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Abstract 13 

Cities are increasingly vulnerable to floods generated by intense rainfall, because of 14 

urbanization of flood prone areas and ongoing urban densification. Accurate information of 15 

convective storm characteristics at high spatial and temporal resolution is a crucial input for 16 

urban hydrological models to be able to simulate fast runoff processes and enhance flood 17 

prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic 18 

response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band 19 

dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model 20 

for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise 21 

how the effect of space and time aggregation on rainfall structure affects hydrodynamic 22 

modelling of urban catchments, for resolutions ranging from 100 m to 2000 m and from 1 to 23 

10 minutes. Dimensionless parameters were derived to compare results between different 24 

storm conditions and to describe the effect of rainfall spatial resolution in relation to storm 25 

characteristics and hydrodynamic model properties: rainfall sampling number (rainfall 26 

resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), 27 

runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution 28 

respectively). 29 



 

 2

Results show that for rainfall resolution lower than half the catchment size, rainfall volumes 1 

mean and standard deviations decrease as a result of smoothing of rainfall gradients. 2 

Moreover, deviations in maximum water depths, from 10% to 30% depending on the storm, 3 

occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model 4 

results also showed that modelled runoff peaks are more sensitive to rainfall resolution than 5 

maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level 6 

variations. Temporal resolution aggregation of rainfall inputs led to increase in de-correlations 7 

lengths and resulted in time shift in modelled flow peaks by several minutes. Sensitivity to 8 

temporal resolution of rainfall inputs was low compared to spatial resolution, for the storms 9 

analysed in this study.   10 

 11 

1 Introduction 12 

Rainfall is a key input to hydrological models and a crucial issue for hydrologists is to find 13 

the importance of the spatial structure of rainfall in relation to flood generation (Segond et al., 14 

2007). Many studies conducted in large natural catchments have shown that spatial variability 15 

of rainfall is important in determining both timing and volume of rainfall transformed into 16 

runoff (Obled et al., 1994) and thus timing of simulated basin response and magnitude of the 17 

response peak (Dawdy and Bergman, 1969; Krajewski et al., 1991; Seliga et al., 1992). It has 18 

been suggested, with much less evidence, that this is also true for small catchments with 19 

shorter response times, such as urban catchments (Blanchet et al., 1992; Obled et al., 1994). 20 

Urban catchments are characterised by a high percentage of imperviousness, which leads to a 21 

high proportion of the rainfall producing runoff. It is therefore expected that the effect of 22 

spatial rainfall variability on water flows is greater in urban catchments than in rural ones, 23 

where local variation of rainfall input is smoothed and delayed within the soil as a result of 24 

infiltration in pervious areas (Obled et al., 1994, among others). Previous studies have shown 25 

that urban catchments, characterized by a fast hydrological response due to both low 26 

interception and infiltration, are highly sensitive to small-scale spatial and temporal variability 27 

of the precipitation field (Bell and Moore, 2000; Einfalt et al., 2004; Gires et al., 2013.) In the 28 

past, a lot of studies have addressed requirements and approaches for flood modelling 29 

(Schmitt et al., 2004; Balmforth and Dibben, 2006; Parker et al., 2011; Pathirana et al., 2011; 30 

Priest et al., 2011; Neal et al., 2012; Ozdemir et al., 2013). More recently, studies have shown 31 
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the impact of rainfall variability on hydrodynamic models outputs (Gires et al., 2012; Liguori 1 

et al 2012; Vieux and Imgarten, 2012). 2 

As resolutions of available data and models have increased, rainfall variability information at 3 

high resolution has become a critical component to study hydrological response in urban 4 

drainage systems using hydrological models. Weather radars are more suitable for this 5 

purpose than rain gauge networks as they have better spatial coverage. Weather radars, such 6 

as S-band and C-band radars, are already used by meteorological institutes worldwide in order 7 

to (indirectly) measure and predict precipitation at national and regional scales. Nonetheless, 8 

several studies have shown that the spatial resolution of operational radar network 9 

measurements is insufficient to meet the scale of urban hydrodynamics (Berne et al., 2004; 10 

Emmanuel et al., 2011; Schellart et al., 2011). Because of their relatively low cost and small 11 

size, X-band radars are ideally suited for local rainfall estimation. These radars measure at 12 

high resolutions, both in space and time, and much closer to the ground than S- or C-band 13 

radars, which for operational purposes, cover large distances and thus point higher especially 14 

at locations several tens of kilometres away from the radar sites. X-band radars have been 15 

tested locally and show better performances in catching the rapidly changing characteristics of 16 

intense rainfall than rain gauges (Jensen and Pedersen, 2005). This is particularly the case 17 

when the distance between rain gauges is larger than 3 to 4 km (Wood et al., 2000).  18 

The effects of radar spatial resolution on hydrological model outputs were addressed by 19 

Ogden and Julien (1994) by using length scales to characterize rainfall data and catchments, 20 

such as storm de-correlation length, grid size of rainfall data, characteristic catchment length 21 

and grid size of the distributed runoff model. In their study, they aimed to explain variability 22 

in hydrological responses based on rainfall and catchment characteristics, for two catchments 23 

of 30 km² and 100 km², using fully distributed rainfall-runoff models. They recommended 24 

rainfall spatial resolution of 0.4 the square root of the watershed area, in order to avoid 25 

deviations in runoff flows. This corresponds to 1km resolution for a 10 km² watershed, 4 km 26 

resolution for a 100 km² watershed, as was also found by Segond et al. (2007). Several other 27 

studies on natural catchments also found that the influence of rainfall resolution is directly 28 

related to the spatial variability of the storm and of the catchment that transforms rainfall into 29 

runoff (Krajewski et al., 1991; Winchell et al., 1998; Koren et al., 1998, among others).  30 

 31 
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The purpose of this paper was to analyse the sensitivity of urban hydrodynamic model outputs 1 

to spatial and temporal resolutions of rainfall inputs derived from weather radar data at intra-2 

urban scale. Sensitivity was analysed according to spatial characteristics of rainfall and urban 3 

catchment properties as well as model topology. Sensitivity was quantified using 4 

dimensionless parameters that describe relationships between rainfall resolution and spatial 5 

characteristics of the urban catchment, storm cells and model topology. Some of them were 6 

chosen according to their previous use by Odgen and Julien (1994).  In this study rainfall 7 

estimates were used derived from dual-polarimetric X-band radar (IDRA), operated by Delft 8 

University of Technology (TU Delft) and located at CESAR, Cabauw Experimental Site for 9 

Atmospheric Research (Leijnse et al., 2010; Otto and Russchenberg, 2011). A detailed urban 10 

hydrodynamic model for a catchment in the city of Rotterdam was chosen as a pilot case. 11 

