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Comment on “Climate change and stream temperature projections in the Columbia 1 

River Basin: habitat implications of spatial variation in hydrologic drivers” by D. L. 2 

Ficklin et al. 3 

Reviewer #1 comments 4 

The authors have done a good job of addressing the concerns raised in the previous 5 

review of this manuscript. However, it is still difficult to interpret all of the results. This 6 

is largely driven by the fact that there is uncertainty as to how the model should be 7 

responding to various inputs. The Ficklin (2012) describes model sensitivity to 8 

calibration parameters, and the current manuscript describes sensitivity to air 9 

temperature.  10 

 11 

It would be useful for the reader to understand the model sensitivity to streamflow and all 12 

of the contributions to streamflow. This would help clarify the interpretation of results 13 

and support the authors conclusions. Following this minor revision I suggest acceptance 14 

of the manuscript. 15 

Thanks for the comment. We have now added more discussion regarding the sensitivity 16 

of the stream temperature model in the stream temperature model section (Section 2.2) : 17 

Based on our previous work throughout the western United States (Ficklin et al., 18 

2012), the stream temperature model is highly sensitive to changes in   (the calibration 19 

coefficient for the surface runoff and lateral soil water flow contributions to streamflow) 20 

and K (calibration conductivity parameter between air and stream temperature). Previous 21 

work also indicates that simulated stream temperatures are sensitive to changes in 22 

hydrologic components from increases in air temperature. For example, shifting snowmelt 23 

earlier into the winter buffered the effects of increasing air temperature, resulting in only a 24 

minor increase in stream temperature. Stream temperature in the late spring, early summer, 25 

however, decreased from increases in snowmelt. Increasing groundwater streamflow 26 

inputs decreased stream temperatures from the increase in cool water from groundwater. 27 

These results are contingent on the volume and timing of the various hydrologic 28 

components. For example, the larger the increase in groundwater flow volume to 29 
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streamflow, the larger the decrease in stream temperature. Further discussion on the stream 30 

temperature model sensitivity can be found in Ficklin et al. (2012).  31 

 32 
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Abstract 68 

 69 

Water temperature is a primary physical factor regulating the persistence and distribution 70 

of aquatic taxa.  Considering projected increases in air temperature and changes in 71 

precipitation in the coming century, accurate assessment of suitable thermal habitat in 72 

freshwater systems is critical for predicting aquatic species responses to changes in climate 73 

and for guiding adaptation strategies. We use a hydrologic model coupled with a stream 74 

temperature model and downscaled General Circulation Model outputs to explore the 75 

spatially and temporally varying changes in stream temperature for the late 21st century at 76 

the subbasin and ecological province scale for the Columbia River Basin. On average, 77 

stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 78 

2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream 79 

temperature are correlated with changes in air temperature, our results also capture the 80 

important, and often ignored, influence of hydrological processes on changes in stream 81 

temperature. Decreases in future snowcover will result in increased thermal sensitivity 82 

within regions that were previously buffered by the cooling effect of flow originating as 83 

snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil 84 

water flow, and groundwater inflow, are negatively correlated to increases in stream 85 

temperature depending on the ecological province and season.  At the ecological province 86 

scale, the largest increase in annual stream temperature was within the Mountain Snake 87 

ecological province, which is characterized by non-migratory coldwater fish species. 88 

Stream temperature changes varied seasonally with the largest projected stream 89 

temperature increases occurring during the spring and summer for all ecological provinces. 90 

Our results indicate that stream temperatures are driven by local processes and ultimately 91 
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require a physically-explicit modeling approach to accurately characterize the habitat 92 

regulating the distribution and diversity of aquatic taxa. 93 

1. Introduction 94 

The temporal and spatial variability of stream temperature is a primary regulator of 95 

the life-history, behavior, ecological interactions, and distribution of most aquatic species 96 

(Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater 97 

organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water 98 

temperature (Angilletta, 2009), and thus the persistence of populations and the rate of 99 

energy flow through aquatic ecosystems is dependent on the thermal characteristics of a 100 

local habitat (Woodward et al., 2010).  Moreover, much like terrestrial species, the timing 101 

of important life-history traits such as reproduction and migration is heavily dependent on 102 

seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010).  Additionally, 103 

stream temperature plays a large role in chemical kinetic rates and is important for 104 

governing stream management for recreation as well as urban and industrial water supplies. 105 

Therefore, to better understand hydrologic systems and to better manage water resources 106 

in a changing environment, it is critical to predict the potential effects of climate variability 107 

and change on stream temperature, and to characterize how these changes affect the 108 

distribution and diversity of freshwater taxa. 109 

Potential impacts of climate change on stream temperatures have been widely 110 

estimated using field investigations and modeling studies (Webb and Nobilis, 111 

1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb 112 

et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013). 113 

At larger spatial scales, regional regression models have been used to predict the impacts 114 
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of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan, 115 

1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al., 116 

2003;Stefan and Preud'homme, 1993). However, regression methods are not sufficient 117 

predictors of stream temperature because they do not account for hydrologic component 118 

inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al., 119 

1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014). 120 

Neglecting these components severely limits the ability of regression-based models to 121 

accurately predict spatial variability in stream temperature changes, since the contributions 122 

of different sources to streamflow will be modified in a changing climate.  Ignoring the 123 

distinct characteristics of different sources to streamflow therefore negatively impacts the 124 

assessment of the effects of climate change on aquatic biodiversity at landscape (and larger) 125 

scales.   126 

To adequately capture the role of changing hydrology from a changing climate on 127 

stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and 128 

Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974) 129 

stream temperature models, in conjuction with hydrologic models, have been applied with 130 

success. These models allow stream temperature assessments at the local or regional level. 131 

