

1 **Climate change and stream temperature projections in the**
2 **Columbia River basin: habitat implications of spatial**
3 **variation in hydrologic drivers**

4 Darren L. Ficklin¹, Bradley L. Barnhart², Jason H. Knouft^{3,4}, Iris T. Stewart⁵, Edwin P.
5 Maurer⁶, Sally L. Letsinger⁷ and Gerald W. Whittaker²

6
7
8 ¹ Department of Geography, Indiana University, 701. E. Kirkwood Ave., Bloomington, IN
9 47405

10 ² Agricultural Research Service, United States Department of Agriculture, 3450 SW
11 Campus Way, Corvallis, OR 97333

12 ³Department of Biology, Saint Louis University, 3507 Laclede Ave., St. Louis, MO
13 63103

14 ⁴Center for Environmental Sciences, Saint Louis University, 3507 Laclede Ave., St.
15 Louis, MO 63103

16 ⁵ Department of Environmental Studies and Sciences, Santa Clara University, 500 El
17 Camino Real, Santa Clara, CA 95053

18 ⁶ Civil Engineering Department, Santa Clara University, 500 El Camino Real, Santa Clara,
19 CA 95053

20 ⁷611 N. Walnut Grove, Center for Geospatial Data Analysis, Indiana Geological Survey,
21 Bloomington, IN, 47405

22
23
24
25 *email: dficklin@indiana.edu; phone: 812-856-5047

38 **Abstract**

39

40 Water temperature is a primary physical factor regulating the persistence and distribution
41 of aquatic taxa. Considering projected increases in air temperature and changes in
42 precipitation in the coming century, accurate assessment of suitable thermal habitat in
43 freshwater systems is critical for predicting aquatic species responses to changes in climate
44 and for guiding adaptation strategies. We use a hydrologic model coupled with a stream
45 temperature model and downscaled General Circulation Model outputs to explore the
46 spatially and temporally varying changes in stream temperature for the late 21st century at
47 the subbasin and ecological province scale for the Columbia River Basin. On average,
48 stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer,
49 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream
50 temperature are correlated with changes in air temperature, our results also capture the
51 important, and often ignored, influence of hydrological processes on changes in stream
52 temperature. Decreases in future snowcover will result in increased thermal sensitivity
53 within regions that were previously buffered by the cooling effect of flow originating as
54 snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil
55 water flow, and groundwater inflow, are negatively correlated to increases in stream
56 temperature depending on the ecological province and season. At the ecological province
57 scale, the largest increase in annual stream temperature was within the Mountain Snake
58 ecological province, which is characterized by non-migratory coldwater fish species.
59 Stream temperature changes varied seasonally with the largest projected stream
60 temperature increases occurring during the spring and summer for all ecological provinces.
61 Our results indicate that stream temperatures are driven by local processes and ultimately

62 require a physically-explicit modeling approach to accurately characterize the habitat
63 regulating the distribution and diversity of aquatic taxa.

64 **1. Introduction**

65 The temporal and spatial variability of stream temperature is a primary regulator of
66 the life-history, behavior, ecological interactions, and distribution of most aquatic species
67 (Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater
68 organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water
69 temperature (Angilletta, 2009), and thus the persistence of populations and the rate of
70 energy flow through aquatic ecosystems is dependent on the thermal characteristics of a
71 local habitat (Woodward et al., 2010). Moreover, much like terrestrial species, the timing
72 of important life-history traits such as reproduction and migration is heavily dependent on
73 seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010). Additionally,
74 stream temperature plays a large role in chemical kinetic rates and is important for
75 governing stream management for recreation as well as urban and industrial water supplies.
76 Therefore, to better understand hydrologic systems and to better manage water resources
77 in a changing environment, it is critical to predict the potential effects of climate variability
78 and change on stream temperature, and to characterize how these changes affect the
79 distribution and diversity of freshwater taxa.

80 Potential impacts of climate change on stream temperatures have been widely
81 estimated using field investigations and modeling studies (Webb and Nobilis,
82 1994; Mohseni et al., 2003; Caissie, 2006; Hari et al., 2006; Nelson and Palmer, 2007; Webb
83 et al., 2008; Isaak et al., 2010; van Vliet et al., 2011; Null et al., 2013; Ficklin et al., 2013).
84 At larger spatial scales, regional regression models have been used to predict the impacts

85 of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan,
86 1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al.,
87 2003;Stefan and Preud'homme, 1993). However, regression methods are not sufficient
88 predictors of stream temperature because they do not account for hydrologic component
89 inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al.,
90 1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014).
91 Neglecting these components severely limits the ability of regression-based models to
92 accurately predict spatial variability in stream temperature changes, since the contributions
93 of different sources to streamflow will be modified in a changing climate. Ignoring the
94 distinct characteristics of different sources to streamflow therefore negatively impacts the
95 assessment of the effects of climate change on aquatic biodiversity at landscape (and larger)
96 scales.

97 To adequately capture the role of changing hydrology from a changing climate on
98 stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and
99 Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974)
100 stream temperature models, in conjunction with hydrologic models, have been applied with
101 success. These models allow stream temperature assessments at the local or regional level.
102 For example, our previous work in the Sierra Nevada mountain range in California found
103 subbasin-scale stream temperature differences from region-to-region largely from
104 localized changes in hydrology from changes in climate. Additionally, Null et al. (2013)
105 found increasing stream temperatures with increasing elevation due to the transition from
106 snow- to rain-dominated, an effect opposite what would be predicted by a model based
107 solely on air temperature

108 The primary objectives of this work are to [1] predict changes in stream temperature
109 over the coming century across the Columbia River Basin at the ecological province level,
110 [2] identify the contribution of specific hydrological components (such as snowmelt,
111 surface water runoff, etc.) to the overall heat and water budget across the watershed, and
112 [3] add to the literature regarding the role of changing hydrology on changes in stream
113 temperature. Specifically, we aim to demonstrate the extent to which future changes in
114 hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil
115 flow as simulated using global climate projections at the subbasin scale—could critically
116 affect changes in localized stream temperatures, which are of high importance for aquatic
117 species. The Columbia River Basin is a snowmelt-dominated region, where projected
118 increases in global air temperatures are expected to result in early snowmelt runoff. These
119 changes lead to reduced late spring and summer water discharges that change the thermal
120 content of stream flow. Moreover, previous stream temperature assessments indicate that
121 the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010; Chang
122 and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in
123 part by the land use, hydroclimate and topographic variables of the local region (Chang
124 and Psaris, 2013).

125 We use a landscape-scale hydrological model—the Soil and Water Assessment
126 Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that
127 simulates stream temperature based on the effects of subbasin air temperature and
128 hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and
129 runoff processes, and also incorporates a full range of water quality processes (Gassman et
130 al., 2007). SWAT has been found to accurately simulate streamflow in regions where

131 snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012;
132 Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global
133 Climate Models, GCMs) using one representative concentration pathway (RCP) associated
134 with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st
135 century was used to drive the calibrated SWAT model at the subbasin-scale. For all
136 Columbia River Basin ecological provinces, we spatially and temporally explore the
137 changes in stream temperature, and interpret these changes with respect to changes in the
138 hydrologic system.

139 **2. Materials and Methods**

140 **2. 1 Study area**

141 The CRB encompasses portions of seven states in the western United States and
142 the Canadian province of British Columbia. The CRB for this study is defined as the area
143 that flows into the The Dalles, Oregon (Figure 1) and has a surface area of 613,634 km².
144 The water resources in the CRB have been extensively developed in the past 70 years for
145 hydroelectric power, agricultural irrigation, and urban use. The CRB study area has been
146 extensively discussed in Hatcher and Jones (2013), Mantua et al. (2010), and Payne et al.
147 (2004).

148 Subbasins were aggregated into ecological provinces according to designations
149 Northwest Habitat Institute (N.H.I., 2008). Ecological provinces are delineated based on
150 species composition within the region and environmental conditions. Because the
151 ecological provinces do not expand into Canada, we extrapolated the boundaries based on
152 watershed delineations. The ecoprovince areas (Figure 1) for this study average 68,000 km²
153 and range from 300 km² (Columbia Gorge) to 145,000 km² (Mountain Columbia). For

154 descriptive purposes, we further characterize ecological provinces as either ‘warmwater’
155 (Centrarchidae – bass, bluegill, crappie; Percidae – perch, walleye), ‘coldwater migratory’
156 (Salmonidae – salmon, steelhead, trout], and ‘coldwater non-migratory’ (Salmonidae –
157 trout, whitefish) (Table 2), based on predominant focal fish species (N.H.I., 2008).

158

159 **2.2 Modeling stream flow and water quality using SWAT**

160 We used the SWAT model coupled with a stream temperature model to predict
161 streamflow and stream temperature throughout the Columbia River Basin at an average
162 spatial resolution of 250 km². SWAT is an integrative, mechanistic model that utilizes
163 inputs of daily weather, topography, land use, and soil type to simulate the spatial and
164 temporal dynamics of climate, hydrology, plant growth, and erosion (Arnold et al., 1998).

