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General Comments 

This paper is generally well written and the findings are interesting. The modeling approach is 

useful and results are timely given that the Columbia River is an important international basin. 

Some of the key findings of the paper seem to contradict our current understanding of process 

drivers of stream temperature. Therefore, more clarification is needed on how the model was 

applied (e.g. calibration parameters) so that the results can be interpreted by the reader. Although 

this is a discussion paper it would also be useful to include a better model description for those 

readers who do not have access to the Ficklin et. al. (2012) paper. 

 

Thank you very much for the detailed and thoughtful comments. We believe we have addressed 

all of these concerns. Please see below. 

 

Specific Comments 

The introduction is well written; however, more context in terms of impacts of stream 

temperature change on aquatic organisms would be useful. 

 

Thanks for the comment. Given the wealth of information regarding stream temperature and 

aquatic organisms, we have only included some of the most relevant publications for this paper. 

We have added a few sentences to the first paragraph of the paper: 

 

”The temporal and spatial variability of stream temperature is a primary regulator of the 

life-history, behavior, ecological interactions, and distribution of most aquatic species (Peterson 

and Kwak, 1999). For example, metabolic processes in ectothermic freshwater organisms (e.g., 

fishes, amphibians, invertebrates) are directly regulated by water temperature (Angilletta, 2009), 

and thus the persistence of populations and the rate of energy flow through aquatic ecosystems is 

dependent on the thermal characteristics of a local habitat (Woodward et al., 2010).  Moreover, 

much like terrestrial species, the timing of important life-history traits such as reproduction and 

migration is heavily dependent on seasonal thermal regimes (Johnson et al., 2009; Woodward et 

al., 2010).  Additionally, stream temperature plays a large role in chemical kinetic rates and is 

important for governing stream management for recreation as well as urban and industrial water 

supplies. Therefore, to better understand hydrologic systems and to better manage water resources 

in a changing environment, it is critical to predict the potential effects of climate variability and 

change on stream temperature, and to characterize how these changes affect the distribution and 

diversity of freshwater taxa.” 

 

Angilletta, M. J.:  Thermal adaptation:  a theoretical and empirical synthesis.  Oxford University 

Press, Oxford, 2009. 

Johnson, A. C.,Acreman, M. C, Dunbar, M. J., Feist, S. W., Giacomello, A. M., Gozlan, R. E., 

Hinsley, S. A., Ibbotson, A. T., Jarvie, H. P., Jones, J. I., Longshawb, M., Maberly, S. C., 

Marsh, T. J., Neal, C., Newman, J. R., Nunn, M. A., Pickup, R. W., Reynard, N. S., 

Sullivan, C. A., Sumpter, J. P., and Williams, R. J.:  The British river of the future: how 

climate change and human activity might affect 



 two contrasting river ecosystems in England, Science of the Total Environment, 407 4787–

4798, 2009. 

Woodward, G., Perkins, D. M., and Brown, L. E.:  Climate change and freshwater ecosystems:  

impacts across multiple levels of organization, Philosophical Transactions:  Biological 

Sciences, 365, 2093-2106, 2010. 

 

 

Section 2.2 - page 5799: The stream temperature model should be presented better here. A simple 

description that includes specific stream temperature equations, spatial and temporal scales of 

modelling, and better descriptions of important variables would be useful, particularly since some 

of the results seem counter-intuitive. This would help the reader understand what the model is not 

representing. 

 

Please see the new detailed model description added to Section 2.2:  

We used the SWAT model coupled with a stream temperature model to predict streamflow 

and stream temperature throughout the Columbia River Basin.  SWAT is an integrative, 

mechanistic model that utilizes inputs of daily weather, topography, land use, and soil type to 

simulate the spatial and temporal dynamics of climate, hydrology, plant growth, and erosion 

(Arnold et al., 1998). Within SWAT, surface runoff and soil water infiltration were simulated using 

the modified Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used 

to estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin et al. 

(2012) SWAT stream temperature model that uses local air temperature and hydrology for stream 

temperature estimation: 

        

 

            

           [1] 

where sub_snow is the snowmelt contribution to streamflow within the subbasin (m3), sub_gw is 

the groundwater contribution to streamflow within the subbasin (m3), sub_surq is the surface water 

runoff contribution to streamflow within the subbasin (m3), sub_latq is the soil water lateral flow 

contribution to streamflow within the subbasin (m3), sub_wyld is the total water yield (all 

contributing hydrologic components) contribution to streamflow within in the subbasin (m3), Tgw is 

the groundwater temperature (°C; annual average input by user), and Tair,lag is the average daily air 

temperature with a lag (°C), and    is a calibration coefficient relating to the relative contribution 

of the surface water runoff and later soil water flow to the local water temperature and is included 

to aid in calibration in case of improper hydrologic model calibration. The lag (days) is incorporated 

to allow the effects of delayed surface runoff and soil water flow into the stream. The 0.1 in 

Equation [1] represents the assumed temperature of snowmelt (0.1 °C).  

 After stream temperature of the local contributing water is determined, the stream 

temperature before the effects of air temperature is determined by: 

𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑤,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ (𝑄𝑜𝑢𝑡𝑙𝑒𝑡 – 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑) + (𝑇𝑤,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑)

𝑄𝑜𝑢𝑡𝑙𝑒𝑡
 

                                                                                                                                         [2] 

where Tw,upstream is the temperature of the streamflow entering the subbasin (°C) and Qoutlet is the 

streamflow discharge at the outlet of the subbasin.  

The final stream temperature is calculated by adding a change to the initial stream 

temperature in the subbasin from differences between stream and air temperature and travel time 

of water through the subbasin. Depending on Tair, the final stream temperature is estimated as: 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + (𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 > 0          [3] 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + ((𝑇𝑎𝑖𝑟 + 𝜀) − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 < 0          [4] 
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where Tair is the average daily air temperature (°C), K is a calibration conductivity parameter, TT 

is the travel time of water through the subbasin (hour) and is calculated from the SWAT 

simulations, and 𝜀 is an air temperature addition coefficient (°C), which was included to account 

for water temperature pulses when Tair is below 0°C. For the case when the effects of Tair and the 

hydrologic contributions are such that the final is Twater < 0°C, the stream temperature model sets 

Twater to 0.1 °C.  Twater is also assumed to be the temperature of water discharge to downstream 

subbasin, and is further routed along the stream network.  The calibration parameter, K, acts as a 

proxy for reach-specific adjustment of the radiative forcing, such as shading due to a vegetation 

canopy or geomorphic changes resulting in differing geometry. Additional details regarding the 

stream temperature model can be found in Ficklin et al. (2012). 

 

Section 2.5 - page 5801: What are the calibration parameters? It is not possible to determine what 

the model is doing without presenting these parameters.  

 

The calibration parameters are discussed in the new stream temperature model section (see 

above).  

 

Also, please present the final set of calibration parameters.  

 

We have included the final set of stream temperature calibration parameters for each subbasin in 

the supplemental information. We have added the sentence “The calibrated stream temperature 

model parameters can be found in the supplemental information. “  at the end of Section 3.2. 

 

In addition, the manuscript does not present any uncertainty analysis. Uncertainty analysis can be 

conducted using the optimization algorithm and should be included in this manuscript. 

 

For this model setup and this study, there are a large number of potential uncertainties. These 

include, as noted by Wilby and Harris [2006] (see comment after next), differences in GCM 

output, downscaling methods, hydrological model structure, hydrological model parameters, and 

greenhouse gas emission scenarios. As you mention, the genetic algorithm seeks the optimal 

calibration parameter set to minimize the error between the simulated and observed values for all 

objective functions. Therefore, it results in equally optimal, but different, parameter sets that 

exhibit trade-offs between the objective functions. However, we believe that a simple analysis of 

uncertainty (e.g., choosing equal optimal parameter sets and viewing the changes in model 

output) is misleading. This exercise reveals small uncertainty values that do not characterize the 

overall model performance and will believe it will mislead readers. See comment after next for 

further discussion.   

 

Section 3.2 - page 5803: The high RMSE during summer months suggests that the model is not 

properly accounting for some factor (likely groundwater contribution, the effect of hyporheic 

exchange flow, shading, and/or bed heat flux). Therefore, results during the summer are also 

likely not representative. Please describe how model results are useful within the context of these 

very large errors. 

 

This problem is likely due to the fact that each of the hydrologic components affect stream 

temperature differently throughout the year, yet we only characterize the influence of the different 

hydrologic components on stream temperature using four calibration parameters for each 

subbasin for each year. Specifically these include influences from snowmelt, groundwater, 

surface water and radiative transfer effects from flow transit time. Instead, we specified 3 

objective functions relating to the errors produced in 3 seasonal time periods. Therefore, the year-

round calibration parameters exhibited trade-offs between the objective functions. A different 



approach would be to allow for seasonally varying calibration parameters that allow the influence 

of the different hydrologic components to vary seasonally. This may allow for components (e.g., 

groundwater) to become more influential in particular seasons. We did not pursue this 

methodology because it greatly increased the number of parameters to be calibrated 

(approximately 25,000 parameters; 4 parameters for each season for ~2100 subbasins). This will 

be left for a future study to characterize the dynamic influence of hydrological components on 

stream temperature. However, for this study we have added a portion in the paper describing that 

the calibration parameters attempt to characterize hydrologic influences on stream temperature 

year-round, and so are essentially juggling trade-offs between the seasonal variations of 

influence. The high RMSE from summer months are due to the near-zero and highly fluctuating 

discharge values amongst the many tributaries. These low discharge values, coupled with 

calibration parameters that are attempting to capture hydrologic component influences occurring 

yearround, present the observed errors.  

 

We addressed these points in the paper in the third paragraph of the Discussion/Conclusions 

section: 

However, we do note that our simulations for stream temperature demonstrated higher 

errors during the summer months. This is due to low and fluctuating discharge values that 

ultimately affect stream temperature. Also, it is likely due to the fact that hydrologic components 

may influence stream temperature differently during different seasons. For this study, we used 

annual calibration parameters and allowed them to vary for each subbasin. An alternative approach 

would be to utilize seasonally varying calibration parameters, and to analyze the dynamic (i.e., 

seasonal) influence of hydrologic components on stream temperature. This may better capture the 

stream temperature fluctuations in the summer months. Nonetheless, our spatially resolved 

methodology using a mechanistic model, SWAT, better characterizes the complex processes of 

stream temperature throughout the CRB by accounting for the hydrologic components contributing 

to stream temperature and its variation.   

