

normalised errors is introduced. We show that the new model reduces over-correction 25 

and improves the performance of the base hydrological model considerably. 26 

 27 

1. Introduction 28 
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Rainfall-runoff models are widely used to generate streamflow forecasts, which 29 

provide essential information for flood warning and water resources management. For 30 

streamflow forecasting, rainfall-runoff models are often augmented by updating 31 

procedures that correct streamflow forecasts based on the latest available observations 32 

of streamflow and their departures from model simulations. Model errors reflect 33 

limitations of the hydrological models in reproducing physical processes as well as 34 

inaccuracies in data used to force and evaluate the models. 35 

The most popular updating approach uses autoregressive (AR) models, which exploit 36 

the “memory” - more precisely the autocorrelation structure - of errors in hydrological 37 

simulations (Morawietz et al., 2011). Essentially, AR updating uses a linear function 38 

of the known errors at previous time steps to anticipate errors in a forecast period. 39 

Forecasts are then updated according to these anticipated errors. AR updating is 40 

conceptually simple and yet generally leads to significantly improved forecasts 41 

(World Meteorological Organization, 1992). AR updating has been shown to provide 42 

equivalent performance to more sophisticated non-linear and nonparametric updating 43 

procedures (Xiong and O'Connor, 2002). 44 

In rainfall-runoff modelling, model errors are generally heteroscedastic (i.e., they 45 

have heterogeneous variance over time) (Xu, 2001;Kavetski et al., 2003;Pianosi and 46 

Raso, 2012) and non-Gaussian (Bates and Campbell, 2001;Schaefli et al., 47 

2007;Shrestha and Solomatine, 2008). In many applications (Seo et al., 2006;Bates 48 

and Campbell, 2001;Salamon and Feyen, 2010;Morawietz et al., 2011), AR models 49 

are applied to normalised errors that are considered homoscedastic and Gaussian. 50 

Normalisation is often achieved through variable transformation by using, for 51 

example, the Box-Cox transformation (Thyer et al., 2002;Bates and Campbell, 52 

2001;Engeland et al., 2010) or, more recently, the log-sinh transformation (Wang et 53 

al., 2012;Del Giudice et al., 2013). In other applications (Schoups and Vrugt, 54 

2010;Schaefli et al., 2007), AR models are applied directly to raw errors, but residual 55 

errors of the AR models may be explicitly specified as heteroscedastic and non-56 

Gaussian. 57 

There is no agreement on whether it is better to apply an AR model to normalised or 58 

raw errors. Recent work by Evin et al. (2013) found that an AR model applied to raw 59 

errors may lead to poor performance with exaggerated uncertainty. They 60 

demonstrated that such instability can be mitigated by applying an AR model to 61 
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standardised errors (raw errors divided by standard deviations). Here, standardisation 62 

has a similar effect to normalisation in that it homogenises the variance of the errors 63 

(but does not consider the non-Gaussian distribution of errors). Conversely, Schaefli 64 

et al. (2007) pointed out that when an AR model is jointly estimated with a 65 

hydrological model, there is a clear advantage in applying an AR model to raw errors 66 

rather than normalised (or standardised) errors. Schaefli et al. (2007) found that using 67 

raw errors leads to more reliable parameter inference and uncertainty estimation, 68 

because the mean error is close to zero and therefore the simulations are free of 69 

systematic bias. The same is not necessarily true when applying an AR model to 70 

normalised errors. 71 

In this study, we evaluate AR models applied to both raw and normalised errors on 72 

four Australian catchments and three United States (US) catchments. We show that 73 

when estimated jointly with a hydrological model, the AR model applied to 74 

normalised errors sometimes degrades the stand-alone performance of the base 75 

hydrological model. We also identify that both of these conventional AR models can 76 

sometimes cause over-correction of forecasts. We introduce a restricted AR model 77 

applied to normalised errors and demonstrate its effectiveness in overcoming the 78 

adverse effects of the conventional AR models.  79 

2. Autoregressive error models  80 

2.1 Formulations 81 

A hydrological model is a function of forcing variables (precipitation and potential 82 

evapotranspiration), initial catchment state, 0S , and a set of hydrological model 83 

parameters, Hθ . We denote the observed streamflow and model simulated streamflow 84 

at time t  by tQ  and tQɶ , respectively. An error model is used to describe the difference 85 

between tQ  and tQɶ . The log-sinh transformation defined by Wang et al. (2012)  86 

( ) { }1 log sinh( )f x b a bx−= +         (1) 87 

is applied to stabilise variance and normalise data. 88 

In this study, we firstly examine two first-order AR error models:  89 

(1) An AR error model applied to normalised errors (referred to as AR-Norm) defined 90 

by: 91 
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( )1 1t t t t tZ Z Z Zρ ε− −= + − +ɶ ɶ
,        (2) 92 

where tZ  and tZɶ are the log-sinh transformed variables of tQ  and tQɶ ; 93 

(2) An AR error model applied to raw errors (referred to as AR-Raw) defined by 94 

( ){ }1 1t t t t tZ f Q Q Qρ ε− −= + − +ɶ ɶ
.       (3) 95 

For both models, ρ  is the lag-1 autoregression parameter, and tε  is an identically 96 

and independently distributed Gaussian deviate with a mean of zero and a constant 97 

standard deviation σ . 98 

Both the AR-Norm and AR-Raw models represent the lag-one autocorrelation by an 99 

