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Abstract

Hillslopes are one of the basic units that mainly control water movement and flow path-
ways within catchments. The structure of their shallow subsurface affects water bal-
ance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap of knowl-
edge of the hydrological dynamics on hillslopes, notably due to the lack of generaliza-5

tion and transferability.
To improve the knowledge of hydrological responses on hillslopes with periglacial

cover beds, hydrometrical measurements have been carried out on a small spring
catchment in the eastern Ore Mountains since November 2007.

In addition, surface ERT measurements of several profiles were applied to enhance10

resolution of punctual hydrometric data. From May to December 2008 geoelectrical
monitoring in nearly weekly intervals was implemented to trace seasonal moisture
dynamics on the hillslope scale. To obtain the link between water content and resis-
tivity, the parameters of Archie’s law were determined using different core samples.
To optimize inversion parameters and methods, the derived spatial and temporal wa-15

ter content distribution was compared to tensiometer data and resulting in remarkable
coincidence. The measured resistivity shows a close correlation with precipitation. De-
pending on the amount and intensity of rain, different depths were affected by seepage
water. Three different types of response to different amounts of precipitation (small,
medium, high), could be differentiated. A period with a small amount causes a short20

interruption of the drying pattern at the surface in summer, whereas a medium amount
induces a distinctive reaction at shallow depth (<0.9 m), and a high amount results in
a strong response reaching down to 2 m.
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1 Introduction

The knowledge of system-internal water flow pathways and the response to precip-
itation on different spatial and temporal scales is essential for the prediction of hy-
drological and hydrochemical dynamics within catchments (Uhlenbrook et al., 2008;
Wenninger et al., 2004). Understanding the involved processes is of particular impor-5

tance for improving precipitation-runoff and pollutant-transport models (Di Baldassarre
and Uhlenbrook, 2012).

The hillslopes are an important link between the atmosphere and the water input
into catchments, and they mainly control different runoff components and residence
times (Uhlenbrook et al., 2008). Several studies have addressed hillslope hydrology10

(Anderson and Burt, 1990; Kirkby, 1980; Kleber and Schellenberger, 1998; McDonnell
et al., 2001; Tromp-van Meerveld, 2004; Uchida et al., 2006). A major problem is that
the spatial and temporal variability of the hydrological response due to different natural
settings – e.g. geomorphological, pedological, lithological characteristics and the spa-
tial heterogeneity – make it difficult to generalize and to transfer results to ungauged15

basins (McDonnell et al., 2007).
In catchments of Central European subdued mountain range, the shallow subsur-

face of hillslopes is mostly covered by Pleistocene periglacial slope deposits (Kleber
and Terhorst, 2013). These up to three layered cover beds (Upper Layer – LH, Inter-
mediate Layer – LM, Basal Layer – LB: classification according to AD-hoc AG-Boden,20

2005; Kleber and Terhorst, 2013), have different regional and local characteristics and
remarkable influence on water budgets as well as on water fluxes. Due to the sedimen-
tological and substrate-specific properties, e.g. grain size distribution, clast content,
and texture, they are of particular importance for near surface runoff as well as for in-
terflow (Chifflard et al., 2008; Kleber, 2004; Kleber and Schellenberger, 1998; Sauer25

et al., 2001; Scholten, 1999; Völkel et al., 2002a, b; Heller, 2012; Moldenhauer et al.,
2013).
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Most of the implemented studies were based on invasive and expansive hydrometric
point measurements on the punctual scale or on tracer investigation, which integrates
entire catchments. Due to the lack of direct measurements on an intermediate (hills-
lope) scale and considering the existing complexities and spatio-temporal interlinking
of near-surface processes and groundwater dynamics, there is still a lack of knowl-5

edge regarding runoff generation in watersheds (McDonnell, 2003; Tilch et al., 2006;
Uhlenbrook, 2005). Additional methods are needed to improve the understanding of
these complex processes, especially at the hillslope scale. Hydrogeophysical meth-
ods are capable of closing the gap between large-scale depth-limited remote-sensing
methods and invasive punctual hydrometric arrays (Robinson et al., 2008a, b; Lesmes10

and Friedman, 2006; Uhlenbrook et al., 2008).
Many studies show the potential of ERT for hydrological investigation by means

of synthetic case studies for aquifer transport characterization (Kemna et al., 2004;
Vanderborght et al., 2005), imaging water flow on soil cores (Bechtold et al., 2012;
Binley et al., 1996a, b; Garré et al., 2011, 2010; Koestel et al., 2009a, b, 2008), cross15

borehole imaging of tracers (Daily et al., 1992; Oldenborger et al., 2007; Ramirez et al.,
1993; Singha and Gorelick, 2005; Slater et al., 2000), or imaging of tracers or irriga-
tions with surface ERT (Cassiani et al., 2006; De Morais et al., 2008; Descloitres et al.,
2008a; Michot et al., 2003; Perri et al., 2012). However, some research has been con-
ducted under natural conditions to characterize water content change, infiltration or dis-20

charge by use of cross borehole ERT (French and Binley, 2004), surface ERT (Brunet
et al., 2010; Benderitter and Schott, 1999; Descloitres et al., 2008b; Massuel et al.,
2006; Miller et al., 2008) or a combined surface cross-borehole ERT array (Beff et al.,
2013; Zhou et al., 2001).