Catchment conditions are representative of urban districts in lowland areas, especially delta 12 

cities, where almost half of the world population lives. Lowland catchments are characterised 13 

by flat terrain, therefore the mechanism dominating sewer flow is different from sloped 14 

terrain, where flow is driven by gravitation.  15 

Results were used to address the following questions: 16 

- Does small-scale precipitation variability affect hydrological response and can an 17 

urban drainage model properly describe such a response? 18 

- Is high resolution rainfall information required when storm does not present 19 

pronounced space-time variability?  20 

- Does sensitivity of small sized urban catchments to spatial and temporal variability of 21 

precipitation depend on catchment scale?  22 

The findings have relevance for the use of high resolution radar data in flood forecasting and 23 

flood protection in cities, at intra-urban scale. It provides a contribution to the debate on radar 24 

spatial resolution requirements for urban drainage modelling of small-scale urban catchments 25 

at district level, i.e. up to 3 km².  26 

The paper is organised as follows. Section 2 presents the case study, hydrodynamic modelling 27 

approach and provides an analysis and description of rainfall fields used to conduct the 28 

sensitivity analysis. In Section 3 scale lengths are defined and then used to obtain a set of 29 

dimensionless parameters that will characterize relationships between rainfall fields, spatial 30 
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resolution of rainfall and catchment characteristics. In Section 4 results of the scale analysis 1 

are shown and discussed. Lastly, conclusions are presented in Section 5.  2 

2 Presentation of the case study and datasets  3 

2.1 Case study and model description 4 

This paper focuses on the Central district of Rotterdam, The Netherlands. The district is 5 

densely populated and includes mainly residential areas with approximately 30,000 6 

inhabitants, as well as businesses and shopping centres. The district has a size of 3.4 km². 7 

Two green areas are located in the southern part of the district, sized 6 ha and 24 ha. The 8 

southern border of the district is formed by the Meuse River. The district belongs to a polder 9 

area below sea level. As a result, the area is nearly flat and there is not a dominant flow 10 

direction. During rainfall, excess storm water needs to be pumped out into the river system or 11 

temporally stored elsewhere. Meanwhile, net rainfall fills sewer systems and storage basins up 12 

to the level of external weirs, where overflows to surface water take place if rainfall 13 

continues. An underground storage facility with a capacity of 10000 m³ has been built in the 14 

district to reduce flood risk during heavy rainfall events. 15 

A hydrodynamic urban drainage model has been built for the catchment area using Sobek-16 

urban software (Deltares, 2014). Although fully distributed models best describe the effect of 17 

rainfall variability on a catchment, the use of a highly detailed semi-distributed model with 18 

runoff areas of approximately the same size or smaller than the highest rainfall input 19 

resolution of 100mx100m, is a close alternative. The combined sewer system was modelled in 20 

1D and consists of around 3000 manhole nodes (most of them are with runoff) and 11 21 

external weirs, which serve as outflow points. The model contains four pressurized pipes 22 

interconnecting parts of the sewer system. Two external pumping stations transport water to 23 

the waste water treatment plant and to the river. Rainfall-runoff processes are modelled in 24 

Sobek RR (Deltares, 2014). The main components in this model are surface water storage, 25 

evaporation, infiltration and delay of surface runoff before entering the sewer system. Surface 26 

water storage occurs when rainwater form puddles. When the water level exceeds the given 27 

maximum street storage, runoff is generated. Infiltration is computed on pervious surfaces by 28 

Horton equation. Runoff to the sewer system is computed as a function of net rainfall and 29 

runoff factors, which depend on length, roughness, slope and percentage of imperviousness of 30 

the areas. According to Dutch guidelines (Stichting RIONED, 2004), four different area types 31 
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were used with different sets of runoff parameter values (Table 1): closed paved, open paved, 1 

roof flat and roof sloped (with slope larger than 4%) areas. The open paved area type 2 

represents paved streets with bricks, which allow water to infiltrate and to be retained within 3 

the road surface. Green areas are not taken into account by the model, as they are assumed to 4 

be disconnected from the sewer system. The rainfall-runoff module is lumped and its basic 5 

unit is the “runoff area”. Each runoff area contains different types of surface, the runoff of 6 

which enters the sewer system through the manhole nodes. Further details of the software 7 

package used in this study are provided in the Appendix. 8 

2.2 Rainfall data  9 

Rainfall data were obtained from CESAR (Leijnse et al., 2010) which provides data from a 10 

dual-polarimetric X-band radar collected at 30 m range resolution and a maximum 11 

unambiguous range of 15 km approximately. Other specifications on the new generation X-12 

band radar device can be found in Table 2. Aggregations were made from radar rainfall rates 13 

at 30m polar pixels based on reflectivity for values smaller than 30dBZ, differential phase 14 

otherwise (Otto and Russchenberg, 2011). The X-band radar has been operational 15 

intermittently since 27 June 2008. From the available datasets provided by CESAR, four 16 

rainfall storms could be selected for analysis based on a minimum mean rainfall volume of 3 17 

mm over the area size of the studied catchment, the size of which is 3.4 km². Lower rainfall 18 

volumes produce insufficient runoff to allow proper hydrodynamic analysis. According to the 19 

classification adopted by Emmanuel et al. (2012), events have been grouped as follows: 20 

Event 1 and Event 2: Storm organized in rain bands 21 

Event 3: Storm less organized 22 

Event 4: Light rain 23 

In Event 1, a long lived squall line was measured on January 03 2012. The convective storm 24 

moved eastward with a velocity of 20 m/s approximately. A squall line is a line of convective 25 

cells that forms along a cold front with a predominately trailing stratiform precipitation 26 

(Storm et al., 2007). Squall lines are typically associated with a moderate shear between 10 27 

and 20 m/s and strong updraft (Weisman and Rotunno, 2004). If winds increase rapidly with 28 

height ahead of a strong front, thunderstorms triggered along the boundary may organize into 29 

severe storms called supercell storms. The X-band radar was able to capture storm features 30 

associated with supercell. The overall duration of the event was short, 1 hour in total, but the 31 
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most intense peak lasted 10 minutes at the end of the storm, and with rainfall intensities 1 

higher than 100 mm/h. The most affected part of the catchment was the central and the North-2 

western part, while the southern part was affected by light rain. Event 2, occurring on 10 3 

September 2011, can be characterised as a cluster of convective and organized storm cells that 4 

moved in north-east direction. The storm moved north-eastward with a velocity of 16 m/s 5 

approximately. The storm system showed a convective spread area larger than the first event 6 

and with slower shift. The storm lasted 2 hours, between 1800 – 2000 UTC, being the most 7 

intense part concentrated between 1900 and  2000 UTC. Intensities ranged between 30 mm/h 8 

and 60 mm/h, and the whole central part, from South to North of the catchment was affected, 9 

while East and West bands were less exposed. In Event 3, occurred on June 28 2011 from 10 

2200 UTC to 2400 UTC, mesoscale observations showed a non-organized squall line moving 11 

north east, with a speed of 15 m/s approximately and containing rainfall rate cores of at least 12 

10 mm/h. Rainfall rate values of 50 mm/h were founded over small areas during 2200 – 2300 13 

UTC, travelling from South-west toward North-east and affecting all the catchment. Lastly, 14 

Event 4, occurred in October 29 2012, is a stratiform precipitation moving eastward at 13 m/s 15 

approximately and showing uniform rainfall rates. Rainfall retrieval was based on reflectivity 16 

only, of about 8 mm/h. Storms motions and directions were estimated based on centroid-17 

based storm association algorithm, inspired by Johnson et al (1998). For each event, total 18 

rainfall volumes in terms of minimum, maximum and mean value of all pixels affecting the 19 

area can be found in Figure 1, as well as their standard deviation, giving a first insight into the 20 

variability of the event. Figure 2 presents radar images showing the maximum intensity 21 

minute of each one of the selected rainfall events, as well as the location of the catchment 22 

with respect to them and the main direction of the storms. 23 

3 Methods 24 

In this study, effects of radar spatial resolution on hydrological model outputs were analysed 25 

by means of length scales. Building upon the approach introduced by Ogden and Julien 26 