For example, our prevous work in the Sierra Nevada mountain range in California found 132 

subbasin-scale stream temperature differences from region-to-region largely from 133 

localized changes in hydrology from changes in climate. Additionally, Null et al. (2013) 134 

found increasing stream tempreatures with increasing elevation due to the transition from 135 

snow- to rain-dominated, an effect opposite what would be predicted by a model based 136 

solely on air temperature  137 
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The primary objectives of this work are to [1] predict changes in stream temperature 138 

over the coming century across the Columbia River Basin at the ecological province level, 139 

[2] identify the contribution of specific hydrological components (such as snowmelt, 140 

surface water runoff, etc.) to the overall heat and water budget across the watershed, and 141 

[3] add to the literature regarding the role of changing hydrology on changes in stream 142 

temperature. Specifically, we aim to demonstrate the extent to which future changes in 143 

hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil 144 

flow as simulated using global climate projections at the subbasin scale— could critically 145 

affect changes in localized stream temperatures, which are of high importance for aquatic 146 

species. The Columbia River Basin is a snowmelt-dominated region, where projected 147 

increases in global air temperatures are expected to result in early snowmelt runoff. These 148 

changes lead to reduced late spring and summer water discharges that change the thermal 149 

content of stream flow.  Moreover, previous stream temperature assessments indicate that 150 

the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010;Chang 151 

and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in 152 

part by the land use, hydroclimate and topographic variables of the local region (Chang 153 

and Psaris, 2013).  154 

We use a landscape-scale hydrological model—the Soil and Water Assessment 155 

Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that 156 

simulates stream temperature based on the effects of subbasin air temperature and 157 

hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and 158 

runoff processes, and also incorporates a full range of water quality processes (Gassman et 159 

al., 2007). SWAT has been found to accurately simulate streamflow in regions where 160 
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snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012; 161 

Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global 162 

Climate Models, GCMs) using one representative concentration pathway (RCP) associated 163 

with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st 164 

century was used to drive the calibrated SWAT model at the subbasin-scale. For all 165 

Columbia River Basin ecological provinces, we spatially and temporally explore the 166 

changes in stream temperature, and interpret these changes with respect to changes in the 167 

hydrologic system.  168 

2. Materials and Methods 169 

2. 1 Study area 170 

The CRB encompasses portions of seven states in the western United States and 171 

the Canadian province of British Columbia. The CRB for this study is defined as the area 172 

that flows into the The Dalles, Oregon (Figure 1) and has a surface area of 613,634 km2. 173 

The water resources in the CRB have been extensively developed in the past 70 years for 174 

hydroelectric power, agricultural irrigation, and urban use. The CRB study area has been 175 

extensively discussed in Hatcher and Jones (2013), Mantua et al. (2010), and Payne et al. 176 

(2004). 177 

Subbasins were aggregated into ecological provinces according to designations 178 

Northwwest Habitat Institute (N.H.I., 2008). Ecological provinces are delineated based on 179 

species composition within the region and environmental conditions. Because the 180 

ecological provinces do not expand into Canada, we extrapolated the boundaries based on 181 

watershed delineations. The ecoprovince areas (Figure 1) for this study average 68,000 km2 182 

and range from 300 km2 (Columbia Gorge) to 145,000 km2 (Mountain Columbia).  For 183 
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descriptive purposes, we further characterize ecological provinces as either ‘warmwater’ 184 

(Centrarchidae – bass, bluegill, crappie; Percidae – perch, walleye), ‘coldwater migratory’ 185 

(Salmonidae – salmon, steelhead, trout], and ‘coldwater non-migratory’ (Salmonidae – 186 

trout, whitefish) (Table 2), based on predominant focal fish species (N.H.I., 2008).  187 

 188 

2.2 Modeling stream flow and water quality using SWAT  189 

We used the SWAT model coupled with a stream temperature model to predict 190 

streamflow and stream temperature throughout the Columbia River Basin at an average 191 

spatial resolution of 250 km2.  SWAT is an integrative, mechanistic model that utilizes 192 

inputs of daily weather, topography, land use, and soil type to simulate the spatial and 193 

temporal dynamics of climate, hydrology, plant growth, and erosion (Arnold et al., 1998). 194 

Within SWAT, surface runoff and soil water infiltration were simulated using the modified 195 

Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used to 196 

estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin 197 

et al. (2012) SWAT stream temperature model that uses local air temperature and 198 

hydrology for stream temperature estimation: 199 

        200 

 201 

            202 

           [1] 203 

where sub_snow is the snowmelt contribution to streamflow within the subbasin (m3), 204 

sub_gw is the groundwater contribution to streamflow within the subbasin (m3), sub_surq 205 
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is the surface water runoff contribution to streamflow within the subbasin (m3), sub_latq 206 

is the soil water lateral flow contribution to streamflow within the subbasin (m3), sub_wyld 207 

is the total water yield (all contributing hydrologic components) contribution to streamflow 208 

within in the subbasin (m3), Tgw is the groundwater temperature (°C; annual average input 209 

by user), and Tair,lag is the average daily air temperature with a lag (°C), and    is a 210 

calibration coefficient relating to the relative contribution of the surface water runoff and 211 

lateral soil water flow to the local water temperature and is included to aid in calibration in 212 

case of improper hydrologic model calibration.  The lag (days) is incorporated to allow the 213 

effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation 214 

[1] represents the assumed temperature of snowmelt (0.1 °C).  215 

 After stream temperature of the local contributing water is determined, the stream 216 

temperature before the effects of air temperature is determined by: 217 

𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑤,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ (𝑄𝑜𝑢𝑡𝑙𝑒𝑡 – 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑) + (𝑇𝑤,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑)