Beside hydrogeophysical methods such as EM (Popp et al., 2013; Robinson et al.,25

2012; Tromp-van Meerveld and McDonnell, 2009), time-lapse ERT has been frequently
applied to hillslope investigation in the runoff and interflow (Uhlenbrook et al., 2008;
Cassiani et al., 2009) or preferential flow context (Leslie and Heinse, 2013). However,
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the use of ERT for mapping shallow subsurface structures and monitoring hydrological
dynamics on hillslopes is still uncommon.

The objective of this paper is to show the potential of non-invasive surface ERT for
mapping the spatial heterogeneities of shallow subsurface structures on a hillslope
with periglacial cover beds. Furthermore, we used time-tapse ERT to monitor long-5

term soil moisture dynamics to improve the spatial resolution of additional hydrometric
measurements (e.g. tensiometer and FDR-Sensors). With this multi method approach,
we tried to achieve a better understanding of the influence of the layered subsurface
on different runoff components and the response to different amounts of precipitation
on hillslopes.10

2 Material and methods

2.1 Study site

The study area covers the 6 ha of a forested spring catchment in the Eastern Ore Moun-
tains, eastern Germany, which is located in the Freiberger Mulde catchment (Fig. 1).
Annual precipitation averages 930 mm, mean annual temperature is 6.6 ◦C. The alti-15

tude ranges from 521 to 575 m a.s.l. The catchment is formed as a slope hollow with
a mean slope inclination of approximately 7◦. Bedrock is gneiss overlain by periglacial
cover beds with up to three layers (Heller, 2012). The upper layer (LH) with a thickness
of 0.3 to 0.65 m consists of silty-loamy material with a low bulk density and many roots
(cf. Table 1). In the central part of the slope hollow, a silty-loamy intermediate layer20

(LM) follows with higher bulk density and a thickness of up to 0.55 m. The ubiquitous
sandy-loamy basal layer (LB) is characterized by even higher bulk density and coarse
clasts oriented parallel to the slope. Down slope it may reach a thickness of at least
3 m (cf. Fig. 1).
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2.2 Hydrometrical equipment

Since November 2007 soil water tension has been measured using 76 recording ten-
siometers (UMS – T8, 10 min intervals) arranged in 14 survey points along the slope at
5 to 7 different depths (cf. Fig. 1). Additionally, at the survey point H3a five ThetaProbes
(FDR-Sensors – Delta T devices – ML2x) were installed to measure volumetric water5

content. A V-notch weir with a pressure meter was used to quantify spring discharge.
Rainfall was recorded by 4 precipitation gauges with tipping bucket. For determination
of pore water conductivity and resistivity, soil water was extracted with suction cups
(VS-pro Vakuum System Co. UMS) at four depths at three locations (S1, S2, S3; Fig. 1)
and cumulated as a weekly mixed sample.10

2.3 Laboratory work

Quality, amount, and distribution of pore water exert a huge influence on resistivity and
form the link between electrical and hydrological properties. The empirical relationship
of Archie’s law (Archie, 1942) describes the connection between electrical resistivity
and saturation in porous media. Instead of saturation we use the volumetric water15

content Θ with:

ρeff = FΘρwΘ
−nΘ (1)

where ρeff is the bulk resistivity of the soil probe and ρw is the resistivity of the pore
fluid. The formation factor FΘ describes the increase of resistivity due to an isolating
solid matrix and constitutes an intrinsic measure of material microgeometry (Schön,20

2004; Lesmes and Friedman, 2006). The exponent nΘ is an empirical constant, which
depends on the distribution of water within the pore space (Schön, 2004).

This model disregards the surface conductivity, which may occur due to interactions
between pore water and soil matrix, especially with a high percentage of small grain
sizes. In our study the curve fitting could be carried out very well without considering25

this, thus it was not taken into account.
5864

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

To investigate the petrophysical relationship between resistivity and water content,
15 undisturbed soil core specimens (diameter= 36 mm, length= 40 mm) taken at dif-
ferent depths (0.3 to 1.4 m) were analyzed. After dehydration in a drying chamber, the
samples were saturated successively. Using a 4-point array, electrical resistivity was
measured for different saturation conditions during the saturation process. A calibrat-5

ing solution with known resistivity was used to determine the geometric factor. Particle
sizes were determined by sieving and the pipette method, using Na4P2O7 as a disper-
sant (Klute, 1986, p. 393, 399–404, but with the sand-silt boundary at 0.063 mm).

Brunet et al. (2010) described remarkable conductivity increases of water with low
initial mineralization, due to contact with the soil matrix. This may cause variation of10

resistivity with time. To minimize this effect we used spring water with high conductivity
(approx. δw25 = 150 µS cm−1 for T = 25 ◦C). This corresponds to the mean conductivity
of soil water in the study area, which is influenced by long-term contact with the subsoil.