 

Section 3.4 - page 5804: Lines 16 and 17 suggest that many of the projections fall within the 

range of modelling error. How is one to know if the projections are a function of expected 

changes or simply a modelling artifact? Further description of model parameters may help clarify 

this issue. 

 

This has been added to the manuscript in the second paragraph of the Discussion/Conclusions 

section: 

As with any modeling study, modeling errors originate from multiple sources. Wilby and 

Harris (2006) discuss these aforementioned uncertainties in detail and ranked their importance in 

decreasing order as follows: differences in GCM output, downscaling methods, hydrological model 

structure, hydrological model parameters, and then greenhouse gas emission scenario. While their 

work was performed for a hydrological model, the results still hold true for our stream temperature 

model. Particular to this study, in order to quantify the differences between errors due to parameter 

uncertainty and GCM (or projection) uncertainty, much more work needs to be done and is well 

beyond the scope of this work.  

 

 Wilby, R. L., and Harris, I.: A framework for assessing uncertainties in climate change impacts: 

low-flow scenarios for the River Thames, UK, Water Resources Research, 42, W02419, 

2006. 

 

Additionally model parameter discussion was included (see above). 

 

Section 3.4 - page 5804: Lines 17 to 20 indicate that a large number of sites were removed. This 



fundamentally changes the outcome of the manuscript and deserves much more attention. What 

might be expected if streams are dry during the winter? This argues that the trends presented may 

not be realistic. This may also present a substantial limitation in the modelling technique. 

Therefore, it would be useful to discuss these findings in terms of expected changes in stream 

temperature even though the model may not represent the important processes during this period. 

 

I believe there might be confusion with what was removed from the analysis. The sentence: 

“In this study, streams that have no flow for an extended time period of the year (and thus 

have no stream temperature) are removed from the stream temperature analyses, but since drying 

streams are an important barrier for aquatic species migration, they will be discussed.“ 

refers to streams that dry naturally (every summer) or from changes in climate (increase in air 

temperature, changes in precipitation). The stream temperatures from these streams were removed 

from the analysis, and the streams that contained water throughout the year were kept in the 

analysis. 

 

This was done for two reasons: 

[1] we do not consider these streams to be reliable refugia for fish 

[2] because we are doing seasonal and annual analyses, including the streams might “skew” the 

stream temperature for this particular stream for when water is within the reach. Therefore the 

results from including streams that dry would not be indicative of the actual stream temperature. 

 

Lastly, because stream drying is extremely important for water resources and aquatic species, we 

include the number of subbasins that were removed from the analysis for each season for the entire 

Columbia River Basin. This at least gives an idea of how many subbasins were removed from the 

analysis.  

 

Section 3.6.1 - page 5806: The findings in lines 20 to 23 differ substantially from our current 

understanding of stream temperature drivers in mountain streams. A better description of the 

causal relationship between groundwater and stream temperature is required given that 

groundwater has been shown by many previous studies to play a large role in governing thermal 

regimes. Why would groundwater not be correlated with stream temperature during the periods 

(summer, winter) where it plays the largest role? 

 

This is correct. We attribute this result to groundwater being an already major component in the 

streamflow during this time period. If groundwater is already the major source of streamflow then 

any changes to groundwater will not likely change the stream temperature. For example, if 85% 

of the streamflow comes from groundwater, and is then decreased to 75%, the change in stream 

temperature isn’t likely to significantly change. We discuss this aspect in the second-to-last 

paragraph in the Discussions and Conclusions section: 

 

“However, no significant correlation was found during the summer, when groundwater is a large 

source of stream flow. This is likely because groundwater is the main source of water for this 

season, any climate-induced changes in groundwater will not have a major effect on stream 

temperature because the main water source for streamflow is still groundwater. For example, if 

85% of the streamflow comes from groundwater, and is then decreased to 75%, the change in 

stream temperature isn’t likely to significantly change. Additionally, no groundwater inflow 

change correlations were found for the winter season.” 

 

Discussion - line 29 on page 5810: This finding does not make physical sense. Many studies have 

shown stream temperature to be inversely correlated with streamflow due to a streams’ increased 

ability to store heat with higher volume. Please explain this finding and describe the physical 



mechanisms. 

 

While it is true that stream temperature is inversely correlated to streamflow, we are not sure this 

is always the case. For example, what if streamflow volume decreases due to a decrease in 

surface runoff and soil lateral flow, but the snowmelt and groundwater components remain the 

same? Will stream temperature still decrease even thought a larger contribution of cooler water 

influx? We are essentially stating that the mix of hydrologic components might matter more than 

the volume of streamflow in determining stream temperatures, which is why we include the 

sentence: 

“Since streamflow is a mix of incoming hydrologic components, it is difficult to determine 

correlations.” 

in the Discussion and Conclusions section.  

 

Discussion - lines 20 to 23 on page 5811: This sentence is not clear. If groundwater is a major 

proportion of the flow then shouldn’t changes in groundwater result in changes in stream 

temperature? The subsequent sentence suggests there were no changes in the winter; however, 

many of the sites were removed from the analysis due to substantial changes. How can this 

finding be supported? Please clarify. 

 

Subbasins were only removed from the analysis if they were dry or frozen for a substantial period 

of time. For this paper we only discuss subbasins that are still projected to hold water in the 

future.  Additionally, we believe we have addressed the groundwater question in one of the above 

comments: 

 

“We attribute this result to groundwater being an already major component in the streamflow 

during this time period. If groundwater is already the major source of streamflow then any 

changes to groundwater will not likely change the stream temperature. For example, if 85% of the 

streamflow comes from groundwater, and is then decreased to 75%, the change in stream 

temperature isn’t likely to significantly change.” 

 

A figure with projected trends shown on a map similar to Figure 1 (with ecological provinces) 

would be useful. 

 

We originally had all of the projected trends figures with ecological provinces, but the amount of 

data shown in addition to the ecological provinces became too cumbersome for viewing. We 

therefore use Figure 1 as a reference figure for the ecological provinces.  

 

Technical Corrections 

Abstract - line 2: Should read "air" temperature, not just temperature. 

 

Fixed within the manuscript. 

 

Introduction - page 5797, line 26: "7" should be spelled out (this applies throughout the 

manuscript). 

 

Fixed throughout the manuscript. 

 

Please ensure to differentiate between air temperature and water temperature (e.g. page 5808). 

 

Fixed throughout the manuscript. 
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This paper describes a coupled hydrologic and stream temperature model driven by 

historical and future climate for the Columbia River Basin. Stream temperatures are 

correlated with air temperatures and hydrologic pathways to determine drivers of stream 

temperature change with climate warming/climate change. 

 

Overall, this paper is well written, of an appropriate length, and is well-presented. 

However, a few major shortcomings exist that should be addressed prior to publication: 

 

1. The contribution of this paper is not adequately described. The authors imply that they 

are the first to use a physically-explicit stream temperature model to assess atmospheric 

and climatic drivers of stream temperature change. However, this is not the case (see 

papers by Isaak and Null for other examples). The introduction acknowledges that 

deterministic numerical models and analytical approaches have been utilized, but then 

focuses on regression approaches. Better describing how this paper contributes to the 

existing literature would improve it immensely. Systematically describing hydroclimate 

effects on stream temperatures is a new and needed contribution, but this contribution is 

currently over-sold. 

 

We certainly don’t mean to imply that we are the first to use a physically-explicit stream 

temperature model. Instead, we wish to recognize these contributions in our literature 

review. To clarify this, we have provided new information and reorganized the 

introduction as shown below:  

 

The temporal and spatial variability of stream temperature is a primary regulator of the 

life-history, behavior, ecological interactions, and distribution of most aquatic species 

(Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater 

organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water 

temperature (Angilletta, 2009), and thus the persistence of populations and the rate of 

energy flow through aquatic ecosystems is dependent on the thermal characteristics of a 

local habitat (Woodward et al., 2010).  Moreover, much like terrestrial species, the timing 

of important life-history traits such as reproduction and migration is heavily dependent on 

seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010).  Additionally, 

stream temperature plays a large role in chemical kinetic rates and is important for 

governing stream management for recreation as well as urban and industrial water 

supplies. Therefore, to better understand hydrologic systems and to better manage water 

resources in a changing environment, it is critical to predict the potential effects of 

climate variability and change on stream temperature, and to characterize how these 

changes affect the distribution and diversity of freshwater taxa. 

Potential impacts of climate change on stream temperatures have been widely 

estimated using field investigations and modeling studies (Webb and Nobilis, 



1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb 

et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013). 

At larger spatial scales, regional regression models have been used to predict the impacts 

of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan, 

1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al., 

2003;Stefan and Preud'homme, 1993). However, regression methods are not sufficient 

predictors of stream temperature because they do not account for hydrologic component 

inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al., 

1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014). 

Neglecting these components severely limits the ability of regression-based models to 

accurately predict spatial variability in stream temperature changes, since the contributions 

of different sources to streamflow will be modified in a changing climate.  Ignoring the 

distinct characteristics of different sources to streamflow therefore negatively impacts the 

assessment of the effects of climate change on aquatic biodiversity at landscape (and larger) 

scales.   

To adequately capture the role of changing hydrology from a changing climate on 

stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and 

Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974) 

stream temperature models, in conjuction with hydrologic models, have been applied with 

success. These models allow stream temperature assessments at the local or regional level. 

For example, our prevous work in the Sierra Nevada mountain range in California found 

subbasin-scale stream temperature differences from region-to-region largely from 

localized changes in hydrology from changes in climate. Additionally, Null et al. (2013) 

found increasing stream tempreatures with increasing elevation due to the transition from 

snow- to rain-dominated, an effect opposite what would be predicted by a model based 

solely on air temperature  

The primary objectives of this work are to [1] predict changes in stream temperature 

over the coming century across the Columbia River Basin at the ecological province level, 

[2] identify the contribution of specific hydrological components (such as snowmelt, 

surface water runoff, etc.) to the overall heat and water budget across the watershed, and 

[3] add to the literature regarding the role of changing hydrology on changes in stream 

temperature. Specifically, we aim to demonstrate the extent to which future changes in 

hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil 

flow as simulated using global climate projections at the subbasin scale— could critically 

affect changes in localized stream temperatures, which are of high importance for aquatic 

species. The Columbia River Basin is a snowmelt-dominated region, where projected 

increases in global air temperatures are expected to result in early snowmelt runoff. These 

changes lead to reduced late spring and summer water discharges that change the thermal 

content of stream flow.  Moreover, previous stream temperature assessments indicate that 

the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010;Chang 

and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in 

part by the land use, hydroclimate and topographic variables of the local region (Chang 

and Psaris, 2013).  

