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Abstract 13 

Cities are increasingly vulnerable to floods generated by intense rainfall, because of 14 

urbanization of flood prone areas and ongoing urban densification. Accurate information of 15 

convective storm characteristics at high spatial and temporal resolution is a crucial input for 16 

urban hydrological models to be able to simulate fast runoff processes and enhance flood 17 

prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic 18 

response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band 19 

dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model 20 

for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise 21 

how the effect of space and time aggregation on rainfall structure affects hydrodynamic 22 

modelling of urban catchments, for resolutions ranging from 100 m to 2000 m and from 1 to 23 

10 minutes. Dimensionless parameters were derived to compare results between different 24 

storm conditions and to describe the effect of rainfall spatial resolution in relation to storm 25 

characteristics and hydrodynamic model properties: rainfall sampling number (rainfall 26 

resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), 27 

runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution 28 

respectively). 29 



 

 2

Results show that for rainfall resolution lower than half the catchment size, rainfall volumes 1 

mean and standard deviations decrease as a result of smoothing of rainfall gradients. 2 

Moreover, deviations in maximum water depths, from 10% to 30% depending on the storm, 3 

occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model 4 

results also showed that modelled runoff peaks are more sensitive to rainfall resolution than 5 

maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level 6 

variations. Temporal resolution aggregation of rainfall inputs led to increase in de-correlations 7 

lengths and resulted in time shift in modelled flow peaks by several minutes. Sensitivity to 8 

temporal resolution of rainfall inputs was low compared to spatial resolution, for the storms 9 

analysed in this study.   10 

 11 

1 Introduction 12 

Rainfall is a key input to hydrological models and a crucial issue for hydrologists is to find 13 

the importance of the spatial structure of rainfall in relation to flood generation (Segond et al., 14 

2007). Many studies conducted in large natural catchments have shown that spatial variability 15 

of rainfall is important in determining both timing and volume of rainfall transformed into 16 

runoff (Obled et al., 1994) and thus timing of simulated basin response and magnitude of the 17 

response peak (Dawdy and Bergman, 1969; Krajewski et al., 1991; Seliga et al., 1992). It has 18 

been suggested, with much less evidence, that this is also true for small catchments with 19 

shorter response times, such as urban catchments (Blanchet et al., 1992; Obled et al., 1994). 20 

Urban catchments are characterised by a high percentage of imperviousness, which leads to a 21 

high proportion of the rainfall producing runoff. It is therefore expected that the effect of 22 

spatial rainfall variability on water flows is greater in urban catchments than in rural ones, 23 

where local variation of rainfall input is smoothed and delayed within the soil as a result of 24 

infiltration in pervious areas (Obled et al., 1994, among others). Previous studies have shown 25 

that urban catchments, characterized by a fast hydrological response due to both low 26 

interception and infiltration, are highly sensitive to small-scale spatial and temporal variability 27 

of the precipitation field (Bell and Moore, 2000; Einfalt et al., 2004; Gires et al., 2013.) In the 28 

past, a lot of studies have addressed requirements and approaches for flood modelling 29 

(Schmitt et al., 2004; Balmforth and Dibben, 2006; Parker et al., 2011; Pathirana et al., 2011; 30 

Priest et al., 2011; Neal et al., 2012; Ozdemir et al., 2013). More recently, studies have shown 31 
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the impact of rainfall variability on hydrodynamic models outputs (Gires et al., 2012; Liguori 1 

et al 2012; Vieux and Imgarten, 2012). 2 

As resolutions of available data and models have increased, rainfall variability information at 3 

high resolution has become a critical component to study hydrological response in urban 4 

drainage systems using hydrological models. Weather radars are more suitable for this 5 

purpose than rain gauge networks as they have better spatial coverage. Weather radars, such 6 

as S-band and C-band radars, are already used by meteorological institutes worldwide in order 7 

to (indirectly) measure and predict precipitation at national and regional scales. Nonetheless, 8 

several studies have shown that the spatial resolution of operational radar network 9 

measurements is insufficient to meet the scale of urban hydrodynamics (Berne et al., 2004; 10 