Aside from the invariant parameters FΘ and nΘ, the resistivity of the pore water must
be known to calculate the water content from resistivity values. Because it was not15

possible to extract pore water under dry conditions in summer, only a few measure-
ments of pore water conductivity could be carried out in late spring and early autumn.
To calculate water content from resistivity obtained by field surveys, the median value
over the entire time period of ρw for each depth was used (cf. Table 2). Interim values
between the extraction depths were linearly interpolated.20

After reforming Eq. (1), it is possible, with known parameters FΘ and nΘ, and mea-
sured variables ρeff and ρw, to calculate volumetric water content:

ρeff

FΘρw

1
−nΘ

=Θ. (2)

As water saturation (S) is defined as the ratio between water content and porosity (Φ),
it is also possible to calculate the degree of saturation using:25

ρeff

FΘρw

1
−nΘ 1

Φ
= S. (3)
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2.4 Field work

2.4.1 Mapping

In addition to conventional percussion drilling, at the end of October 2008 we measured
7 ERT profiles to survey the subsurface resistivity distribution (Fig. 1A–G). A and C are
parallel to the slope inclination of approx. 9◦, connecting inflection points of contour5

lines. B, D, E, F, and G are perpendicular to these profiles (∠ A102.5◦, ∠ B90◦). This
arrangement allows identifying potential 3-D-effects, which may cause inaccurate inter-
pretation of the subsurface resistivity distribution. To improve the mapping results aided
by hydrometric data, the profiles were located close to the tensiometer stations (dis-
tance < 2 m). For all resistivity measurements, a Lippmann 4 Point light hp instrument10

with 50 electrodes was used. Because of the expected heterogeneities (e.g. by roots
or clasts) and the multiple layered stratification of periglacial cover beds, a Wenner-
α array was found to be the most suitable configuration for the study area. This is
characterized by low geometric factors (K ), a high vertical resolution for laterally bed-
ded subsurface structures, and a good signal-to-noise ratio (Dahlin and Zhou, 2004).15

To improve the spatial resolution, a Wenner-β array was measured additionally. With
an electrode spacing of 1 m, this results in a combined dataset with 784 data points
for each pseudo-section with a maximum depth of investigation of 9.36 m (Wenner-β:
depth of investigation for radial dipole in homogeneous ground 0.195L according to
Roy and Apparao, 1971; Apparao, 1991; Barker, 1989).20

2.4.2 Monitoring

Time lapse measurements were performed with the same equipment, electrode array
and spacing used for the mapping. The two time lapse profiles are congruent with
profile A and B (cf. Fig. 1).

From May to December 2008, twenty seven time lapse measurements were carried25

out within almost weekly intervals.
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To compare time lapse measurements and to apply sophisticated inversion routines,
the location of electrodes needs to remain constant. For current injection we used stain-
less steel electrodes (diameter= 6 mm, length= 150 mm), completely plunged into the
ground, thus avoiding shifting of electrodes, except for natural soil creep.

Subsoil temperature, especially in the upper layers, is characterized by distinct an-5

nual and daily variations. Therefore, temperature dependence of resistivity must be
considered when comparing different time steps.

The installed tensiometers are able to measure soil temperature simultaneously.
These data have been used to correct resistivity measurements to a standard tempera-
ture. Comparing several existing models for the correction of soil electrical conductivity10

measurements, Ma et al. (2011) conclude that the model (Eq. 4) as proposed in Keller
and Frischknecht (1966), is practicable within the temperature range of environmental
monitoring.

ρ25 = ρt (1+δ (T −25 ◦C)) (4)

With this equation the inverted resistivity (ρt) at the temperature (T ) was corrected15

to a resistivity at a soil temperature of 25 ◦C (ρ25). The empirical parameter δ is the
temperature slope compensation, with δ = 0.025 ◦C−1 being commonly used for geo-
physical applications (Keller and Frischknecht, 1966; Hayashi, 2004; Ma et al., 2011).

For inversion of the ERT data, we used the BERT Code (Günther et al., 2006). In
order to account for the present topography, we applied an unstructured triangular dis-20

cretization of the surface.
To calculate changes in resistivity, there are three different methodical approaches:

either inverting the models for each point in time separately and subtract after inver-
sion, to use the initial model as reference model for the time step, or inverting the
differences of the two data sets (Miller et al., 2008). With our data, each method gener-25

ates insufficient results with unsubstantiated artifacts. Changes have been calculated,
which cannot be explained or related to any natural process. Descloitres et al. (2003,
2008b) showed with synthetic data that time lapse inversion may produce artifacts,
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especially due to changes caused by shallow infiltration (decrease of resistivity), as
mostly expected in our case.

The inversion had to be adjusted in order to minimize these artifacts. The expedient
results were achieved by using the second approach with different inversion param-
eters for the initial reference model and each subsequent time lapse inversion. The5

first time step was calculated with smoothness constraints of 1st order and regulariza-
tion strength λ = 30. The result was used as a reference model for the next time step.
The following model was calculated with the antecedent time step as reference model,
a chosen constraint minimum length, and higher regularization strength (λ = 100). By
using this approach with each model as reference model for the next time step and10

adapting the inversion parameter, we could reduce the artifacts and achieve conclu-
sive results. In our case this provides the best fit to the hydrometric data.

In order to find representative resistivity values as a function of depth, which are
independent on small-scale heterogeneities, we subdivide the model down to a depth
of 3 m into seven layers according to the boundaries of the described layering (cf.15

Table 1) and installation depth of hydrometric devices (cf. Fig. 1) (0–0.2, 0.2–0.4, 0.4–
0.9, 0.9–1.2, 1.2–1.5, 1.5–2.0 and 2.0–3.0 m). The representative values are median
resistivities in the layers from the stations H1a to H4a and H4b to H4a for profiles A and
B, respectively.