AR process and both employ the log-sinh transformation. However, the way the log-100 

sinh transformation is applied differs between the two models. The AR-Norm model 101 

first applies the log-sinh transformation to the observed and model simulated 102 

streamflow, and then assumes that the error in the transformed space follows an AR(1) 103 

process. In contrast, the AR-Raw model essentially assumes that the error in the 104 

original space follows an AR(1) process and only applies the log-sinh transformation 105 

to fit the asymmetric and non-Gaussian error distribution.  106 

The median of the updated streamflow forecast (referred to as updated streamflow) 107 

for the AR-Norm and AR-Raw models (see Appendix A for proof), denoted by *
tQɶ , 108 

are respectively  109 

( ){ }* 1
1 1t t t tQ f Z Z Zρ−

− −= + −ɶ ɶ ɶ ,        (4) 110 

and 111 

( )*
1 1t t t tQ Q Q Qρ − −= + −ɶ ɶ ɶ ,        (5) 112 

where 1( )f x−  is the inverse of log-sinh transformation (or back-transformation). The 113 

magnitude of the error update by the AR-Raw model, *
t tQ Q−ɶ ɶ , is dependent only on 114 

the difference between 1tQ−  and 1tQ −
ɶ . In contrast, the magnitude of the error update by 115 

the AR-Norm model is dependent not only on the difference between 1tQ−  and 1tQ −
ɶ , 116 

but also on tQɶ . Put differently, the AR-Norm model uses errors calculated in the 117 
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transformed domain, and this means that the error in the original domain can be 118 

amplified (or reduced) by the back-transformation (Equation (4)). The AR-Raw model 119 

uses errors calculated in the original domain and no back-transformation is used in 120 

calculating *
tQɶ  (Equation (5)), meaning that the error in the original domain cannot be 121 

amplified (or reduced). In Appendix B, we show that the AR-Norm model gives 122 

greater error updates for larger values of tQɶ .   123 

We will demonstrate in Section 4 that the AR-Norm and AR-Raw models can 124 

sometimes cause over-correction of forecasts. Motivated to overcome the potential for 125 

over-correction, we introduce a modification of the AR-Norm model, called the 126 

restricted AR-Norm model (referred to as RAR-Norm). A condition 127 

*
1 1t t t tQ Q Q Q− −− ≤ −ɶ ɶ ɶ  is used to limit the correction to an amount not exceeding the  128 

raw error at the last time step. The updated streamflow is given by 129 

( ){ }1
1 1 1 1*

1 1

   if  

( )   otherwise.

t t t t t t

t

t t t

f Z Z Z D Q Q
Q

Q Q Q

ρ−
− − − −

− −

 + − ≤ −= 
 + −

ɶɶ ɶ

ɶ

ɶ ɶ

     (6) 130 

where  131 

( ){ }1
1 1t t t t tD f Z Z Z Qρ−

− −= + − − ɶɶ ɶ .       (7) 132 

The full RAR-Norm model in the transformed space is given by 133 

( )
( )

1 1 1 1

1 1

      if   

      otherwise.
t t t t t t t

t
t t t t

Z Z Z D Q Q
Z

f Q Q Q

ρ ε
ε

− − − −

− −

 + − + ≤ −=  + − +

ɶɶ ɶ

ɶ ɶ
    (8) 134 

2.2 Estimation 135 

The AR-Norm, AR-Raw and RAR-Norm models are each calibrated jointly with the 136 

hydrological model. The method of maximum likelihood is used to estimate the error 137 

model parameters Eθ  and the hydrological model parameters Hθ . Using a similar 138 

derivation as given by Li et al. (2013), the likelihood functions can be written as  139 

(a) for AR-Norm 140 

( ) ( )( )2
1 1 1, ( | , ; , ) | ,

t tE H t t t E H Z Q t t t t
t t

L P Q Q Q J Z Z Z Zθ θ θ θ φ ρ σ− → − −= = + −∏ ∏ɶ ɶ ɶ ɶ , (9) 141 

(b) for AR-Raw 142 
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( ) ( ){ }( )2
1 1 1, ( | , ; , ) | ,

t tE H t t t E H Z Q t t t t
t t

L P Q Q Q J Z f Q Q Qθ θ θ θ φ ρ σ− → − −= = + −∏ ∏ɶ ɶ ɶ ɶ ,143 

 (10) 144 

(c) for RAR-Norm 145 

( ) ( )( )

( ){ }( )
1 1

1 1

2
1 1 1

:

2
1 1

:

, ( | , ; , ) | ,

| , ,

t t

t t t

t t

t t t

E H t t t E H Z Q t t t t
t t D Q Q

Z Q t t t t
t D Q Q

L P Q Q Q J Z Z Z Z

J Z f Q Q Q

θ θ θ θ φ ρ σ

φ ρ σ

− −

− −

− → − −
≤ −

→ − −
> −

= = + −

+ + −

∏ ∏

∏

ɶ

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

146 

        (11) 147 

where { } 1
tanh( )

t tZ Q tJ a bQ
−

→ = +  is the Jacobian determinant of the log-sinh 148 

transformation and ( )2| ,xφ µ σ  is the probability density function of a Gaussian 149 

random variable x  with mean µ  and standard deviation σ . The probability density 150 

function is replaced by the cumulative probability function when evaluating events of 151 

zero flow occurrences (Wang and Robertson, 2011;Li et al., 2013). The Shuffled 152 

Complex Evolution (SCE) algorithm (Duan et al., 1994) is used to minimize the log 153 

likelihood.  154 

3. Data  155 

We use daily data from four Australian catchments and three catchments from the 156 