𝑄𝑜𝑢𝑡𝑙𝑒𝑡
 218 

                                                                                                                                         [2] 219 

where Tw,upstream is the temperature of the streamflow entering the subbasin (°C) and Qoutlet 220 

is the streamflow discharge at the outlet of the subbasin.  221 

The final stream temperature is calculated by adding a change to the initial stream 222 

temperature in the subbasin from differences between stream and air temperature and travel 223 

time of water through the subbasin. Depending on Tair, the final stream temperature is 224 

estimated as: 225 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + (𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 > 0          [3] 226 
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𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + ((𝑇𝑎𝑖𝑟 + 𝜀) − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 < 0          [4] 227 

where Tair is the average daily air temperature (°C), K is a calibration conductivity 228 

parameter, TT is the travel time of water through the subbasin (hour) and is calculated from 229 

the SWAT simulations, and 𝜀 is an air temperature addition coefficient (°C), which was 230 

included to account for water temperature pulses when Tair is below 0°C. For the case when 231 

the effects of Tair and the hydrologic contributions are such that the final is Twater < 0°C, 232 

the stream temperature model sets Twater to 0.1 °C.  Twater is also assumed to be the 233 

temperature of water discharge to downstream subbasin, and is further routed along the 234 

stream network.  The calibration parameter, K, acts as a proxy for reach-specific adjustment 235 

of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes 236 

resulting in differing geometry. Additional details regarding the stream temperature model 237 

can be found in Ficklin et al. (2012). 238 

Based on our previous work throughout the western United States (Ficklin et al., 239 

2012), the stream temperature model is highly sensitive to changes in   (the calibration 240 

coefficient for the surface runoff and lateral soil water flow contributions to streamflow) 241 

and K (calibration conductivity parameter between air and stream temperature). Previous 242 

work also indicates that simulated stream temperatures are sensitive to changes in 243 

hydrologic components from increases in air temperature. For example, shifting snowmelt 244 

earlier into the winter buffered the effects of increasing air temperature, resulting in only a 245 

minor increase in stream temperature. Stream temperature in the late spring, early summer, 246 

however, decreased from increases in snowmelt. Increasing groundwater streamflow 247 

inputs decreased stream temperatures from the increase in cool water from groundwater. 248 

These results are contingent on the volume and timing of the various hydrologic 249 
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components. For example, the larger the increase in groundwater flow volume to 250 

streamflow, the larger the decrease in stream temperature. Further discussion on the stream 251 

temperature model sensitivity can be found in Ficklin et al. (2012).  252 

2.3 Input Data 253 

SWAT input parameter values for topography, land cover, and soils data were 254 

compiled from freely-available federal and state databases. A 30-meter Digital Elevation 255 

Model (USGS) formed the basis for watershed and sub-basin delineation. Soil properties 256 

were obtained from the STATSGO soil dataset. The 2001 National Land Cover Database 257 

was used for land cover/land use. Meteorological data (air temperature, precipitation, and 258 

wind speed) were extracted from Maurer et al. (2002) and relative humidity and solar 259 

radiation were generated within SWAT (Neitsch et al., 2005).The Columbia River Basin 260 

natural flow data that were used for streamflow calibration were obtained from output from 261 

a calibrated Variable Infiltration Capacity Model (VIC) model (from 262 

http://cses.washington.edu/) and the United States Geological Survey Hydro-Climatic Data 263 

Network (HCDN; Slack et al. (1993)). These data represent streamflow that would occur 264 

if no reservoirs or streamflow diversions were present within the basin. The HCDN is a 265 

hydrologic dataset developed to study surface water conditions throughout the United 266 

States that only fluctuate with changes in local climatic conditions and is therefore apt for 267 

use in climate change studies (Slack et al., 1993). SWAT was run at the monthly time step. 268 

Climatic projections from seven GCMs (Table 1) and one RCP (8.5) were input 269 

into the calibrated SWAT model. Daily downscaled output from the seven GCMs (RCP 270 

8.5) were obtained from the Downscaled CMIP3 and CMIP5 Climate and Hydrology 271 

Projections archive (Maurer et al., 2013). RCP 8.5 represents the highest increase in 272 
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radiative forcing of the Coupled Model Intercomparison Project – phase 5 (CMIP5; Taylor 273 

et al. (2011)) projections, and is based on an increased radiative forcing of 8.5 Wm-2 274 

(relative to pre-industrial values) at the end of the 21st century. Downscaling was achieved 275 

using the daily bias-corrected and constructed analogs (BCCA) method (Maurer et al., 276 

2010). In summary, the BCCA procedure consists of two steps. The first step is a bias 277 

correction using a quantile mapping technique which is applied to raw GCM output. 278 

Quantile mapping bias correction has been widely and successfully used in climate model 279 

downscaling (Wood et al., 2004). The bias correction step is followed by spatial 280 

downscaling using a constructed analogues approach for each day using a linear 281 

combination of days drawn from the historic record (Hidalgo et al., 2008). Maurer et al. 282 

(2010) found that the BCCA method consistently outperformed the Bias-283 

Correction/Spatial-Downscaling method (BCSD) and the Constructed Analogues (CA) 284 

approach in capturing the daily large-scale skill and translating it to simulated streamflows 285 

that accurately reproduced historical streamflows.  286 

 287 

2.4 SWAT streamflow calibration  288 

The program Sequential Uncertainty Fitting Version 2 (SUFI-2; Abbaspour et al. 289 

(2007)) was used to automatically-calibrate SWAT streamflow at 104 sites in the Columbia 290 

River Basin (Figure 1). Initial and default SWAT model parameters were varied 291 

simultaneously until an optimal solution was met. Three statistics were used to evaluate 292 

model efficiency: [1] the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970), [2] the 293 

coefficient of determination (R2), and [3] a modified efficiency criterion (Φ). Φ is the result 294 

of the coefficient of determination, R2, multiplied by the regression line slope, m (Krause 295 
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et al., 2005). This statistic captures the discrepancy in the magnitude of the observed and 296 

simulated streamflow (captured by m) as well as the dynamics (captured by R2). For all 297 

previously-mentioned statistics, a perfect simulation is represented by a value of 1. A split-298 

sample approach was used for calibration and validation, and the calibration and validation 299 

periods differed at each streamflow gauge depending on streamflow data availability.  300 