2.5 Results20

2.5.1 Hydrometry

During the period May to December 2008 the spring discharge varied between 0.07
and 1.67 L s−1. Median soil water tension of the study area, related to depth and time
(cf. Fig. 2), indicates the impact of soil moisture on spring discharge. During sum-
mer increasing evapotranspiration causes the drying-out of soil. The spring showed25

only a slight reaction to precipitation events. Rainfall could only balance the soil water
deficit and causes no runoff to the spring at most. Therefore, there is almost no runoff
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generation in the summer season. Primarily base flow dominates and decreasing dis-
charge is mainly caused by direct precipitation to the area surrounding the spring.

In contrast, during winter season (starting in November) at all depths lower tensions
(< 90hPa) were measured. Less evapotranspiration results in a replenishment of the
storage water reservoirs in the subsurface. Due to the moist conditions, high presatura-5

tions predominate and cause a rapid runoff response with rain and the high discharges
within the winter season.

Furthermore, there is an influence of the layered subsurface on soil moisture and
runoff response. Until the beginning of May and again from December the low tensions
of the upper LB indicate saturate conditions, in contrast to the deeper LB with higher10

tensions (cf. Fig. 2). Because of the anisotropic hydraulic properties, the percolation
into deeper parts of LB is too slow, and the seepage water is accumulated in the LM
and the upper LB. The backwater of the saturated depth range is mainly involved in
runoff and causes strong interflow.

2.5.2 Laboratory15

Within the separately analyzed samples, non-linear curve fitting was carried out. Using
the method of least squares, the data could be fitted using a power function in the form
of Archie’s law (Eq. 1, 0.973 < r < 0.999).

The exponent nΘ shows a positive correlation to small grain sizes, primarily medium
silt (6.3–20 µm, r = 0.909), but in the same case a negative correlation to grain sizes20

> 630 µm including clast content (r = −0.852) (cf. Fig. 3).
The amount of silt as well as the clast content are important distinctive attributes to

differentiate the basal layer from the overlying intermediate or upper layer (Table 1).
Two different “electrical” layers may be identified. This is due to the fact that the ex-
ponent is strongly influenced by grain size, which shows a remarkably change at the25

upper boundary of LB. On the other hand, grain size distribution and clast content are
very similar between LH and LM, so that these may not be differentiated using ERT.

5869

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 4 shows the aggregation of the single samples into two regions with different
depth ranges.

The first depth range comprises the upper and the intermediate layer. These two
periglacial layers are characterized by a high amount of silt (mostly medium silt) and
comparatively low clast content. The exponent nΘ ranges from 1.8 to 2.3. The second5

depth range is represented by the basal layer. This is characterized by a higher amount
of coarse material at the expense of fine grain sizes. In this depth range nΘ ranges from
0.7 to 1.8. Within each of these two depth ranges, we accept, analog to the properties
of the substrate, similar electrical properties with a threshold at 0.9 m. The threshold
depth of 0.9 m is not developed as an exact, continuous boundary. Rather it is a short10

transition zone, because the samples right from this depth may have properties of the
shallow or the deeper region, similar to the geomorphological differentiation between
the basal and intermediate layer, whose boundary varies between depths of 0.8 to 1 m.
By combining samples from different depths into two regions, it was possible to derive
the parameter for Eqs. (1)–(3) for each region (Table 3).15

This relationship between water content and resistivity, shown in Fig. 4 and Table 3,
is only a mean value for each depth range. In the first depth range (0–0.9 m), espe-
cially close to the surface, the differences in soil or electrical properties between the
samples even at the same depth may vary. This higher variation may be explained by
intense biotic activity near the surface, enhancing small-scale heterogeneity compared20

to deeper parts of the soil.
The fitted curves of both regions are quite similar, except for nΘ. The formation fac-

tors are very similar (0.577 vs. 0.587, Table 3). With high saturation, the difference of
resistivity between the depth ranges is small and primarily influenced by the conduc-
tivity of the pore fluid, but increases with decreasing water content. As a result of the25

higher exponent, LH and LM react more sensitively to water content changes than LB,
especially at low presaturations. Related to this, small water content changes cause
larger changes in resistivity than in the deeper region.

5870

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.5.3 Mapping

At our study site the resistivity of the subsoil ranges from nearly 100Ωm up to more
than 4000Ωm (cf. Fig. 5).

At the intersection between the longitudinal and diagonal profiles, a good match of
the calculated resistivity models may be found at shallow depth. With increasing depth,5

the differences become more notable. To exclude potential errors (e.g. electrode posi-
tioning errors), the data quality may be evaluated by comparing normal and reciprocal
measurements (LaBrecque et al., 1996; Zhou and Dahlin, 2003). For profile A and
B repeated measurements with reciprocal electrode configuration were conducted.
Thereby, no large errors (max ±1.2 %) could be found between normal and recipro-10

cal measurements. Because of the absence of large potential errors, the increasing
deviation with depth may be only explained by the inversion process, decreasing sen-
sitivity, less spatial resolution or potential 3-D-effects.

The resistivity distribution of the subsurface is characterized by large-scale and
small-scale heterogeneities, but also distinct patterns may be identified. At shallow15

depth up to 0.9 m, the study area is characterized by high resistivity. This comprises
the upper and the intermediate layer.

Since the laboratory results indicate similar electrical properties, remarkable differ-
ences between upper and intermediate layers only occur, if water content deviates.
There are areas, where the intermediate layer has higher resistivity, suggesting lower20

water content (cf. Fig. 6).
The hydrometric data show the driest conditions in 0.55–0.65 m (cf. Fig. 2), which is

consistent with the high median resistivity of the intermediate layer at the time of data
acquisition (cf. Fig. 7).