We use a landscape-scale hydrological model—the Soil and Water Assessment 

Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that 

simulates stream temperature based on the effects of subbasin air temperature and 



hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and 

runoff processes, and also incorporates a full range of water quality processes (Gassman et 

al., 2007). SWAT has been found to accurately simulate streamflow in regions where 

snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012; 

Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global 

Climate Models, GCMs) using one representative concentration pathway (RCP) associated 

with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st 

century was used to drive the calibrated SWAT model at the subbasin-scale. For all 

Columbia River Basin ecological provinces, we spatially and temporally explore the 

changes in stream temperature, and interpret these changes with respect to changes in the 

hydrologic system.  

 

2. The stream temperature model is inadequately described. It is simply described as a 

model that ‘reflects the combined influence of meteorological conditions and 

hydrological inputs on water temperature within a stream reach’ (pg 5799, 1st paragraph) 

and model that ‘includes the effects of hydrologic component inputs on stream 

temperature’(pg 5801, 1st full paragraph). Is it a physically-based, regression, or 

equilibrium temperature approach? There is a reference for Ficklin et al. 2012, but since 

the model is fundamental to this study, it must be described much more fully. The 

calibration optimization technique is described in more detail than the stream temperature 

model itself. 

 

Reviewer #1 also commented on this. Please see the new detailed model description 

added in Section 2.2: 

We used the SWAT model coupled with a stream temperature model to predict 

streamflow and stream temperature throughout the Columbia River Basin.  SWAT is an 

integrative, mechanistic model that utilizes inputs of daily weather, topography, land use, 

and soil type to simulate the spatial and temporal dynamics of climate, hydrology, plant 

growth, and erosion (Arnold et al., 1998). Within SWAT, surface runoff and soil water 

infiltration were simulated using the modified Curve Number method (Neitsch et al., 2005). 

The Penman-Monteith method was used to estimate potential evapotranspiration. Stream 

temperature was simulated using the Ficklin et al. (2012) SWAT stream temperature model 

that uses local air temperature and hydrology for stream temperature estimation: 

        

 

            

           [1] 

where sub_snow is the snowmelt contribution to streamflow within the subbasin (m3), 

sub_gw is the groundwater contribution to streamflow within the subbasin (m3), sub_surq 

is the surface water runoff contribution to streamflow within the subbasin (m3), sub_latq 

is the soil water lateral flow contribution to streamflow within the subbasin (m3), sub_wyld 

is the total water yield (all contributing hydrologic components) contribution to streamflow 

within in the subbasin (m3), Tgw is the groundwater temperature (°C; annual average input 

by user), and Tair,lag is the average daily air temperature with a lag (°C), and    is a 

calibration coefficient relating to the relative contribution of the surface water runoff and 

later soil water flow to the local water temperature and is included to aid in calibration in 
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case of improper hydrologic model calibration. The lag (days) is incorporated to allow the 

effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation 

[1] represents the assumed temperature of snowmelt (0.1 °C).  

 After stream temperature of the local contributing water is determined, the stream 

temperature before the effects of air temperature is determined by: 

𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑤,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ (𝑄𝑜𝑢𝑡𝑙𝑒𝑡 – 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑) + (𝑇𝑤,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑)

𝑄𝑜𝑢𝑡𝑙𝑒𝑡
 

                                                                                                                                         [2] 

where Tw,upstream is the temperature of the streamflow entering the subbasin (°C) and Qoutlet 

is the streamflow discharge at the outlet of the subbasin.  

The final stream temperature is calculated by adding a change to the initial stream 

temperature in the subbasin from differences between stream and air temperature and travel 

time of water through the subbasin. Depending on Tair, the final stream temperature is 

estimated as: 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + (𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 > 0          [3] 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + ((𝑇𝑎𝑖𝑟 + 𝜀) − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 < 0          [4] 

where Tair is the average daily air temperature (°C), K is a calibration conductivity 

parameter, TT is the travel time of water through the subbasin (hour) and is calculated from 

the SWAT simulations, and 𝜀 is an air temperature addition coefficient (°C), which was 

included to account for water temperature pulses when Tair is below 0°C. For the case when 

the effects of Tair and the hydrologic contributions are such that the final is Twater < 0°C, 

the stream temperature model sets Twater to 0.1 °C.  Twater is also assumed to be the 

temperature of water discharge to downstream subbasin, and is further routed along the 

stream network.  The calibration parameter, K, acts as a proxy for reach-specific adjustment 

of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes 

resulting in differing geometry. Additional details regarding the stream temperature model 

can be found in Ficklin et al. (2012). 

 

3. Similarly, what is the spatial resolution of the modeling? It may be at the ecological 

province scale and if so average size with ranges of ecological provinces should be 

provided; although pg 5799, 1st paragraph discusses water temperature within stream 

reaches. 

 

The modeling was performed at the subbasin scale, as shown in Figures 5 and 6. We now 

include the average spatial resolution of these subbasins in the study area section: 

 

We used the SWAT model coupled with a stream temperature model to predict 

streamflow and stream temperature throughout the Columbia River Basin at an average 

spatial resolution of 250 km2. 

 

4. Model fit is not great with ~8 points with RMSE in the 13-20 C range from June 

– November (out of about 50 calibration/validation sites total). It is unclear if these 

locations are used when reporting results. If so, are results meaningful and representative 

of stream temperatures? Particularly, one of the main findings from this paper is that 

stream temperature increases the most during summer – but these outliers would 



considerably skew results. If not, how are locations with poor fit removed from results 

analysis? 

 

The points with extremely high RMSE values during the summer months are due to the 

flow-dependent calculation of streamflow when flows are extremely low. This creates 

sporadic nonphysical fluctuations in stream temperature calculations and therefore 

greatly increases the RMSE with observed values. We chose not to remove these sites in 

order to not misrepresent the accuracy of the model for all time durations, because the 

other seasons were adequately simulated. However, if these calibration sites (and all 

sites) become dry or iced-up during the future projections they were removed from the 

analysis. 

 

We discuss the drying or icing of streams in the last paragraph of the Methods section: 

 

Additionally, with changes in climate, it can be expected that drying of streams will 

occur. In this study, streams that have no flow for an extended time period of the year 

(and thus have no stream temperature) are removed from the stream temperature 

analyses, but since drying streams are an important barrier for aquatic species migration, 

they will be discussed. 

 

And also in the Stream temperature projections section: 

It is important to note that a large number of subbasins were removed from this 

analysis due to no-flow conditions (i.e., running completely dry or icing-up) from changes 

in climate (hatched areas in Figures 5 and 6). Of these, winter had the largest number of 

subbasins removed from the analysis (31%), followed by fall (18%), summer (16%), and 

spring (15%). The average period of subbasins with no-flow conditions is projected to 34%, 

or 81 months out of the 240 months for the 2080s time period. We consider these subbasins 

to not be reliable refugia for aquatic species. 

 

Lastly, we have added a section to the third paragraph of the Discussion/Conclusions 

section discussing the stream temperature modeling errors: 

However, we do note that our simulations for stream temperature demonstrated 

higher errors during the summer months. This is due to low and fluctuating discharge 

values that ultimately affect stream temperature. Also, it is likely due to the fact that 

hydrologic components may influence stream temperature differently during different 

seasons. For this study, we used annual calibration parameters and allowed them to vary 

for each subbasin. An alternative approach would be to utilize seasonally varying 

calibration parameters, and to analyze the dynamic (i.e., seasonal) influence of hydrologic 

components on stream temperature. This may better capture the stream temperature 

fluctuations in the summer months. Nonetheless, our spatially resolved methodology using 

a mechanistic model, SWAT, better characterizes the complex processes of stream 

temperature throughout the CRB by accounting for the hydrologic components 

contributing to stream temperature and its variation.   

 

 



Similarly, the text (pg 5803 ln 17-19) says the majority of simulated stream temperatures 

were in the 2-3C RMSE range, but figure 2 shows ~7/50 sites in the 2-3C RMSE range, 

with the large majority > 3C. Text is misleading and oversells model fit. Finally, what 

parameters are adjusted with calibration? It is hard for the reader to make sense of 

calibration without know what parameters are changed. 

 

Thanks for this comment. We completely agree and have changed that sentence to: 

“RMSE values between observed and simulated daily stream temperatures range from 2-

5 °C for the majority of observation sites.” 

 

The calibration algorithm changes 4 parameters in the calculation of stream temperature. 

To make this clear, we have explicitly mentioned them in the Model description section 

as noted above. Also, we have included a table of the final obtained parameters in the 

Supplementary Information.  

 

5. The authors do a nice job of describing stream temperature changes by ecological 

province, but I would like to know what drove changes (e.g., runoff, snowmelt, air 

temperature. . .). Pg. 5804 ln 14-16, pg 5807 ln 7-10, and pg 5807 ln 14-17 are examples 

that could use explanation. 

 

We treat the results section simply as a place to present the results and not explain why 

stream temperatures are change. We further describe why stream temperatures are 

changing in the Discussion/Conclusions section, as well as in Section 3.6, Table 5, and 

Figure 7. In these sections we go into detail why stream temperatures are changing.   

 

6. Pg 5811 1st full paragraph: The authors explain why snowmelt contributes water 

during summer. But why is snowmelt positively correlated with stream temperatures? 

This contradicts current understanding of thermal characteristics of rivers. It must be 

explained more thoroughly. 

 

This result was interesting for us. First, this relationship was not significant, suggesting 

that the correlation was not robust. Secondly, we attribute this finding to the fact that 

snowmelt did not change for a large portion of these basins with changes in climate. To 

us, this indicates that snowmelt (albeit a small amount) is still feeding streams during the 

summer. An increase in stream temperature during the summer (which is normally found) 

and steady flow of snowmelt (or small increases) will likely lead to a positive correlation 

(or a small positive correlation), which is exactly what we found.  This is fully discussed 

in the 6th paragraph of the Discussion/Conclusions: 

 

Snowmelt changes were negatively correlated during the spring, fall, and winter 

seasons, and positively correlated during the summer season. A decrease in snowmelt will 

lead to an increase in stream temperature because the cooling effect that snowmelt has on 

stream temperature is no longer present. In summer, snowmelt and stream temperature 

were positively correlated (albeit not significant), suggesting the counterintuitive notion 

that an increase in snowmelt led to an increase in stream temperature. This can be explained 

largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with 



streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89 

(5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still 

a component of the hydrologic cycle during the summer season.   