United States (US; Figure 1, Table 1). Australian streamflow data are taken from the 157 

Catchment Water Yield Estimation Tool (CWYET) dataset (Vaze et al., 2011). 158 

Australian rainfall and potential evaporation data are derived from the Australian 159 

Water Availability Project (AWAP) dataset (Jones et al., 2009). All data for the US 160 

catchments come from the Model Intercomparison Experiment (MOPEX) dataset 161 

(Duan et al., 2006). The selected US catchments are amongst the 12 catchments used 162 

by Evin et al. (2014) to compare joint and postprocessor approaches to estimate 163 

hydrological uncertainty, and allows us to compare results with that study (the other 164 

catchments used by Evin et al. (2014) are influenced by snowmelt, which is not 165 

considered in the hydrological model used in this study). The Abercrombie River and 166 

the Guadalupe River intermittently experience periods of very low (to zero) flow, 167 

while the other rivers flow perennially (Table 1). Such dry catchments are challenging 168 

for hydrological simulations and error modelling. All catchments have high-quality 169 

streamflow records with very few missing data. 170 
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We forecast daily streamflow with the GR4J rainfall-runoff model (Perrin et al., 171 

2003). We apply updating procedures to correct these forecasts. All results presented 172 

in this paper are based on cross-validation to ensure the results can be generalised to 173 

independent data. We use different cross-validation schemes for the Australian and 174 

US catchments, because of the shorter streamflow records available for the Australian 175 

catchments: 176 

i. For the Australian catchments we use data from 1992 to 2005 (14 years) for 177 

these catchments. We then generate 14-fold cross-validated streamflow 178 

forecasts. The data from 1990-1991 are only used to warm up the GR4J model. 179 

For a given year, we leave out the data from that year and the following year 180 

when estimating the parameters of GR4J and error models. For example, if we 181 

wish to forecast streamflows at any point in 1999, we leave out data from 1999 182 

and 2000 when we estimate parameters. The removal of data from the 183 

following year (2000) is designed to minimise the impact of hydrological 184 

memory on model parameter estimation. We then generate streamflow 185 

forecasts in that year (1999) with model parameters estimated from the 186 

remaining data.  187 

ii.  For the US catchments we follow the split-sampling validation scheme 188 

suggested by Evin et al. (2014) to make our results comparable to that study: 189 

(1) an 8-year calibration (09/09/1973- 26/11/1981) (i.e. 3000 days) with an 8-190 

year warm-up period and (2) a 17-year validation (27/11/1981-01/05/1998) 191 

(i.e. 6000 days) with an 8-year warm-up period. 192 

To demonstrate the problems of over-correction of errors in updating and poor stand-193 

alone performance of the base hydrological model, we consider only streamflow 194 

forecasts for one time step ahead. We will consider longer lead times in future work. 195 

Forecasts are generated using observed rainfall (i.e., a ‘perfect’ rainfall forecast) as 196 

input. In streamflow forecasting, forecasts may be generated from rainfall information 197 

that comes from a different source (e.g., a numerical weather prediction model). Our 198 

study is aimed at streamflow forecasting applications, so we preserve the distinction 199 

between observed and forecast forcings by referring to streamflows modelled with 200 

observed rainfall as simulations and those modelled with forecast rainfall as forecasts. 201 

In this study the forecast rainfall is observed rainfall, so the terms forecast and 202 

simulation are interchangeable.  203 
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4. Results 204 

4.1 Over-correction of forecasts as the hydrograph rises 205 

The first adverse effect of the conventional AR models is over-correction of errors in 206 

updating as streamflows are rising. By over-correction, we mean that the AR model 207 

updates the hydrological model simulations too much. Over-correction is difficult to 208 

define precisely, however we will demonstrate the concept with two examples in the 209 

Mitta Mitta catchment: the first example illustrates over-correction by the AR-Norm 210 

model, and the second example illustrates over-correction by the AR-Raw model. 211 

To illustrate the problem of over-correction caused by the AR-Norm model, Figure 2 212 

presents a 1-week time series for the Mitta Mitta catchment, showing streamflow 213 

forecasts with GR4J before error updating (referred to as streamflows forecast with 214 

the base hydrological model) and after error updating. Figure 2 shows that the base 215 

hydrological models consistently under-estimate the streamflow from 23/09/2000 to 216 

25/09/2000, and the corresponding updating procedures successfully identify the need 217 

to compensate for this under-estimation. For the AR-Norm model, however, the 218 

correction for 26/09/2000 is unreasonably large. Because the forecast streamflow on 219 

26/09/2000 is much higher than that of the previous day, the correction is greatly 220 

amplified by the back-transformation, leading to the over-correction. In contrast, the 221 

AR-Raw model works better in this situation because the magnitude of the error 222 

update never exceeds the simulation error on the previous day regardless of whether 223 

the forecast streamflow is high or low. The RAR-Norm model behaves similarly to 224 

the AR-Raw model for correcting the peak on 26/09/2000 and avoids the over-225 

correction made by the AR-Norm model.  226 

Figure 3 shows instances of possible over-correction by the AR-Norm model, 227 

identified by the condition 1 1t t tD Q Q− −> − ɶ . Figure 3 shows that about 10-25% of the 228 