Resistivity decreases in greater depths (starting at 1 m). Thus, the basal layer is25

characterized by lower resistivity compared to the overlying layers. However, this is
not constant in lateral direction. Two different patterns are found. In the “inner” area
between the two depression lines (approx. between profile A and C), the resistivity of
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the basal layer is lower than in the “outer” area (the hillsides) (cf. Fig. 7). Between the
depression lines LB is characterized as a connected zone of low resistivity. A calcula-
tion of saturation using Eq. (3) and the porosity from Table 1 indicates that this may be
interpreted as a connected saturated zone (Figs. 7 and 8).

Due to the slope gradient, water from the hillsides and upper parts of the catch-5

ment flows toward the depression lines, where it concentrates within the basal layer
and forms a local slope groundwater reservoir. This results in a maximum decrease of
resistivity in this zone as observed in all measured profiles at depths 1.5 to 4.5 m (cf.
Fig. 8).

Percussion drilling confirmed that the thickness of LB downslope exceeds 3.5 m.10

Therefore, we assume that the entire saturated zone is located within the basal layer
and since it is connected to the spring, it is also the source of the base flow.

This zone expands upslope, due to the fact that the depression lines diverge; the
relief becomes smoother and does not show such strong recess (cf. Fig. 1). The water
may easier spread laterally. On the other hand toward to the spring, it becomes more15

and more constricted. According to this, the shape of the surface may be partially
transferred to the subsurface to identify regions of different hydrogeological conditions.
Convex areas indicate dryer conditions in the basal layer in comparison to the concave
or elongate parts of the hillslope, which may act as local aquifers.

It is not feasible to relate a specific resistivity to the underlying gneiss or its regolith.20

Percussion drilling was only realized down to 4 m depth where bedrock could not be
reached. If the maximum thickness of the basal layer is equal to the saturated zone, as
obtained by resistivity data, the change from basal layer to underlying gneiss may be
set at a depth around 4.5 m.

ERT mapping of the spatial distribution of periglacial cover beds is associated with25

several restrictions. In our study area, stratification is concealed by the influence of
pore water, the main factor driving resistivity. On the other hand this fact may be used
to improve the understanding of the moisture conditions of the subsurface.
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To check the equations obtained in the lab and also to compare directly with hydro-
metric data, we used the water contents from the ThetaProbes at H3a. Figure 9 com-
pares water content, calculated with temperature-corrected resistivity (ΘρH3a profile
A close to H3A), with water content from the ThetaProbes (ΘTheta) at time of mapping.

The values of ΘρH3a and ΘTheta show the same depth profile, but the values differ5

slightly. The resistivity depth profile shows a shift of −4.5 Vol% in comparison to the
ThetaProbes. The different positions of the two probe locations could be one reason
for this mismatch. Other reasons could be the inversion process of the resistivity data
or differing pore water resistivity from the used median value (Table 2).

Because the data of the resistivity measurements and also the ThetaProbes may10

contain biased errors (e.g. caused by clast content or by the installation procedure), it
is difficult to make reliable conclusions, which depth profile is more precise. However,
despite of these slight differences both methods provide comparable results.

2.5.4 Monitoring

As the hydrometric data show, the first period from May to October was mainly charac-15

terized by drying of the subsurface. After that, humid conditions began to dominate (cf.
Fig. 2). Major changes occur at shallow depth and proceed to depth, though remark-
ably attenuated. Each depth has its own characteristics, its own variation in time and
shows different hydrological and electrical response. To better distinguish the results
and to deal with the subsurface layered structure, a depth- or layer-based analysis is20

appropriate.
Figure 10 shows the trend of median resistivity for each depth range for the entire

time series of profile A between H1a and H4a and profile B between H4b and H4a, in
comparison with daily accumulated precipitation.

The resistivity of profile A clearly correlates with profile B (Table 4). This correla-25

tion is more pronounced at shallow depths. The absolute values are similar, except for
the near-surface part of LH (0–0.2 m) and parts of LB (1.5–2.0 m). These two depth
ranges have higher amounts at profile B than A at all points in time, due to the different
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positions. Profile A is completely situated in one of the depression lines, in which mois-
ture conditions can be expected in general.

During the measuring period, the upper layer (0–0.2 and 0.2–0.4 m) reacts with simi-
lar resistivity variations as the intermediate layer (0.4–0.9 m). Resistivity of the interme-
diate layer may temporarily exceed the upper layer (e.g. profile A October–December).5

The temporal changes in resistivity decrease with depth. Short time variations are
limited down to 2 m. Below, the differences are marginal with only a continuous slight
increase during the investigated period.

The variation of resistivity is significant influenced by rainfall. As shown in Table 4,
the upper and intermediate layers (< 0.9 m) show a strong negative correlation with the10

cumulated amount of precipitation (ppt). This correlation decreases with depth. Upper
parts of the basal layer (0.9–1.5 m) respond slightly and delayed to intense rain events
or enduring dry periods. Depths > 1.5 m show no direct correlation with rainfall. Water
cannot infiltrate straight to greater depths because of decreasing hydraulic conductivity,
evaporation, storage, or consumption of water by roots.15

One problem is the temporal resolution. Because of the time intervals (usually
≥ 1 week), we are not able to resolve the entire temporal heterogeneity of the sub-
surface, which may lead to misinterpretation. For example, during the period from 3 to
16 September, the amount of 33 mm rain seems not to affect the resistivity of profile
A. However, 32 of these 33 mm had already been fallen until 7 September. At profile B20

with an additional measurement on 9 September, resistivity at shallow depth decreases
first and after that increases back to the initial level of 3 September (cf. Fig. 10b). Due
to the missing time step, this alteration is not traced in profile A (cf. Fig. 10a).