Emmanuel et al., 2011; Schellart et al., 2011). Because of their relatively low cost and small 11 

size, X-band radars are ideally suited for local rainfall estimation. These radars measure at 12 

high resolutions, both in space and time, and much closer to the ground than S- or C-band 13 

radars, which for operational purposes, cover large distances and thus point higher especially 14 

at locations several tens of kilometres away from the radar sites. X-band radars have been 15 

tested locally and show better performances in catching the rapidly changing characteristics of 16 

intense rainfall than rain gauges (Jensen and Pedersen, 2005). This is particularly the case 17 

when the distance between rain gauges is larger than 3 to 4 km (Wood et al., 2000).  18 

The effects of radar spatial resolution on hydrological model outputs were addressed by 19 

Ogden and Julien (1994) by using length scales to characterize rainfall data and catchments, 20 

such as storm de-correlation length, grid size of rainfall data, characteristic catchment length 21 

and grid size of the distributed runoff model. In their study, they aimed to explain variability 22 

in hydrological responses based on rainfall and catchment characteristics, for two catchments 23 

of 30 km² and 100 km², using fully distributed rainfall-runoff models. They recommended 24 

rainfall spatial resolution of 0.4 the square root of the watershed area, in order to avoid 25 

deviations in runoff flows. This corresponds to 1km resolution for a 10 km² watershed, 4 km 26 

resolution for a 100 km² watershed, as was also found by Segond et al. (2007). Several other 27 

studies on natural catchments also found that the influence of rainfall resolution is directly 28 

related to the spatial variability of the storm and of the catchment that transforms rainfall into 29 

runoff (Krajewski et al., 1991; Winchell et al., 1998; Koren et al., 1998, among others).  30 

 31 
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The purpose of this paper was to analyse the sensitivity of urban hydrodynamic model outputs 1 

to spatial and temporal resolutions of rainfall inputs derived from weather radar data at intra-2 

urban scale. Sensitivity was analysed according to spatial characteristics of rainfall and urban 3 

catchment properties as well as model topology. Sensitivity was quantified using 4 

dimensionless parameters that describe relationships between rainfall resolution and spatial 5 

characteristics of the urban catchment, storm cells and model topology. Some of them were 6 

chosen according to their previous use by Odgen and Julien (1994). In this study rainfall 7 

estimates were used derived from dual-polarimetric X-band radar (IDRA), operated by Delft 8 

University of Technology (TU Delft) and located at CESAR, Cabauw Experimental Site for 9 

Atmospheric Research (Leijnse et al., 2010; Otto and Russchenberg, 2011). A detailed urban 10 

hydrodynamic model for a catchment in the city of Rotterdam was chosen as a pilot case. 11 

Catchment conditions are representative of urban districts in lowland areas, especially delta 12 

cities, where almost half of the world population lives. Lowland catchments are characterised 13 

by flat terrain, therefore the mechanism dominating sewer flow is different from sloped 14 

terrain, where flow is driven by gravitation. This study aims at analysing the sensitivity of this 15 

urban hydrodynamic model to changes in rainfall spatial and temporal resolution. The study’s 16 

focus is on model uncertainty related to rainfall input; model performance is not tested here, 17 

since storms were virtually applied to the catchment, which did not allow a proper model 18 

validation based on water level and flow observations. However, model geometry was strictly 19 

checked and model parameters were estimated based on literature values and experts opinion, 20 

so that the model is considered to be a reliable representation of local pluvial response. 21 

Results were used to address the following questions: 22 

- Does small-scale precipitation variability affect hydrological response and can a 23 

highly detailed semi-distributed model properly describe such a response? 24 

- Is high resolution rainfall information required when storm does not present 25 

pronounced space-time variability?  26 

- Does sensitivity of small sized urban catchments to spatial and temporal variability of 27 

precipitation depend on catchment scale?  28 

The findings have relevance for the use of high resolution radar data in flood forecasting and 29 

flood protection in cities, at intra-urban scale. It provides a contribution to the debate on radar 30 

spatial resolution requirements for urban drainage modelling of small-scale urban catchments 31 

at district level, i.e. up to 3 km².  32 
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The paper is organised as follows. Section 2 presents the case study, hydrodynamic modelling 1 

approach and provides an analysis and description of rainfall fields used to conduct the 2 

sensitivity analysis. In Section 3 scale lengths are defined and then used to obtain a set of 3 

dimensionless parameters that will characterize relationships between rainfall fields, spatial 4 

resolution of rainfall and catchment characteristics. In Section 4 results of the scale analysis 5 

are shown and discussed. Lastly, conclusions are presented in Section 5.  6 

2 Presentation of the case study and datasets  7 

2.1 Case study and model description 8 

This paper focuses on the Central district of Rotterdam, The Netherlands (Figure 1). The 9 

district is densely populated and includes mainly residential areas with approximately 30,000 10 

inhabitants, as well as businesses and shopping centres. The district has a size of 3.4 km². 11 