 301 

2. 5 SWAT stream temperature calibration 302 

Monthly stream temperatures were predicted using the SWAT stream temperature 303 

model of Ficklin et al. (2012). This model includes the effects of hydrologic component 304 

inputs (e.g., snowmelt, groundwater, and surface runoff) on stream temperature. Previous 305 

studies have demonstrated that this stream temperature model performs better than linear 306 

regressions that use air temperature alone (Ficklin et al., 2013;Barnhart et al., 2014). The 307 

model requires four calibration parameters for each subbasin in the SWAT setup. Since the 308 

model is not incorporated into the previously mentioned SWAT-CUP software, we utilized 309 

the steady-state S-metric evolutionary multi-objective optimization algorithm (SMS-310 

EMOA) to calibrate the stream temperature parameters after hydrologic calibration was 311 

performed (Emmerich et al., 2005;Beume et al., 2007). SMS-EMOA is an efficient and 312 

effective Pareto optimization evolutionary algorithm for finding solutions to multi-313 

objective optimization problems. The algorithm seeks optimal solutions that maximize the 314 

hypervolume (S-metric)—which can be thought of as the volume of dominated space—315 

and has been theoretically proven to converge to the Pareto set (Fleischer, 2003;Emmerich 316 

et al., 2005;Beume et al., 2007). For a recent application, see Stagge and Moglen (2014). 317 
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For this study, SMS-EMOA was used to seek the optimal set of calibration 318 

parameters to reduce the differences between simulated stream temperatures from SWAT 319 

and observed values. Observed stream temperatures were obtained from 50 sites within the 320 

Columbia River Basin between 1970-1992. Four calibration parameters for each subbasin 321 

were adjusted using the algorithm, and three objectives were specified including the RMSE 322 

values for the January-April, May-August, and September-December time periods to 323 

match the stream temperature rising limb, peak, and falling limb. Further objective 324 

functions were intentionally omitted to simplify the analysis. This decision is justified by 325 

the limited range of stream temperatures matched by the algorithm. Conversely, 326 

hydrological calibration attempts to match flows that vary over orders of magnitude and 327 

therefore require additional objectives to match all portions of the hydrograph. 328 

Convergence of the stream temperature calibration algorithm was assumed to be met when 329 

the S-metric did not vary more than 1% between 3 generations. The final set of solutions 330 

exhibited trade-offs between the three objective functions; therefore, a single solution—331 

more specifically, a single set of calibration parameters—was then chosen from this set to 332 

be used in the calibrated SWAT simulation.  333 

 334 

2. 6 Statistical analyses  335 

The impacts of potential climate change on streamflow and hydrologic components 336 

were evaluated by comparing historical time period (1961-1990) simulations to those using 337 

the GCMs in Table 1 for the late-21st century (2080s; 2081-2099). When describing the 338 

ensemble average (or standard deviation) of a time period (i.e., late-21st century), this value 339 

is the average (or standard deviation) of the seven CMIP5 GCMs for this time period. 340 
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Months are lumped into seasons for temporal analysis and are defined as spring (April-341 

June), summer (July-September), fall (October and November), and winter (December-342 

March). These seasons are defined to capture the snowmelt and dry/low flow seasons. 343 

Pearson correlations using a bootstrap method were used to measure the relationship 344 

between annual and seasonal changes in stream temperature and individual 345 

hydroclimatological components. A total of 10,000 bootstrap correlation iterations were 346 

run. Statistical significance was determined at the α = 0.05 level. For statistical 347 

significance, the 5th and 95th percentiles of the bootstrap correlation iterations must agree 348 

on the correlation sign (+ or -). If the lower (higher) end of our confidence interval is above 349 

(below) zero, we can conclude that the correlation between stream temperature and 350 

hydroclimatological component change is significant at the α = 0.05 level (two-tailed). 351 

Additionally, with changes in climate, it can be expected that drying of streams will occur. 352 

In this study, streams that have no flow for an extended time period of the year (and thus 353 

have no stream temperature) are removed from the stream temperature analyses, but since 354 

drying streams are an important barrier for aquatic species migration, they will be 355 

discussed.  356 

3. Results 357 

3.1 Hydrologic model calibration 358 

 NS, R2 and Φ average and standard deviation values for the calibration and 359 

validation time periods are shown in Table 2. Overall, the model efficiency statistics show 360 

that the SWAT model adequately simulated streamflow compared to observations. The 361 

average NS coefficient for the calibration and validation period was 0.69 and 0.64, 362 

respectively, with a standard deviation of 0.13 for the calibration period and 0.13 for the 363 
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validation period. This indicates that a large portion of the NS values for both time periods 364 

varied only 0.13 around their respective means, which is still within acceptable NS limits 365 

(Moriasi et al., 2007). The other model efficiency statistics, R2 and Φ, indicate similar 366 

model performance.  367 

 368 

3. 2 Stream temperature model calibration 369 

After SWAT was calibrated for discharge, the model was used within the SMS-370 

EMOA algorithm to calibrate the stream temperature model. RMSE values between 371 

observed and simulated daily stream temperatures range from 2-5 °C for the majority of 372 

observation sites. The resulting monthly RMSE values for each site are shown in Figure 2. 373 

No distinct spatial distributions of the magnitude of errors are present. Errors distinguished 374 

by month of year were also quantified (Figure 3). Errors are largest during the summer 375 

months of July through September. Lowest RMSE values were present between December 376 

and February. Also, the model gives highly unrealistic (RMSE >15 °C) results for a 377 

moderate number of points, especially during summer months. This is due to low values 378 

of discharge within reaches during the summer months. Stream temperature is strongly 379 

inversely dependent on streamflow, and very small values of discharge cause the model to 380 

produce uncharacteristically high stream temperature simulation values. The calibrated 381 

stream temperature model parameters can be found in the supplemental information.  382 