AR-Norm updated forecasts have an error update that is larger than the forecast error 229 

on the previous day and therefore are susceptible to over-correction. The frequency of 230 

these instances varies somewhat from catchment to catchment. The RAR-Norm model 231 

identifies 10-30% of the forecasts as possible instances of problematic updating, and 232 

the AR-Norm model identifies a similar number of instances (slightly fewer – they are 233 

not identical because the parameters for each model are inferred independently). 234 
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Figure 4 presents a time-series for the Orara catchment that shows the instances 235 

susceptible to over-correction for the AR-Norm model. These instances all occur 236 

when the streamflow rises. The RAR-Norm model effectively rectifies the problem of 237 

over-correction caused by the AR-Norm model. We note that there is nothing that 238 

forces the instances susceptible to over-correction identified by the AR-Norm model 239 

to be the same as those identified by the RAR-Norm models because the two models 240 

are calibrated independently (and therefore base hydrological model simulations may 241 

be different). However, the restriction defined in the RAR-Norm model is largely 242 

applied to the instances where the AR-Norm model is susceptible to over-correction.    243 

4.2 Over-correction of forecasts as the hydrograph recedes 244 

The second adverse effect of conventional AR models is over-correction of forecasts 245 

as streamflows recede. An example is presented in Figure 5 where the AR-Raw model 246 

causes over-correction. Here, the base hydrological model over-estimates the receding 247 

hydrograph on 05/10/1993. The magnitude of the error update given by the AR-Raw 248 

model cannot adjust according to the value of the forecast. As a result, the AR-Raw 249 

model updates the forecast on 06/10/1993 by a large amount, resulting in serious 250 

under-estimation (the forecast streamflow is nearly zero), and an artificial distortion 251 

of the hydrograph. (We note that we have seen this problem become much worse in 252 

unpublished experiments of forecasts made for several time-steps into the future, 253 

sometimes resulting in forecasts of zero flows during large floods.) In contrast, the 254 

AR-Norm model performs better in this example, giving a smaller magnitude of error 255 

update by recognising that the hydrograph is moving downward. It is generally true 256 

that in applying the AR-Raw model, over-correction may occur when the streamflow 257 

is receding. The RAR-Norm model produces updated streamflow similar to the AR-258 

Norm model when the hydrograph recedes rapidly and avoids the over-correction by 259 

the AR-Raw model on 06/10/1993. 260 

Figure 6 provides more examples of the over-correction caused by the AR-Raw model 261 

from a longer time-series plot for the Abercrombie catchment. There are three clear 262 

instances of over-correction, all occurring on the time step immediately after large 263 

peaks in observed streamflows. The RAR-Norm model works better than the AR-Raw 264 

model to avoid the three instances of over-correction for the Abercrombie catchment. 265 

Overall, the RAR-Norm model takes a conservative position when streamflow 266 

changes rapidly, either rising or falling. When streamflow changes rapidly, it is 267 
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difficult to anticipate the magnitude of forecast error. Accordingly the conventional 268 

AR models are prone to over-correction in such instances. 269 

4.3 Poor stand-alone performance of the base hydrological model 270 

The third adverse effect with conventional AR error models is the stand-alone 271 

performance of the base hydrological model (GR4J). As noted above, the parameters 272 

of the base hydrological model are estimated jointly with each error model. For 273 

streamflow forecasting, we expect to obtain a reasonably accurate forecast from the 274 

base hydrological model followed by an updating procedure as an auxiliary means to 275 

improve the forecast accuracy. At lead times of many time-steps (e.g., streamflow 276 

forecasts generated from medium-range rainfall forecasts) the magnitude of AR error 277 

updates becomes rapidly smaller (tending to zero), and thus the performance of the 278 

base hydrological model is crucial for realistic forecasts at longer lead times. While 279 

we investigate only forecasts at a lead time of one time step in this study, we aim to 280 

develop methods that can be applied to forecasts at longer lead times. Further, if the 281 

base hydrological model does not replicate important catchment processes realistically, 282 

the performance of the hydrological model outside the calibration period may be less 283 

robust.  284 

Figure 7 presents the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) 285 

calculated from the base hydrological model and the error models. When the AR-286 

Norm model is used, the forecasts from the base hydrological model are very poor for 287 

the Orara catchment (NSE<0). The scatter plot in Figure 8 shows a serious over-288 

estimation of the streamflow simulation for the Orara. When the AR-Norm model is 289 

used, the base hydrological model greatly over-estimates discharge and the AR-Norm 290 

model then attempts to correct this systematic over-estimation. This is also shown in 291 

Figure 4 where the base hydrological model has a strong tendency to over-estimate 292 

streamflows for a range of streamflow magnitudes. The base hydrological model with 293 

the AR-Norm model also performs poorly for the Abercrombie catchment (Figure 7). 294 

In this case, the base hydrological model tends to under-estimate streamflows (results 295 

not shown). For the other three catchments, however, the base hydrological model 296 

with the AR-Norm model performs reasonably well.  297 

In general, the AR-Raw base hydrological model performs as well or better than the 298 

AR-Norm base hydrological model. The AR-Raw base hydrological model is notably 299 
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better than the AR-Norm base hydrological model in the Abercrombie and Orara 300 

catchments (Figure 7). This suggests that more robust performance can be expected of 301 

base hydrological models when AR models are applied to raw errors.   302 

The RAR-Norm model generally improves the performance of the AR-Norm base 303 

hydrological model to a level similar to the AR-Raw base hydrological model (Figure 304 

7). The improvement over the AR-Norm base hydrological model is especially 305 

evident for the Orara (Figures 4 and 7) and Abercrombie catchments (Figures 7).  306 