(1994), length scales were developed for urban catchments and adjusted and extended for 27 

application to hydrodynamic urban drainage models (Table 3, Figure 3). A scale dependency 28 

between storm, catchment and model topology for small scale urban catchments, was studied 29 

based on rainfall fields derived from polarimetric radar, using spatial resolutions of 100m, 30 

500m, 1000m and 2000m, obtained by upscaling the original resolution. The finest spatial 31 

resolution, namely 100m, was chosen for being the highest resolution at which radar rainfall 32 
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data were provided. The 1000m resolution was selected for being the resolution at which most 1 

of the national weather radar networks work, the 500m was chosen as an intermediate 2 

resolution between X-band radar and C-band national radar network resolutions. The 2000m 3 

resolution was used to represent uniform rainfall conditions over the catchment. Results were 4 

analysed to investigate the effect of different spatial and temporal rainfall data resolutions on 5 

rainfall volumes, peak runoff and in-sewer water depths at locations inside the catchment, 6 

according to dimensionless parameters specified. 7 

3.1 Scale lengths 8 

3.1.1 Rainfall lengths 9 

Rainfall length LR was defined as the rainfall resolutions used as input into the hydrodynamic 10 

model to observe the response of the catchment. Rainfall data were spatially aggregated from 11 

the original resolution (30 m near the radar, 100m elsewhere) to 500m, 1000m, and 2000m. In 12 

this work storms where captured at distances from radar such that the finest grid resolution 13 

was 100m x 100m. 14 

3.1.2 Storm and catchment lengths 15 

To characterise storm size, de-correlation length of the storm LD was defined as the distance 16 

from which rainfall rates are statistically independent. For each of the four storms under 17 

study, de-correlation lengths were determined as the range of the experimental anisotropic 18 

semi-variogram computed over the study area. The semi-variogram function was originally 19 

defined by Matherson (1963) as half the average squared difference between points separated 20 

by a distance h (Eq.1). It is calculated as: 21 

 22 

ሺ݄ሻߛ ൌ ଵ

ଶ	ሺሻ
∑ ሾሺܼሺݔାሻ െ ܼሺݔሻሻଶ ]                                                                (1) 23 

where m(h) is the set of all pairwise Euclidean distances h and Z are the rainfall values at 24 

spatial locations. Storm de-correlation length was defined as the range of the semi-variogram, 25 

i.e. the distance at which the sill is first reached; the sill is defined as the limit of the semi-26 

variogram tending to infinite lag distances (see Figure 4). Besides the magnitude of the 27 

distance, in this paper the direction is also taken into account: we computed the anisotropic 28 

semivariogram (Goovaerts (2000), Haberlandt (2007), and Emmanuel et al. (2012)), in four 29 
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directions, spaced 45º. Since the limiting length is the minimum storm length, the minimum 1 

of the four ranges was taken as storm length for the study. 2 

Storm de-correlation length was compared to pixel size of radar rainfall estimates RR and to 3 

catchment length LC, computed as the square root of the catchment size. 4 

3.1.3 Model lengths 5 

Characteristic lengths of the model topology are a result of modeller’s choices based on 6 

available data, options of applied software and acceptable computational effort. Runoff length 7 

LRA characterises the spatial resolution of the runoff model and was defined as the square root 8 

of the averaged runoff areas size. Runoff length quantifies the size of the grid over which 9 

runoff is generated: if   LRA<<LC, the catchment is divided into sufficiently small elements to 10 

describe the spatial variability of the catchment characteristics. Moreover, spatial variability 11 

in rainfall rates can be properly captured by the runoff model if LR < LRA. If LR > LRA, rainfall 12 

rates can no longer be correctly attributed to associated runoff areas, which may distort the 13 

hydrological response pattern (Ogden and Julien, 1994).  14 

Sewer length LS characterises the inter-pipe distance, thus the density of the sewer network; it 15 

is roughly the urban equivalent of drainage density for natural catchments. LS was defined as 16 

the ratio between catchment size and the total length of the piped system. Similar to LRA, the 17 

condition LR << LS guarantees that the sewer pipe system routes the correct rainfall volume, 18 

previously transformed in runoff over the corresponding runoff area. 19 

3.1.4 Definition of sub-catchments 20 

The analysis involving model lengths was conducted at sub-catchment scale to compare 21 

results for different model lengths: the district was divided into 11 subcatchments (Figure 3). 22 

In lowland areas, drainage systems are often interlinked and looped and flow direction 23 

changes over the course of a storm event as the system first fills and then starts routing the 24 

storm water. This implies that flow directions and sub-catchment boundaries are changeable 25 

and cannot be defined based on topography or network configuration. For this reason, in order 26 

to define subcatchments boundaries, we performed the following steps (according to a 27 

previous work of ten Veldhuis and Skovgård Olsen (2012)): 28 

1) We run simulations under long-lasting uniform storms 29 
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2) We made sure no overflow towards surface water bodies occurred (in that case, a 1 

direction change would affect the sewer flow) 2 

3) We detected sewer pipes with Q = 0 3 

4) We delineate subcatchments as if the latter were removed 4 

5) We compared flows at outlets of the 11 subcatchments in “looped” conditions (the 5 

original model) and “branched” conditions (model after the removal of cross boundary 6 

conduits). We found high agreement between the two results; therefore we accepted the 7 

catchments delineation as a satisfactory approximation. 8 

A visual inspection of the sewer network helped to understand the direction of flow: since no 9 

overflows occurred for the events used in this study, the system drains received water toward 10 

the main pumping station. Under this condition the main sewer conduits collect all water from 11 

peripheral conduits. We could therefore observe the flow direction in the main conduit. 12 

3.2 Dimensionless parameters 13 

Using the length scales, dimensionless parameters were computed to analyse relationships 14 

between spatial characteristics of rainfall, catchment and its hydrological response. 15 

3.2.1 Rainfall sampling number 16 

“Rainfall sampling number” was defined as the ratio between rainfall spatial resolution (LR) 17 

and storm de-correlation length (LD) in order to study rainfall gradient smoothing in terms of 18 

the relationship between the estimated rainfall field and the storm inherent structure. This 19 

parameter is similar to the “storm smearing” effect defined by Ogden and Julien (1994); it 20 

accounts for the deformation of the storm structure caused by rainfall measurements of 21 

coarser resolution than the storm length. For instance, rainfall intensities in storm cells with 22 

sizes smaller than applied rainfall spatial resolution will be averaged out, leading to an 23 

underestimation in rainfall rates in the area affected by the storm cells and a overestimation in 24 

the area surrounding the cells. 25 

In other words, as LR tends to LD, rain rates in high intensity regions tend to decrease, and 26 

conversely rainfall intensities in adjacent regions tend to increase. The overall effect is a 27 

reduction of rainfall gradients. Dimensionless rainfall sampling number quantifies this effect. 28 
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3.2.2 Catchment sampling number 1 

The second dimensionless parameter, “catchment sampling number”, also referred to as 2 