 

7. Some of the Pearson correlations are barely significant. Please discuss why you’re 

confident that you’re not overfitting hydrologic parameters. 

 

We agree that overfitting could be the case, but this is a problem with any modeling study 

with limited observational data. For watershed hydrology, we calibrated the Columbia 

River Basin to over 100 streamflow gauges throughout the watershed. Based on the 

results presented in the streamflow calibration section we are fairly confident that the 

hydrology is being adequately simulated. However, for observational stream temperature 

data, the data is much more spatially and temporally limited. Additionally, the validation 

of each site’s calibration with independent data is essentially a check against overfitting. 

 

Even so, we feel that generalizations can be still made on our model results, even if the 

correlations are small, but significant. We include all tables and figures so that readers 

can make informed decisions about whether correlations exist or if there is another factor 

happening. This also sounds like a great opportunity for future research.  

 

 

Minor Revisions: 

 

Title – consider switching ‘biological implications’ to ‘habitat implications’ as this paper 

has no explicit biological criteria, but uses thermal habitat of fish species.  

 

Great idea and we agree. The title has been changed to: 

Climate change and stream temperature projections in the Columbia River basin: habitat 

implications of spatial variation in hydrologic drivers 

 

Abstract ln 9-11: the temperature changes without an extent of time or description of 

climate change are not meaningful.  

 

We have added “late 21st century” to this sentence: 

“We use a hydrologic model coupled with a stream temperature model and downscaled 

General Circulation Model outputs to explore the spatially and temporally varying 

changes in stream temperature for the late 21st century at the subbasin and ecological 

province scale for the Columbia River Basin.” 

 

Pg 5798: How big are ecological provinces? Give average and range.  

 

We have added this sentence in the Study Area section: 

The ecoprovince areas (Figure 1) for this study average 68,000 km2 and range from 300 

km2 (Columbia Gorge) to 145,000 km2 (Mountain Columbia).   

 



Pg 5801 last line: Justify why the model was calibrated using trimesters, but results 

presented using quarters.  

 

This was done for two reasons:  

[1] The stream temperature curve is often a rising limb, peak, and then falling limb. The 

goal of the calibration was to adequate capture the three sections of the stream 

temperature curve. 

[2] We aimed to limit the calibration time by using only three time periods. We could 

have used 4 seasons or 12 months to maximize the objective function, but this would 

have been increasingly computationally expensive and the time spent on calibration 

would have been much longer. 

 

We have now included this information: 

“Four calibration parameters for each subbasin were adjusted using the algorithm, and 

three objectives were specified including the RMSE values for the January-April, May-

August, and September-December time periods to match the stream temperature rising 

limb, peak, and falling limb.” 

 

Additionally, we present the results as seasons because that is most useful for readers and 

water resource managers. While there is a discrepancy between the calibration time 

periods and the time periods of the results, this will have no effect on the results.  

 

Section 3.3 – This may fit better with methods – as climate projections are not your 

results, but rather your input data.  

 

While this study does not solely concentrate on the climate projections, we feel that this 

section is better suited juxtaposed to the stream temperature projections so that readers 

can quickly reference the changes in air temperature and precipitation.  

 

Pg. 5804, ln 20ish: Could you separate dry reaches from iced reaches? Where streams ice 

over, there is likely to be deep pool habitat for fish. But where streams dry, there will be 

mortality and barriers to migration – so these should be described and analyzed 

separately.  

 

This sounds like a good idea and a valid reason to go back and update the stream 

temperature model. Right now the stream temperature model simulates NaN when the 

streamflow is below a particular small streamflow, whether it be due to drying or icing. 

We could potentially ‘flag’ streams that are dry or iced up based on the local air 

temperature to determine if they are dry or iced. However, just based on this results of 

this paper, it might be misleading to be reliant solely on air temperature.  

 

Table 4: Are data for only the 2080 period? Clarify time period of data. 

 

This has been fixed. Please see the new Table 4 caption: 

Table 4. Sensitivities of stream temperature changes to changes in maximum and 

minimum air temperatures for the Columbia River Basin during the 2080s 
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Abstract 38 

 39 

Water temperature is a primary physical factor regulating the persistence and distribution 40 

of aquatic taxa.  Considering projected increases in air air temperature and changes in 41 

precipitation in the coming century, accurate assessment of suitable thermal habitat in 42 

freshwater systems is critical for predicting aquatic species responses to changes in climate 43 

and for guiding adaptation strategies. We use a hydrologic model coupled with a stream 44 

temperature model and downscaled General Circulation Model outputs to explore the 45 

spatially and temporally varying changes in stream temperature for the late 21st century at 46 

the subbasin and ecological province scale for the Columbia River Basin. On average, 47 

stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 48 

2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream 49 

temperature are correlated with changes in air temperature, our results also capture the 50 

important, and often ignored, influence of hydrological processes on changes in stream 51 

temperature. Decreases in future snowcover will result in increased thermal sensitivity 52 

within regions that were previously buffered by the cooling effect of flow originating as 53 

snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil 54 

water flow, and groundwater inflow, are negatively correlated to increases in stream 55 

temperature depending on the ecological province and season.  At the ecological province 56 

scale, the largest increase in annual stream temperature was within the Mountain Snake 57 

ecological province, which is characterized by non-migratory coldwater fish species. 58 

Stream temperature changes varied seasonally with the largest projected stream 59 

temperature increases occurring during the spring and summer for all ecological provinces. 60 

Our results indicate that stream temperatures are driven by local processes and ultimately 61 
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require a physically-explicit modeling approach to accurately characterize the habitat 62 

regulating the distribution and diversity of aquatic taxa. 63 

1. Introduction 64 

The temporal and spatial variability of stream temperature is a primary regulator of 65 

the life-history, behavior, ecological interactions, and distribution of most aquatic species 66 

(Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater 67 

organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water 68 

temperature (Angilletta, 2009), and thus the persistence of populations and the rate of 69 

energy flow through aquatic ecosystems is dependent on the thermal characteristics of a 70 

local habitat (Woodward et al., 2010).  Moreover, much like terrestrial species, the timing 71 

of important life-history traits such as reproduction and migration is heavily dependent on 72 

seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010).  Additionally, 73 

stream temperature plays a large role in chemical kinetic rates and is important for 74 

governing stream management for recreation as well as urban and industrial water supplies. 75 

Therefore, to better understand hydrologic systems and to better manage water resources 76 

in a changing environment, it is critical to predict the potential effects of climate variability 77 

and change on stream temperature, and to characterize how these changes affect the 78 

distribution and diversity of freshwater taxa. 79 

Potential impacts of climate change on stream temperatures have been widely 80 

estimated using field investigations and modeling studies (Webb and Nobilis, 81 

1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb 82 

et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013). 83 

At larger spatial scales, regional regression models have been used to predict the impacts 84 
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of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan, 85 

1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al., 86 

2003;Stefan and Preud'homme, 1993). However, regression methods are not sufficient 87 

predictors of stream temperature because they do not account for hydrologic component 88 

inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al., 89 

1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014). 90 

Neglecting these components severely limits the ability of regression-based models to 91 

accurately predict spatial variability in stream temperature changes, since the contributions 92 

of different sources to streamflow will be modified in a changing climate.  Ignoring the 93 

distinct characteristics of different sources to streamflow therefore negatively impacts the 94 

assessment of the effects of climate change on aquatic biodiversity at landscape (and larger) 95 

scales.   96 

To adequately capture the role of changing hydrology from a changing climate on 97 

stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and 98 

Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974) 99 

stream temperature models, in conjuction with hydrologic models, have been applied with 100 

success. These models allow stream temperature assessments at the local or regional level. 101 

For example, our prevous work in the Sierra Nevada mountain range in California found 102 

subbasin-scale stream temperature differences from region-to-region largely from 103 

localized changes in hydrology from changes in climate. Additionally, Null et al. (2013) 104 

found increasing stream tempreatures with increasing elevation due to the transition from 105 

snow- to rain-dominated, an effect opposite what would be predicted by a model based 106 

solely on air temperature  107 
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The primary objectives of this work are to [1] predict changes in stream temperature 108 

over the coming century across the Columbia River Basin at the ecological province level, 109 

[2] identify the contribution of specific hydrological components (such as snowmelt, 110 

surface water runoff, etc.) to the overall heat and water budget across the watershed, and 111 

[3] add to the literature regarding the role of changing hydrology on changes in stream 112 

temperature. Specifically, we aim to demonstrate the extent to which future changes in 113 

hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil 114 

flow as simulated using global climate projections at the subbasin scale— could critically 115 

affect changes in localized stream temperatures, which are of high importance for aquatic 116 

species. The Columbia River Basin is a snowmelt-dominated region, where projected 117 

increases in global air temperatures are expected to result in early snowmelt runoff. These 118 

changes lead to reduced late spring and summer water discharges that change the thermal 119 

content of stream flow.  Moreover, previous stream temperature assessments indicate that 120 

the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010;Chang 121 

and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in 122 

part by the land use, hydroclimate and topographic variables of the local region (Chang 123 

and Psaris, 2013).  124 

We use a landscape-scale hydrological model—the Soil and Water Assessment 125 

Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that 126 

simulates stream temperature based on the effects of subbasin air temperature and 127 

hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and 128 

runoff processes, and also incorporates a full range of water quality processes (Gassman et 129 

al., 2007). SWAT has been found to accurately simulate streamflow in regions where 130 
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snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012; 131 

Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global 132 

Climate Models, GCMs) using one representative concentration pathway (RCP) associated 133 

with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st 134 

century was used to drive the calibrated SWAT model at the subbasin-scale. For all 135 

Columbia River Basin ecological provinces, we spatially and temporally explore the 136 

changes in stream temperature, and interpret these changes with respect to changes in the 137 

hydrologic system.  138 

The temporal and spatial variability of stream temperature is a primary regulator of 139 

the life history, behavior, ecological interactions, and distribution of most aquatic species 140 