165 Within SWAT, surface runoff and soil water infiltration were simulated using the modified
166 Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used to
167 estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin
168 et al. (2012) SWAT stream temperature model that uses local air temperature and
169 hydrology for stream temperature estimation:

170

$$171 T_{w,local} = \frac{(0.1 \cdot sub_snow) + (T_{gw} \cdot sub_gw) + \lambda(T_{air,lag} \cdot (sub_surq + sub_latq))}{sub_wyld}$$

172

173 [1]

174 where *sub_snow* is the snowmelt contribution to streamflow within the subbasin (m³),
175 *sub_gw* is the groundwater contribution to streamflow within the subbasin (m³), *sub_surq*

176 is the surface water runoff contribution to streamflow within the subbasin (m^3), sub_latq
177 is the soil water lateral flow contribution to streamflow within the subbasin (m^3), sub_wyld
178 is the total water yield (all contributing hydrologic components) contribution to streamflow
179 within in the subbasin (m^3), T_{gw} is the groundwater temperature ($^{\circ}\text{C}$; annual average input
180 by user), and $T_{air,lag}$ is the average daily air temperature with a lag ($^{\circ}\text{C}$), and λ is a
181 calibration coefficient relating to the relative contribution of the surface water runoff and
182 lateral soil water flow to the local water temperature and is included to aid in calibration in
183 case of improper hydrologic model calibration. The lag (days) is incorporated to allow the
184 effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation
185 [1] represents the assumed temperature of snowmelt ($0.1\text{ }^{\circ}\text{C}$).

186 After stream temperature of the local contributing water is determined, the stream
187 temperature before the effects of air temperature is determined by:

$$188 \quad T_{water_{initial}} = \frac{T_{w,upstream} * (Q_{outlet} - sub_wyld) + (T_{w,local} * sub_wyld)}{Q_{outlet}}$$

189 [2]

190 where $T_{w,upstream}$ is the temperature of the streamflow entering the subbasin ($^{\circ}\text{C}$) and Q_{outlet}
191 is the streamflow discharge at the outlet of the subbasin.

192 The final stream temperature is calculated by adding a change to the initial stream
193 temperature in the subbasin from differences between stream and air temperature and travel
194 time of water through the subbasin. Depending on T_{air} , the final stream temperature is
195 estimated as:

$$196 \quad T_{water} = T_{water_{initial}} + (T_{air} - T_{water_{initial}}) * K * (TT) \quad if T_{air} > 0 \quad [3]$$

197 $T_{water} = T_{water_{initial}} + ((T_{air} + \varepsilon) - T_{water_{initial}}) * K * (TT) \quad if \ T_{air} < 0 \quad [4]$

198 where T_{air} is the average daily air temperature ($^{\circ}\text{C}$), K is a calibration conductivity
199 parameter, TT is the travel time of water through the subbasin (hour) and is calculated from
200 the SWAT simulations, and ε is an air temperature addition coefficient ($^{\circ}\text{C}$), which was
201 included to account for water temperature pulses when T_{air} is below 0°C . For the case when
202 the effects of T_{air} and the hydrologic contributions are such that the final is $T_{water} < 0^{\circ}\text{C}$,
203 the stream temperature model sets T_{water} to 0.1°C . T_{water} is also assumed to be the
204 temperature of water discharge to downstream subbasin, and is further routed along the
205 stream network. The calibration parameter, K , acts as a proxy for reach-specific adjustment
206 of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes
207 resulting in differing geometry. Additional details regarding the stream temperature model
208 can be found in Ficklin et al. (2012).

209 Based on our previous work throughout the western United States (Ficklin et al.,
210 2012), the stream temperature model is highly sensitive to changes in λ (the calibration
211 coefficient for the surface runoff and lateral soil water flow contributions to streamflow)
212 and K (calibration conductivity parameter between air and stream temperature). Previous
213 work also indicates that simulated stream temperatures are sensitive to changes in
214 hydrologic components from increases in air temperature. For example, shifting snowmelt
215 earlier into the winter buffered the effects of increasing air temperature, resulting in only a
216 minor increase in stream temperature. Stream temperature in the late spring, early summer,
217 however, decreased from increases in snowmelt. Increasing groundwater streamflow
218 inputs decreased stream temperatures from the increase in cool water from groundwater.
219 These results are contingent on the volume and timing of the various hydrologic

220 components. For example, the larger the increase in groundwater flow volume to
221 streamflow, the larger the decrease in stream temperature. Further discussion on the stream
222 temperature model sensitivity can be found in Ficklin et al. (2012).

223 **2.3 Input Data**

224 SWAT input parameter values for topography, land cover, and soils data were
225 compiled from freely-available federal and state databases. A 30-meter Digital Elevation
226 Model (USGS) formed the basis for watershed and sub-basin delineation. Soil properties
227 were obtained from the STATSGO soil dataset. The 2001 National Land Cover Database
228 was used for land cover/land use. Meteorological data (air temperature, precipitation, and
229 wind speed) were extracted from Maurer et al. (2002) and relative humidity and solar
230 radiation were generated within SWAT (Neitsch et al., 2005). The Columbia River Basin
231 natural flow data that were used for streamflow calibration were obtained from output from
232 a calibrated Variable Infiltration Capacity Model (VIC) model (from
233 <http://cses.washington.edu/>) and the United States Geological Survey Hydro-Climatic Data
234 Network (HCDN; Slack et al. (1993)). These data represent streamflow that would occur
235 if no reservoirs or streamflow diversions were present within the basin. The HCDN is a
236 hydrologic dataset developed to study surface water conditions throughout the United
237 States that only fluctuate with changes in local climatic conditions and is therefore apt for
238 use in climate change studies (Slack et al., 1993). SWAT was run at the monthly time step.

239 Climatic projections from seven GCMs (Table 1) and one RCP (8.5) were input
240 into the calibrated SWAT model. Daily downscaled output from the seven GCMs (RCP
241 8.5) were obtained from the Downscaled CMIP3 and CMIP5 Climate and Hydrology
242 Projections archive (Maurer et al., 2013). RCP 8.5 represents the highest increase in

243 radiative forcing of the Coupled Model Intercomparison Project – phase 5 (CMIP5; Taylor
244 et al. (2011)) projections, and is based on an increased radiative forcing of 8.5 Wm^{-2}
245 (relative to pre-industrial values) at the end of the 21st century. Downscaling was achieved
246 using the daily bias-corrected and constructed analogs (BCCA) method (Maurer et al.,
247 2010). In summary, the BCCA procedure consists of two steps. The first step is a bias
248 correction using a quantile mapping technique which is applied to raw GCM output.
249 Quantile mapping bias correction has been widely and successfully used in climate model
250 downscaling (Wood et al., 2004). The bias correction step is followed by spatial
251 downscaling using a constructed analogues approach for each day using a linear
252 combination of days drawn from the historic record (Hidalgo et al., 2008). Maurer et al.
253 (2010) found that the BCCA method consistently outperformed the Bias-
254 Correction/Spatial-Downscaling method (BCSD) and the Constructed Analogues (CA)
255 approach in capturing the daily large-scale skill and translating it to simulated streamflows
256 that accurately reproduced historical streamflows.

257

258 **2.4 SWAT streamflow calibration**

259 The program Sequential Uncertainty Fitting Version 2 (SUFI-2; Abbaspour et al.
260 (2007)) was used to automatically-calibrate SWAT streamflow at 104 sites in the Columbia
261 River Basin (Figure 1). Initial and default SWAT model parameters were varied
262 simultaneously until an optimal solution was met. Three statistics were used to evaluate
263 model efficiency: [1] the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970), [2] the
264 coefficient of determination (R^2), and [3] a modified efficiency criterion (Φ). Φ is the result
265 of the coefficient of determination, R^2 , multiplied by the regression line slope, m (Krause

266 et al., 2005). This statistic captures the discrepancy in the magnitude of the observed and
267 simulated streamflow (captured by m) as well as the dynamics (captured by R^2). For all
268 previously-mentioned statistics, a perfect simulation is represented by a value of 1. A split-
269 sample approach was used for calibration and validation, and the calibration and validation
270 periods differed at each streamflow gauge depending on streamflow data availability.

271

272 **2. 5 SWAT stream temperature calibration**

273 Monthly stream temperatures were predicted using the SWAT stream temperature
274 model of Ficklin et al. (2012). This model includes the effects of hydrologic component
275 inputs (e.g., snowmelt, groundwater, and surface runoff) on stream temperature. Previous
276 studies have demonstrated that this stream temperature model performs better than linear
277 regressions that use air temperature alone (Ficklin et al., 2013;Barnhart et al., 2014). The
278 model requires four calibration parameters for each subbasin in the SWAT setup. Since the
279 model is not incorporated into the previously mentioned SWAT-CUP software, we utilized
280 the steady-state S-metric evolutionary multi-objective optimization algorithm (SMS-
281 EMOA) to calibrate the stream temperature parameters after hydrologic calibration was
282 performed (Emmerich et al., 2005;Beume et al., 2007). SMS-EMOA is an efficient and
283 effective Pareto optimization evolutionary algorithm for finding solutions to multi-
284 objective optimization problems. The algorithm seeks optimal solutions that maximize the
285 hypervolume (S-metric)—which can be thought of as the volume of dominated space—
286 and has been theoretically proven to converge to the Pareto set (Fleischer, 2003;Emmerich
287 et al., 2005;Beume et al., 2007). For a recent application, see Stagge and Moglen (2014).