Two green areas are located in the southern part of the district, sized 6 ha and 24 ha. The 12 

southern border of the district is formed by the Meuse River. The district belongs to a polder 13 

area below sea level. As a result, the area is nearly flat and there is not a dominant flow 14 

direction. During rainfall, excess storm water needs to be pumped out into the river system or 15 

temporally stored elsewhere. Meanwhile, net rainfall fills sewer systems and storage basins up 16 

to the level of external weirs, where overflows to surface water take place if rainfall 17 

continues. An underground storage facility with a capacity of 10000 m³ has been built in the 18 

district to reduce flood risk during heavy rainfall events. 19 

A hydrodynamic urban drainage model has been built for the catchment area using Sobek-20 

urban software (Deltares, 2014). Although fully distributed models best describe the effect of 21 

rainfall variability on a catchment, the use of a highly detailed semi-distributed model with 22 

runoff areas of approximately the same size or smaller than the highest rainfall input 23 

resolution of 100mx100m, is a close alternative. The combined sewer system was modelled in 24 

1D and consists of around 3000 manhole nodes (most of them are with runoff) and 11 25 

external weirs, which serve as outflow points. The model contains four pressurized pipes 26 

interconnecting parts of the sewer system. Two external pumping stations transport water to 27 

the waste water treatment plant and to the river. Rainfall-runoff processes are modelled in 28 

Sobek RR (Deltares, 2014). The main components in this model are surface water storage, 29 

evaporation, infiltration and delay of surface runoff before entering the sewer system. Surface 30 

water storage occurs when rainwater form puddles. When the water level exceeds the given 31 
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maximum street storage, runoff is generated. Infiltration is computed on pervious surfaces by 1 

Horton equation. Runoff to the sewer system is computed as a function of net rainfall and 2 

runoff factors, which depend on length, roughness, slope and percentage of imperviousness of 3 

the areas. According to Dutch guidelines (Stichting RIONED, 2004), four different area types 4 

were used with different sets of runoff parameter values (Table 1): closed paved, open paved, 5 

roof flat and roof sloped (with slope larger than 4%) areas. The open paved area type 6 

represents paved streets with bricks, which allow water to infiltrate and to be retained within 7 

the road surface. Green areas are not taken into account by the model, as they are assumed to 8 

be disconnected from the sewer system. The rainfall-runoff module is lumped and its basic 9 

unit is the “runoff area”. Each runoff area contains different types of surface, the runoff of 10 

which enters the sewer system through the manhole nodes. Further details of the software 11 

package used in this study are provided in the Appendix. 12 

2.2 Rainfall data  13 

Rainfall data were obtained from CESAR (Leijnse et al., 2010) which provides data from a 14 

dual-polarimetric X-band radar collected at 30 m range resolution and a maximum 15 

unambiguous range of 15 km approximately. Other specifications on the new generation X-16 

band radar device can be found in Table 2. Aggregations were made from radar rainfall rates 17 

at 30m polar pixels based on reflectivity for values smaller than 30dBZ, differential phase 18 

otherwise (Otto and Russchenberg, 2011). The X-band radar has been operational 19 

intermittently since 27 June 2008. From the available datasets provided by CESAR, four 20 

rainfall storms could be selected for analysis based on a minimum mean rainfall volume of 3 21 

mm over the area size of the studied catchment, the size of which is 3.4 km². Lower rainfall 22 

volumes produce insufficient runoff to allow proper hydrodynamic analysis. According to the 23 

classification adopted by Emmanuel et al. (2012), events have been grouped as follows: 24 

Event 1 and Event 2: Storm organized in rain bands 25 

Event 3: Storm less organized 26 

Event 4: Light rain 27 

In Event 1, a long lived squall line was measured on January 03 2012. The convective storm 28 

moved eastward with a velocity of 20 m/s approximately. A squall line is a line of convective 29 

cells that forms along a cold front with a predominately trailing stratiform precipitation 30 