“watershed smearing” by Ogden and Julien (1994), was defined as the ratio between rainfall 3 

resolution LR and catchment length LC. It accounts for rainfall transfer across catchment 4 

boundaries, as the rainfall spatial resolution approaches the size of the catchment. When the 5 

parameter exceeds 1, location of rainfall cells with respect to the catchment becomes 6 

uncertain and rainfall variability is not properly captured by the catchment. In other words, 7 

when dealing with small size storms, the position of the storm with respect to the catchment is 8 

no longer properly represented for rainfall resolutions approaching or exceeding catchment 9 

length. This affects the hydrological response: a storm moving near the boundaries of the 10 

catchment is averaged across the catchment boundary, so rainfall is artificially transferred  11 

outside the catchment.. This effect is quantified by the catchment sampling number, relating 12 

the size of the catchment to the size of the radar pixel. 13 

3.2.3  Runoff sampling number 14 

The third parameter is called “runoff sampling number”, which is the ratio between rainfall 15 

resolution and runoff area resolution. This, similar to catchment sampling number, quantifies 16 

the correct assignment of rainfall values to the corresponding runoff area. The higher this 17 

ratio, the less precise is the rainfall assignment to the correct runoff area, but also the lower 18 

this ratio, the more unable is the model to capture rainfall variability, as the model resolution 19 

is coarser than the rainfall resolution. This parameter relates to the rainfall-runoff module of 20 

the model, which has rainfall as input and runoff discharge into one of the nodes of the sewer 21 

network as output. Runoff sampling number relates model input data resolution to runoff 22 

model resolution, and intends to measure the “smearing” of runoff flows induced by low 23 

rainfall resolution compared to  runoff area resolution. 24 

3.2.4 Sewer sampling number 25 

 The fourth dimensionless parameter is the “sewer sampling number”, defined as the ratio 26 

between rainfall spatial resolution and intra-sewer length, which is computed as the average 27 

length of conduits in the system, which corresponds to the inverse of sewer network density. 28 

The lower the sewer sampling number, the less sensitive is the drainage network to rainfall 29 

variability: a low “sewer sampling number” means that the inter-pipe distance is larger than 30 

the rainfall pixel size, so the sewer system cannot catch rainfall variability. Conversely, for 31 
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higher sewer sampling numbers   rainfall input is too coarse compared to the sewer network 1 

density and this may result in lack of accuracy of modelled water levels and sewer overflows. 2 

The “smearing effect” for sewer flows is related to the runoff smearing effect, quantified by 3 

the runoff sampling number, but they differ in this respect: the latter focuses on runoff model 4 

output, namely discharge towards the sewer network, while the sewer index represents the 5 

routing within the piped system and so it quantifies the smearing effect for in-sewer water 6 

levels. Water levels in pipes are affected by runoff discharge but also by upstream sewer 7 

inflows. As it is not possible to isolate the effect at the level of individual pipes, it is analysed 8 

at the outlet of each independent sub-catchment. 9 

3.2.5 Normalisation of model output results 10 

To compare results between rainfall resolutions and between storms, model results were 11 

normalised with respect to  results related to the highest rainfall spatial resolution: total 12 

rainfall volumes, runoff peaks and maximum in-sewer water depths were normalised 13 

according  Eqs. (2), (3) and (4) respectively: 14 

ோሻܮሺ݉ݎܸ݊	 ൌ
ሺೃሻ

ሺೃభబబሻ
                    (2) 15 

ோሻܮሺ݉ݎ݊ܳ ൌ
ொሺೃሻ

ொሺೃభబబሻ
                    (3) 16 

ோሻܮሺ݉ݎ݊ܦܹ ൌ
ௐሺೃሻ

ௐሺೃభబబሻ
            (4)\ 17 

Where LRi represents parameter values at the rainfall resolution under consideration (100, 18 

500, 1000 or 2000m) and and LR100 represents values at 100m rainfall resolution, used as a 19 

reference for normalisation. 20 

3.3 Temporal resolution analysis 21 

While the focus of this paper is on spatial scales, a preliminary investigation of the effect of 22 

temporal resolution on model outcomes was conducted to see how temporal resolution 23 

interrelates with spatial resolution. To this end, rainfall data were aggregated to 5 min and 10 24 

min temporal resolutions.  25 

The temporal aggregation was performed by averaging out 5 (10) subsequent 1min rainfall 26 

values at time, obtaining temporal resolution of 5 (10) min. Semi-variograms were computed 27 

for these resolutions to study the relation between temporal resolution and spatial structure of 28 
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rainfall. Effect of the variation in rainfall temporal resolution on model outputs was quantified 1 

through the comparison of time to maximum water depths. Combined time-space resolutions 2 

were studied for Event 3 and Event 4: both events were simulated at two spatial and two 3 

temporal resolutions, namely 100 m, 1000 m, 5 min and 10 min, composing four different 4 

spatio-temporal rainfall scenarios. 5 

4 Results and discussion 6 

Results of length scales calculations are presented in Table 3, dimensionless parameter values 7 

are shown in Table 4. Storm de-correlation lengths vary between 950m and 1600m for the 4 8 

storm events. Subcatchment lengths vary from 429m to 2024m, while runoff and sewer 9 

lengths in the hydrodynamic model vary between about 20m and 80m, representing the 10 

model’s high spatial resolution. Dimensionless parameter values show that rainfall sampling 11 

numbers vary from 0.06 for event 4 to 0.11 for event 1 at 100m rainfall resolution and 12 

increase to 1.25 and 2.11 respectively at 2000m rainfall resolution. Catchment sampling 13 

number increases from 0.05 to 0.99 for 100m and 2000m, while runoff and sewer sampling 14 

numbers vary from 1.9 to 4.7 at 100m resolution to 25.5 to 93.3 at 2000m resolution, runoff 15 

sampling numbers being slightly higher than sewer sampling numbers.  16 

Model results of the four storm events were compared against dimensionless parameters to 17 

identify trends and variability as a function of storm characteristic, radar resolution and model 18 

resolution. 19 

4.1 Effect of spatial resolution 20 

4.1.1 Catchment sampling number versus total rainfall volume 21 

Figure 5 shows mean and standard deviation of normalised rainfall volumes (according to Eq. 22 

(2)) computed over the catchment, versus catchment sampling number. 23 

The results show that mean normalised rainfall volumes decrease by 5, 20 and 30% with 24 

respect to the 100m resolution reference, for LR/LC 0.2, 0.5 and 1 respectively. Normalised 25 

standard deviations decrease by 2%, 30% and 100% respectively. Normalised mean and 26 

standard deviation decrease progressively for catchment sampling number values above 0.2. 27 

This means that rainfall gradients decrease as rainfall values are smoothed at coarser 28 

resolution and that rainfall volumes decrease as smoothing of rainfall values at the catchment 29 

boundaries artificially transfers rainfall across the boundary. According to the findings of 30 
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Ogden and Julien (1994), this effect occurs for catchment sampling numbers greater than 0.4. 1 

In contrast, results of present study show that this effect already occurs at smaller sampling 2 

numbers, namely 0.2 and becomes stronger for values greater than 0.2. Figure 6 presents box 3 

plots for maximum rainfall intensity values per pixel, over the studied catchment as a function 4 

of rainfall spatial resolution. The median of maximum intensity values shows a mild decrease 5 

for coarser rainfall resolutions. The smoothing effect is more pronounced for Event 3 and 6 