(Peterson and Kwak, 1999). Additionally, stream temperature plays a large role in chemical 141 

kinetic rates and is important for governing stream management for recreation as well as 142 

urban and industrial water supplies. Therefore, to better understand hydrologic systems and 143 

to better manage water resources in a changing environment, it is critical to predict the 144 

potential effects of climate variability and change on stream temperature, and to 145 

characterize how these changes affect the distribution and diversity of freshwater taxa. 146 

 Potential impacts of climate change on stream temperatures have been widely 147 

estimated using field investigations and modeling studies (Webb and Nobilis, 148 

1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb 149 

et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013). 150 

Deterministic, numerical stream temperature models have been used to predict local water 151 

temperature responses to climate change in specific streams (Kim and Chapra, 152 

1997;Sinokrot and Stefan, 1994), while analytical models have also been applied with 153 
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some success for steady state and transient stream temperature prediction (Tang and Keen, 154 

2009;Edinger et al., 1974). At larger spatial scales, regional regression models have been 155 

used to predict the impacts of climate change on stream temperatures (Mohseni et al., 156 

1998;Mohseni and Stefan, 1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et 157 

al., 2003;Webb et al., 2003;Stefan and Preud'homme, 1993). However, regression methods 158 

are not sufficient predictors of stream temperature because they do not account for 159 

hydrologic component inputs to the stream such as snowmelt, groundwater, and surface 160 

runoff (Constantz et al., 1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 161 

2012;MacDonald et al., 2014). Neglecting these components severely limits the ability of 162 

regression-based models to accurately predict spatial variability in stream temperature 163 

changes, since the contributions of different sources to streamflow will be modified in a 164 

changing climate.  Ignoring the distinct characteristics of different sources to streamflow 165 

therefore negatively impacts the assessment of the effects of climate change on aquatic 166 

biodiversity at landscape (and larger) scales.   167 

The primary objectives of this work are to predict changes in stream temperature 168 

over the coming century across the Columbia River Basin at the ecological province level 169 

and to identify the contribution of specific hydrological components to the overall heat and 170 

water budget across the watershed. The Columbia River Basin is a snowmelt-dominated 171 

region, where projected increases in global temperatures are expected to result in early 172 

snowmelt runoff. These changes lead to reduced late spring and summer water discharges 173 

that change the thermal content of stream flow.  Moreover, previous stream temperature 174 

assessments indicate that the Columbia River Basin is sensitive to changes in climate 175 

(Mantua et al., 2010;Chang and Psaris, 2013); these sensitivities vary spatially and are 176 
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governed in part by the land use, hydroclimate and topographic variables of the local region 177 

(Chang and Psaris, 2013). Here we aim to demonstrate the extent to which future changes 178 

in hydrology—specifically streamflow, surface runoff, snowmelt, groundwater inflow, and 179 

lateral soil flow as simulated using global climate projections at the subbasin scale— could 180 

critically affect changes in local stream temperatures, which are of high importance for 181 

aquatic species.  182 

We use a landscape-scale hydrological model—the Soil and Water Assessment 183 

Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that 184 

simulates stream temperature based on the effects of subbasin air temperature and 185 

hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and 186 

runoff processes, and also incorporates a full range of water quality processes (Gassman et 187 

al., 2007). SWAT has been found to accurately simulate streamflow in regions where 188 

snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012; 189 

Zang et al., 2012). Downscaled output from 7 General Circulation Models (or Global 190 

Climate Models, GCMs) using one representative concentration pathway (RCP) associated 191 

with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st 192 

century was used to drive the calibrated SWAT model at the subbasin-scale. For all 193 

Columbia River Basin ecological provinces, we spatially and temporally explore the 194 

changes in stream temperature, and interpret these changes with respect to changes in the 195 

hydrologic system.  196 

2. Materials and Methods 197 

2. 1 Study area 198 

Formatted: Space After:  10 pt
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The CRB encompasses portions of 7 seven states in the western United States and 199 

the Canadian province of British Columbia. The CRB for this study is defined as the area 200 

that flows into the The Dalles, Oregon (Figure 1) and has a surface area of 613,634 km2. 201 

The water resources in the CRB have been extensively developed in the past 70 years for 202 

hydroelectric power, agricultural irrigation, and urban use. The CRB study area has been 203 

extensively discussed in Hatcher and Jones (2013), Mantua et al. (2010), and Payne et al. 204 

(2004). 205 

Subbasins were aggregatedWe aggregate subbasins into ecological provinces 206 

according to designations Northwwest Habitat Institute (N.H.I., 2008). Ecological 207 

provinces are delineated based on species composition within the region and environmental 208 

conditions. Because the ecological provinces do not expand into Canada, we extrapolated 209 

the boundaries based on watershed delineations. The ecoprovince areas (Figure 1) for this 210 

study average 68,000 km2 and range from 300 km2 (Columbia Gorge) to 145,000 km2 211 

(Mountain Columbia).  For descriptive purposes, we further characterize ecological 212 

provinces as either ‘warmwater’ (Centrarchidae – bass, bluegill, crappie; Percidae – perch, 213 

walleye), ‘coldwater migratory’ (Salmonidae – salmon, steelhead, trout], and ‘coldwater 214 

non-migratory’ (Salmonidae – trout, whitefish) (Table 2), based on predominant focal fish 215 

species (N.H.I., 2008).  216 

 217 

2.2 Modeling stream flow and water quality using SWAT  218 

We used the SWAT model coupled with a stream temperature model to predict 219 

streamflow and stream temperature throughout the Columbia River Basin at an average 220 

spatial resolution of 250 km2.  SWAT is an integrative, mechanistic model that utilizes 221 
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inputs of daily weather, topography, land use, and soil type to simulate the spatial and 222 

temporal dynamics of climate, hydrology, plant growth, and erosion (Arnold et al., 1998). 223 

Within SWAT, surface runoff and soil water infiltration were simulated using the modified 224 

Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used to 225 

estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin 226 

et al. (2012) SWAT stream temperature model that uses local air temperature and 227 

hydrology for stream temperature estimation: 228 

        229 

 230 

            231 

           [1] 232 

where sub_snow is the snowmelt contribution to streamflow within the subbasin (m3), 233 

sub_gw is the groundwater contribution to streamflow within the subbasin (m3), sub_surq 234 

is the surface water runoff contribution to streamflow within the subbasin (m3), sub_latq 235 

is the soil water lateral flow contribution to streamflow within the subbasin (m3), sub_wyld 236 

is the total water yield (all contributing hydrologic components) contribution to streamflow 237 

within in the subbasin (m3), Tgw is the groundwater temperature (°C; annual average input 238 

by user), and Tair,lag is the average daily air temperature with a lag (°C), and    is a 239 

calibration coefficient relating to the relative contribution of the surface water runoff and 240 

lateral soil water flow to the local water temperature and is included to aid in calibration in 241 

case of improper hydrologic model calibration.  The lag (days) is incorporated to allow the 242 
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effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation 243 

[1] represents the assumed temperature of snowmelt (0.1 °C).  244 

 After stream temperature of the local contributing water is determined, the stream 245 

temperature before the effects of air temperature is determined by: 246 

𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑤,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ (𝑄𝑜𝑢𝑡𝑙𝑒𝑡 – 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑) + (𝑇𝑤,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑)

𝑄𝑜𝑢𝑡𝑙𝑒𝑡
 247 

                                                                                                                                         [2] 248 

where Tw,upstream is the temperature of the streamflow entering the subbasin (°C) and Qoutlet 249 

is the streamflow discharge at the outlet of the subbasin.  250 

The final stream temperature is calculated by adding a change to the initial stream 251 

temperature in the subbasin from differences between stream and air temperature and travel 252 

time of water through the subbasin. Depending on Tair, the final stream temperature is 253 

estimated as: 254 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + (𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 > 0          [3] 255 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + ((𝑇𝑎𝑖𝑟 + 𝜀) − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 < 0          [4] 256 

where Tair is the average daily air temperature (°C), K is a calibration conductivity 257 

parameter, TT is the travel time of water through the subbasin (hour) and is calculated from 258 

the SWAT simulations, and 𝜀 is an air temperature addition coefficient (°C), which was 259 

included to account for water temperature pulses when Tair is below 0°C. For the case when 260 

the effects of Tair and the hydrologic contributions are such that the final is Twater < 0°C, 261 

the stream temperature model sets Twater to 0.1 °C.  Twater is also assumed to be the 262 
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temperature of water discharge to downstream subbasin, and is further routed along the 263 

stream network.  The calibration parameter, K, acts as a proxy for reach-specific adjustment 264 

of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes 265 

resulting in differing geometry. Additional details regarding the stream temperature model 266 

can be found in Ficklin et al. (2012). 267 

.  268 

 269 

2.3 Input Data 270 

SWAT input parameter values for topography, land cover, and soils data were 271 

compiled from freely-available federal and state databases. A 30-meter Digital Elevation 272 

Model (USGS) formed the basis for watershed and sub-basin delineation. Soil properties 273 

were obtained from the STATSGO soil dataset. The 2001 National Land Cover Database 274 

was used for land cover/land use. Meteorological data (air temperature, precipitation, and 275 

wind speed) were extracted from Maurer et al. (2002) and relative humidity and solar 276 

radiation were generated within SWAT (Neitsch et al., 2005).The Columbia River Basin 277 

natural flow data that were used for streamflow calibration were obtained from output from 278 

a calibrated Variable Infiltration Capacity Model (VIC) model (from 279 

http://cses.washington.edu/) and the United States Geological Survey Hydro-Climatic Data 280 

Network (HCDN; Slack et al. (1993)). These data represent streamflow that would occur 281 

if no reservoirs or streamflow diversions were present within the basin. The HCDN is a 282 

hydrologic dataset developed to study surface water conditions throughout the United 283 
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States that only fluctuate with changes in local climatic conditions and is therefore apt for 284 

use in climate change studies (Slack et al., 1993). SWAT was run at the monthly time step. 285 

Climatic projections from seven GCMs (Table 1) and one RCP (8.5) were input 286 

into the calibrated SWAT model. Daily downscaled output from the seven GCMs (RCP 287 

8.5) were obtained from the Downscaled CMIP3 and CMIP5 Climate and Hydrology 288 

Projections archive (Maurer et al., 2013). RCP 8.5 represents the highest increase in 289 

radiative forcing of the Coupled Model Intercomparison Project – phase 5 (CMIP5; Taylor 290 

et al. (2011)) projections, and is based on an increased radiative forcing of 8.5 Wm-2 291 

(relative to pre-industrial values) at the end of the 21st century. Downscaling was achieved 292 

using the daily bias-corrected and constructed analogs (BCCA) method (Maurer et al., 293 