288 For this study, SMS-EMOA was used to seek the optimal set of calibration
289 parameters to reduce the differences between simulated stream temperatures from SWAT
290 and observed values. Observed stream temperatures were obtained from 50 sites within the
291 Columbia River Basin between 1970-1992. Four calibration parameters for each subbasin
292 were adjusted using the algorithm, and three objectives were specified including the RMSE
293 values for the January-April, May-August, and September-December time periods to
294 match the stream temperature rising limb, peak, and falling limb. Further objective
295 functions were intentionally omitted to simplify the analysis. This decision is justified by
296 the limited range of stream temperatures matched by the algorithm. Conversely,
297 hydrological calibration attempts to match flows that vary over orders of magnitude and
298 therefore require additional objectives to match all portions of the hydrograph.
299 Convergence of the stream temperature calibration algorithm was assumed to be met when
300 the S-metric did not vary more than 1% between 3 generations. The final set of solutions
301 exhibited trade-offs between the three objective functions; therefore, a single solution—
302 more specifically, a single set of calibration parameters—was then chosen from this set to
303 be used in the calibrated SWAT simulation.

304

305 **2. 6 Statistical analyses**

306 The impacts of potential climate change on streamflow and hydrologic components
307 were evaluated by comparing historical time period (1961-1990) simulations to those using
308 the GCMs in Table 1 for the late-21st century (2080s; 2081-2099). When describing the
309 ensemble average (or standard deviation) of a time period (i.e., late-21st century), this value
310 is the average (or standard deviation) of the seven CMIP5 GCMs for this time period.

311 Months are lumped into seasons for temporal analysis and are defined as spring (April-
312 June), summer (July-September), fall (October and November), and winter (December-
313 March). These seasons are defined to capture the snowmelt and dry/low flow seasons.
314 Pearson correlations using a bootstrap method were used to measure the relationship
315 between annual and seasonal changes in stream temperature and individual
316 hydroclimatological components. A total of 10,000 bootstrap correlation iterations were
317 run. Statistical significance was determined at the $\alpha = 0.05$ level. For statistical
318 significance, the 5th and 95th percentiles of the bootstrap correlation iterations must agree
319 on the correlation sign (+ or -). If the lower (higher) end of our confidence interval is above
320 (below) zero, we can conclude that the correlation between stream temperature and
321 hydroclimatological component change is significant at the $\alpha = 0.05$ level (two-tailed).
322 Additionally, with changes in climate, it can be expected that drying of streams will occur.
323 In this study, streams that have no flow for an extended time period of the year (and thus
324 have no stream temperature) are removed from the stream temperature analyses, but since
325 drying streams are an important barrier for aquatic species migration, they will be
326 discussed.

327 **3. Results**

328 **3.1 Hydrologic model calibration**

329 NS, R² and Φ average and standard deviation values for the calibration and
330 validation time periods are shown in Table 2. Overall, the model efficiency statistics show
331 that the SWAT model adequately simulated streamflow compared to observations. The
332 average NS coefficient for the calibration and validation period was 0.69 and 0.64,
333 respectively, with a standard deviation of 0.13 for the calibration period and 0.13 for the

334 validation period. This indicates that a large portion of the NS values for both time periods
335 varied only 0.13 around their respective means, which is still within acceptable NS limits
336 (Moriasi et al., 2007). The other model efficiency statistics, R^2 and Φ , indicate similar
337 model performance.

338

339 **3.2 Stream temperature model calibration**

340 After SWAT was calibrated for discharge, the model was used within the SMS-
341 EMOA algorithm to calibrate the stream temperature model. RMSE values between
342 observed and simulated daily stream temperatures range from 2-5 °C for the majority of
343 observation sites. The resulting monthly RMSE values for each site are shown in Figure 2.
344 No distinct spatial distributions of the magnitude of errors are present. Errors distinguished
345 by month of year were also quantified (Figure 3). Errors are largest during the summer
346 months of July through September. Lowest RMSE values were present between December
347 and February. Also, the model gives highly unrealistic (RMSE >15 °C) results for a
348 moderate number of points, especially during summer months. This is due to low values
349 of discharge within reaches during the summer months. Stream temperature is strongly
350 inversely dependent on streamflow, and very small values of discharge cause the model to
351 produce uncharacteristically high stream temperature simulation values. The calibrated
352 stream temperature model parameters can be found in the supplemental information.

353

354 **3.3 Temperature and precipitation projections**

355 Ensemble average projections of maximum and minimum air temperature and
356 precipitation, as compared to the historical time period, are shown in Figure 4. Overall, the

357 maximum and minimum air temperatures vary spatially throughout the CRB, with an
358 average ensemble increase of 5.5 °C for maximum air temperature and 5.4 °C for minimum
359 air temperature. All GCMs agreed that air temperature is expected to increase by the end
360 of the 21st century. Precipitation projections, on the other hand, varied between downscaled
361 GCM projections, with an overall average of a 14.4% increase compared to the historical
362 time period.

363

364 **3.4 Stream temperature projections**

365 Figures 5 and 6 display the spring/summer and fall/winter historical and projected
366 stream temperatures for the CRB. Simulated stream temperatures are projected to increase
367 throughout the CRB, with largest increases occurring in the east-central portion of the
368 CRB. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2
369 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. It is important to note that
370 a large number of subbasins were removed from this analysis due to no-flow conditions
371 (i.e., running completely dry or icing-up) from changes in climate (hatched areas in Figures
372 5 and 6). Of these, winter had the largest number of subbasins removed from the analysis
373 (31%), followed by fall (18%), summer (16%), and spring (15%). The average period of
374 subbasins with no-flow conditions is projected to 34%, or 81 months out of the 240 months
375 for the 2080s time period. We consider these subbasins to not be reliable refugia for aquatic
376 species.

377 Simulated stream temperature changes also vary at the ecological province scale
378 (Table 3). At the annual time scale, the largest stream temperature increases (4.3 °C)
379 occurred within the Mountain Snake ecological province, which is characterized by cold-

380 water migratory fish species. The largest inter-annual variation around the mean occurred
381 in the Upper Snake ecological province, which is characterized by non-migratory
382 coldwater species, with a +/- 3.8 °C standard deviation. Important differences between
383 ecological provinces occurred at the seasonal time scale. Overall, the largest spring
384 increase in stream temperature occurred in the Mountain Snake (5.0 °C) and Upper Snake
385 (4.3 °C), both containing coldwater species. The largest summer temperature increase
386 compared to the historical time period was for the Mountain Snake ecological province
387 with a 7 °C increase in average monthly stream temperature, followed by Upper Snake (6
388 °C), Blue Mountain (5.3 °C), Intermountain (5.0 °C), and Mountain Columbia (5.0 °C),
389 indicating that ecological provinces with coldwater species will experience some of the
390 largest increases in stream temperature in the basin. These large increases are expected
391 during the summer because air temperature is at its highest and streamflow is at its lowest.

392 Fall and winter had the smallest increases in stream temperature including a CRB
393 average of 2.9 °C for fall and 1.6 °C for winter. This was expected because this is when air
394 temperatures are the lowest, and cold precipitation recharge and streamflow are highest,
395 resisting stream temperature increases. The basins with the highest stream temperature
396 increases for the fall and winter time period were the Mountain Snake and Blue Mountain
397 (4.0/2.1 °C).

398

399 **3.5 Sensitivities of stream temperature changes to air temperature**

400 We define TS_{max} and TS_{min} as the thermal sensitivity or stream temperature change
401 per 1 °C of maximum or minimum air temperature change. For the entire CRB and the
402 water year annual time scale, the value for the average TS_{max} is 0.6 and that for TS_{min} is

403 0.86, demonstrating that, on average, the increases in stream temperature seen by the 2080s
404 are to a larger degree tied to future changes in minimum air temperatures (Table 4). On the
405 seasonal time scale, stream temperature changes during the summer were the most sensitive
406 to changes in maximum air temperature with TS_{max} equal to 0.8, followed by spring (0.7),
407 fall (0.5), and winter (0.3). For minimum air temperature sensitivities, however, spring
408 values of TS_{min} were the highest of all seasons, equal to 0.9, followed by summer (0.8), fall
409 (0.5), and winter (0.3). Air temperature sensitivities varied by ecological province as well
410 as by season. At the annual and seasonal time scales the Intermountain, Middle Snake, and
411 Mountain Snake ecological provinces exhibited the highest values of TS_{max} .

412 For minimum air temperatures, the ecological provinces that were the most
413 sensitive were Columbia Cascade, Mountain Snake, and Upper Snake. Summer once again
414 had the highest overall TS_{min} values. However, the largest TS_{min} values were found in the
415 winter and spring seasons, with the Columbia Cascades in the winter (1.4) and the
416 Mountain Snake and Upper snake exhibiting TS_{min} values of 1.1 and 1.2 in the spring.
417 Overall, it can be seen that spring has higher TS_{min} values than TS_{max} , a possible artifact of
418 snowmelt (see Discussion).