Event 4, where convective cells move closer to catchment boundaries. This results in storm 7 

cells being smoothed across catchment boundaries.  8 

Event 1 is characterised by a 1 km-wide storm line passing over the catchment very rapidly, 9 

resulting in steep rainfall gradients that are strongly smoothed when rainfall input resolution 10 

is reduced. When resolution is reduced from 100m to 500m, spatial structure of the storm line 11 

is decomposed, leading to a reduction in maximum rainfall intensities (Figure 6) in the area 12 

affected by the storm. As resolution is reduced from 1000m to 2000m resolution, storm 13 

structure is lost and rainfall becomes uniform over the catchment.  Event 2 has a more 14 

pronounced internal spatial structure of storm cells and maximum rainfall intensity values are 15 

more strongly affected by changes in rainfall resolution compared to event 1: upper 25% 16 

values decrease increase as a result of rainfall gradient smoothing, especially as resolution is 17 

reduced from 100m to 500m. Lower 25% values increase as a result of gradient smoothing 18 

and storm structure decomposition, especially as resolution is reduced from 500m to 1000m, 19 

where the variation between 1st and 3rd quartile values is reduced from about 10 mm/h to 5 20 

mm/h.. Event 3 and Event 4 present a clear reduction  the median as a result of rainfall 21 

aggregation across the catchment boundary The variation between 1st and 3rd quartile values is 22 

larger   at 1000m resolution than at 100m and 500m resolution. For Event 3, this is due to the 23 

non-organised structure of rainfall cells: local rainfall cells found at 100m resolution are 24 

smoothed out at 500m resolution, while at 1000m resolution the most active convective area 25 

affects 2 out of 9 pixels covering the catchment, i.e. lowest 25% values are relatively high. 26 

Event 4 is characterised by a pronounced spatial structure of rainfall cells, which results in 27 

strong change in maximum intensity values as a result of rainfall resolution coarsening.  28 

Upper quartile values decrease from 34 mm/h to 22 mm/h; lower quartile values reduce from 29 

28 mm/h to about10 mm/h at 1000m resolution.  This is a result of rainfall gradient smoothing 30 

and storm cells spreading southward due to spatial aggregation, while the core of the storm 31 

remains within the catchment boundaries. The strongest effect of rainfall coarsening in this 32 

case is found in a strong reduction of rainfall gradients. As a general conclusion, spatial 33 
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aggregation leads to smoothing of rainfall gradients, while the effect on rainfall intensities' 1 

distribution strongly depends on spatial dimensions of storm cells and the movement of storm 2 

cells relative to the catchment boundaries. 3 

4.1.2 Normalised maximum water depth and runoff peak vs. rainfall resolution 4 

Figure 7 summarises the effect of rainfall spatial resolution coarsening on semi-distributed 5 

hydrodynamic model outputs in terms of maximum computed water depths and maximum 6 

runoff flows in all nodes, per storm event. The in-sewer maximum water depths and runoff 7 

peaks at every node of the model are normalised using Eqs. (3) and (4). Results presented in 8 

the boxplots show that normalised runoff flows are more strongly affected depths by changing 9 

spatial resolution of rainfall inputs compared normalised maximum normalised water depths. 10 

The largest effect of spatial aggregation is found for Event 4 (Figure 7 last column), where 11 

upper and lower quartile values of runoff peaks are reduced by 40% to 60% at 2000m 12 

resolution with respect to the reference at 100m resolution. Normalised maximum water 13 

depths are less strongly affected; upper quartile values remain almost unchanged, while lower 14 

quartile values decrease by up to 30%. Event 4 has a pronounced spatial structure that is 15 

strongly affected by rainfall resolution coarsening and this directly translates into stronger 16 

changes in runoff volumes compared to the other events. Largest changes in normalised 17 

maximum water depths are found for event 1, where upper and lower quartile values change 18 

by up to 40% as a result of spatial redistribution of rainfall due to resolution coarsening. This 19 

event is characterised by small total rainfall volumes, resulting in small flows and water depth 20 

variations, which in turn translate into large relative differences.  21 

Smaller changes in water depths compared to runoff flows are explained by that fact that 22 

water depths are influenced by rainfall-runoff inputs as well as by sewer routing and by 23 

storage being dominant over flow in drainage systems characterised by small gradients. 24 

For Events 1, 2 and 3, changes in normalised water depths and runoff flows are of the same 25 

order of magnitude at 500m and 1000m resolutions, which indicates that the effect of rainfall 26 

resolution coarsening from 100m to 500m is not further amplified as resolution is further 27 

reduced to 1000m. When resolution is further reduced to 2000m, corresponding to uniform 28 

rainfall over the catchment, values above 3rd quartile tend to increase as areas previously 29 

affected by low rainfall receive higher rainfall as a result of gradient smoothing.  30 
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4.1.3 Spatial structure of rainfall: anisotropic semi-variogram 1 

Figure 8 shows experimental multi-directional spatial semi-variograms for each of the four 2 

storm events. For each storm and each time step, the semi-variogram was computed in 4 3 

directions, from 0º to 180º, starting from North and going clockwise  at an angle step of 45º 4 

(directions at 0º and 180º are the same, thus plots coincide). To obtain a unique semi-5 

variogram representative of overall storm duration, for each direction, a weighted average of 6 

all semi-variograms was computed, assigning a higher weight to those of higher variance. 7 

This criterion was chosen to focus the study on more pronounced spatial rainfall structures, 8 

without losing information on the temporal evolution of the storm. Rainfall data used for the 9 

calculation are those estimated at the highest temporal and spatial resolution of IDRA radar, 10 

1min and 100m respectively, in order to analyse rainfall structure at its most accurate 11 

description. The semi-variogram of Event 1 (Figure 8 top left) presents a unique structure 12 

with a range of 1200m in three out of four directions; while at 90º direction the range is 13 

smaller, reaching a de-correlation distance at 950m. This is quite expected since Event 1 is a 14 

squall line moving from west to east, thus the gradient at 90º is steeper than at 180º. All four 15 

semi-variograms show a fast rise, although the shape of the one at 90º diverts considerably 16 

from the rest. 17 

The same results are found for Event 2: the directional semi-variogram at 90º shows a faster 18 

rise compared to the other directions, thus the storm structure is clearly oriented. The de-19 

correlation distance is 1000m. No explanation was found to interpret the pronounced decrease 20 

in the semi-variograms of Event 1 and Event 2. We can only report that the same behaviour 21 

was found in storms belonging to the same rainfall group defined by Emmanuel et al. (2012). 22 

Semi-variograms of Event 3 and 4 show a milder rise compared to Event 1 and 2. They are 23 

characterised by a different type of rainfall structure: Event 3 is a non-organised storm band, 24 

it seems to have a more defined structure in 45º and 90º direction, the range of which is 25 

1480m (see also Table 5). The curve at 135º and 180º directions do not reach stability, 26 

meaning that the de-correlation distance exceeds the catchment size, for which the semi-27 

variogram was calculated. Rainfall structure of Event 4 shows a more isotropic behaviour. 28 

This is an expected result, since light rain storms are characterised by low and uniform 29 

rainfall rates. The de-correlation distance is 1600m, highest among the four events, found in 30 

180º direction. The de-correlation distances found by means of this geostatistical approach 31 

were used to compute rainfall sampling numbers discussed in the next subchapter. 32 
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4.1.4 Rainfall sampling number versus normalised in-sewer maximum water 1 

depth results 2 

The rainfall sampling number is a measure for what Ogden and Julien (1994) referred to as 3 