(Storm et al., 2007). Squall lines are typically associated with a moderate shear between 10 31 
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and 20 m/s and strong updraft (Weisman and Rotunno, 2004). If winds increase rapidly with 1 

height ahead of a strong front, thunderstorms triggered along the boundary may organize into 2 

severe storms called supercell storms. The X-band radar was able to capture storm features 3 

associated with supercell. The overall duration of the event was short, 1 hour in total, but the 4 

most intense peak lasted 10 minutes at the end of the storm, and with rainfall intensities 5 

higher than 100 mm/h. The most affected part of the catchment was the central and the North-6 

western part, while the southern part was affected by light rain. Event 2, occurring on 10 7 

September 2011, can be characterised as a cluster of convective and organized storm cells that 8 

moved in north-east direction. The storm moved north-eastward with a velocity of 16 m/s 9 

approximately. The storm system showed a convective spread area larger than the first event 10 

and with slower shift. The storm lasted 2 hours, between 1800 – 2000 UTC, being the most 11 

intense part concentrated between 1900 and 2000 UTC. Intensities ranged between 30 mm/h 12 

and 60 mm/h, and the whole central part, from South to North of the catchment was affected, 13 

while East and West bands were less exposed. In Event 3, occurred on June 28 2011 from 14 

2200 UTC to 2400 UTC, mesoscale observations showed a non-organized squall line moving 15 

north east, with a speed of 15 m/s approximately and containing rainfall rate cores of at least 16 

10 mm/h. Rainfall rate values of 50 mm/h were founded over small areas during 2200 – 2300 17 

UTC, travelling from South-west toward North-east and affecting all the catchment. Lastly, 18 

Event 4, occurred in October 29 2012, is a stratiform precipitation moving eastward at 13 m/s 19 

approximately and showing uniform rainfall rates. Rainfall retrieval was based on reflectivity 20 

only, of about 8 mm/h. Storms motions and directions were estimated based on centroid-21 

based storm association algorithm, inspired by Johnson et al (1998). For each event, total 22 

rainfall volumes in terms of minimum, maximum and mean value of all pixels affecting the 23 

area can be found in Figure 2, as well as their standard deviation, giving a first insight into the 24 

variability of the event. Figure 3 presents radar images showing the maximum intensity 25 

minute of each one of the selected rainfall events, as well as the location of the catchment 26 

with respect to them and the main direction of the storms. 27 

3 Methods 28 

In this study, effects of radar spatial resolution on hydrological model outputs were analysed 29 

by means of length scales. Building upon the approach introduced by Ogden and Julien 30 

(1994), length scales were developed for urban catchments and adjusted and extended for 31 

application to hydrodynamic urban drainage models (Table 3, Figure 4). A scale dependency 32 
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Julien (1994), this effect, called by them ‘catchment smearing’, occurs for catchment 1 

sampling numbers greater than 0.4. In contrast, results of present study show that this effect 2 

already occurs at smaller sampling numbers, namely 0.2 and becomes stronger for values 3 

greater than 0.2. Figure 7 presents box plots for maximum rainfall intensity values per pixel, 4 

over the studied catchment as a function of rainfall spatial resolution. The median of 5 

maximum intensity values shows a mild decrease for coarser rainfall resolutions. The 6 

smoothing effect is more pronounced for Event 3 and Event 4, where convective cells move 7 

closer to catchment boundaries. This results in storm cells being smoothed across catchment 8 

boundaries.  9 

Event 1 is characterised by a 1 km-wide storm line passing over the catchment very rapidly, 10 

resulting in steep rainfall gradients that are strongly smoothed when rainfall input resolution 11 

is reduced. When resolution is reduced from 100m to 500m, spatial structure of the storm line 12 

is decomposed, leading to a reduction in maximum rainfall intensities (Figure 7) in the area 13 

affected by the storm. As resolution is reduced from 1000m to 2000m resolution, storm 14 

structure is lost and rainfall becomes uniform over the catchment. Storm cells in event 2 are 15 

characterised by steeper spatial gradients in rainfall intensities compared to event 1 and as a 16 

result maximum rainfall intensity values are more strongly affected by changes in rainfall 17 

resolution: upper 25% values decrease as a result of rainfall gradient smoothing, especially as 18 

resolution is reduced from 100m to 500m. Lower 25% values increase as a result of gradient 19 

smoothing and storm structure decomposition, especially as resolution is reduced from 500m 20 