We note that for the AR-Norm models, the updated forecasts are not always better 307 

than forecasts generated by the base hydrological models. For the Tarwin and 308 

Guadalupe catchments, AR-Norm forecasts are not as good as the forecasts generated 309 

by the AR-Norm base hydrological model. This points to a tendency to overfit the 310 

parameters to the calibration period, resulting in the error model undermining the 311 

performance of the base hydrological model under cross-validation. Such a lack of 312 

robustness is highly undesirable in forecasting applications, where the hydrological 313 

models should be able to operate in conditions that differ from those experienced 314 

during calibration. Note that this problem also occurs in the RAR-Norm model 315 

(Guadalupe) and in the AR-Raw model (Abercrombie, Guadalupe) but to a much 316 

smaller degree. 317 

In general, the updated forecasts from the RAR-Norm model show similar or better 318 

forecast accuracy, as measured by NSE, than both the AR-Raw model and the AR-319 

Norm model (Figure 7). We note that the Orara catchment is an exception: here the 320 

AR-Raw model shows slightly better performance than RAR-Norm model. 321 

Conversely, the RAR-Norm model shows notably better performance than both the 322 

AR-Norm and AR-Raw models in the Abercrombie and Guadalupe catchments. This 323 

suggests the RAR-Norm model may work better in intermittently flowing catchments, 324 

although further testing is required to establish that this is true for a greater range of 325 

catchments.  326 

4.4 Further analyses 327 

We further evaluate the NSE of the three different error models calibrated when 328 

streamflows are receding (i.e. 1t tQ Q −≤ɶ ɶ ) and rising (i.e. 1t tQ Q −>ɶ ɶ ) (Table 2). For the 329 

receding streamflows (constituting 70-85% of streamflows), the AR-Raw model leads 330 

to the overall worst forecast accuracy because of the over-correction explained in 331 
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Section 4.1. This is especially evident for the Abercrombie catchment (and, to a lesser 332 

degree, the Guadalupe catchment). The RAR-Norm model significantly outperforms 333 

the other two models for the Abercrombie catchment and shares similar forecast 334 

accuracy to the (strongly performing) AR-Norm model for the other catchments. 335 

When streamflows are rising (which also includes streamflow peaks), the AR-Norm 336 

model can cause over-correction and leads to the least accurate forecasts (in terms of 337 

NSE), and the RAR-Norm model behaves similarly to the AR-Raw model, which 338 

consistently provides the most accurate forecasts. (The only exception is the 339 

Guadalupe River, where the AR-Raw model clearly outperforms the RAR-Norm 340 

model when streamflows are rising. This is somewhat compensated for by the 341 

markedly better performance the RAR-Norm model offers over the AR-Raw model 342 

when streamflows are receding for this catchment, leading to better forecasts overall 343 

(Figure 7).) We conclude that the AR-Norm model generally tends to perform least 344 

well when streamflows recede, and that the AR-Raw model tends to perform least 345 

well when streamflows rise. We also conclude that the RAR-Norm model tends to 346 

combine the best elements of the AR-Norm and AR-Raw models, leading to the best 347 

overall performance. 348 

We have shown that over-corrections can lead to inaccurate deterministic forecasts, 349 

and we now discuss the consequences for the probabilistic predictions given by each 350 

of the error models. We assess probabilistic forecast skill with skill scores derived 351 

from two probabilistic verification measures: the Continuous Rank Probability Score 352 

(CRPS) and the Root Mean Square Error in Probability (RMSEP) (denoted by 353 

CRPS_SS and RMSEP_SS, respectively) (Wang and Robertson, 2011). Both skill 354 

scores are calculated with respect to a reference forecast. The reference forecast is 355 

generated by resampling historical streamflows: for a forecast issued for a given 356 

month/year (e.g. February 1999), we randomly draw a sample of 1000 daily 357 

streamflows that occurred in that month (e.g. February) from other years with 358 

replacement (e.g. years other than 1999). Table 3 compares these two skill scores 359 

calculated for the all catchments. The RAR-Norm model performs best across the 360 

range of skill scores and catchments, attaining the highest CRPS_SS in 4 of the 7 361 

catchments and the highest RMSEP_SS in 4 of 7 catchments. Even where RAR-Norm 362 

was not the best performed model, it performs very similarly to the best performing 363 

model in all cases. Interestingly, the AR-Raw model tends to outperform the AR-364 
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Norm model in CRPS_SS while the reverse is true for RMSEP_SS. The CRPS tests 365 

how appropriate the spread of uncertainty is for each probabilistic forecast, while 366 

RMSEP puts little weight on this. The results suggest that while the median forecasts 367 

of AR-Norm tends to be slightly more accurate than those of the AR-Raw model, the 368 

forecast uncertainty is represented slightly better by the AR-Raw model.  369 

To better understand how reliably the forecast uncertainty is quantified by each model, 370 

we produce Probability Integral Transform (PIT) uniform probability plots (Wang and 371 

Robertson, 2011) in Figure 9. There are two main points to draw from these plots. 372 

First, the curves are very similar for all error models (a partial exception is the San 373 