2010). In summary, the BCCA procedure consists of two steps. The first step is a bias 294 

correction using a quantile mapping technique which is applied to raw GCM output. 295 

Quantile mapping bias correction has been widely and successfully used in climate model 296 

downscaling (Wood et al., 2004). The bias correction step is followed by spatial 297 

downscaling using a constructed analogues approach for each day using a linear 298 

combination of days drawn from the historic record (Hidalgo et al., 2008). Maurer et al. 299 

(2010) found that the BCCA method consistently outperformed the Bias-300 

Correction/Spatial-Downscaling method (BCSD) and the Constructed Analogues (CA) 301 

approach in capturing the daily large-scale skill and translating it to simulated streamflows 302 

that accurately reproduced historical streamflows.  303 

 304 

2.4 SWAT streamflow calibration  305 
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The program Sequential Uncertainty Fitting Version 2 (SUFI-2; Abbaspour et al. 306 

(2007)) was used to automatically-calibrate SWAT streamflow at 104 sites in the Columbia 307 

River Basin (Figure 1). Initial and default SWAT model parameters were varied 308 

simultaneously until an optimal solution was met. Three statistics were used to evaluate 309 

model efficiency: [1] the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970), [2] the 310 

coefficient of determination (R2), and [3] a modified efficiency criterion (Φ). Φ is the result 311 

of the coefficient of determination, R2, multiplied by the regression line slope, m (Krause 312 

et al., 2005). This statistic captures the discrepancy in the magnitude of the observed and 313 

simulated streamflow (captured by m) as well as the dynamics (captured by R2). For all 314 

previously-mentioned statistics, a perfect simulation is represented by a value of 1. A split-315 

sample approach was used for calibration and validation, and the calibration and validation 316 

periods differed at each streamflow gauge depending on streamflow data availability.  317 

 318 

2. 5 SWAT stream temperature calibration 319 

Monthly stream temperatures were predicted using the SWAT stream temperature 320 

model of Ficklin et al. (2012). This model includes the effects of hydrologic component 321 

inputs (e.g., snowmelt, groundwater, and surface runoff) on stream temperature. Previous 322 

studies have demonstrated that this stream temperature model performs better than linear 323 

regressions that use air temperature alone (Ficklin et al., 2013;Barnhart et al., 2014). The 324 

model requires four calibration parameters for each subbasin in the SWAT setup. Since the 325 

model is not incorporated into the previously mentioned SWAT-CUP software, we utilized 326 

the steady-state S-metric evolutionary multi-objective optimization algorithm (SMS-327 

EMOA) to calibrate the stream temperature parameters after hydrologic calibration was 328 



 15 

performed (Emmerich et al., 2005;Beume et al., 2007). SMS-EMOA is an efficient and 329 

effective Pareto optimization evolutionary algorithm for finding solutions to multi-330 

objective optimization problems. The algorithm seeks optimal solutions that maximize the 331 

hypervolume (S-metric)—which can be thought of as the volume of dominated space—332 

and has been theoretically proven to converge to the Pareto set (Fleischer, 2003;Emmerich 333 

et al., 2005;Beume et al., 2007). For a recent application, see Stagge and Moglen (2014). 334 

For this study, SMS-EMOA was used to seek the optimal set of calibration 335 

parameters to reduce the differences between simulated stream temperatures from SWAT 336 

and observed values. Observed stream temperatures were obtained from 50 sites within the 337 

Columbia River Basin between 1970-1992. Four calibration parameters for each subbasin 338 

were adjusted using the algorithm, and three objectives were specified including the RMSE 339 

values for the January-April, May-August, and September-December time periods to 340 

match the stream temperature rising limb, peak, and falling limb.. Further objective 341 

functions were intentionally omitted to simplify the analysis. This decision is justified by 342 

the limited range of stream temperatures matched by the algorithm. Conversely, 343 

hydrological calibration attempts to match flows that vary over orders of magnitude and 344 

therefore require additional objectives to match all portions of the hydrograph. 345 

Convergence of the stream temperature calibration algorithm was assumed to be met when 346 

the S-metric did not vary more than 1% between 3 generations. The final set of solutions 347 

exhibited trade-offs between the three objective functions; therefore, a single solution—348 

more specifically, a single set of calibration parameters—was then chosen from this set to 349 

be used in the calibrated SWAT simulation.  350 

 351 
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2. 6 Statistical analyses  352 

The impacts of potential climate change on streamflow and hydrologic components 353 

were evaluated by comparing historical time period (1961-1990) simulations to those using 354 

the GCMs in Table 1 for the late-21st century (2080s; 2081-2099). When describing the 355 

ensemble average (or standard deviation) of a time period (i.e., late-21st century), this value 356 

is the average (or standard deviation) of the 7 seven CMIP5 GCMs for this time period. 357 

Months are lumped into seasons for temporal analysis and are defined as spring (April-358 

June), summer (July-September), fall (October and November), and winter (December-359 

March). These seasons are defined to capture the snowmelt and dry/low flow seasons. 360 

Pearson correlations using a bootstrap method were used to measure the relationship 361 

between annual and seasonal changes in stream temperature and individual 362 

hydroclimatological components. A total of 10,000 bootstrap correlation iterations were 363 

run. Statistical significance was determined at the  α = 0.05 level. For statistical 364 

significance, the 5th and 95th percentiles of the bootstrap correlation iterations must agree 365 

on the correlation sign (+ or -). If the lower (higher) end of our confidence interval is above 366 

(below) zero, we can conclude that the correlation between stream temperature and 367 

hydroclimatological component change is significant at the α = 0.05 level (two-tailed). 368 

Additionally, with changes in climate, it can be expected that drying of streams will occur. 369 

In this study, streams that dry have no flow for an extended time period of the year (and 370 

thus have no stream temperature) are removed from the stream temperature analyses, but 371 

since drying streams are an important barrier for aquatic species migration, they will be 372 

discussed.  373 

3. Results 374 
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3.1 Hydrologic model calibration 375 

 NS, R2 and Φ average and standard deviation values for the calibration and 376 

validation time periods are shown in Table 2. Overall, the model efficiency statistics show 377 

that the SWAT model adequately simulated streamflow compared to observations. The 378 

average NS coefficient for the calibration and validation period was 0.69 and 0.64, 379 

respectively, with a standard deviation of 0.13 for the calibration period and 0.13 for the 380 

validation period. This indicates that a large portion of the NS values for both time periods 381 

varied only 0.13 around their respective means, which is still within acceptable NS limits 382 

(Moriasi et al., 2007). The other model efficiency statistics, R2 and Φ, indicate similar 383 

model performance.  384 

 385 

3. 2 Stream temperature model calibration 386 

After SWAT was calibrated for discharge, the model was used within the SMS-387 

EMOA algorithm to calibrate the stream temperature model. RMSE values between 388 

observed and simulated daily stream temperatures range from 2-3 5 °C for the majority of 389 

observation sites. The resulting monthly RMSE values for each site are shown in Figure 2. 390 

No distinct spatial distributions of the magnitude of errors are present. Errors distinguished 391 

by month of year were also quantified (Figure 3). Errors are largest during the summer 392 

months of July through September. Lowest RMSE values were present between December 393 

and February. Also, the model gives highly unrealistic (RMSE >15 °C) results for a 394 

moderate number of points, especially during summer months. This is due to low values 395 

of discharge within reaches during the summer months. Stream temperature is strongly 396 

inversely dependent on streamflow, and very small values of discharge cause the model to 397 
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produce uncharacteristically high stream temperature simulation values. The calibrated 398 

stream temperature model parameters can be found in the supplemental information.  399 

 400 

3.3 Temperature and precipitation projections 401 

 Ensemble average projections of maximum and minimum air temperature and 402 

precipitation, as compared to the historical time period, are shown in Figure 4. Overall, the 403 

maximum and minimum air temperatures vary spatially throughout the CRB, with an 404 

average ensemble increase of 5.5 °C for maximum air temperature and 5.4 °C for minimum 405 

air temperature. All GCMs agreed that air temperature is expected to increase by the end 406 

of the 21st century. Precipitation projections, on the other hand, varied between downscaled 407 

GCM projections, with an overall average of a 14.4% increase compared to the historical 408 

time period. 409 

 410 

3.4 Stream temperature projections 411 

Figures 5 and 6 display the spring/summer and fall/winter historical and projected 412 

stream temperatures for the CRB. Simulated stream temperatures are projected to increase 413 

throughout the CRB, with largest increases occurring in the east-central portion of the 414 

CRB. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 415 

°C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. It is important to note that 416 

a large number of subbasins were removed from this analysis due to no-flow conditions 417 

(i.e., running completely dry or icing-up) from changes in climate (hatched areas in Figures 418 

5 and 6). Of these, winter had the largest number of subbasins removed from the analysis 419 

(31%), followed by fall (18%), summer (16%), and spring (15%). The average period of 420 
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subbasins with no-flow conditions is projected to 34%, or 81 months out of the 240 months 421 

for the 2080s time period. We consider these subbasins to not be reliable refugia for aquatic 422 

species. 423 

Simulated stream temperature changes also vary at the ecological province scale 424 

(Table 3). At the annual time scale, the largest stream temperature increases (4.3 °C) 425 

occurred within the Mountain Snake ecological province, which is characterized by cold-426 

water migratory fish species. The largest inter-annual variation around the mean occurred 427 

in the Upper Snake ecological province, which is characterized by non-migratory 428 

coldwater species, with a +/- 3.8 °C standard deviation. Important differences between 429 

ecological provinces occurred at the seasonal time scale. Overall, the largest spring 430 

increase in stream temperature occurred in the Mountain Snake (5.0 °C) and Upper Snake 431 

(4.3 °C), both containing coldwater species. The largest summer temperature increase 432 

compared to the historical time period was for the Mountain Snake ecological province 433 

with a 7 °C increase in average monthly stream temperature, followed by Upper Snake (6 434 

°C), Blue Mountain (5.3 °C), Intermountain (5.0 °C), and Mountain Columbia (5.0 °C), 435 

indicating that ecological provinces with coldwater species will experience some of the 436 

largest increases in water stream temperature in the basin. These large increases are 437 

expected during the summer because air temperature is at its highest and streamflow is at 438 

its lowest.  439 

Fall and winter had the smallest increases in stream temperature including a CRB 440 

average of 2.9 °C for fall and 1.6 °C for winter. This was expected because this is when air 441 

temperatures are the lowest, and cold precipitation recharge and streamflow are highest, 442 

resisting stream temperature increases. The basins with the highest stream temperature 443 
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increases for the fall and winter time period were the Mountain Snake and Blue Mountain 444 