to 1000m, where the variation between 1st and 3rd quartile values is reduced from about 10 21 

mm/h to 5 mm/h. Event 3 and Event 4 present a clear reduction of the median as a result of 22 

rainfall aggregation across the catchment boundary. The variation between 1st and 3rd quartile 23 

values is larger at 1000m resolution than at 100m and 500m resolution. For Event 3, this is 24 

due to the non-organised structure of rainfall cells: local rainfall cells found at 100m 25 

resolution are smoothed out at 500m resolution, while at 1000m resolution the most active 26 

convective area affects 2 out of 9 pixels covering the catchment, i.e. lowest 25% values are 27 

relatively high. Event 4 is characterised by stratiform precipitation showing uniform rainfall 28 

rates. Upper quartile values decrease from 34 mm/h to 22 mm/h; lower quartile values reduce 29 

from 28 mm/h to about10 mm/h at 1000m resolution. This is a result of rainfall gradient 30 

smoothing and storm cells spreading southward due to spatial aggregation, while the core of 31 

the storm remains within the catchment boundaries. The strongest effect of rainfall coarsening 32 

in this case is found in a strong reduction of rainfall gradients. As a general conclusion, spatial 33 
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Figure 13, third line, de-correlation length becomes larger than the catchment size. This effect 1 

already occurs at 5 min aggregation, but is more pronounced at 10 min aggregation. In both 2 

cases time aggregation results in enlargement of the area affected by convective storm cells, 3 

in a smoothing of rainfall peaks, and in a change in timing of rainfall peaks. This results in 4 

delay or anticipation of maximum water depths, depending on the relative position of a node 5 

with respect to the storm and also depending on the temporal position of rainfall peak values, 6 

therefore on the temporal sampling process (for instance, if peak values are within the same 7 

5min or 10 min sampling interval, time to peak will be hardly shifted. If peak values are 8 

averaged out with previous or following no-peaks values, this will result in an anticipation or 9 

delay of sampled rainfall values and consequently anticipation/delay in hydrological response. 10 

A possible explanation why this effect is noticeable only at 10min is because the 11 

concentration time of the 11 nodes is lower than 10 min. In order to notice an impact on 12 

model output, the time-step of rainfall input must be smaller than the concentration time of 13 

the catchment at the outlet (Vaes et al., 2001) (being the concentration time the time rainfall 14 

needs to travel from the furthest place in the catchment to the chosen outlet of the sewer 15 

system). For Event 4, temporal aggregation results in anticipation of maximum water by 1 to 16 

7 minutes at most of the catchment outlets. .  17 

Moreover, effects of time aggregation on model performance have been analysed through the 18 

comparison in maximum water depths between simulations. Deviations in maximum water 19 

depths with respect to the reference case were below 0.05m. This shows that the effect of 20 

rainfall spatial aggregation is much more important than that of temporal aggregation, in this 21 

specific case study and under these rainfall scenarios. Due to the low deviations found, results 22 

have not been reported here. 23 

 24 

5 Conclusions 25 

The sensitivity of an urban hydrodynamic model to spatial and temporal resolutions of 26 

weather radar data was investigated in this paper. Analyses are based on a densely populated 27 

urban catchment in Rotterdam, the Netherlands and four rainfall events that were derived 28 

from polarimetric X-band radar data. Rainfall and catchment properties were characterised 29 

using various length scales: catchment size and storm de-correlation length, which depend on 30 

the specific site and storm; rainfall data resolution, which depends on rainfall measurement 31 

resolution; and runoff resolution and sewer density, which are modeller’s choices. Sensitivity 32 
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of model outputs to rainfall spatial resolution was analysed in relation to: catchment size, 1 

through catchment sampling number (LR/LC); storm length, by means of rainfall sampling 2 

number (LR/LD); runoff resolution of the model, through runoff sampling number (LR/LRA); 3 

and sewer density, with the sewer sampling number (LR/LS). The first parameter is 4 

responsible for the uncertainty of rainfall location with respect to watershed boundaries; the 5 

second parameter describes smoothing of rain rate gradients; the third and fourth parameters 6 

describe the ability of the model (the runoff model and the sewer model respectively) to 7 

capture the rainfall structure. Storm length was been computed as the range of anisotropic 8 

experimental semi-variograms. Four rainfall spatial resolutions (100m, 500m, 1000m and 9 