 383 

3.3 Temperature and precipitation projections 384 

 Ensemble average projections of maximum and minimum air temperature and 385 

precipitation, as compared to the historical time period, are shown in Figure 4. Overall, the 386 
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maximum and minimum air temperatures vary spatially throughout the CRB, with an 387 

average ensemble increase of 5.5 °C for maximum air temperature and 5.4 °C for minimum 388 

air temperature. All GCMs agreed that air temperature is expected to increase by the end 389 

of the 21st century. Precipitation projections, on the other hand, varied between downscaled 390 

GCM projections, with an overall average of a 14.4% increase compared to the historical 391 

time period. 392 

 393 

3.4 Stream temperature projections 394 

Figures 5 and 6 display the spring/summer and fall/winter historical and projected 395 

stream temperatures for the CRB. Simulated stream temperatures are projected to increase 396 

throughout the CRB, with largest increases occurring in the east-central portion of the 397 

CRB. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 398 

°C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. It is important to note that 399 

a large number of subbasins were removed from this analysis due to no-flow conditions 400 

(i.e., running completely dry or icing-up) from changes in climate (hatched areas in Figures 401 

5 and 6). Of these, winter had the largest number of subbasins removed from the analysis 402 

(31%), followed by fall (18%), summer (16%), and spring (15%). The average period of 403 

subbasins with no-flow conditions is projected to 34%, or 81 months out of the 240 months 404 

for the 2080s time period. We consider these subbasins to not be reliable refugia for aquatic 405 

species. 406 

Simulated stream temperature changes also vary at the ecological province scale 407 

(Table 3). At the annual time scale, the largest stream temperature increases (4.3 °C) 408 

occurred within the Mountain Snake ecological province, which is characterized by cold-409 
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water migratory fish species. The largest inter-annual variation around the mean occurred 410 

in the Upper Snake ecological province, which is characterized by non-migratory 411 

coldwater species, with a +/- 3.8 °C standard deviation. Important differences between 412 

ecological provinces occurred at the seasonal time scale. Overall, the largest spring 413 

increase in stream temperature occurred in the Mountain Snake (5.0 °C) and Upper Snake 414 

(4.3 °C), both containing coldwater species. The largest summer temperature increase 415 

compared to the historical time period was for the Mountain Snake ecological province 416 

with a 7 °C increase in average monthly stream temperature, followed by Upper Snake (6 417 

°C), Blue Mountain (5.3 °C), Intermountain (5.0 °C), and Mountain Columbia (5.0 °C), 418 

indicating that ecological provinces with coldwater species will experience some of the 419 

largest increases in stream temperature in the basin. These large increases are expected 420 

during the summer because air temperature is at its highest and streamflow is at its lowest.  421 

Fall and winter had the smallest increases in stream temperature including a CRB 422 

average of 2.9 °C for fall and 1.6 °C for winter. This was expected because this is when air 423 

temperatures are the lowest, and cold precipitation recharge and streamflow are highest, 424 

resisting stream temperature increases. The basins with the highest stream temperature 425 

increases for the fall and winter time period were the Mountain Snake and Blue Mountain 426 

(4.0/2.1 °C). 427 

 428 

3.5 Sensitivities of stream temperature changes to air temperature 429 

We define TSmax and TSmin as the thermal sensitivity or stream temperature change 430 

per 1 °C of maximum or minimum air temperature change. For the entire CRB and the 431 

water year annual time scale, the value for the average TSmax is 0.6 and that for TSmin is 432 



 19 

0.86, demonstrating that, on average, the increases in stream temperature seen by the 2080s 433 

are to a larger degree tied to future changes in minimum air temperatures (Table 4). On the 434 

seasonal time scale, stream temperature changes during the summer were the most sensitive 435 

to changes in maximum air temperature with TSmax equal to 0.8, followed by spring (0.7), 436 

fall (0.5), and winter (0.3). For minimum air temperature sensitivities, however, spring 437 

values of TSmin were the highest of all seasons, equal to 0.9, followed by summer (0.8), fall 438 

(0.5), and winter (0.3). Air temperature sensitivities varied by ecological province as well 439 

as by season. At the annual and seasonal time scales the Intermountain, Middle Snake, and 440 

Mountain Snake ecological provinces exhibited the highest values of TSmax.  441 

 For minimum air temperatures, the ecological provinces that were the most 442 

sensitive were Columbia Cascade, Mountain Snake, and Upper Snake. Summer once again 443 

had the highest overall TSmin values. However, the largest TSmin values were found in the 444 

winter and spring seasons, with the Columbia Cascades in the winter (1.4) and the 445 

Mountain Snake and Upper snake exhibiting TSmin values of 1.1 and 1.2 in the spring. 446 

Overall, it can be seen that spring has higher TSmin values than TSmax, a possible artifact of 447 

snowmelt (see Discussion).  448 

 449 

3.6 Sensitivities of stream temperature to changes in hydroclimatological components 450 

3.6.1 Correlations at the Columbia River Basin scale 451 

At the CRB scale, all stream temperature changes were significantly correlated to 452 

all hydroclimatic components during the spring and fall seasons for the 2080s (Table 5), 453 

suggesting that during these seasons stream temperatures are highly sensitive to changing 454 

environments. For summer, groundwater inflow change was the only variable not 455 
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significantly correlated to stream temperature changes. For winter, streamflow and 456 

groundwater inflow changes were the only variables not significantly correlated to stream 457 

temperature changes (see Discussion). 458 

  459 

3.6.2 Correlations at the ecological province scale 460 

 Correlations between stream temperature and hydroclimatological components at 461 

the seasonal time scale and ecological province spatial scale for the 2080s suggest that 462 

multiple hydroclimatological components affect stream temperatures (Figure 7). As 463 

expected, maximum and minimum air temperatures were significantly positively correlated 464 

to changes in stream temperatures for all seasons and nearly all ecological provinces. The 465 

only two ecological provinces where no significant correlations were found between air 466 

and stream temperature were the Blue Mountain and Upper Snake provinces (see 467 

Discussion), which are characterized by migratory salmonids and non-migratory 468 

salmonids, respectively. Additionally, precipitation changes were negatively correlated to 469 

stream temperature changes for all seasons and nearly all ecological provinces. 470 