“storm smearing”: rainfall rates in convective regions tend to decrease while rain rates in low 4 

intensity regions tend to increase as a result of spatial aggregation. The overall effect is thus a 5 

flattening of rainfall gradients. This happens when the resolution of the volume unit measured 6 

by the weather radar approaches or exceeds the rainfall de-correlation length, thus the rainfall 7 

sampling number exceeds 1. The effect of rainfall sampling number on in-sewer water depths 8 

was analysed for all four rainfall events. In-sewer depths were analysed at the outlets of the 9 

10 sub-catchments (Figure 3) to study the effect of storm smearing in relation to catchment 10 

characteristics and in-sewer flow routing. Maximum water depth values were normalised with 11 

respect to values at 100m resolution. Figure 9 shows normalised maximum water depths 12 

against rainfall sampling number, at the outlet nodes of the 10 subcatchments and the outlet 13 

node of the whole catchment (catchment number 11 in Figure 9). For all events, deviations in 14 

normalised water depth grow for LR/LD increasing to 0.5 and 1. For Event 1, when LR/LD 15 

exceeds 1, deviations slightly reduce in 5 of out 11 catchments while slightly increasing for 6 16 

subcatchments, depending on local re-distribution of rainfall. Sub-catchment 2 shows highest 17 

deviation at LR/LD = 0.5, followed by a decrease for coarser resolutions. This is because the 18 

sub-catchment is located at the boundary of the storm, where at 500m spatial resolution 19 

rainfall gradients increase, while at 1000m resolution gradient are reduced due to averaging 20 

over a larger region not affected by the storm. This directly affects the maximum water depth 21 

in underlying sub-catchments. The opposite situation occurs in sub-catchment 5, which is 22 

located in the southern part of the catchment with the closest node at 1.2 km from the 23 

convective region, beyond the de-correlation length. The storm only affects this southern 24 

region when rainfall data is aggregated to the 2000m resolution, so the storm ‘virtually’ 25 

extends from the northern part of the catchment to the whole catchment. A similar effect is 26 

noticed at the same sub-catchment for Event 2. Results suggest that for most subcatchments, 27 

LR/LD ratio of 0.5 is critical for ‘storm smearing’ and that stronger storm smearing effects 28 

occur as LR/LD increases further. Results are in agreement with the findings of Ogden and 29 

Julien (1994), who found for their catchments that ‘storm smearing’ occurred for LR/LD > 0.8. 30 

This implies that for the storm events used in this study, with de-correlation lengths of 0.95 to 31 

1.6 km, the current resolution of operational weather radars (1000m) is insufficient to have a 32 

proper estimation of intra-urban hydrodynamics. 33 
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 1 

4.1.5 Runoff sampling number versus normalised runoff peak results 2 

Normalised maximum runoff flows of all runoff areas were averaged within each of the 11 3 

(sub)catchments for all four events and plotted versus  corresponding runoff sampling 4 

numbers (Figure 10) to study effects of rainfall smoothing on runoff inputs at (sub)catchment 5 

level. Deviations from 100m simulation results remain between 0.9 and 1.1 for LR/ LRA <20, 6 

while higher deviations up to almost 50% occur for LR/ LRA >20. At the original rainfall input 7 

resolution of 100m, LR/ LRA is below 10, so rainfall pixel size used to feed the urban 8 

hydrological model is up to 10 times larger than runoff model resolution. As LR/ LRA grows 9 

larger, computed maximum runoff flows increasingly deviate as a result of rainfall smoothing.  10 

 11 

4.1.6 Sewer sampling number versus normalised maximum water depth 12 

results 13 

As presented in Section 3, sewer sampling number represents a measure of the ability of the 14 

sewer system to capture rainfall variability. For model used in this study, intra-sewer pipe 15 

distances are quite small, ranging from 33m to 78m: this means that there are 700m to 900m 16 

of sewer pipes per 100m² of catchment area. The idea here is to give analyse the combination 17 

effect of rainfall resolution and sewer model resolution. Figure 11 presents normalised 18 

maximum water depths as a function of sewer sampling numbers averaged per subcatchment, 19 

for all four events. Results show that maximum water depths tend to decrease for increasing 20 

sewer sampling numbers. In general, deviations from the reference case are smaller for in-21 

sewer water depths, ranging from 0.87 to 1.13, than for runoff peaks, which are in the range 22 

0.7-1.5. This is due to the smoothing effect of flow routing through the pipe system on in-23 

sewer water depths. 24 

4.2 Effects of temporal resolution 25 

4.2.1 Changes in spatial structure of rainfall due to time aggregation 26 

X-band radar images are obtained at 1 min temporal scale: the radar completes radar scans in 27 

1 minute. In order to analyse the effect of temporal resolution on rainfall spatial anisotropic 28 

semi-variograms, raw rainfall data were aggregated by averaging the original radar images to 29 
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5 min and 10 min resolutions. The anisotropic experimental semi-variogram was then 1 

computed based on the aggregated values (Figure 12). Anisotropic semi-variograms for these 2 

time resolutions were used to examine the interrelationship between temporal resolution and 3 

spatial structure of rainfall. Results show that the semi-variograms change in shape more 4 

strongly when aggregating from 1 min to 5min compared to aggregating from 5 min to 10 min 5 

resolutions. The range derived from the semi-variograms increases for lower temporal 6 

resolutions. This is especially clear for Event 3, where at 5 min and 10 min the storm structure 7 

within the catchment boundaries is lost as the semi-variograms become monotonic in any of 8 

the four directions considered. In Event 4, the range expands until the catchment limits for 9 

three out of four directions, while in 90º direction the semi-variogram the range decreases. 10 

Event 1 and 2 seem less affected by changes in temporal resolution; the shape of the curves 11 

changes but the range expands only few tens of meters. Table 5 summarises ranges for all 12 

rainfall events as a function of time resolution. 13 

4.2.2 Effect of temporal resolution on timing of maximum water depths 14 

The effect of changes in rainfall temporal resolution on model outputs was quantified in terms 15 

of the time shift of maximum water depths with respect to the reference case. Figure13 shows 16 

time shifts of maximum water depths between the reference simulation (100m, 1min) and 5 17 

min and 10 min simulations (both at 100m spatial resolution) at the outlets of the 11 18 

(sub)catchments, for event 1. Results show that timing of maximum water depths shifts by up 19 

to 4 minutes for aggregation to 5 minutes resolution and by up to 10 minutes for 10 minutes 20 

resolution. Time shifts were also calculated also for all 3000 nodes of the catchment model 21 

(results not shown here). At 5 minutes resolution, time shift of maximum water depths with 22 

respect to the reference case is less than 5 minutes for 99.4% of all nodes. At 10 minutes 23 

resolution, time shifts of more than 5 minutes occur in 0.86% of the nodes; time shifts in all 24 

other nodes are less than 5 minutes. 25 

Figure 14 shows time shifts of maximum water depths with respect to two reference cases: 26 

100 m, 1 min and 1000m, 1 min). For Event 3, results show that the model is most sensitive to 27 

temporal aggregation to 10 minutes, at 100 m spatial resolution. Time delay of maximum 28 

water depths compared to the reference case is between 8 and 16 min. At the 1000 m 29 

resolution, effect of temporal aggregation on timing of maximum water depths is 30 

comparatively smaller. The relatively high impact of 100m and 10 min resolution simulation 31 

is explained by the change in rainfall structure induced by temporal aggregation. As shown in 32 



 