(4.0/2.1 °C). 445 

 446 

3.5 Sensitivities of stream temperature changes to air temperature 447 

We define TSmax and TSmin as the thermal sensitivity or stream temperature change 448 

per 1 °C of maximum or minimum air temperature change. For the entire CRB and the 449 

water year annual time scale, the value for the average TSmax is 0.6 and that for TSmin is 450 

0.86, demonstrating that, on average, the increases in stream temperature seen by the 2080s 451 

are to a larger degree tied to future changes in minimum air temperatures (Table 4). On the 452 

seasonal time scale, stream temperature changes during the summer were the most sensitive 453 

to changes in maximum air temperature with TSmax equal to 0.8, followed by spring (0.7), 454 

fall (0.5), and winter (0.3). For minimum air temperature sensitivities, however, spring 455 

values of TSmin were the highest of all seasons, equal to 0.9, followed by summer (0.8), fall 456 

(0.5), and winter (0.3). Air Ttemperature sensitivities varied by ecological province as well 457 

as by season. At the annual and seasonal time scales the Intermountain, Middle Snake, and 458 

Mountain Snake ecological provinces exhibited the highest values of TSmax.  459 

 For minimum air temperatures, the ecological provinces that were the most 460 

sensitive were Columbia Cascade, Mountain Snake, and Upper Snake. Summer once again 461 

had the highest overall TSmin values. However, the largest TSmin values were found in the 462 

winter and spring seasons, with the Columbia Cascades in the winter (1.4) and the 463 

Mountain Snake and Upper snake exhibiting TSmin values of 1.1 and 1.2 in the spring. 464 

Overall, it can be seen that spring has higher TSmin values than TSmax, a possible artifact of 465 

snowmelt (see Discussion).  466 
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 467 

3.6 Sensitivities of stream temperature to changes in hydroclimatological components 468 

3.6.1 Correlations at the Columbia River Basin scale 469 

At the CRB scale, all stream temperature changes were significantly correlated to 470 

all hydroclimatic components during the spring and fall seasons for the 2080s (Table 5), 471 

suggesting that during these seasons stream temperatures are highly sensitive to changing 472 

environments. For summer, groundwater inflow change was the only variable not 473 

significantly correlated to stream temperature changes. For winter, streamflow and 474 

groundwater inflow changes were the only variables not significantly correlated to stream 475 

temperature changes (see Discussion). 476 

  477 

3.6.2 Correlations at the ecological province scale 478 

 Correlations between stream temperature and hydroclimatological components at 479 

the seasonal time scale and ecological province spatial scale for the 2080s suggest that 480 

multiple hydroclimatological components affect stream temperatures (Figure 7). As 481 

expected, maximum and minimum air temperatures were significantly positively correlated 482 

to changes in stream temperatures for all seasons and nearly all ecological provinces. The 483 

only two ecological provinces where no significant correlations were found between air 484 

and water stream temperature were the Blue Mountain and Upper Snake provinces (see 485 

Discussion), which are characterized by migratory salmonids and non-migratory 486 

salmonids, respectively. Additionally, precipitation changes were negatively correlated to 487 

stream temperature changes for all seasons and nearly all ecological provinces. 488 
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For spring, nearly all hydroclimatological components were significantly correlated 489 

to stream temperature changes for each ecological province. Streamflow changes were not 490 

correlated to stream temperature changes within the Blue Mountain, Intermountain, and 491 

Upper Snake ecological provinces, which are characterized by warmwater species, 492 

migratory coldwater salmonids, and non-migratory coldwater salmonids, respectively. We 493 

also found that snowmelt changes within the Blue Mountain ecological province were not 494 

correlated to stream temperature changes. However, within the Blue Mountain ecological 495 

province we find that snowmelt is not a large portion of the hydrological cycle during this 496 

season. 497 

 For the summer season, no relationships were found for streamflow, snowmelt, 498 

surface runoff, and groundwater inflows within multiple ecological provinces. Overall, 499 

streamflow was found to be significantly correlated with stream temperature within the 500 

Columbia Cascades and Middle Snake, which are characterized by coldwater migratory 501 

salmonids, and Mountain Columbia, which is characterized by non-migratory coldwater 502 

salmonids, ecological provinces.  Within the Columbia Plateau, Intermountain, and 503 

Mountain Columbia ecological provinces, we find snowmelt to still be a large portion of 504 

the hydrological cycle, thus any reductions of snowmelt do not significantly affect stream 505 

temperature. Lastly, surface runoff and groundwater inflows were not significantly 506 

correlated to the stream temperature changes in the Mountain Columbia and Upper Snake 507 

ecological provinces and the Mountain Snake ecological province, respectively. Within 508 

these regions we did not find large changes in surface runoff or groundwater inflows. 509 

 For the fall season, we find that changes in stream temperature within the Blue 510 

Mountain ecological province, which is characterized by migratory coldwater salmonids, 511 
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is only positively correlated to changes in maximum and minimum air temperature, and 512 

thus loses its ties to the other hydrology-related components. Note also that during the fall 513 

season groundwater inflow changes become a non-significant factor in stream temperature 514 

changes for five out of the eight ecological provinces. The only ecological provinces where 515 

groundwater inflow changes were significantly correlated to stream temperature changes 516 

were the Columbia Plateau, Intermountain, characterized by warmwater species, and the 517 

Middle Snake, which is characterized by coldwater migratory species.  These are regions 518 

where groundwater inflows increased and therefore contributed cooling effects during this 519 

time period. 520 

 During the winter season, changes in multiple hydroclimatological components 521 

within multiple ecological provinces are not significantly correlated to changes in stream 522 

temperature. Generally, changes in maximum air temperature, minimum air temperature, 523 

precipitation, snowmelt, and surface runoff are still significantly correlated to changes in 524 

stream temperature. These relationships make sense because during the winter season, 525 

increases in maximum and minimum air temperatures in conjunction with changes in 526 

precipitation will have the largest effects on two hydrological components: snowmelt and 527 

surface runoff. This is the season where snowmelt-dominated regions with large snowmelt 528 

components may perhaps become rain-dominated regions with large surface runoff 529 

components. 530 

 531 

4. Discussion and Conclusions  532 

The importance of stream temperature to aquatic species distributions, interactions, 533 

behavior, and persistence is well documented (Matthews, 1998), particularly for coldwater-534 
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adapted taxa such as trout and salmon (Milner et al., 2003;McCullough, 1999).  535 

Considering predicted increases in air temperature in the coming century, accurate 536 

assessment of suitable thermal habitat is critical for predicting species responses to changes 537 

in climate.  Accordingly, recent research has investigated the potential impacts of climate 538 

change on aquatic taxa by explicitly incorporating regression-based stream temperature 539 

predictions into ecological models (Britton et al., 2010;Al-Chokhachy et al., 2013). While 540 

simplified regression studies may boast low RMSE values between simulated and observed 541 

stream temperatures, the relatively broad spatial scale of many of these studies (Mohseni 542 

et al., 2003), neglects the variety of local hydrological systems that are differentially driven 543 

by the array of inputs to each system (e.g., snowmelt, groundwater, runoff). The resulting 544 

stream temperature model inaccuracies from this approach, clustered in particular regions 545 

can be particularly problematic when investigating local population responses and range 546 

shifts at the edge of species’ distributions. Our results highlight this issue by characterizing 547 

the varied relative contributions of different hydrological component inputs among 548 

ecological provinces and suggest the complex system-level regulation of water stream 549 

temperature 550 

As with any modeling study, modeling errors originate from multiple sources. the 551 

error from parameter uncertainty may be as large from GCM (or projection) uncertainty. 552 

Wilby and Harris (2006) discuss these aforementioned uncertainties in detail and ranked 553 

their importance in decreasing order as follows: differences in GCM output, downscaling 554 

methods, hydrological model structure, hydrological model parameters, and then 555 

greenhouse gas emission scenario. While their work was performed for a hydrological 556 

model, the results still hold true for our stream temperature model. Particular to this study, 557 
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inIn order to quantify the differences between these two uncertaintieserrors due to 558 

parameter uncertainty and GCM (or projection) uncertainty, much more work needs to be 559 

done and is well beyond the scope of this work and is probably the subject of an entire 560 

manuscript.  561 

However, we do note that oOur simulations for stream temperature demonstrated 562 

higher errors during the summer months. This is due to low and fluctuating discharge 563 

values that ultimately affect stream temperature. Also, it is likely due to the fact that 564 

hydrologic components may influence stream temperature differently during different 565 

seasons. For this study, we used annual calibration parameters and allowed them to vary 566 

for each subbasin. An alternative approach that will be pursued willwould be to utilize 567 

seasonally varying calibration parameters, and to analyze the dynamic (i.e., seasonal) 568 

influence of hydrologic components on stream temperature. This may better capture the 569 

stream temperature fluctuations in the summer months. Nonetheless, our spatially resolved 570 

methodology using a mechanistic model, SWAT, better characterizes the complex 571 

processes of stream temperature throughout the CRB by accounting for the hydrologic 572 

components contributing to stream temperature and its variation.   573 

   Within the CRB, Wenger et al. (2013) used air temperature as a surrogate for water 574 

stream temperature to predict the response of Bull trout (Salmonidae: Salvelinus 575 

confluentus) to predicted changes in climate, while Beer and Anderson (2013) used air 576 

temperature-water stream temperature relationships to predict the impacts of climate 577 

change on salmonid life-histories.  These approaches are common (Britton et al., 578 