For spring, nearly all hydroclimatological components were significantly correlated 471 

to stream temperature changes for each ecological province. Streamflow changes were not 472 

correlated to stream temperature changes within the Blue Mountain, Intermountain, and 473 

Upper Snake ecological provinces, which are characterized by warmwater species, 474 

migratory coldwater salmonids, and non-migratory coldwater salmonids, respectively. We 475 

also found that snowmelt changes within the Blue Mountain ecological province were not 476 

correlated to stream temperature changes. However, within the Blue Mountain ecological 477 
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province we find that snowmelt is not a large portion of the hydrological cycle during this 478 

season. 479 

 For the summer season, no relationships were found for streamflow, snowmelt, 480 

surface runoff, and groundwater inflows within multiple ecological provinces. Overall, 481 

streamflow was found to be significantly correlated with stream temperature within the 482 

Columbia Cascades and Middle Snake, which are characterized by coldwater migratory 483 

salmonids, and Mountain Columbia, which is characterized by non-migratory coldwater 484 

salmonids, ecological provinces.  Within the Columbia Plateau, Intermountain, and 485 

Mountain Columbia ecological provinces, we find snowmelt to still be a large portion of 486 

the hydrological cycle, thus any reductions of snowmelt do not significantly affect stream 487 

temperature. Lastly, surface runoff and groundwater inflows were not significantly 488 

correlated to the stream temperature changes in the Mountain Columbia and Upper Snake 489 

ecological provinces and the Mountain Snake ecological province, respectively. Within 490 

these regions we did not find large changes in surface runoff or groundwater inflows. 491 

 For the fall season, we find that changes in stream temperature within the Blue 492 

Mountain ecological province, which is characterized by migratory coldwater salmonids, 493 

is only positively correlated to changes in maximum and minimum air temperature, and 494 

thus loses its ties to the other hydrology-related components. Note also that during the fall 495 

season groundwater inflow changes become a non-significant factor in stream temperature 496 

changes for five out of the eight ecological provinces. The only ecological provinces where 497 

groundwater inflow changes were significantly correlated to stream temperature changes 498 

were the Columbia Plateau, Intermountain, characterized by warmwater species, and the 499 

Middle Snake, which is characterized by coldwater migratory species.  These are regions 500 
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where groundwater inflows increased and therefore contributed cooling effects during this 501 

time period. 502 

 During the winter season, changes in multiple hydroclimatological components 503 

within multiple ecological provinces are not significantly correlated to changes in stream 504 

temperature. Generally, changes in maximum air temperature, minimum air temperature, 505 

precipitation, snowmelt, and surface runoff are still significantly correlated to changes in 506 

stream temperature. These relationships make sense because during the winter season, 507 

increases in maximum and minimum air temperatures in conjunction with changes in 508 

precipitation will have the largest effects on two hydrological components: snowmelt and 509 

surface runoff. This is the season where snowmelt-dominated regions with large snowmelt 510 

components may perhaps become rain-dominated regions with large surface runoff 511 

components. 512 

 513 

4. Discussion and Conclusions  514 

The importance of stream temperature to aquatic species distributions, interactions, 515 

behavior, and persistence is well documented (Matthews, 1998), particularly for coldwater-516 

adapted taxa such as trout and salmon (Milner et al., 2003;McCullough, 1999).  517 

Considering predicted increases in air temperature in the coming century, accurate 518 

assessment of suitable thermal habitat is critical for predicting species responses to changes 519 

in climate.  Accordingly, recent research has investigated the potential impacts of climate 520 

change on aquatic taxa by explicitly incorporating regression-based stream temperature 521 

predictions into ecological models (Britton et al., 2010;Al-Chokhachy et al., 2013). While 522 

simplified regression studies may boast low RMSE values between simulated and observed 523 
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stream temperatures, the relatively broad spatial scale of many of these studies (Mohseni 524 

et al., 2003), neglects the variety of local hydrological systems that are differentially driven 525 

by the array of inputs to each system (e.g., snowmelt, groundwater, runoff). The resulting 526 

stream temperature model inaccuracies from this approach, clustered in particular regions 527 

can be particularly problematic when investigating local population responses and range 528 

shifts at the edge of species’ distributions. Our results highlight this issue by characterizing 529 

the varied relative contributions of different hydrological component inputs among 530 

ecological provinces and suggest the complex system-level regulation of stream 531 

temperature 532 

As with any modeling study, modeling errors originate from multiple sources. 533 

Wilby and Harris (2006) discuss these aforementioned uncertainties in detail and ranked 534 

their importance in decreasing order as follows: differences in GCM output, downscaling 535 

methods, hydrological model structure, hydrological model parameters, and then 536 

greenhouse gas emission scenario. While their work was performed for a hydrological 537 

model, the results still hold true for our stream temperature model. Particular to this study, 538 

in order to quantify the differences between errors due to parameter uncertainty and GCM 539 