 20

Figure 10, third line, de-correlation length becomes larger than the catchment size. This effect 1 

already occurs at 5 min aggregation, but is more pronounced at at 10 min aggregation. In both 2 

cases time aggregation results in enlargement of the area affected by convective storm cells, 3 

in a smoothing of rainfall peaks, and in a change in timing of rainfall peaks. This results in 4 

delay or anticipation of maximum water depths, depending on the relative position of a node 5 

with respect to the storm and also depending on the temporal position of rainfall peak values, 6 

therefore on the temporal sampling process (for instance, if peak values are within the same 7 

5min or 10 min sampling interval, time to peak will be hardly shifted. If peak values are 8 

averaged out with previous or following no-peaks values, this will result in an anticipation or 9 

delay of sampled rainfall values and consequently anticipation/delay in hydrological response. 10 

A possible explanation why this effect is noticeable only at 10min is because the 11 

concentration time of the 11 nodes is lower than 10 min. In order to notice an impact on 12 

model output, the time-step of rainfall input must be smaller than the concentration time of 13 

the catchment at the outlet (Vaes et al., 2001) (being the concentration time the time rainfall 14 

needs to travel from the furthest place in the catchment to the chosen outlet of the sewer 15 

system). For Event 4, temporal aggregation results in anticipation of maximum water by 1 to 16 

7 minutes at most of the catchment outlets. .  17 

Moreover, effects of time aggregation on model performance have been analysed through the 18 

comparison in maximum water depths between simulations. Deviations in maximum water 19 

depths with respect to the reference case were below 0,05m. This shows that the effect of 20 

rainfall spatial aggregation is much more important than that of temporal aggregation, in this 21 

specific case study and under these rainfall scenarios. Due to the low deviations found, results 22 

have not been reported here. 23 

 24 

5 Conclusions 25 

The sensitivity of an urban hydrodynamic model to spatial and temporal resolutions of 26 

weather radar data was investigated in this paper. Analyses are based on a densely populated 27 

urban catchment in Rotterdam, the Netherlands and four rainfall events that were derived 28 

from polarimetric X-band radar data. Rainfall and catchment properties were characterised 29 

using various length scales: catchment size and storm de-correlation length, which depend on 30 

the specific site and storm; rainfall data resolution, which depends on rainfall measurement 31 

resolution; and runoff resolution and sewer density, which are modeller’s choices. Sensitivity 32 
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of model outputs to rainfall spatial resolution was analysed in relation to: catchment size, 1 

through catchment sampling number (LR/LC); storm length, by means of rainfall sampling 2 

number (LR/LD); runoff resolution of the model, through runoff sampling number (LR/LRA); 3 

and sewer density, with the sewer sampling number (LR/LS). The first parameter is 4 

responsible for the uncertainty of rainfall location with respect to watershed boundaries; the 5 

second parameter describes smoothing of rain rate gradients; the third and fourth parameters 6 

describe the ability of the model (the runoff model and the sewer model respectively) to 7 

capture the rainfall structure. Storm length was been computed as the range of anisotropic 8 

experimental semi-variograms. Four rainfall spatial resolutions (100m, 500m, 1000m and 9 

2000m) and three temporal resolutions (1min, 5min and 10min) were analysed. Results 10 

obtained in this study show: 11 

- As the ratio LR/LC increases (in this particular case for LR/LC > 0.2), there is a progressive 12 

decrease of both rainfall volume mean and standard deviation. Rainfall gradients decrease due 13 

to smoothing induced by rainfall resolution coarsening; mean rainfall over the catchment 14 

decreases as smoothed storm core cells extend beyond the catchment boundaries. Effect of 15 

spatial resolution coarsening on rainfall values strongly depends on the movement of storm 16 

cells relative to the catchment.  17 

- As the ratio LR/LD increases (in this particular case for LR/LD > 0.9), ‘rainfall 18 

smearing’ occurs, inducing deviations in maximum modelled in-sewer water depths. The 19 

magnitude of deviations depends on spatial structure of the storm and variability in rainfall 20 

gradients which determines how much the rainfall field is de-structured by resolution 21 

coarsening. Results are in line with what was found by Ogden and Julien (1994).  22 

- As the ratio LR/LRA increases, deviations in runoff peaks occur. For LR/LRA > 20, 23 

deviations in runoff peaks are above 10% with respect to the reference case (at 100m rainfall 24 

resolution).. This implies that, when operational weather radar products (1000m spatial 25 

resolution) are used to feed a hydrodynamic model, runoff model outputs are not correctly 26 

represented by the model at runoff area resolutions lower than 50 m.  27 

- As the ratio LR/LS increases deviations from the reference case (100 m resolution) 28 

occur: these are smaller for in-sewer water depths, ranging from 0.87 to 1.13, than for runoff 29 

peaks, which are in the range 0.7-1.5. This is due to the smoothing effect of flow routing 30 

through the pipe system on in-sewer water depths. 31 

 32 
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Additionally, an analysis of the change in spatial structure of rainfall due to time aggregation 1 

was conducted. To this end, impact on model results was quantified in terms of time shift of 2 

maximum water depths with respect to the reference case at 1 min temporal resolution. 3 

Experimental anisotropic semi-variograms temporal aggregations at 5 and 10 minutes show 4 

that rainfall field structure changes due to temporal resolution coarsening. Rainfall correlation 5 

length increases by several 100 meters due to time aggregation (up to 45% of original de-6 

correlation length). For all rainfall events, smoothing of rainfall fields induced by temporal 7 

aggregation results in peak time shifts by up to 6 minutes. Model outputs are most strongly 8 

affected when rainfall temporal aggregation leads to complete distortion of the rain field, 9 

which happened for 1 of the 4 events in this study.  10 

This study was a first attempt to characterise how the effect of space and time aggregation on 11 

rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions 12 

ranging from 100m to 2000m and from 1 to 10 minutes. It was investigated how rainfall 13 

change in resolution is absorbed by the model, giving indication of scale relationships 14 

between: storm structure, its representation, catchment size, and model structure. In this study 15 

four storm events were used that could be derived from an experimental polarimetric X-band 16 

radar. To give a more robust meaning to these sampling numbers, more storm events should 17 

be analysed and more catchments should be tested to confirm the findings of this study as 18 

well as sewer observations to test the performance of the model under different rainfall 19 

resolution scenarios. Such an extension of the study would allow giving reliable 20 

recommendations on what should be the model and rainfall resolution in order to prioritise 21 

either the improvement on rainfall estimation or catchment hydrological characterization. 22 
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7 Appendix  1 

 2 
SOBEK software description 3 
 4 
Sobek 212 is a semi-distributed hydrodynamic model from Deltares. It accounts for two 5 
modules: the rainfall-runoff module and the routing module. In the rainfall runoff module four 6 
different types of surfaces are used depending on the runoff coefficient and slope: closed 7 
paved, open paved, flat roof and sloped roofs (with a slope greater than 4%). These four 8 
categories show different runoff factor and storage coefficient. The resulting runoff is 9 
calculated based on “rational method”, where the runoff “Q” is given by the following 10 
equation: 11 