2010;Tisseuil et al., 2012;Al-Chokhachy et al., 2013), yet overlook important differences 579 

in the inputs influencing water stream temperature across the basin.  For example, our 580 
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results suggest that hydrologic contributions from snowmelt are relatively important 581 

drivers of water stream temperature within ecological provinces with primarily non-582 

migratory coldwater focal fish species.  The influence of snowmelt tends to buffer water 583 

stream temperatures against increases in air temperature during the year relative to other 584 

areas in the watershed.  In this case, a regression-based approach to estimating water stream 585 

temperature or the use of air temperature as a surrogate for water stream temperature will 586 

tend to overestimate water stream temperature, and thus underestimate the amount of 587 

suitable thermal habitat for coldwater species.  In addition, decreases in snowcover (and 588 

snowmelt) in the future will result in increased thermal sensitivity within these formerly 589 

buffered regions.  For example, current water stream temperatures in the Mountain Snake 590 

ecological province are buffered by relatively high levels of snowmelt, yet decreases in 591 

future snowcover are predicted to result in this province experiencing the greatest seasonal 592 

and annual increases in water stream temperature in the coming century. 593 

 Some of the relationships between stream temperature and hydroclimatic changes 594 

at the CRB scale were expected, such as increases in maximum air temperature and 595 

minimum air temperature resulting in increases in stream temperature, which were 596 

significant for all seasons for the entire CRB. This relationship is well-established and 597 

many models have been developed solely based on air-stream temperature relationships 598 

(Stefan and Preud'homme, 1993;Mohseni and Stefan, 1999). Also, a decrease in 599 

precipitation led to an increase in stream temperature, largely because greater runoff and 600 

infiltration leads to larger volumes of water in the stream channel, and thus increases the 601 

amount of energy needed to heat the water. Precipitation changes had the largest negative 602 

correlations during the spring and summer seasons, followed by fall and winter. Both 603 
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surface runoff and lateral soil flow changes follow the same correlation patterns as 604 

precipitation, as both are inherently tied to the amount of incoming precipitation. 605 

Additionally, streamflow is tied to all hydrological components within the subbasin and 606 

the incoming streamflow that is entering the streamflow reach. Since streamflow is a mix 607 

of incoming hydrologic components, it is difficult to determine correlations. However, 608 

much research has assumed that streamflow and stream temperature changes are inversely 609 

correlated (van Vliet et al., 2011). The correlations within this study were significant and 610 

positively correlated for the spring, summer, and fall seasons; however, all correlations 611 

were below 0.10, which suggests the correlations were relatively minor, especially 612 

compared to other components. 613 

 Snowmelt changes were negatively correlated during the spring, fall, and winter 614 

seasons, and positively correlated during the summer season. A decrease in snowmelt will 615 

lead to an increase in stream temperature because the cooling effect that snowmelt has on 616 

stream temperature is no longer present. In summer, snowmelt and stream temperature 617 

were positively correlated (albeit not significant), suggesting the counterintuitive notion 618 

that an increase in snowmelt led to an increase in stream temperature. This can be explained 619 

largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with 620 

streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89 621 

(5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still 622 

a large component of the hydrologic cycle during the summer season.   623 

Lastly, groundwater inflow changes to the stream channel were negatively 624 

correlated to stream temperature change at the CRB scale for the spring and fall seasons. 625 

This also makes sense, as groundwater temperature is generally cooler than the stream 626 
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temperature of the water already within the channel. Quite often, stream temperature 627 

variations of cool water are used for tracer studies to determine where surface and 628 

groundwater flows are exchanging water (Anderson, 2005;Constantz et al., 2003). 629 

However, no significant correlation was found during the summer, when groundwater is a 630 

large source of stream flow. This is likely because groundwater is the main source of water 631 

for this season, any climate-induced changes in groundwater will not have a major effect 632 

on stream temperature because the main water source for streamflow is still groundwater. 633 

For example, if 85% of the streamflow comes from groundwater, and is then decreased to 634 

75%, the change in stream temperature isn’t likely to significantly change. Additionally, 635 

no groundwater inflow change correlations were found for the winter season.  636 

 Species’ responses to water stream temperature occur within populations and are 637 

based on local environmental conditions.  Consequently, accurate assessment of local 638 

variation in water stream temperature is critical and only possible when local system 639 

drivers are accurately represented in water stream temperature models.  While water stream 640 

temperature is primarily influenced by air temperature, this study emphasized the important 641 

effects of other contributors (e.g., runoff, groundwater, snowmelt) that are differentially 642 

represented across the CRB.  Also, we have characterized the ecological provinces by 643 

warmwater and coldwater focal fish species, which was done for qualitative biological 644 

assessments and not as a predictive approach.  However, these groupings have provided 645 

important information regarding factors driving differential variation in water stream 646 

temperatures across seasons in the context of the biological groups experiencing particular 647 

stream temperature changes.  River basins encompass a spatially heterogeneous array of 648 

biological communities and these communities are regulated by a spatially heterogeneous 649 
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array of environmental conditions.  These environmental conditions are driven by local 650 

processes and require a systems-based approach to accurately characterize the habitat 651 

regulating the distribution and diversity of aquatic taxa. 652 
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 872 

 873 

Table 1. Coupled Model Intercomparison Project – phase 5 General Circulation Models 874 

used in this study 875 

Modeling Group CMIP5 Model 

Canadian Centre for Climate 

Modeling & Analysis 
canesm2 

Météo-France / Centre National de 

Recherches Météorologiques, France 
cnrm-cm5 

Geophysical Fluid Dynamics 

Laboratory, USA 
gfdl-cm3 

Institut Pierre Simon Laplace, France ipsl-cm5a-mr 

Center for Climate System Research 

(The University of Tokyo), National 

Institute for Environmental Studies, 

and Frontier Research Center for 

Global Change (JAMSTEC), Japan 

miroc5 

Max Planck Institute for 

Meteorology, Germany 
mpi-esm-lr 

Meteorological Research Institute, 

Japan 
mri-cgcm3 
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 884 

 885 

 886 

 887 

 888 

Table 2. Summary of streamflow calibration statistics. 889 

        890 

*NS: Nash-Sutcliffe coefficient 891 

   *R2: coefficient of determination 892 

* Φ: coefficient of determination multiplied by slope of regression 893 

line, b 894 

    895 

 896 

 897 

 898 

 899 

 900 

 Calibration Validation 

 Average Std. Dev. Average Std. Dev. 

NS 0.69 0.13 0.64 0.13 

R2 0.75 0.10 0.75 0.08 

Φ 0.62 0.15 0.65 0.13 
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Table 3. Stream temperature changes and focal fish species groups for the Columbia River Basin ecological provinces during the 

2080s.. 

 

 

 

 

 

 

 

 

 

 

Ecological 

province 
Spring (°C) Summer (°C) Fall (°C) Winter (°C) Annual (°C) 

Focal Fish Species 

Blue Mountain 3.7 5.3 3.2 2.1 3.5 coldwater migratory 

Columbia 

Cascades 
2.6 4.1 2.0 1.2 2.4 

coldwater migratory 

Columbia 

Plateau 
2.0 3.8 2.0 1.5 2.2 

warmwater 

Intermountain 3.3 5.0 2.7 1.5 3.0 warmwater 

Middle Snake 2.4 3.7 2.3 1.4 2.2 coldwater migratory 

Mountain 

Columbia 
3.6 5.0 2.4 1.5 3.1 

coldwater non-migratory 

Mountain Snake 5.0 7.0 4.0 2.1 4.3 coldwater migratory 

Upper Snake 4.3 6.0 3.3 1.6 3.6 coldwater non-migratory 
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Table 4. Sensitivities of stream temperature changes to changes in maximum and minimum air 1 

temperatures for the Columbia River Basin during the 2080s 2 

 3 

Maximum air temperature     

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.5 0.8 0.4 0.6 

Columbia Cascades 0.5 0.7 0.7 0.3 0.6 

Columbia Plateau 0.5 0.4 0.7 0.0 0.4 

Intermountain 0.7 0.8 1.1 0.6 0.8 

Middle Snake 0.5 0.5 0.8 0.9 0.7 

Mountain Columbia 0.4 0.7 0.7 0.3 0.5 

Mountain Snake 0.7 1.0 1.0 0.0 0.7 

Upper Snake 0.6 0.7 0.8 0.3 0.6 

 

     

 

Minimum air temperature 

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.7 0.9 0.0 0.6 

Columbia Cascades 0.2 0.7 0.8 1.4 0.7 

Columbia Plateau 0.2 0.6 0.8 0.4 0.5 

Intermountain 0.7 0.9 0.8 0.0 0.6 

Middle Snake 0.8 0.9 1.0 0.5 0.6 

Mountain Columbia 0.3 0.9 0.6 0.2 0.5 

Mountain Snake 0.7 1.1 1.0 0.5 0.8 
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Upper Snake 0.8 1.2 0.9 0.5 0.9 

Table 5. Pearson correlations between stream temperature and individual hydroclimatological 4 

changes for the entire Columbia River Basin during the 2080s.  5 

Hydroclimatological 

Component 
Spring Summer Fall Winter 

Maximum air temperature 0.67 0.61 0.49 0.36 

Minimum air temperature 0.65 0.61  0.47 0.34 

Precipitation -0.51 -0.50 -0.36 -0.20 

Streamflow 0.08 0.07 -0.10 -0.02* 

Snowmelt -0.36 0.10 -0.31 -0.26 

Surface runoff -0.39   -0.08 -0.30 -0.28 

Groundwater inflow -0.24 -0.04* -0.12 0.00* 

Lateral soil flow -0.42 -0.32 -0.36 -0.07 

* indicates there was no significant correlation at p =0.05 6 

 7 
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 9 
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 18 
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 19 

Figures 20 

Figure 1. Columbia River Basin study area ecological provinces with streamflow and stream 21 

temperature gauges for calibration. 22 
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 23 

Figure 2. Root mean square errors of the simulated and observed stream temperatures 24 
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 29 

Figure 3. Monthly stream temperature error distributions for all stream temperature gauges. 30 
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 36 

Figure 4. Changes in average precipitation and air temperature (maximum and minimum) for the 37 

end of the 21st century as compared to the historical time period 38 
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 49 

 50 

Figure 5. Spring and summer historical and projected stream temperatures at the subbasin-level. 51 

Hatched subbasins indicate that drying occurred under climate projections and were removed 52 

from analyses.  53 
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 54 

Figure 6. Fall and winter historical and projected stream temperatures at the subbasin-level. 55 

Hatched subbasins indicate that drying occurred under climate projections and were removed 56 

from analyses. 57 
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 58 

 59 

 60 

Figure 7. Pearson correlations between changes in stream temperature and hydroclimatological 61 

components for the Columbia River Basin ecological provinces. Tmax = maximum air 62 

temperature; Tmin = minimum air temperature; Precip. = precipitation; Flow = streamflow; 63 
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Snomlt = snowmelt; SWQ = surface water runoff; GWQ = groundwater inflow; LatQ = lateral 64 

soil flow. Asterisks represent no significant correlation at p =0.05 65 
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