2000m) and three temporal resolutions (1min, 5min and 10min) were analysed. Results 10 

obtained in this study show: 11 

- As the ratio LR/LC increases (in this particular case for LR/LC > 0.2), there is a progressive 12 

decrease of both rainfall volume mean and standard deviation. Rainfall gradients decrease due 13 

to smoothing induced by rainfall resolution coarsening; mean rainfall over the catchment 14 

decreases as smoothed storm core cells extend beyond the catchment boundaries. Effect of 15 

spatial resolution coarsening on rainfall values strongly depends on the movement of storm 16 

cells relative to the catchment.  17 

- As the ratio LR/LD increases (in this particular case for LR/LD > 0.9), ‘rainfall 18 

smearing’ occurs, inducing deviations in maximum modelled in-sewer water depths. The 19 

magnitude of deviations depends on spatial structure of the storm and variability in rainfall 20 

gradients which determines how much the rainfall field is de-structured by resolution 21 

coarsening. Results are in line with what was found by Ogden and Julien (1994).  22 

- As the ratio LR/LRA increases, deviations in runoff peaks occur. For LR/LRA > 20, 23 

deviations in runoff peaks are above 10% with respect to the reference case (at 100m rainfall 24 

resolution). This implies that, when operational weather radar products (1000m spatial 25 

resolution) are used to feed a hydrodynamic model, runoff model outputs are not correctly 26 

represented by the model at runoff area resolutions lower than 50 m.  27 

- As the ratio LR/LS increases deviations from the reference case (100 m resolution) 28 

occur: these are smaller for in-sewer water depths, ranging from 0.87 to 1.13, than for runoff 29 

peaks, which are in the range 0.7-1.5. This is due to the smoothing effect of flow routing 30 

through the pipe system on in-sewer water depths. 31 
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Additionally, an analysis of the change in spatial structure of rainfall due to time aggregation 1 

was conducted. To this end, impact on model results was quantified in terms of time shift of 2 

maximum water depths with respect to the reference case at 1 min temporal resolution. 3 

Experimental anisotropic semi-variograms temporal aggregations at 5 and 10 minutes show 4 

that rainfall field structure changes due to temporal resolution coarsening. Rainfall correlation 5 

length increases by several 100 meters due to time aggregation (up to 45% of original de-6 

correlation length). For all rainfall events, smoothing of rainfall fields induced by temporal 7 

aggregation results in peak time shifts up to 6 minutes. Model outputs are most strongly 8 

affected when rainfall temporal aggregation leads to complete distortion of the rain field, 9 

which happened for 1 of the 4 events in this study.  10 

This study was a first attempt to characterise how the effect of space and time aggregation on 11 

rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions 12 

ranging from 100m to 2000m and from 1 to 10 minutes. It was investigated how rainfall 13 

change in resolution is absorbed by the model, giving indication of scale relationships 14 

between: storm structure, its representation, catchment size, and model structure. In this study 15 

four storm events were used that could be derived from an experimental polarimetric X-band 16 

radar.  17 

The findings of this study helped to provide initial insights into how small-scale precipitation 18 

variability affects hydrological response and to what extent an urban drainage model can 19 

properly describe such a response. The outcomes showed that critical thresholds are to be 20 

expected in terms of the relationship between rainfall resolution and model scales. This study 21 

points out that scale relationships are relevant in determining model output sensitivities. To 22 

give a more robust meaning to these sampling numbers, more storm events should be 23 

analysed and more catchments should be tested to confirm the findings of this study. 24 

Additionally, model sensitivity to rainfall input resolution should be analysed in relation to 25 

other sources of uncertainty, such as those related to model structure and model parameter 26 

estimation. This requires installation of a polarimetric radar in the city, which is planned for 27 

the near future. This will enable model validation according to locally observed rainfall and 28 

sewer observations and analysis of different aspects of model uncertainty under different 29 

rainfall resolution scenarios. 30 
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Such an extension of the study would allow giving reliable recommendations on what should 1 

be the model and rainfall resolution in order to prioritise either the improvement on rainfall 2 

estimation or catchment hydrological characterization. 3 
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7 Appendix  1 