This issue is also evident when comparing the resistivity with the soil suction data.
With the higher temporal resolution of the tensiometer it is possible to resolve short25

time events e.g. single rain events (Fig. 2), which cannot be rendered with the resistivity
survey (cf. Fig. 10).

During the investigation period, different trends could be identified. The initial condi-
tions in April and early May are characterized by a highly saturated subsurface. This is
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indicated by low soil water tension, high spring discharge, and high water content. Due
to the humid conditions at the beginning of the measurements, the conductivity of the
shallow subsurface is high and the observed resistivity is low relative to the seasonal
variations.

A first annual trend covers the period between May and October. This period is5

mainly characterized by drying. The accumulated precipitation from 9 May to 21 Oc-
tober is only 337 mm. In combination with increasing evapotranspiration, this causes
a mainstream drying of the subsurface (cf. Fig. 2). As a result of drying, at shallow
depths (< 0.9 m) resistivity quickly increases until July. Below, the increase proceeds
slightly, but continuously until October.10

As mentioned above, resistivity, especially of LH and LM (up to 0.9 m), shows a high
short time variability and is strongly associated with the amount of precipitation (ppt)
(Table 4). During the investigated period three different response types could be iden-
tified that are exemplarily illustrated in Fig. 11 and compared to soil water tension.

1. A small amount of precipitation (cf. 23 September–7 October, ppt = 23 mm)15

causes a short deferment of increasing resistivity of LH and LM during the sum-
mer period. The values of initial state and time step are in the same order of mag-
nitude. Within the temporal resolution, only a slight decrease could be recorded.
Deeper parts are not affected and dry continuously. Constant discharge indicates
that there is no runoff generation during this period. This amount of rain is only20

able to balance the deficit caused by evaporation at shallow depths, at least within
the temporal resolution of measurements.

2. A medium amount of precipitation (cf. 1 July–15 July, ppt = 51.1 mm) causes a dis-
tinctive reaction at shallow depth. Resistivity at these depths shows a sharp de-
crease by comparatively the same ratio (∼ 0.7). However, the signal is not traced25

into the deeper ground (> 1.2 m), which remains completely unaffected. So verti-
cal seepage dominates in LH and LM, which leads to recharge of soil water. The
water is predominantly fixed by capillary force; hence it does not percolate into
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deeper layers. The short rise of discharge is caused by saturation overland flow
in the spring bog.

3. A high amount of precipitation (cf. 22 October–4 November, ppt = 102.1mm) re-
sults in a strong response down to 2.0 m and affects LH, LM as well as parts of
LB. Such heavy rain period does not induce larger resistivity changes in LH and5

LM than the medium rain period, but influence deeper regions in the same order
of magnitude as above. The water infiltrates to the upper, but does not reach the
deeper basal layer (2–3 m). The vertical seepage is limited and therefore, the in-
creasing spring discharge may only be caused by lateral subsurface flow, such as
interflow in the unsaturated subsoil.10

After the major rain event at the end of October, resistivity values remain low. Due
to precipitation of 102.1mm during the period from 19 November to 16 December,
resistivity drops below the initial state and shows highly saturated conditions.

A comparison of water content obtained by ThetaProbes (ΘTheta) and water content
calculated from resistivity data for different depths over time at profile A 25 m near H3a15

(ΘρH3a) using Eq. (2), is shown in Fig. 12
At shallow depth (≤ 0.85m), ΘρH3a correlates closely with ΘTheta (Table 5). However,

there is a shift of the curves during the whole period. The volumetric water content from
resistivity data is consequently smaller than from the ThetaProbes. In dry periods (e.g.
July–October), the difference is less than under humid conditions (e.g. May).20

In deeper parts the variations are attenuated. At a depth of 1.2 m there is almost no
response over the year, until the heavy rain period at the end of October.

In 1.5 m depth the response of the ThetaProbes is marginal until December, but
thereafter they show an increase. In contrast, ΘρH3a shows already in late October
a reaction to the heavy rain event, which is not reproducible with the ThetaProbes.25

The same holds true for the correlation between resistivity (ρH3a) and soil suction at
H3a (ΨH3a) (cf. Table 5). The resistivity of LH and LM fits well to the tensiometer data
at the same depth, but in deeper parts it deviates.
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These deviations between resistivity data and hydrometric measurements may
have different causes. Both methods contain measuring errors, just as the labora-
tory and other hydrometric (e.g. soil–water resistivity) measurements. Furthermore,
the ThetaProbes and Tensiometers measure punctual values. Heller (2012) demon-
strated with dye infiltration experiments, that preferential flow is an important process5

in our study area. Hence, hydrometric point measurements may over- or underestimate
soil moisture, depending on whether they are inside or outside a preferential pathway.
Therefore the data are very limited, with restricted validity for the entire depth range
or layer. In contrast, ERT has the advantage to integrate over a larger measuring vol-
ume, which makes it more suitable for extensive depth-related interpretations. Further,10

with high resolution ERT it is possible to identify small-scale heterogeneities such as
preferential flow pathways.