Marcos catchment, where the AR-Raw model is slightly closer to the one-to-one line 374 

than the other models). This demonstrates that in general the models produce similarly 375 

reliable uncertainty distributions. Second, all models show an inverted S-shaped curve, 376 

which indicates that the uncertainty ranges are too wide. This underconfidence is a 377 

result of using a Gaussian distribution to characterise the error. The Gaussian 378 

distribution is not flexible enough to represent the high degree of kurtosis in the 379 

distribution of the residuals after error updating (partly because the errors become 380 

very small after updating). We are presently experimenting with other distributions in 381 

order to address this issue, and will seek to publish this work in future. For the 382 

purposes of the present study, we conclude that the three error models are similarly 383 

reliable. 384 

5. Discussion and conclusions 385 

For streamflow forecasting, rainfall-runoff models are often augmented with an 386 

updating procedure that corrects the forecast using information from recent simulation 387 

errors. The most popular updating approach uses autoregressive (AR) models that 388 

exploit the “memory” in model errors. AR models may be applied to raw errors 389 

directly or to normalised errors. 390 

We demonstrate three adverse effects of AR error updating procedures on seven 391 

catchments. The first adverse effect is possible over-correction on the rising limb of 392 

the hydrograph. The AR-Norm model can exhibit the tendency to over-correct the 393 

peaks or on the rise of a hydrograph, because error updating can be (overly) amplified 394 

by the back-transformation. The second adverse effect is the tendency to over-correct 395 

receding hydrographs. This tendency is most prevalent in the AR-Raw model, which 396 
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can fail to recognise that a large error update may not be appropriate for small 397 

streamflows. 398 

The third adverse effect is that the stand-alone performance of base hydrological 399 

model can be poor when the parameters of the rainfall-runoff model and the error 400 

model are jointly estimated. We show that poor base hydrological model performance 401 

is particularly prevalent in the AR-Norm model. The poor performance appears to 402 

occur in catchments with highly skewed streamflow observations (the intermittent 403 

Abercrombie River, and the Orara River, a catchment in a subtropical climate). For 404 

example, in the Orara River, the base hydrological model tends to greatly over-405 

estimate streamflows, and then relies on the error updating to correct the over-406 

estimates. This is not desirable in real-time forecasting applications for two major 407 

reasons. First, modern streamflow forecasting systems often extend forecast lead-408 

times with rainfall forecast information (Bennett et al., 2014). The magnitude of AR 409 

updating decays with lead time, and forecasts at longer lead times rely heavily on the 410 

performance of the base hydrological model. Second, hydrological models are 411 

designed to simulate various components of natural systems, such as baseflow 412 

processes or overland flow. In theory, simulating these processes correctly will allow 413 

the model to perform well for climate conditions that may substantially differ from 414 

those experienced during the parameter estimation period. If the hydrological model 415 

parameters do not reflect the natural processes for a given catchment, the hydrological 416 

model may be much less robust outside the parameter estimation period. 417 

We note that the poor performance of the hydrological model may be specific to the 418 

GR4J model, and may not occur in other hydrological models. Evin et al. (2014) 419 

estimated hydrological model and error model parameters jointly using GR4J and 420 

another hydrological model, HBV, for the three US catchments tested here. While 421 

they did not assess the performance of the base hydrological models, they found that 422 

HBV tended to perform more robustly when combined with different error models. It 423 

is possible that we may have achieved more stable base model performance had we 424 

used HBV or another hydrological model. We note, however, that our conclusions can 425 

probably be generalised to other hydrological models that do not offer robust base 426 

model performance under joint parameter estimation (e.g. GR4J). Because the RAR-427 

Norm model limits the range of updating that can be applied, it will tend to rely more 428 

heavily on the base hydrological model, and therefore will tend to favour parameter 429 
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sets that encourage good stand-alone performance of the base model. For those 430 

hydrological models that already produce robust base model performance under joint 431 

parameter estimation (perhaps HBV), RAR-Norm is unlikely to undermine this 432 

performance for the same reasons. We see some evidence of this in our experiments 433 

with GR4J: when the performance of the base hydrological model is already strong 434 

relative to the updated forecasts for the AR-Norm and AR-Raw models (e.g. the 435 

Tarwin, Mitta Mitta, or Guadalupe catchments), the RAR-Norm model base 436 

hydrological model also performs strongly.  437 

The tendency of the AR-Norm model to over-correct rising streamflows is probably 438 

generic. In particular, transformations other than the log-sinh transformation may still 439 

lead to over-correction at the peak of hydrograph. The proof in Appendix A shows 440 

that if a transformation satisfies some conditions (first derivate is positive and second 441 

derivate is negative), it will tend to correct more for higher forecast streamflows and 442 

can cause the problem of over-correction. The conditions given by Appendix A are 443 

generally true for many other transformations used for data normalisation and 444 

variance stabilisation in hydrological applications, such as logarithm transformation 445 

or the Box-Cox transformation with the power parameter less than 1. 446 

We use joint parameter inference to calibrate hydrological model and error model 447 

parameters, in order to address the true nature of underlying model errors. Inferring 448 

parameters of the error model and the base hydrological model independently – i.e., 449 

first inferring parameters of the base hydrological model, holding these constant and 450 

then inferring the error model parameters - relies on simplified and often invalid error 451 

assumptions (it assumes independent, homoscedastic and Gaussian errors), but 452 

nonetheless could be a pragmatic alternative to the joint parameter inference to reduce 453 

computational demands. The over-correction of conventional AR models is 454 

independent of the parameter inference, whether the error and base hydrological 455 

model parameters are inferred jointly or independently.  456 

In order to mitigate the adverse effects of conventional AR updating procedures, we 457 

introduce a new updating procedure called the RAR-Norm model. The RAR-Norm 458 

model is a modification of the AR-Norm model: in most instances it operates as the 459 