419

420 **3.6 Sensitivities of stream temperature to changes in hydroclimatological components**

421 **3.6.1 Correlations at the Columbia River Basin scale**

422 At the CRB scale, all stream temperature changes were significantly correlated to
423 all hydroclimatic components during the spring and fall seasons for the 2080s (Table 5),
424 suggesting that during these seasons stream temperatures are highly sensitive to changing
425 environments. For summer, groundwater inflow change was the only variable not

426 significantly correlated to stream temperature changes. For winter, streamflow and
427 groundwater inflow changes were the only variables not significantly correlated to stream
428 temperature changes (see Discussion).

429

430 **3.6.2 Correlations at the ecological province scale**

431 Correlations between stream temperature and hydroclimatological components at
432 the seasonal time scale and ecological province spatial scale for the 2080s suggest that
433 multiple hydroclimatological components affect stream temperatures (Figure 7). As
434 expected, maximum and minimum air temperatures were significantly positively correlated
435 to changes in stream temperatures for all seasons and nearly all ecological provinces. The
436 only two ecological provinces where no significant correlations were found between air
437 and stream temperature were the Blue Mountain and Upper Snake provinces (see
438 Discussion), which are characterized by migratory salmonids and non-migratory
439 salmonids, respectively. Additionally, precipitation changes were negatively correlated to
440 stream temperature changes for all seasons and nearly all ecological provinces.

441 For spring, nearly all hydroclimatological components were significantly correlated
442 to stream temperature changes for each ecological province. Streamflow changes were not
443 correlated to stream temperature changes within the Blue Mountain, Intermountain, and
444 Upper Snake ecological provinces, which are characterized by warmwater species,
445 migratory coldwater salmonids, and non-migratory coldwater salmonids, respectively. We
446 also found that snowmelt changes within the Blue Mountain ecological province were not
447 correlated to stream temperature changes. However, within the Blue Mountain ecological

448 province we find that snowmelt is not a large portion of the hydrological cycle during this
449 season.

450 For the summer season, no relationships were found for streamflow, snowmelt,
451 surface runoff, and groundwater inflows within multiple ecological provinces. Overall,
452 streamflow was found to be significantly correlated with stream temperature within the
453 Columbia Cascades and Middle Snake, which are characterized by coldwater migratory
454 salmonids, and Mountain Columbia, which is characterized by non-migratory coldwater
455 salmonids, ecological provinces. Within the Columbia Plateau, Intermountain, and
456 Mountain Columbia ecological provinces, we find snowmelt to still be a large portion of
457 the hydrological cycle, thus any reductions of snowmelt do not significantly affect stream
458 temperature. Lastly, surface runoff and groundwater inflows were not significantly
459 correlated to the stream temperature changes in the Mountain Columbia and Upper Snake
460 ecological provinces and the Mountain Snake ecological province, respectively. Within
461 these regions we did not find large changes in surface runoff or groundwater inflows.

462 For the fall season, we find that changes in stream temperature within the Blue
463 Mountain ecological province, which is characterized by migratory coldwater salmonids,
464 is only positively correlated to changes in maximum and minimum air temperature, and
465 thus loses its ties to the other hydrology-related components. Note also that during the fall
466 season groundwater inflow changes become a non-significant factor in stream temperature
467 changes for five out of the eight ecological provinces. The only ecological provinces where
468 groundwater inflow changes were significantly correlated to stream temperature changes
469 were the Columbia Plateau, Intermountain, characterized by warmwater species, and the
470 Middle Snake, which is characterized by coldwater migratory species. These are regions

471 where groundwater inflows increased and therefore contributed cooling effects during this
472 time period.

473 During the winter season, changes in multiple hydroclimatological components
474 within multiple ecological provinces are not significantly correlated to changes in stream
475 temperature. Generally, changes in maximum air temperature, minimum air temperature,
476 precipitation, snowmelt, and surface runoff are still significantly correlated to changes in
477 stream temperature. These relationships make sense because during the winter season,
478 increases in maximum and minimum air temperatures in conjunction with changes in
479 precipitation will have the largest effects on two hydrological components: snowmelt and
480 surface runoff. This is the season where snowmelt-dominated regions with large snowmelt
481 components may perhaps become rain-dominated regions with large surface runoff
482 components.

483

484 **4. Discussion and Conclusions**

485 The importance of stream temperature to aquatic species distributions, interactions,
486 behavior, and persistence is well documented (Matthews, 1998), particularly for coldwater-
487 adapted taxa such as trout and salmon (Milner et al., 2003;McCullough, 1999).
488 Considering predicted increases in air temperature in the coming century, accurate
489 assessment of suitable thermal habitat is critical for predicting species responses to changes
490 in climate. Accordingly, recent research has investigated the potential impacts of climate
491 change on aquatic taxa by explicitly incorporating regression-based stream temperature
492 predictions into ecological models (Britton et al., 2010;Al-Chokhachy et al., 2013). While
493 simplified regression studies may boast low RMSE values between simulated and observed

494 stream temperatures, the relatively broad spatial scale of many of these studies (Mohseni
495 et al., 2003), neglects the variety of local hydrological systems that are differentially driven
496 by the array of inputs to each system (e.g., snowmelt, groundwater, runoff). The resulting
497 stream temperature model inaccuracies from this approach, clustered in particular regions
498 can be particularly problematic when investigating local population responses and range
499 shifts at the edge of species' distributions. Our results highlight this issue by characterizing
500 the varied relative contributions of different hydrological component inputs among
501 ecological provinces and suggest the complex system-level regulation of stream
502 temperature

503 As with any modeling study, modeling errors originate from multiple sources.
504 Wilby and Harris (2006) discuss these aforementioned uncertainties in detail and ranked
505 their importance in decreasing order as follows: differences in GCM output, downscaling
506 methods, hydrological model structure, hydrological model parameters, and then
507 greenhouse gas emission scenario. While their work was performed for a hydrological
508 model, the results still hold true for our stream temperature model. Particular to this study,
509 in order to quantify the differences between errors due to parameter uncertainty and GCM
510 (or projection) uncertainty, much more work needs to be done and is well beyond the scope
511 of this work.

512 However, we do note that our simulations for stream temperature demonstrated
513 higher errors during the summer months. This is due to low and fluctuating discharge
514 values that ultimately affect stream temperature. Also, it is likely due to the fact that
515 hydrologic components may influence stream temperature differently during different
516 seasons. For this study, we used annual calibration parameters and allowed them to vary

517 for each subbasin. An alternative approach would be to utilize seasonally varying
518 calibration parameters, and to analyze the dynamic (i.e., seasonal) influence of hydrologic
519 components on stream temperature. This may better capture the stream temperature
520 fluctuations in the summer months. Nonetheless, our spatially resolved methodology using
521 a mechanistic model, SWAT, better characterizes the complex processes of stream
522 temperature throughout the CRB by accounting for the hydrologic components
523 contributing to stream temperature and its variation.

524 Within the CRB, Wenger et al. (2013) used air temperature as a surrogate for
525 stream temperature to predict the response of Bull trout (Salmonidae: *Salvelinus*
526 *confluentus*) to predicted changes in climate, while Beer and Anderson (2013) used air
527 temperature-stream temperature relationships to predict the impacts of climate change on
528 salmonid life-histories. These approaches are common (Britton et al., 2010; Tisseuil et al.,
529 2012; Al-Chokhachy et al., 2013), yet overlook important differences in the inputs
530 influencing stream temperature across the basin. For example, our results suggest that
531 hydrologic contributions from snowmelt are relatively important drivers of stream
532 temperature within ecological provinces with primarily non-migratory coldwater focal fish
533 species. The influence of snowmelt tends to buffer stream temperatures against increases
534 in air temperature during the year relative to other areas in the watershed. In this case, a
535 regression-based approach to estimating stream temperature or the use of air temperature
536 as a surrogate for stream temperature will tend to overestimate stream temperature, and
537 thus underestimate the amount of suitable thermal habitat for coldwater species. In
538 addition, decreases in snowcover (and snowmelt) in the future will result in increased
539 thermal sensitivity within these formerly buffered regions. For example, current stream

540 temperatures in the Mountain Snake ecological province are buffered by relatively high
541 levels of snowmelt, yet decreases in future snowcover are predicted to result in this
542 province experiencing the greatest seasonal and annual increases in stream temperature in
543 the coming century.