3 Conclusions

In drainage basins, hillslopes link precipitation to river runoff. Runoff components, dif-
ferent flow pathways, and residence times are mainly influenced by the properties of15

the hillslope, especially the shallow subsurface. The knowledge of these properties is
one of the keys to characterize the runoff dynamics in catchments. According to this,
we used ERT for mapping the spatial heterogeneity of the subsurface structure on
a hillslope with particular focus on mid-latitude slope deposits (cover beds).

ERT lets us differentiate between LH and LM as one unit and LB as another. Like the20

intrinsic properties (e.g. sedimentological), LH and LM have very similar electrical char-
acteristics. Therefore, they may only being distinguished with ERT, if water contents are
different or change differently with time.

On the contrary, LB has its own electrical characteristics. The pedophysical relation-
ship, with neglecting surface conductivity, shows equal formation factors to LH and LM,25

but different exponents. With the lower exponent, LB is characterized by lower resis-
tivity at the same water content. Therefore, the resistivity of LB is lower in the entire

5877

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

study area, which is further reinforced by the increasing mineralization of pore water
with depth.

Moreover, from the results of field measurements and pedophysical parameter deter-
mination in the laboratory we could derive a noninvasive method for direct monitoring
of seasonal changes in subsurface resistivity and its relationship to precipitation and5

soil moisture on the hillslope scale. In combination with commonly used hydrometric
approaches, we improved our understanding of the allocation, distribution, and move-
ment of water in the subsurface. Different amounts of precipitation affect the subsurface
moisture conditions differently and accordingly different depths take part in runoff gen-
eration.10

Because pore water (amount and conductivity) is the main driver for resistivity, we
arrive at some comprehensive interpretations of the subsurface moisture conditions.
The high resistivities of LH and LM indicate low water contents, whereas LB is divided
into two different moisture zones. On the hillsides water saturation of LB is less than
between the depression lines, where low resistivity shows high water saturation and15

implies a local slope groundwater reservoir.
During investigation time, temperature-corrected resistivity showed distinct seasonal

variations due to changes in moisture conditions, primarily influenced by precipitation
and evapotranspiration. Close to the surface, these variations are very evident and
decline with increasing depth, mainly limited to a depth of 2 m. This primarily affects20

LH, LM, and the upper parts of LB, since it may be assumed that deeper parts are
already saturated and changes are only possible due to changes in water conductivity.

In summer the subsurface continuously dries, starting at the surface and proceed-
ing to depth. This drying is temporarily interrupted by precipitation. Penetration depth
and intensity of the response strongly depend on the amount of precipitation. During25

periods with a small amount of precipitation, infiltration is limited to LH. There is no
runoff generation, and greater depths remain unaffected, which leads after repeated
occurrence to drier conditions within LM compared to LH. In contrast to this, a re-
sponse caused by a medium amount of precipitation includes LM and a small increase
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in spring discharge. The main source of this runoff is saturated overland flow from the
surface surrounding the spring. With a high amount of precipitation, changes in resis-
tivity point to vertical seepage down to 2 m. The spring discharge consequently shows
the major runoff generation, caused by lateral subsurface flow within LH, LM, and the
upper LB.5

The results from ERT measurements show a strong correlation to the hydrometric
data. The average resistivity response is congruent to the average soil tension data.
Water content obtained with ThetaProbes shows similar variations as calculated from
the closest ERT profile. Consequently, soil moisture on the hillslope scale may be deter-
mined not only by punctual hydrometric measurements, but also by noninvasive ERT10

monitoring, provided pedophysical relationships are known. A combination improves
the spatial understanding of the ongoing hydrological processes and is better suitable
to identify heterogeneities.

Cassiani et al. (2009) pointed out that a combination of geophysical and hydromet-
ric data may be used for quantitative estimation of hillslope moisture conditions. Our15

study has shown that this may also be applied to mid-latitude hillslopes covered by
periglacial slope deposits. Nevertheless, there are some restrictions requiring further
improvements.

One shortcoming is the temporal resolution. Some hydrological responses especially
at hillslopes may proceed very quickly. The major goal for further research should be20

to increase the temporal resolution of ERT measurements to at least trace single rain
events. This could be realized with automated data acquisitions as described in Kuras
et al. (2009).

Another aim should be to improve the spatial resolution. Since preferential flow is an
important process, a high-resolution ERT in combination with additional cross-borehole25

measurements would be more suitable to deal with small-scale heterogeneities and to
overcome the problem of decreasing sensitivity with depth.
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Table 1. Properties of cover beds from the study site for an example profile – adapted from
Moldenhauer et al. (2013).

Layer Soil Color Soil texture Clasts bulk density porosity Hydraulic
horizon (moist) Clay Silt Sand (%) (%) (g m−3) conductivity

(%) (%) (%) (cm d−1)∗

LH A/Bw 10YR/5/8 14 52 34 36 1.2 0.55 27
LM 2Bg 10YR/5/4 12 53 35 43 1.5 0.43 9
LB 3CBg 10YR/5/3 7 22 71 56 1.7 0.36 52

∗ Field-saturated hydraulic conductivity measured using the Compact Constant Head Permeameter (CCHP) method
(Amoozegar, 1989).
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Table 2. Median pore water conductivity σw and resistivity ρw per depth.