 2 
SOBEK software description 3 
 4 
Sobek 212 is a semi-distributed hydrodynamic model from Deltares. It accounts for two 5 
modules: the rainfall-runoff module and the routing module. In the rainfall runoff module four 6 
different types of surfaces are used depending on the runoff factor and slope: closed paved, 7 
open paved, flat roof and sloped roofs (with a slope greater than 4%). These four categories 8 
show different runoff factor and storage coefficient. The resulting runoff is calculated based 9 
on “rational method”, where the runoff “Q” is given by the following equation: 10 

ܳ	 ቀ


ቁ ൌ ܿ	ሺ݄ିଵሻ ∗  ሺ݉݉ሻ   (a) 11	

where p is the net rainfall and c is a runoff factor which accounts for the delay of the rainfall 12 
as overland flow to the entry point of the sewer system. The runoff factor is a function of the 13 
length, roughness and slope of the surface (Sobek, 2012). The runoff coefficient is defined as 14 
a number between 0 and 1. A coefficient of 0.5 will mean that 50% of the runoff volume will 15 
reach the sewer entry point in 1 min. The runoff factor moves the centre of mass of the 16 
resulting hydrograph, thereby increasing the lag time. The runoff formula is applied to each 17 
one of the runoff areas connected to the node of the sewer. In semi-distributed models, the 18 
whole catchment is split into a number of sub catchments (runoff areas), each of which is 19 
treated as a lumped model (i.e. within each subcatchment rainfall input and hydrologic 20 
responses are assumed to be uniform; their spatial variability is not accounted for). Rainfall is 21 
inputted uniformly within each subcatchment and based on the subcatchment’s 22 
characteristics; the total runoff is estimated and routed to the outlet point, which is a node of 23 
the sewer system. 24 

Once the water enters the sewer, the routing is computed by means of the complete 1 25 

dimension De Saint Venant equations. 26 

  27 
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 1 

Table 1. Surface characteristics of the Central district catchment in Rotterdam used for 2 

hydrodynamic modelling: percentage, runoff coefficient and storage coefficient. 3 

Type of area Overall 
percentage (%) 

Runoff coefficient 
(min‐1) 

Storage 
coefficient (mm) 

Open paved flat 40 0.2 0.5 

Closed paved flat 14 0.2 0.5 

Roof flat 16 0.2 2 

Roof sloped (slope larger than 

4%) 

30 0.5 0 

 4 

Table 2. Specification of the X-band radar of CESAR. 5 

Dual polarimetric X-band radar 

Radar type FMCW 

Polarization Dual polarization 

Frequency 9.475 GHz 

Highest range resolution 30 m 

Min range 230 m 

Max range < 122 km 

Max unambiguous radial velocity 19 ms-1 

Temporal resolution 1 min 

Beamwidth 1.8 degrees 

Elevation 0.5 degrees 

 6 

 7 

 8 
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Table 3. Scale lengths related to catchment, runoff areas and sewer density, for the total 1 

catchment as well as length scale ranges for the 10 subcatchments. 2 

Length scales (m) Code Event 1 Event 2 Event 3 Event 4 

Storm de-correlation length LD 950 1000 1480 1600 

Runoff length: mean (median)  LRA 28 (23) 

Sewer length LS 43 

Catchment length LC 2,024 

Sub-catchment runoff length (range) (Sub) LRA 21-59 

Sub-catchment sewer length (range) (Sub) LS 33-78 

Sub-catchment length (range) (Sub) LC 429-2,024 

 3 

 4 

Table 4. Dimensionless parameters values derived from scale length values, for 4 different 5 

rainfall resolutions used in the study. Values presented for runoff sampling and sewer 6 

sampling numbers, represent value ranges for the 10 subcatchments (outlined in figure 4).  7 

Rainfall 
resolution 

(m) 

Rainfall sampling number LR /LD 
Catchment 
sampling 
number 
LR/LC 

Runoff 
sampling 
number 

LR/ LRA 

Sewer 
density 

sampling 
number 

LR/ LS 

Event 1 Event 2 Event 3 Event 4 

100 0.11 0.10 0.07 0.06 0.05 2.6-4.7 1.9-3.8 

500 0.53 0.50 0.34 0.31 0.25 13.1-23.3 6.4-19.1 

1000 1.05 1.00 0.68 0.63 0.49 26.1-46.7 12.8-38.3 

2000 2.11 2.00 1.35 1.25 0.99 52.3-93.3 25.5-76.5 

 8 

  9 
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Table 5. Range derived from experimental semi-variograms for different temporal 1 

aggregations, for all four events. . 2 

Rainfall Range (m) 