AR-Norm model, but in instances of possible over-correction it relies on the error in 460 

untransformed streamflows at the previous time step. That is, RAR-Norm is 461 

essentially a more conservative error model than AR-Norm: in situations where 462 
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streamflows change rapidly, it opts to update with whichever error (transformed or 463 

untransformed) is smaller. This forces greater reliance on the base hydrological model 464 

to simulate streamflows accurately, leading to more robust performance in the base 465 

hydrological model. The RAR-Norm model clearly outperforms the AR-Norm model 466 

in both the updated and base model forecasts, as well as ameliorating the problem of 467 

over-correcting rising streamflows. The RAR-Norm model’s advantage over the AR-468 

Raw model is less clear: both the base hydrological model and the updated forecasts 469 

produced by the AR-Raw model perform similarly to (or sometimes slightly better 470 

than) the RAR-Norm model. However, the RAR-Norm model clearly addresses the 471 

problem of over-correcting receding streamflows that occurs in the AR-Raw model. 472 

As we show, this type of over-correction can seriously distort event hydrographs, and 473 

cause forecasts of near zero streamflows when reasonably substantial streamflows are 474 

observed. While these instances are not very common, the failure in the forecast is a 475 

serious one. As we note earlier, the over-correction of receding streamflows is likely 476 

to be exacerbated when producing forecasts at lead times of more than one time step. 477 

Accordingly, we contend that the RAR-Norm model is preferable to both AR-Norm 478 

and AR-Raw models for streamflow forecasting applications. 479 

Appendix A 480 

For brevity we only show the case of the AR-Norm model; analogous arguments can 481 

be used to prove the cases of the AR-Raw and RAR-Norm models. The streamflow 482 

ensemble forecast tQ  given by the AR-Norm model defined by (1) can be written as  483 

( ){ }1
1 1max ,0t t t t tQ f Z Z Zρ ε−

− −
 = + − +
 

ɶ ɶ .      (A1) 484 

where negative values after the back-transformation are assigned zero values. Because 485 

we assume that tε  is a standard normal random variable, to show that *
tQɶ  is the 486 

median of tQ  we need only show that ( )* 0.5t tP Q Q≤ =ɶ , which can be proved as 487 

follows: 488 

( ) ( ){ }( )
( ){ }( )

* 1 *
1 1

1 * *
1 1

max ,0

 and 0

t t t t t t t

t t t t t t

P Q Q P f Z Z Z Q

P f Z Z Z Q Q

ρ ε

ρ ε

−
− −

−
− −

 ≤ = + − + ≤
 

= + − + ≤ ≤

ɶ ɶɶ ɶ

ɶ ɶɶ ɶ

.    (A2) 489 

Because *
tQɶ  always has a non-negative value, we have 490 
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0 0.5

t t t t t t t t t

t

P Q Q P f Z Z Z f Z Z Z

P

ρ ε ρ

ε

− −
− − − −≤ = + − + ≤ + −

= ≤ =

ɶ ɶ ɶ ɶ ɶ
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Appendix B 492 

We will show analytically that the AR-Norm model gives a larger magnitude of the 493 

error update for a higher forecast streamflow.  494 

Firstly, we will show that the first derivate of the log-sinh transform f  defined by (3) 495 

is positive and the second derivate is negative (i.e. ( ) 0f x′ >  and ( ) 0f x′′ < ) for any 496 

0b >  and any x . Following some simple manipulation, we have 497 

( )cosh
( ) 0

sinh( )

a bx
f x

a bx

+
′ = >

+
 and 

2
( ) 0

sinh ( )

b
f x

a bx

−′′ = <
+

   (B1) 498 

Using the differentiation of inverse functions, we find the first and second derivates of 499 

the inverse transform 1f −   500 

{ }
1

1

1
( ) 0

' ( )
f x

f f x
−

−
′  = >   and  

{ }
{ }

1

1
3

1

( )
( ) 0

( )

f f x
f x

f f x

−
−

−

′′−′′  = > 
 ′
 

,  (B2) 501 

for any 0b >  and any x . 502 

Next, we will derive the difference in magnitudes of the error update between low and 503 

high forecast streamflows. For the sake of notation simplicity, we rewrite tq Z= ɶ  and 504 

( )1 1t tu Z Zρ − −= − ɶ  and assume that 0u > . Using Equation (4), the updated streamflow 505 

can be written as * 1( )tQ f q u−= +ɶ . The magnitude of the error update can be written as  506 

1

0* 1 1

0
1

( )    if   0

( ) ( )

( )   otherwise.

u

t t

u

f x q dx u

Q Q f q u f q

f x q dx

−

− −

−

 ′  + >  
− = + − = 

′   + 


∫

∫

ɶ ɶ    (B3) 507 

Suppose that we have two forecast streamflows ,1 ,2t tQ Q≤ɶ ɶ  and denote the normalised 508 

forecast streamflow by 1 ,1tq Z= ɶ  and 2 ,2tq Z= ɶ  and the updated streamflow by *,1tQɶ  and 509 

*
,2tQɶ . Because f  is an increasing function, we have 1 2q q≤ . The difference in the 510 

magnitude of the error update between ,1tQɶ  and ,2tQɶ  can be derived as  511 
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∫

∫
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 (B4) 512 

From (A2), we have shown that 1f − ′    is a positive increasing function and this 513 

ensures that 1 1
1 2( ) ( ) 0f x q f x q− −′ ′   + − + ≤    . Finally we have  514 

* *
,1 ,1 ,2 ,2t t t tQ Q Q Q− ≤ −ɶ ɶ ɶ ɶ .        (B5) 515 

Therefore, the error update at larger forecast streamflows is always larger than the 516 

error update at lower forecast streamflows. 517 
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Table 1: Catchment characteristics. 655 