544 Some of the relationships between stream temperature and hydroclimatic changes
545 at the CRB scale were expected, such as increases in maximum air temperature and
546 minimum air temperature resulting in increases in stream temperature, which were
547 significant for all seasons for the entire CRB. This relationship is well-established and
548 many models have been developed solely based on air-stream temperature relationships
549 (Stefan and Preud'homme, 1993; Mohseni and Stefan, 1999). Also, a decrease in
550 precipitation led to an increase in stream temperature, largely because greater runoff and
551 infiltration leads to larger volumes of water in the stream channel, and thus increases the
552 amount of energy needed to heat the water. Precipitation changes had the largest negative
553 correlations during the spring and summer seasons, followed by fall and winter. Both
554 surface runoff and lateral soil flow changes follow the same correlation patterns as
555 precipitation, as both are inherently tied to the amount of incoming precipitation.
556 Additionally, streamflow is tied to all hydrological components within the subbasin and
557 the incoming streamflow that is entering the streamflow reach. Since streamflow is a mix
558 of incoming hydrologic components, it is difficult to determine correlations. However,
559 much research has assumed that streamflow and stream temperature changes are inversely
560 correlated (van Vliet et al., 2011). The correlations within this study were significant and
561 positively correlated for the spring, summer, and fall seasons; however, all correlations

562 were below 0.10, which suggests the correlations were relatively minor, especially
563 compared to other components.

564 Snowmelt changes were negatively correlated during the spring, fall, and winter
565 seasons, and positively correlated during the summer season. A decrease in snowmelt will
566 lead to an increase in stream temperature because the cooling effect that snowmelt has on
567 stream temperature is no longer present. In summer, snowmelt and stream temperature
568 were positively correlated (albeit not significant), suggesting the counterintuitive notion
569 that an increase in snowmelt led to an increase in stream temperature. This can be explained
570 largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with
571 streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89
572 (5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still
573 a component of the hydrologic cycle during the summer season.

574 Lastly, groundwater inflow changes to the stream channel were negatively
575 correlated to stream temperature change at the CRB scale for the spring and fall seasons.
576 This also makes sense, as groundwater temperature is generally cooler than the stream
577 temperature of the water already within the channel. Quite often, stream temperature
578 variations of cool water are used for tracer studies to determine where surface and
579 groundwater flows are exchanging water (Anderson, 2005; Constantz et al., 2003).
580 However, no significant correlation was found during the summer, when groundwater is a
581 large source of stream flow. This is likely because groundwater is the main source of water
582 for this season, any climate-induced changes in groundwater will not have a major effect
583 on stream temperature because the main water source for streamflow is still groundwater.
584 For example, if 85% of the streamflow comes from groundwater, and is then decreased to

585 75%, the change in stream temperature isn't likely to significantly change. Additionally,
586 no groundwater inflow change correlations were found for the winter season.

587 Species' responses to stream temperature occur within populations and are based
588 on local environmental conditions. Consequently, accurate assessment of local variation
589 in stream temperature is critical and only possible when local system drivers are accurately
590 represented in stream temperature models. While stream temperature is primarily
591 influenced by air temperature, this study emphasized the important effects of other
592 contributors (e.g., runoff, groundwater, snowmelt) that are differentially represented across
593 the CRB. Also, we have characterized the ecological provinces by warmwater and
594 coldwater focal fish species, which was done for qualitative biological assessments and not
595 as a predictive approach. However, these groupings have provided important information
596 regarding factors driving differential variation in stream temperatures across seasons in the
597 context of the biological groups experiencing particular stream temperature changes. River
598 basins encompass a spatially heterogeneous array of biological communities and these
599 communities are regulated by a spatially heterogeneous array of environmental conditions.
600 These environmental conditions are driven by local processes and require a systems-based
601 approach to accurately characterize the habitat regulating the distribution and diversity of
602 aquatic taxa.

603

604

605 **Acknowledgements**

606 The authors gratefully acknowledge financial support for this work from the U.S.
607 Environmental Protection Agency through EPA STAR Grant No. RD-83419101-0, the

608 Environmental Protection Agency's Science to Achieve Results (STARs) Consequences
609 of Global Change for Water Quality program (EPA-G2008-STAR-D2), and from the
610 National Science Foundation (DEB-0844644). We acknowledge the World Climate
611 Research Programme's Working Group on Coupled Modelling, which is responsible for
612 CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for
613 producing and making available their model output. For CMIP the U.S. Department of
614 Energy's Program for Climate Model Diagnosis and Intercomparison provides
615 coordinating support and led development of software infrastructure in partnership with
616 the Global Organization for Earth System Science Portals. Additionally, this material is
617 based upon work supported by the National Science Foundation under Grant No. CNS-
618 0723054.

619

620 **References**

621 Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J.,
622 and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine
623 Thur watershed using SWAT, *Journal of Hydrology*, 333, 413-430, 2007.

624 Al-Chokhachy, R., Alder, J., Hostetler, S., Gresswell, R., and Shepard, B.: Thermal
625 controls of yellowstone cutthroat trout and invasive fishes under climate change,
626 *Global change biology*, 19, 3069-3081, 2013.

627 Anderson, M. P.: Heat as a ground water tracer, *Ground water*, 43, 951-968, 2005.

628 Angilletta, M. J.: Thermal adaptation: a theoretical and empirical synthesis. Oxford
629 University Press, Oxford, 2009.

630 Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic
631 Modeling and Assessment Part I: Model Development, *Journal of the American*
632 *Water Resources Association*, 34, 73-89, 1998.

633 Barnhart, B. L., Whittaker, G. W., and Ficklin, D. L.: Improved Stream Temperautre
634 Simulations in SWAT Using NSGA-II For Automatic Multi-Site Calibration,
635 *Trans. of the ASABE*, 57, 2014.

636 Beer, W. N., and Anderson, J. J.: Sensitivity of salmonid freshwater life history in western
637 US streams to future climate conditions, *Global Change Biology*, 19, 2547-2556,
638 2013.

639 Beume, N., Naujoks, B., and Emmerich, M.: SMS-EMOA: Multiobjective selection based
640 on dominated hypervolume, *European Journal of Operational Research*, 181, 1653-
641 1669, 2007.

642 Bogan, T., Mohseni, O., and Stefan, H. G.: Stream temperature-equilibrium temperature
643 relationship, *Water Resour. Res.*, 39, 1245, 2003.

644 Britton, J., Cucherousset, J., Davies, G., Godard, M., and Copp, G.: Non- native fishes and
645 climate change: predicting species responses to warming temperatures in a
646 temperate region, *Freshwater Biology*, 55, 1130-1141, 2010.

647 Caissie, D.: The thermal regime of rivers: a review, *Freshwater Biology*, 51, 1389-1406,
648 2006.

649 Chang, H., and Psaris, M.: Local landscape predictors of maximum stream temperature and
650 thermal sensitivity in the Columbia River Basin, USA, *Science of The Total*
651 *Environment*, 461, 587-600, 2013.

652 Constantz, J., Thomas, C. L., and Zellweger, G.: Influence of diurnal variations in stream
653 temperature on streamflow loss and groundwater recharge, *Water Resources*
654 *Research*, 30, 3253-3264, 1994.

655 Constantz, J.: Interaction between stream temperature, streamflow, and groundwater
656 exchanges in alpine streams, *Water Resources Research*, 34, 1609-1615, 1998.

657 Constantz, J., Cox, M. H., and Su, G. W.: Comparison of heat and bromide as ground water
658 tracers near streams, *Ground water*, 41, 647-656, 2003.

659 Edinger, J. E., Brady, D. K., and Geyer, J. C.: Heat exchange and transport in the
660 environment, in: *Heat exchange and transport in the environment*, Johns Hopkins
661 University, 1974.

662 Emmerich, M., Beume, N., and Naujoks, B.: An EMO algorithm using the hypervolume
663 measure as selection criterion, *Evolutionary Multi-Criterion Optimization*, 2005,
664 62-76,

665 Erickson, T. R., and Stefan, H. G.: Linear Air/Water Temperature Correlations for Streams
666 during Open Water Periods, *Journal of Hydrologic Engineering*, 5, 317-321, 2000.

667 Ficklin, D. L., Luo, Y., Stewart, I. T., and Maurer, E. P.: Development and application of
668 a hydroclimatological stream temperature model within the Soil and Water
669 Assessment Tool, *Water Resources Research*, 48, W01511, 2012.

670 Ficklin, D. L., Stewart, I. T., and Maurer, E. P.: Effects of climate change on stream
671 temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in
672 California, *Water Resources Research*, 49, 2765-2782, 2013.

673 Fleischer, M.: The measure of Pareto optima applications to multi-objective
674 metaheuristics, *Evolutionary multi-criterion optimization*, 2003, 519-533,

675 Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The Soil and Water
676 Assessment Tool: Historical Development, Applications, and Future Research
677 Directions, *Trans. of the ASABE*, 50, 1211-1250, 2007.

678 Hari, R. E., Livingstone, D. M., Siber, R., BURKHARDT- HOLM, P., and Guettinger, H.:
679 Consequences of climatic change for water temperature and brown trout
680 populations in Alpine rivers and streams, *Global Change Biology*, 12, 10-26, 2006.

681 Hatcher, K. L., and Jones, J. A.: Climate and Streamflow Trends in the Columbia River
682 Basin: Evidence for Ecological and Engineering Resilience to Climate Change,
683 *Atmosphere-Ocean*, 1-20, 2013.

684 Hidalgo, H. G., Dettinger, M. D., and Cayan, D. R.: Downscaling with constructed
685 analogues: daily precipitation and temperature fields over the United States.,
686 California Energy Commission, Public Interest Energy Research Program,
687 Sacramento, CA, 62, 2008.