(or projection) uncertainty, much more work needs to be done and is well beyond the scope 540 

of this work.  541 

However, we do note that our simulations for stream temperature demonstrated 542 

higher errors during the summer months. This is due to low and fluctuating discharge 543 

values that ultimately affect stream temperature. Also, it is likely due to the fact that 544 

hydrologic components may influence stream temperature differently during different 545 

seasons. For this study, we used annual calibration parameters and allowed them to vary 546 
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for each subbasin. An alternative approach would be to utilize seasonally varying 547 

calibration parameters, and to analyze the dynamic (i.e., seasonal) influence of hydrologic 548 

components on stream temperature. This may better capture the stream temperature 549 

fluctuations in the summer months. Nonetheless, our spatially resolved methodology using 550 

a mechanistic model, SWAT, better characterizes the complex processes of stream 551 

temperature throughout the CRB by accounting for the hydrologic components 552 

contributing to stream temperature and its variation.   553 

   Within the CRB, Wenger et al. (2013) used air temperature as a surrogate for 554 

stream temperature to predict the response of Bull trout (Salmonidae: Salvelinus 555 

confluentus) to predicted changes in climate, while Beer and Anderson (2013) used air 556 

temperature-stream temperature relationships to predict the impacts of climate change on 557 

salmonid life-histories.  These approaches are common (Britton et al., 2010;Tisseuil et al., 558 

2012;Al-Chokhachy et al., 2013), yet overlook important differences in the inputs 559 

influencing stream temperature across the basin.  For example, our results suggest that 560 

hydrologic contributions from snowmelt are relatively important drivers of stream 561 

temperature within ecological provinces with primarily non-migratory coldwater focal fish 562 

species.  The influence of snowmelt tends to buffer stream temperatures against increases 563 

in air temperature during the year relative to other areas in the watershed.  In this case, a 564 

regression-based approach to estimating stream temperature or the use of air temperature 565 

as a surrogate for stream temperature will tend to overestimate stream temperature, and 566 

thus underestimate the amount of suitable thermal habitat for coldwater species.  In 567 

addition, decreases in snowcover (and snowmelt) in the future will result in increased 568 

thermal sensitivity within these formerly buffered regions.  For example, current stream 569 
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temperatures in the Mountain Snake ecological province are buffered by relatively high 570 

levels of snowmelt, yet decreases in future snowcover are predicted to result in this 571 

province experiencing the greatest seasonal and annual increases in stream temperature in 572 

the coming century. 573 

 Some of the relationships between stream temperature and hydroclimatic changes 574 

at the CRB scale were expected, such as increases in maximum air temperature and 575 

minimum air temperature resulting in increases in stream temperature, which were 576 

significant for all seasons for the entire CRB. This relationship is well-established and 577 

many models have been developed solely based on air-stream temperature relationships 578 

(Stefan and Preud'homme, 1993;Mohseni and Stefan, 1999). Also, a decrease in 579 

precipitation led to an increase in stream temperature, largely because greater runoff and 580 

infiltration leads to larger volumes of water in the stream channel, and thus increases the 581 

amount of energy needed to heat the water. Precipitation changes had the largest negative 582 

correlations during the spring and summer seasons, followed by fall and winter. Both 583 

surface runoff and lateral soil flow changes follow the same correlation patterns as 584 

precipitation, as both are inherently tied to the amount of incoming precipitation. 585 

Additionally, streamflow is tied to all hydrological components within the subbasin and 586 

the incoming streamflow that is entering the streamflow reach. Since streamflow is a mix 587 

of incoming hydrologic components, it is difficult to determine correlations. However, 588 

much research has assumed that streamflow and stream temperature changes are inversely 589 

correlated (van Vliet et al., 2011). The correlations within this study were significant and 590 

positively correlated for the spring, summer, and fall seasons; however, all correlations 591 
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were below 0.10, which suggests the correlations were relatively minor, especially 592 

compared to other components. 593 

 Snowmelt changes were negatively correlated during the spring, fall, and winter 594 

seasons, and positively correlated during the summer season. A decrease in snowmelt will 595 

lead to an increase in stream temperature because the cooling effect that snowmelt has on 596 

stream temperature is no longer present. In summer, snowmelt and stream temperature 597 

were positively correlated (albeit not significant), suggesting the counterintuitive notion 598 

that an increase in snowmelt led to an increase in stream temperature. This can be explained 599 

largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with 600 

streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89 601 

(5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still 602 

a component of the hydrologic cycle during the summer season.   603 

Lastly, groundwater inflow changes to the stream channel were negatively 604 

correlated to stream temperature change at the CRB scale for the spring and fall seasons. 605 

This also makes sense, as groundwater temperature is generally cooler than the stream 606 

temperature of the water already within the channel. Quite often, stream temperature 607 

variations of cool water are used for tracer studies to determine where surface and 608 

groundwater flows are exchanging water (Anderson, 2005;Constantz et al., 2003). 609 

However, no significant correlation was found during the summer, when groundwater is a 610 

large source of stream flow. This is likely because groundwater is the main source of water 611 

for this season, any climate-induced changes in groundwater will not have a major effect 612 

on stream temperature because the main water source for streamflow is still groundwater. 613 

For example, if 85% of the streamflow comes from groundwater, and is then decreased to 614 
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75%, the change in stream temperature isn’t likely to significantly change. Additionally, 615 

no groundwater inflow change correlations were found for the winter season.  616 

 Species’ responses to stream temperature occur within populations and are based 617 

on local environmental conditions.  Consequently, accurate assessment of local variation 618 

in stream temperature is critical and only possible when local system drivers are accurately 619 

represented in stream temperature models.  While stream temperature is primarily 620 

influenced by air temperature, this study emphasized the important effects of other 621 

contributors (e.g., runoff, groundwater, snowmelt) that are differentially represented across 622 

the CRB.  Also, we have characterized the ecological provinces by warmwater and 623 

coldwater focal fish species, which was done for qualitative biological assessments and not 624 

as a predictive approach.  However, these groupings have provided important information 625 

regarding factors driving differential variation in stream temperatures across seasons in the 626 

context of the biological groups experiencing particular stream temperature changes.  River 627 

basins encompass a spatially heterogeneous array of biological communities and these 628 

communities are regulated by a spatially heterogeneous array of environmental conditions.  629 