Name Country Gauge Site Area 

(km
2
) 

Rainfall 

(mm/yr) 

Streamflow 

(mm/yr) 

Runoff 

coefficient 

Zero 

flows  

Abercrombie Aus Abercrombie River 

at Hadley no. 2 

1447 783 63 0.08 14.4% 

Mitta Mitta Aus Mitta Mitta River at 

Hinnomunjie 

1527 1283 261 0.20 0 

Orara Aus Orara River at 

Bawden Bridge 

1868 1176 243 0.21 0.6% 

Tarwin Aus Tarwin River at 

Meeniyan 

1066 1042 202 0.19 0 

Amite US 07378500 3315 1575 554 0.35 0 

Guadalupe US 08167500 3406 772 104 0.13 1.7% 

San Marcos US 08172000 2170 844 165 0.20 0% 

 656 

  657 
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Table 2: Comparison of the NSE calculated at (a) the receding limb and (b) the rising 658 
limb of the hydrograph for three different error models. 659 
 660 

 (a) 1t tQ Q −≤ɶ ɶ   (b) 1t tQ Q −>ɶ ɶ  

 Proportion 

of flows 

AR-

Norm 

AR-

Raw 

RAR-

Norm 

 Proportion 

of flows 

AR-

Norm 

AR-

Raw 

RAR-

Norm 

Abercrombie 82% 0.11 -0.41 0.52  19% 0.58 0.66 0.65 

Mitta Mitta 82% 0.95 0.91 0.95  18% 0.81 0.86 0.86 

Orara 85% 0.94 0.91 0.95  15% 0.86 0.86 0.83 

Tarwin 71% 0.90 0.91 0.90  29% 0.18 0.77 0.76 

Amite 69% 0.76 0.82 0.84  31% 0.82 0.82 0.85 

Guadalupe 83% 0.75 0.35 0.77  15% 0.24 0.55 0.45 

San Marcos 82% 0.80 0.66 0.80  17% 0.63 0.64 0.64 
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Table 3: Comparison of the skill scores based on CRPS and RMSEP (denoted by 662 
CRPS_SS and RMSEP_SS) for three different error models. 663 
 664 

 CRPS_SS (%)  RMSEP_SS (%) 

 
AR-

Norm 
AR-Raw 

RAR-

Norm 
 

AR-

Norm 
AR-Raw 

RAR-

Norm 

Abercrombie 64.1 62.3 66.3  75.1 73.7 74.7 

Mitta Mitta 80.3 79.7 80.7  84.1 83.2 84.0 

Orara 74.0 75.7 75.5  81.7 80.7 81.4 

Tarwin 74.9 79.3 78.8  86.1 85.1 86.1 

Amite 67.5 68.3 69.5  71.0 70.9 71.2 

Guadalupe 57.4 60.9 59.8  76.3 75.2 77.2 

San Marcos 68.8 66.0 68.9  73.9 73.9 74.3 

  665 



Page 27 of 36 

 

666 

Figure 1: Map of US (top) 667 

 668 

(top) and Australian (bottom) catchments. 
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 669 

Figure 2: An example of over-correction caused by the AR-Norm model in the Mitta 670 

Mitta catchment. Dashed lines: forecasts from the base hydrological model (i.e., 671 

without error updating). Solid lines: forecasts with error updating.  672 

 673 

 674 
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 676 

Figure 3: The fraction of instances where 1 1t t tD Q Q− −> − ɶ  (i.e., instances where over-677 

correction may occur in the AR-Norm model and where error updating is restricted in 678 

the RAR-Norm model) for the AR-Norm and RAR-Norm models for Australian 679 

catchments.  680 

  681 



Page 30 of 36 

 

 682 

Figure 4: Forecast streamflows for the Orara catchment for an example 1-year period. 683 

Top panel shows streamflows forecast with AR-Norm model, bottom panel shows 684 

streamflows forecast with the RAR-Norm model. Dashed lines: forecasts from the 685 

base hydrological model (i.e., without error updating). Solid lines: forecasts with error 686 

updating. Tick marks in the x-axis denote the instance of updating where 687 

1 1t t tD Q Q− −> − ɶ .  688 
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 689 

Figure 5: An example of over-correction caused by the AR-Raw model in the Mitta 690 

Mitta catchment. Dashed lines: forecasts from the base hydrological model (i.e., 691 

without error updating). Solid lines: forecasts with error updating.  692 

  693 
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 694 

Figure 6: Forecast streamflows for the Abercrombie catchment for the period between 695 

01/08/1997 and 15/09/1997. Top panel shows streamflows forecast with AR-Raw 696 

model, bottom panel shows streamflows forecast with the RAR-Norm model. Dashed 697 
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lines: forecasts from the base hydrological model (i.e., without error updating). Solid 698 

lines: forecasts with error updating. Gray shading denotes instances of over-correction 699 

caused by the AR-Raw model.  700 
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 701 

Figure 7: NSE of streamflows forecast with the AR-Norm, AR-Raw and RAR-Norm 702 

models (colours). Performance of the corresponding base hydrological models is 703 

shown by hatched blocks. 704 

 705 
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 707 

Figure 8: Comparison of the observed streamflows (tQ ) and forecast streamflows (tQɶ ), 708 

as forecast: 1) with the base hydrological model (circles), and 2) with the base 709 

hydrological model and error updating models (dots) for the Orara catchment.  710 
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 712 

Figure 9: PIT-uniform probability plots. Curves on the diagonal indicate perfectly 713 

reliable forecasts. 714 