Δt=1min Δt=5min Δt=10min

Event 1 950 960 970 

Event 2 1000 1200 1450 

Event 3 1480 >2000 >2000 

Event 4 1600 1500 1500 

  3 
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 1 
 2 

Figure 1: Localisation of Centrum district (in red in the right panel), situated in Rotterdam 3 
urban area (right panel and in red in the left panel), The Netherlands (left panel). 4 

  5 
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 1 

 2 

Figure 2. Characteristics of the four selected storm events: rainfall volume range (maximum 3 

and minimum for all 100m x100m pixels over the catchment area),  mean and standard 4 

deviations. 5 

  6 
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 2 

Figure 3. Plots of the maximum intensity time step for the four storm events, main direction of 3 

the storm (grey arrow), and virtual position of the catchment with respect to storm movement 4 

(black square). Zonal distances in East-West and North-South direction from X-band radar 5 

position. The latter is at (0,0) and the maximum range is 15 km. Event 1, 3 and 4 were 6 

detected in South-Western quadrant of the radar coverage, while Event 2 was detected in 7 

North-Western quadrant.  8 

  9 

  10 
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 1 

Figure 4. Storm de-correlation length (LD) and Rainfall resolution (LR) in left panel 2 
Catchment length (LC), runoff length (LRA) in right panel; the catchment is divided into 11 3 
independent subcatchments. Red arrows represent main flow directions. Runoff areas are also 4 
displayed, their average size is reported in Table2. 5 
  6 
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 2 
 3 
 4 
 5 
 6 
 7 
Figure 5. Sketch of semi-variogram: the range is the distance (x) from the origin beyond 8 
which the semi-variogram  ߛሺݔሻ tends to infinite. 9 
  10 

 

Range Distance 
 (ݔ)

 ሻݔሺߛ
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 2 
Figure 6. Normalised rainfall volumes versus catchment sampling number (LR/LC): mean and 3 
standard deviation of normalised rainfall volumes computed over the catchment, for the four 4 
events. 5 
  6 
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 2 

Figure 7. Box plots of maximum rainfall intensity (mm/h) among all pixels covering the 3 

catchment area, for the 4 spatial resolutions (the 2000m shows a unique value corresponding 4 

to rainfall uniformly distributed  over the catchment), for the four events analysed. 5 
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 2 
 3 

Figure 8. Box plots of the normalised maximum water depths (top panel) and runoff peaks (bottom panel) computed for all nodes in the model, for Events 1 (left) to 4 4 

(right). 5 

 6 

 7 
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 1 

 2 

Figure 9. Instantaneous experimental multi-directional spatial semi-variogram of non-zero 3 

rainfall for each of the four storms. 4 

  5 

Ev. 1 Ev. 2 

Ev. 3 Ev. 4 
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 2 

Figure 10. Normalised maximum in-sewer water depths versus rainfall sampling number 3 

(LR/LD): results at the outlet of the 10 sub-catchments (numbered 1 to 10) and of the whole 4 

catchment (nr 11). 5 

  6 
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 2 

Figure 11. Normalised runoff peaks versus runoff sampling number (RR/LRA): results 3 

averaged over each of the 10 subcatchments (numbered 1 to 10) and over the whole 4 

catchment (nr 11). 5 

  6 
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Figure 12. Normalised maximum water depths versus sewer sampling number (LR/LS): results 2 

at the outlet of the 10 catchments and of the whole catchment (nr 11). 3 

  4 
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 2 

 3 

 4 

 5 

Figure 13. Anisotropic experimental semi-variograms for the four rainfall events (in rows) 6 

and different temporal resolutions, 1 min, 5 min and 10 min (left, central and right column 7 

respectively). 8 

  9 
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Figure 14. Time shift between maximum water depths of reference case (100m spatial 2 

resolution, 1 min temporal resolution), and 5 min and 10 min simulation, at the outlets of the 3 

10 subcatchments and of the whole catchment (nr 11). 4 

  5 
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Figure 15. Differences in time to maximum water depth at the outlets of the 10 subcatchments 2 

and of the whole catchment (nr 11) for Event 3 and 4. Simulations at the highest spatial and 3 

temporal resolutions (100m/1000m 1 min respectively) are taken as reference. 4 

 5 