688 Isaak, D. J., Luce, C. H., Rieman, B. E., Nagel, D. E., Peterson, E. E., Horan, D. L., Parkes,
689 S., and Chandler, G. L.: Effects of climate change and wildfire on stream
690 temperatures and salmonid thermal habitat in a mountain river network, *Ecological
691 Applications*, 20, 1350-1371, 2010.

692 Johnson, A. C., Acreman, M. C., Dunbar, M. J., Feist, S. W., Giacomello, A. M., Gozlan,
693 R. E., Hinsley, S. A., Ibbotson, A. T., Jarvie, H. P., Jones, J. I., Longshawb, M.,
694 Maberly, S. C., Marsh, T. J., Neal, C., Newman, J. R., Nunn, M. A., Pickup, R. W.,
695 Reynard, N. S., Sullivan, C. A., Sumpter, J. P., and Williams, R. J.: The British
696 river of the future: how climate change and human activity might affect

697 two contrasting river ecosystems in England, *Science of the Total Environment*,
698 407 4787–4798, 2009.

699 Kim, K. S., and Chapra, S. C.: Temperature model for highly transient shallow streams,
700 *Journal of Hydraulic Engineering*, 123, 30-40, 1997.

701 Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for
702 hydrological model assessment, *Advances in Geosciences*, 5, 89-97, 2005.

703 Luce, C., Staab, B., Kramer, M., Wenger, S., Isaak, D., and McConnell.: Sensitivity of
704 summer stream temperatures to climate variability in the Pacific Northwest, *Water*
705 *Resources Research*, 50, 3428-3443, 2014.

706 MacDonald, R. J., Boon, S., Byrne, J. M., and Silins, U.: A comparison of surface and
707 subsurface controls on summer temperature in a headwater stream, *Hydrological*
708 *Processes*, 28, 2338-2347, 2014.

709 Mantua, N., Tohver, I., and Hamlet, A.: Climate change impacts on streamflow extremes
710 and summertime stream temperature and their possible consequences for
711 freshwater salmon habitat in Washington State, *Climatic Change*, 102, 187-223,
712 2010.

713 Matthews, W. J.: *Patterns in freshwater fish ecology*, Springer, 1998.

714 Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A long-term
715 hydrologically-based data set of land surface fluxes and states for the conterminous
716 United States, *Journal of Climate*, 15, 3237-3251, 2002.

717 Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., and Cayan, D. R.: The utility of
718 daily large-scale climate data in the assessment of climate change impacts on daily

719 streamflow in California, *Hydrology and Earth System Sciences*, 14, 1125-1138,
720 2010.

721 Maurer, E. P., Brekke, L., Pruitt, T., Thrasher, B., Long, J., Duffy, P., Dettinger, M., Cayan,
722 D., and Arnold, J.: An enhanced archive facilitating climate impacts and adaptation
723 analysis, *Bulletin of the American Meteorological Society*, 10.1175/BAMS-D-13-
724 00126.1, 2013.

725 Milner, N., Elliott, J., Armstrong, J., Gardiner, R., Welton, J., and Ladle, M.: The natural
726 control of salmon and trout populations in streams, *Fisheries Research*, 62, 111-
727 125, 2003.

728 Mohseni, O., Stefan, H. G., and Erickson, T. R.: A nonlinear regression model for weekly
729 stream temperatures, *Water Resources Research*, 34, 2685-2692, 1998.

730 Mohseni, O., Erickson, T. R., and Stefan, H. G.: Sensitivity of stream temperatures in the
731 United States to air temperatures projected under a global warming scenario, *Water
732 Resources Research*, 35, 3723-3733, 1999.

733 Mohseni, O., and Stefan, H. G.: Stream temperature/air temperature relationship: a physical
734 interpretation, *Journal of Hydrology*, 218, 128-141, 1999.

735 Mohseni, O., Stefan, H. G., and Eaton, J. G.: Global Warming and Potential Changes in
736 Fish Habitat in U.S. Streams, *Climatic Change*, 59, 389-409, 2003.

737 Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., and Veith,
738 T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in
739 Watershed Simulations, *Trans. of the ASABE*, 50, 885-900, 2007.

740 Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I -
741 - A discussion of principles, *Journal of Hydrology*, 10, 282-290, 1970.

742 Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., and King, K. W.: Soil and Water
743 Assessment Tool Theoretical Documentation: Version 2005, Texas Water
744 Resources Institute, College Station, TX, 2005.

745 Nelson, K. C., and Palmer, M. A.: Stream Temperature Surges Under Urbanization and
746 Climate Change: Data, Models, and Responses1, JAWRA Journal of the American
747 Water Resources Association, 43, 440-452, 2007.

748 Null, S. E., Viers, J. H., Deas, M. L., Tanaka, S. K., and Mount, J. F.: Stream temperature
749 sensitivity to climate warming in California's Sierra Nevada: impacts to coldwater
750 habitat, Climatic change, 116, 149-170, 2013.

751 Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., and Lettenmaier, D. P.: Mitigating
752 the effects of climate change on the water resources of the Columbia River Basin,
753 Climatic Change, 62, 233-256, 2004.

754 Pekarova, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., and Skoda, P.: Is the
755 Water Temperature of the Danube River at Bratislava, Slovakia, Rising?, Journal
756 of Hydrometeorology, 9, 1115-1122, 2008.

757 Peterson, J. T., and Kwak, T. J.: Modeling the effects of land use and climate change on
758 riverine smallmouth bass, Ecological Applications, 9, 1391-1404, 1999.

759 Sinokrot, B. A., and Stefan, H. G.: Stream water-temperature sensitivity to weather and
760 bed parameters, Journal of Hydraulic Engineering, 120, 722-736, 1994.

761 Stagge, J. H., and Moglen, G. E.: Evolutionary Algorithm Optimization of a Multi-
762 Reservoir System with Long Lag Times, Journal of Hydrologic Engineering, 2014.

763 Stefan, H. G., and Preud'homme, E. B.: Stream Temperature Estimation from Air
764 Temperature, *Journal of the American Water Resources Association*, 29, 27-45,
765 1993.

766 Tang, H., and Keen, T. R.: Analytical solutions for open-channel temperature response to
767 unsteady thermal discharge and boundary heating, *Journal of Hydraulic
768 Engineering*, 135, 327-332, 2009.

769 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
770 Experiment Design, *Bulletin of the American Meteorological Society*, 93, 485-498,
771 2011.

772 Tisseuil, C., Leprieur, F., Grenouillet, G., Vrac, M., and Lek, S.: Projected impacts of
773 climate change on spatio-temporal patterns of freshwater fish beta diversity: a
774 deconstructing approach, *Global Ecology and Biogeography*, 21, 1213-1222, 2012.

775 van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P., and Kabat, P.: Global
776 river temperatures and sensitivity to atmospheric warming and changes in river
777 flow, *Water Resources Research*, 47, W02544, 2011.

778 Wang, X., and Melesse, A.M.: Evaluation of the SWAT model's snowmelt hydrology in a
779 northwestern Minnesota watershed, *Trans. of the ASABE*, 48, 1359-1376, 2005.

780 Watson, B.M, and Putz, G.: Comparison of temperature-index snowmelt models for use
781 within an operational water quality model, *Journal of Environmental Quality*, 43,
782 199-207, 2012.

783 Webb, B. W., and Nobilis, F.: Water temperature behaviour in the River Danube during
784 the twentieth century, *Hydrobiologia*, 291, 105-113, 1994.

785 Webb, B. W., Clack, P. D., and Walling, D. E.: Water–air temperature relationships in a
786 Devon river system and the role of flow, *Hydrological Processes*, 17, 3069-3084,
787 2003.

788 Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., and Nobilis, F.: Recent advances
789 in stream and river temperature research, *Hydrological Processes*, 22, 2008.

790 Wenger, S. J., Som, N. A., Dauwalter, D. C., Isaak, D. J., Neville, H. M., Luce, C. H.,
791 Dunham, J. B., Young, M. K., Fausch, K. D., and Rieman, B. E.: Probabilistic
792 accounting of uncertainty in forecasts of species distributions under climate change,
793 *Global Change Biology*, 19, 2013.

794 Wilby, R. L., and Harris, I.: A framework for assessing uncertainties in climate change
795 impacts: low-flow scenarios for the River Thames, UK, *Water Resources Research*,
796 42, W02419, 2006.

797 Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications
798 of dynamical and statistical approaches to downscaling climate model outputs,
799 *Climatic Change*, 62, 189-216, 2004.

800 Woodward, G., Perkins, D. M., and Brown, L. E.: Climate change and freshwater
801 ecosystems: impacts across multiple levels of organization, *Philosophical
802 Transactions: Biological Sciences*, 365, 2093-2106, 2010.

803

804 Zang, C.F., Liu, J., van der Velde, M., and Kraxner, F.: Assessment of spatial and temporal
805 patterns of green and blue water flows under natural conditions in inland river

806 basins in Northwest China, *Hydrology and Earth System Sciences*, 16, 2859-2870,
807 2012.