These environmental conditions are driven by local processes and require a systems-based 630 

approach to accurately characterize the habitat regulating the distribution and diversity of 631 

aquatic taxa. 632 
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Table 1. Coupled Model Intercomparison Project – phase 5 General Circulation Models 859 

used in this study 860 

Modeling Group CMIP5 Model 

Canadian Centre for Climate 

Modeling & Analysis 
canesm2 

Météo-France / Centre National de 

Recherches Météorologiques, France 
cnrm-cm5 

Geophysical Fluid Dynamics 

Laboratory, USA 
gfdl-cm3 

Institut Pierre Simon Laplace, France ipsl-cm5a-mr 

Center for Climate System Research 

(The University of Tokyo), National 

Institute for Environmental Studies, 

and Frontier Research Center for 

Global Change (JAMSTEC), Japan 

miroc5 

Max Planck Institute for 

Meteorology, Germany 
mpi-esm-lr 

Meteorological Research Institute, 

Japan 
mri-cgcm3 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 
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Table 2. Summary of streamflow calibration statistics. 876 

        877 

*NS: Nash-Sutcliffe coefficient 878 

   *R2: coefficient of determination 879 

* Φ: coefficient of determination multiplied by slope of regression 880 

line, b 881 

    882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 Calibration Validation 

 Average Std. Dev. Average Std. Dev. 

NS 0.69 0.13 0.64 0.13 

R2 0.75 0.10 0.75 0.08 

Φ 0.62 0.15 0.65 0.13 
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Table 3. Stream temperature changes and focal fish species groups for the Columbia River Basin ecological provinces during the 

2080s. 

 

 

 

 

 

 

 

 

 

 

Ecological 

province 
Spring (°C) Summer (°C) 

Fall 

(°C) 
Winter (°C) Annual (°C) 

Focal Fish Species 

Blue Mountain 3.7 5.3 3.2 2.1 3.5 coldwater migratory 

Columbia 

Cascades 
2.6 4.1 2.0 1.2 2.4 

coldwater migratory 

Columbia 

Plateau 
2.0 3.8 2.0 1.5 2.2 

warmwater 

Intermountain 3.3 5.0 2.7 1.5 3.0 warmwater 

Middle Snake 2.4 3.7 2.3 1.4 2.2 coldwater migratory 

Mountain 

Columbia 
3.6 5.0 2.4 1.5 3.1 

coldwater non-

migratory 

Mountain 

Snake 
5.0 7.0 4.0 2.1 4.3 

coldwater migratory 

Upper Snake 4.3 6.0 3.3 1.6 3.6 
coldwater non-

migratory 



 41 

Table 4. Sensitivities of stream temperature changes to changes in maximum and minimum air 

temperatures for the Columbia River Basin during the 2080s 

Maximum air temperature     

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.5 0.8 0.4 0.6 

Columbia Cascades 0.5 0.7 0.7 0.3 0.6 

Columbia Plateau 0.5 0.4 0.7 0.0 0.4 

Intermountain 0.7 0.8 1.1 0.6 0.8 

Middle Snake 0.5 0.5 0.8 0.9 0.7 

Mountain Columbia 0.4 0.7 0.7 0.3 0.5 

Mountain Snake 0.7 1.0 1.0 0.0 0.7 

Upper Snake 0.6 0.7 0.8 0.3 0.6 

 

     

 

Minimum air temperature 

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.7 0.9 0.0 0.6 

Columbia Cascades 0.2 0.7 0.8 1.4 0.7 

Columbia Plateau 0.2 0.6 0.8 0.4 0.5 

Intermountain 0.7 0.9 0.8 0.0 0.6 

Middle Snake 0.8 0.9 1.0 0.5 0.6 

Mountain Columbia 0.3 0.9 0.6 0.2 0.5 

Mountain Snake 0.7 1.1 1.0 0.5 0.8 

Upper Snake 0.8 1.2 0.9 0.5 0.9 

Table 5. Pearson correlations between stream temperature and individual hydroclimatological 

changes for the entire Columbia River Basin during the 2080s.  
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Hydroclimatological 

Component 
Spring Summer Fall Winter 

Maximum air 

temperature 
0.67 0.61 0.49 0.36 

Minimum air 

temperature 
0.65 0.61  0.47 0.34 

Precipitation -0.51 -0.50 -0.36 -0.20 

Streamflow 0.08 0.07 -0.10 -0.02* 

Snowmelt -0.36 0.10 -0.31 -0.26 

Surface runoff -0.39   -0.08 -0.30 -0.28 

Groundwater inflow -0.24 -0.04* -0.12 0.00* 

Lateral soil flow -0.42 -0.32 -0.36 -0.07 

* indicates there was no significant correlation at p =0.05 
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Figures 

Figure 1. Columbia River Basin study area ecological provinces with streamflow and stream 

temperature gauges for calibration. 
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Figure 2. Root mean square errors of the simulated and observed stream temperatures 
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Figure 3. Monthly stream temperature error distributions for all stream temperature gauges. 
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Figure 4. Changes in average precipitation and air temperature (maximum and minimum) for the 

end of the 21st century as compared to the historical time period 
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Figure 5. Spring and summer historical and projected stream temperatures at the subbasin-level. 

Hatched subbasins indicate that drying occurred under climate projections and were removed 

from analyses.  
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Figure 6. Fall and winter historical and projected stream temperatures at the subbasin-level. 

Hatched subbasins indicate that drying occurred under climate projections and were removed 

from analyses. 
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Figure 7. Pearson correlations between changes in stream temperature and hydroclimatological 

components for the Columbia River Basin ecological provinces. Tmax = maximum air 

temperature; Tmin = minimum air temperature; Precip. = precipitation; Flow = streamflow; 

Snomlt = snowmelt; SWQ = surface water runoff; GWQ = groundwater inflow; LatQ = lateral 

soil flow. Asterisks represent no significant correlation at p =0.05 

 

 

 

 

 

 

 

 