Depth [m] 0.3 0.6 0.85 1.05 1.65 2.3

σw [µS cm−1] 72.4 107.8 111.6 114.7 135 156.7
ρw [Ωm] 138.1 92.8 89.6 87.2 74.1 63.8
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Table 3. Fitted parameters for Eqs. (1)–(3) of the two different depth ranges.

Depth range FΘ nΘ r

< 0.9 m 0.577 1.83 0.895∗

≥ 0.9 m 0.587 1.34 0.888∗

∗ p < 0.01
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Table 4. Correlation between median resistivity of profiles A (ρprofile A) and B (ρprofile B) and
between subsequent resistivity ratio of profile A (ρtimestep/ρinitial) and cumulative precipitation
during the time step (ppt).

Depth [m] r(ρprofile A,ρprofile B) r(
ρtimestep
ρinitial

,ppt)

0–0.2 0.977a −0.773a

0.2–0.4 0.988a −0.770a

0.4–0.9 0.987a −0.804a

0.9–1.2 0.987a −0.586a

1.2–1.5 0.852a −0.378b

1.5–2.0 0.831a −0.078b

2.0–3.0 0.878a 0.173b

a p < 0.01
b p > 0.01
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Table 5. Correlation of volumetric water content calculated from resistivity values (ΘH3a) and
water content from ThetaProbes (ΘTheta) and correlation of resistivity at H3a (ρH3a) and soil
suction at H3a (ΨH3a).

Depth [m] r(ΘρH3a,ΘTheta) r(ρH3a,ΨH3a)

0.30 0.863a 0.993a

0.55 0.957a 0.904a

0.85 0.885a 0.905a

1.20 0.136a 0.120b

1.50 0.619a 0.566a

a p < 0.01
b p > 0.01

5891

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

SW NE

[m]

[m]

LM

LB

LH

sp
ri

n
g

0

1

2

3

4

D1D2D3
H1H2H3H4

Tensiometer LH    Upper Layer

LM   Intermediate Layer

LB    Basal Layer

350300250

5

S1
S2

S3

Suction cups

        ERT transect

A

B

D
E
F

C

G

ThetaProbes

H4b

H3b

H2b

H1b
H1a

H2a

H3a

H4a

D3b

D2b
D1b

D3a

D2a

D1a

n
 

m
sp

ri
g

ca
tc

h
en

t

spring

Fig. 1. Study site with locations of ERT profiles and hydrometric stations (left) and profile section with instal-
lation depths of tensiometers, ThetaProbes and suction cups (right).

Figure 1. Study site with locations of ERT profiles and hydrometric stations (left panel) and
profile section with installation depths of tensiometers, ThetaProbes and suction cups (right
panel).
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Figure 2. Spring discharge in comparison with daily precipitation (top panel), image of median
soil water tension of the shallow subsurface (middle panel) and median soil water tension for
different depths (bottom panel) – adapted from Heller (2012).
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Fig. 3. Exponent nΘ in dependence of different grain sizes.

23

Figure 3. Exponent nΘ in dependence of different grain sizes.
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Fig. 4. Volumetric water content in dependence of resistivity ratio (ρeff/ρw) for two different depth ranges.
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Figure 4. Volumetric water content in dependence of resistivity ratio (ρeff/ρw) for two different
depth ranges.
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Fig. 5. Resistivity results from ERT mapping (October 2008) of the study area: pseudo 3D view of the profiles
A to G.
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Figure 5. Resistivity results from ERT mapping (October 2008) of the study area: pseudo 3-D
view of the profiles A to G.
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Figure 6. ERT section of profile A with plotted layer boundaries.

5897

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5859/2014/hessd-11-5859-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5859–5903, 2014

Monitoring hillslope
moisture dynamics
with surface ERT

R. Hübner et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Median resistivity (left) and median water saturation (right) per depth for the inner region (between the
depression lines) and outer region (hillslopes.)
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Figure 7. Median resistivity (left panel) and median water saturation (right panel) per depth for
the inner region (between the depression lines) and outer region (hillslopes.)
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Fig. 8. Calculated water saturation from resistivity data of the study site: pseudo 3D view of the profiles A to
G - adapted from Moldenhauer et al. (2013).
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Figure 8. Calculated water saturation from resistivity data of the study site: pseudo 3-D view of
the profiles A to G – adapted from Moldenhauer et al. (2013).
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Fig. 9. Volumetric water content calculated from resistivity data close to H3a in comparison with ThetaProbes
at the time of the mapping.
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Figure 9. Volumetric water content calculated from resistivity data close to H3a in comparison
with ThetaProbes at the time of the mapping.
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Fig. 10. Trend of median resistivity for different depth ranges for (a) profile A and (b) profile B in comparison
with daily precipitation.
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Figure 10. Trend of median resistivity for different depth ranges for (a) profile A and (b) profile
B in comparison with daily precipitation.
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Fig. 11. Ratio between subsequent resistivity (left), median resistivity as a function of depth (center) and median
soil water tension (right) for three exemplary precipitation responses: (1) small amount, (2) medium amount
and (3) high amount.
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Figure 11. Ratio between subsequent resistivity (first column), median resistivity as a function
of depth (second column) and median soil water tension (third column) for three exemplary
precipitation responses: (1) small amount, (2) medium amount and (3) high amount.
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Fig. 12. Trend of volumetric water content, obtained by resistivity data and ThetaProbes with daily precipitation
for different depths.
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Figure 12. Trend of volumetric water content, obtained by resistivity data and ThetaProbes with
daily precipitation for different depths.
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