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829 Table 1. Coupled Model Intercomparison Project – phase 5 General Circulation Models
830 used in this study

Modeling Group	CMIP5 Model
Canadian Centre for Climate Modeling & Analysis	canesm2
Météo-France / Centre National de Recherches Météorologiques, France	cnrm-cm5
Geophysical Fluid Dynamics Laboratory, USA	gfdl-cm3
Institut Pierre Simon Laplace, France	ipsl-cm5a-mr
Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC), Japan	miroc5
Max Planck Institute for Meteorology, Germany	mpi-esm-lr
Meteorological Research Institute, Japan	mri-cgcm3

831

832

833

834

835

836

837

838

839

840

841

842

843

844 Table 2. Summary of streamflow calibration statistics.

		Calibration		Validation	
		Average	Std. Dev.	Average	Std. Dev.
NS		0.69	0.13	0.64	0.13
R^2		0.75	0.10	0.75	0.08
Φ		0.62	0.15	0.65	0.13

845

846 *NS: Nash-Sutcliffe coefficient

847 * R^2 : coefficient of determination

848 * Φ : coefficient of determination multiplied by slope of regression
849 line, b

850

851

852

853

854

855

856

857

858

859

Table 3. Stream temperature changes and focal fish species groups for the Columbia River Basin ecological provinces during the 2080s.

Ecological province	Spring (°C)	Summer (°C)	Fall (°C)	Winter (°C)	Annual (°C)	Focal Fish Species
Blue Mountain	3.7	5.3	3.2	2.1	3.5	coldwater migratory
Columbia Cascades	2.6	4.1	2.0	1.2	2.4	coldwater migratory
Columbia Plateau	2.0	3.8	2.0	1.5	2.2	warmwater
Intermountain	3.3	5.0	2.7	1.5	3.0	warmwater
Middle Snake	2.4	3.7	2.3	1.4	2.2	coldwater migratory
Mountain Columbia	3.6	5.0	2.4	1.5	3.1	coldwater non-migratory
Mountain Snake	5.0	7.0	4.0	2.1	4.3	coldwater migratory
Upper Snake	4.3	6.0	3.3	1.6	3.6	coldwater non-migratory

1 Table 4. Sensitivities of stream temperature changes to changes in maximum and minimum air
 2 temperatures for the Columbia River Basin during the 2080s

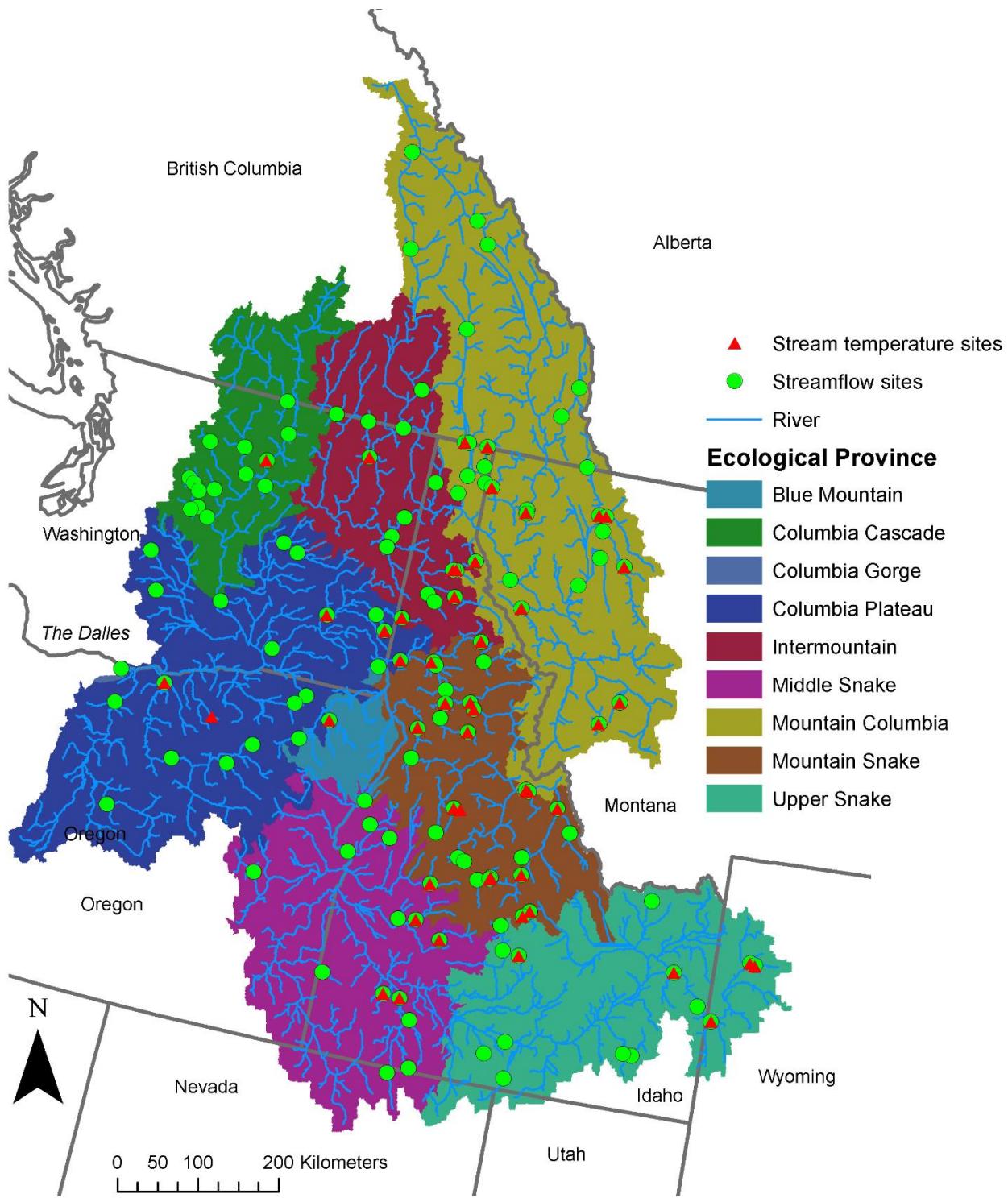
Maximum air temperature

Ecological province	Spring (°C/°C)	Summer (°C/°C)	Fall (°C/°C)	Winter (°C/°C)	Annual (°C/°C)
Blue Mountain	0.7	0.5	0.8	0.4	0.6
Columbia Cascades	0.5	0.7	0.7	0.3	0.6
Columbia Plateau	0.5	0.4	0.7	0.0	0.4
Intermountain	0.7	0.8	1.1	0.6	0.8
Middle Snake	0.5	0.5	0.8	0.9	0.7
Mountain Columbia	0.4	0.7	0.7	0.3	0.5
Mountain Snake	0.7	1.0	1.0	0.0	0.7
Upper Snake	0.6	0.7	0.8	0.3	0.6