ܳ	 ቀ


ቁ ൌ ܿ	ሺ݄ିଵሻ ∗  ሺ݉݉ሻ   (a) 12	

where p is the net rainfall and c is a runoff factor which accounts for the delay of the rainfall 13 
as overland flow to the entry point of the sewer system. The runoff factor is a function of the 14 
length, roughness and slope of the surface (Sobek, 2012). The runoff coefficient is defined as 15 
a number between 0 and 1. A coefficient of 0.5 will mean that 50% of the runoff volume will 16 
reach the sewer entry point in 1 min. The runoff factor moves the centre of mass of the 17 
resulting hydrograph, thereby increasing the lag time. The runoff formula is applied to each 18 
one of the runoff areas connected to the node of the sewer. In semi-distributed models, the 19 
whole catchment is split into a number of sub catchments (runoff areas), each of which is 20 
treated as a lumped model (i.e. within each subcatchment rainfall input and hydrologic 21 
responses are assumed to be uniform; their spatial variability is not accounted for). Rainfall is 22 
inputted uniformly within each subcatchment and based on the subcatchment’s 23 
characteristics; the total runoff is estimated and routed to the outlet point, which is a node of 24 
the sewer system. 25 

Once the water enters the sewer, the routing is computed by means of the complete 1 26 

dimension De Saint Venant equations. 27 

  28 
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 1 

Table 1. Surface characteristics of the Central district catchment in Rotterdam used for 2 

hydrodynamic modelling: percentage, runoff coefficient and storage coefficient. 3 

Type of area Overall 
percentage (%) 

Runoff coefficient 
(min‐1) 

Storage 
coefficient (mm) 

Open paved flat 40 0,2 0,5 

Closed paved flat 14 0,2 0,5 

Roof flat 16 0,2 2 

Roof sloped (slope larger than 

4%) 

30 0,5 0 

 4 

Table 2. Specification of the X-band radar of CESAR. 5 

Dual polarimetric X-band radar 

Radar type FMCW 

Polarization Dual polarization 

Frequency 9.475 GHz 

Highest range resolution 30 m 

Min range 230 m 

Max range < 122 km 

Max unambiguous radial velocity 19 ms-1 

Temporal resolution 1 min 

Beamwidth 1.8 degrees 

Elevation 0.5 degrees 

 6 

 7 

 8 
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Table 3. Scale lengths related to catchment, runoff areas and sewer density, for the total 1 

catchment as well as length scale ranges for the 10 subcatchments. 2 

Length scales (m) Code Event 1 Event 2 Event 3 Event 4 

Storm de-correlation length LD 950 1000 1480 1600 

Runoff length: mean (median)  LRA 28 (23) 

Sewer length LS 43 

Catchment length LC 2,024 

Sub-catchment runoff length (range) (Sub) LRA 21-59 

Sub-catchment sewer length (range) (Sub) LS 33-78 

Sub-catchment length (range) (Sub) LC 429-2,024 

 3 

 4 

Table 4. Dimensionless parameters values derived from scale length values, for 4 different 5 

rainfall resolutions used in the study. Values presented for runoff sampling and sewer 6 

sampling numbers, represent value ranges for the 10 subcatchments (outlined in figure 3).  7 

Rainfall 
resolution 

(m) 

Rainfall sampling number LR /LD 
Catchment 
sampling 
number 
LR/LC 

Runoff 
sampling 
number 

LR/ LRA 

Sewer 
density 

sampling 
number 

LR/ LS 

Event 1 Event 2 Event 3 Event 4 

100 0.11 0.10 0.07 0.06 0.05 2.6-4.7 1.9-3.8 

500 0.53 0.50 0.34 0.31 0.25 13.1-23.3 6.4-19.1 

1000 1.05 1.00 0.68 0.63 0.49 26.1-46.7 12.8-38.3 

2000 2.11 2.00 1.35 1.25 0.99 52.3-93.3 25.5-76.5 

 8 

  9 
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Table 5. Range derived from experimental semi-variograms for different  temporal 1 

aggregations, for all four events. . 2 

Rainfall Range (m) 

Δt=1min Δt=5min Δt=10min

Event 1 950 960 970 

Event 2 1000 1200 1450 

Event 3 1480 >2000 >2000 

Event 4 1600 1500 1500 

  3 
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 1 

Figure 1. Characteristics of the four selected storm events: rainfall volume range (maximum 2 

and minimum for all 100m x100m pixels over the catchment area),  mean and standard 3 

deviations. 4 

  5 
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 1 

 2 

Figure 2. Plots of the maximum intensity time step for the four storm events, main direction of 3 

the storm (grey arrow), and position of the catchment with respect to storm movement (black 4 

square). Zonal distances in East-West and North-South direction from X-band radar position.   5 

  6 
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 1 

Figure3. Storm de-correlation length (LD) and Rainfall resolution (LR) in left panel Catchment 2 
length (LC), runoff length (LRA) in right panel; the catchment is divided into 11 independent 3 
subcatchments. Red arrows represent main flow directions. Runoff areas are represented with 4 
a regular grid for clearer illustration of the length scales; in reality they are not squared but 5 
polygons with different shapes and sizes, the average of which is reported in Table2. 6 
  7 
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 2 
 3 
 4 
 5 
 6 
 7 
Figure4. Sketch of semi-variogram: the range is the distance from the origin beyond which 8 
the semi-variogram tends to infinite. 9 
  10 

 

Range 
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 1 

 2 
Figure 5. Catchment sampling number (LR/LC) vs. normalised rainfall volumes: mean and 3 
standard deviation of normalised rainfall volumes computed over all pixels, for the four 4 
events. 5 
  6 
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 2 

Figure 6. Box plots of maximum rainfall intensity (mm/h) among all pixels covering the 3 

catchment area, for the 4 spatial resolutions (the 2000m shows a unique value corresponding 4 

to rainfall uniformly distributed  over the catchment), for the four events analysed. 5 
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 2 
 3 

Figure7. Box plots of the normalised maximum water depths (top panel) and runoff peaks (bottom panel) computed for all nodes in the model, for Events 1 (left) to 4 4 

(right). 5 

 6 

 7 
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 1 

 2 

Figure 8. Instantaneous experimental multi-directional spatial semi-variogram of non-zero 3 

rainfall for each of the four storms (Event 1 to 4 from left top going clockwise). 4 

  5 
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 1 

 2 

Figure 9. Rainfall sampling number (LR/LD) versus normalised maximum in-sewer water 3 

depths: results at the outlet of the 10 sub-catchments (numbered 1 to 10) and of the whole 4 

catchment (nr 11). 5 

  6 
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 2 

Figure 10. Runoff sampling number (RR/LRA) vs. normalised runoff peaks: results averaged 3 

over each of the 10 subcatchments (numbered 1 to 10) and over the whole catchment (nr 11). 4 

  5 
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Figure 11. Sewer sampling number (LR/LS) versus normalised maximum water depths: results 2 

at the outlet of the 10 catchments and of the whole catchment (nr 11). 3 

  4 
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 2 

 3 

 4 

 5 

Figure 12. Anisotropic experimental semi-variograms for the four rainfall events (in rows) 6 

and different temporal resolutions, 1 min, 5 min and 10 min (left, central and right column 7 

respectively). 8 

  9 
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 1 

Figure 13. Time shift between maximum water depths of reference case (100m spatial 2 

resolution, 1 min temporal resolution), and 5 min and 10 min simulation, at the outlets of the 3 

10 subcatchments and of the whole catchment (nr 11). 4 

  5 
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Figure 14. Differences in time to maximum water depth at the outlets of the 10 subcatchments 2 

and of the whole catchment (nr 11) for Event 3 and 4. Simulations at the highest spatial and 3 

temporal resolutions (100m/1000m 1 min respectively) are taken as reference. 4 

 5 