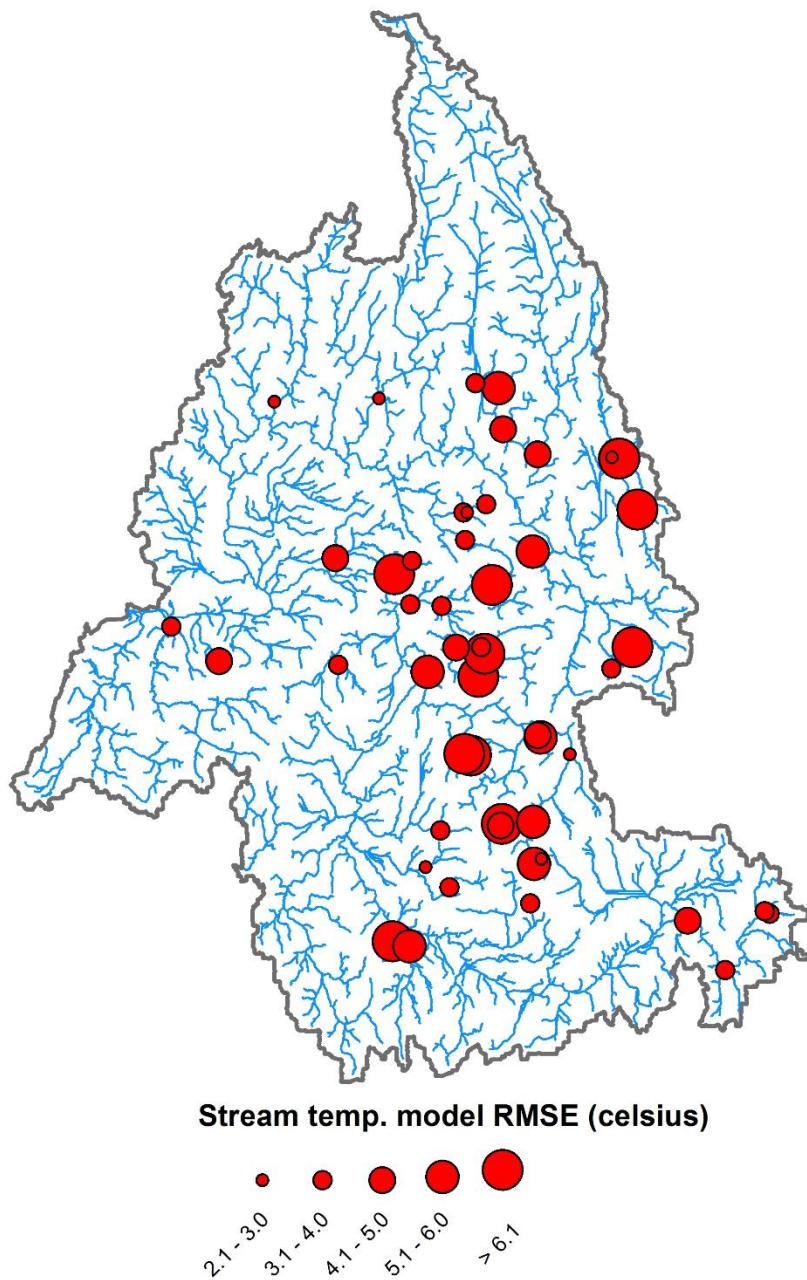
Minimum air temperature

Ecological province	Spring (°C/°C)	Summer (°C/°C)	Fall (°C/°C)	Winter (°C/°C)	Annual (°C/°C)
Blue Mountain	0.7	0.7	0.9	0.0	0.6
Columbia Cascades	0.2	0.7	0.8	1.4	0.7
Columbia Plateau	0.2	0.6	0.8	0.4	0.5
Intermountain	0.7	0.9	0.8	0.0	0.6
Middle Snake	0.8	0.9	1.0	0.5	0.6
Mountain Columbia	0.3	0.9	0.6	0.2	0.5
Mountain Snake	0.7	1.1	1.0	0.5	0.8
Upper Snake	0.8	1.2	0.9	0.5	0.9

3 Table 5. Pearson correlations between stream temperature and individual hydroclimatological
4 changes for the entire Columbia River Basin during the 2080s.


Hydroclimatological Component	Spring	Summer	Fall	Winter
Maximum air temperature	0.67	0.61	0.49	0.36
Minimum air temperature	0.65	0.61	0.47	0.34
Precipitation	-0.51	-0.50	-0.36	-0.20
Streamflow	0.08	0.07	-0.10	-0.02*
Snowmelt	-0.36	0.10	-0.31	-0.26
Surface runoff	-0.39	-0.08	-0.30	-0.28
Groundwater inflow	-0.24	-0.04*	-0.12	0.00*
Lateral soil flow	-0.42	-0.32	-0.36	-0.07

5 * indicates there was no significant correlation at p =0.05

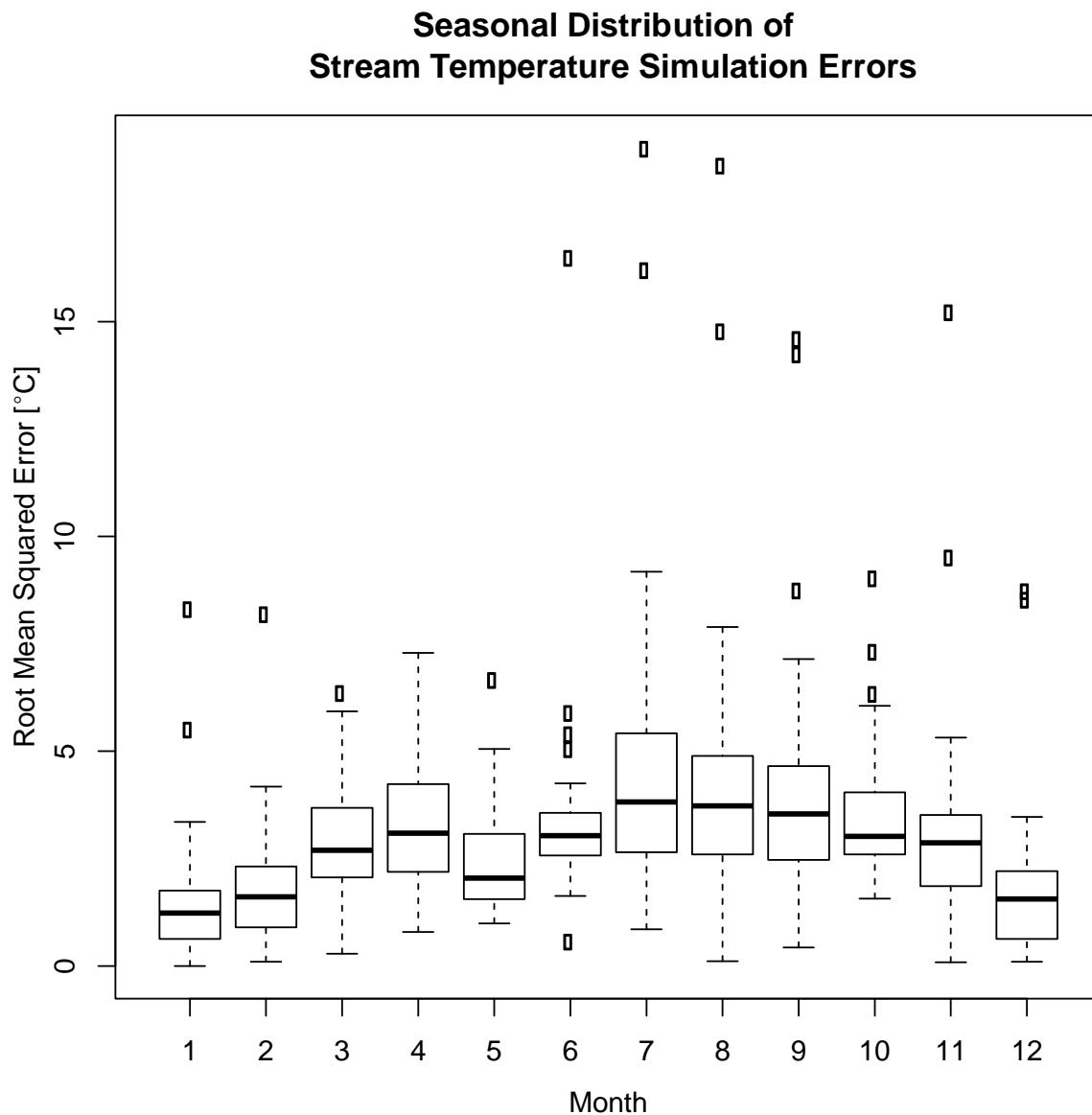

6
7
8
9
10
11
12
13
14
15
16
17
18

19 **Figures**

20 Figure 1. Columbia River Basin study area ecological provinces with streamflow and stream
21 temperature gauges for calibration.

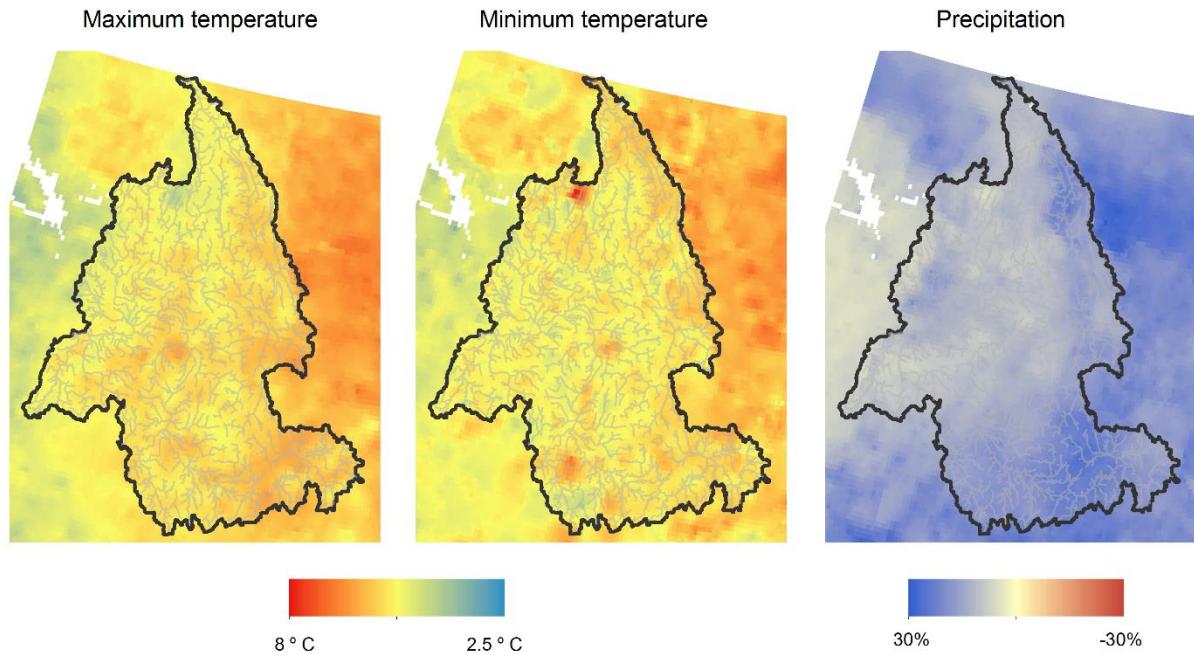
23 Figure 2. Root mean square errors of the simulated and observed stream temperatures

24

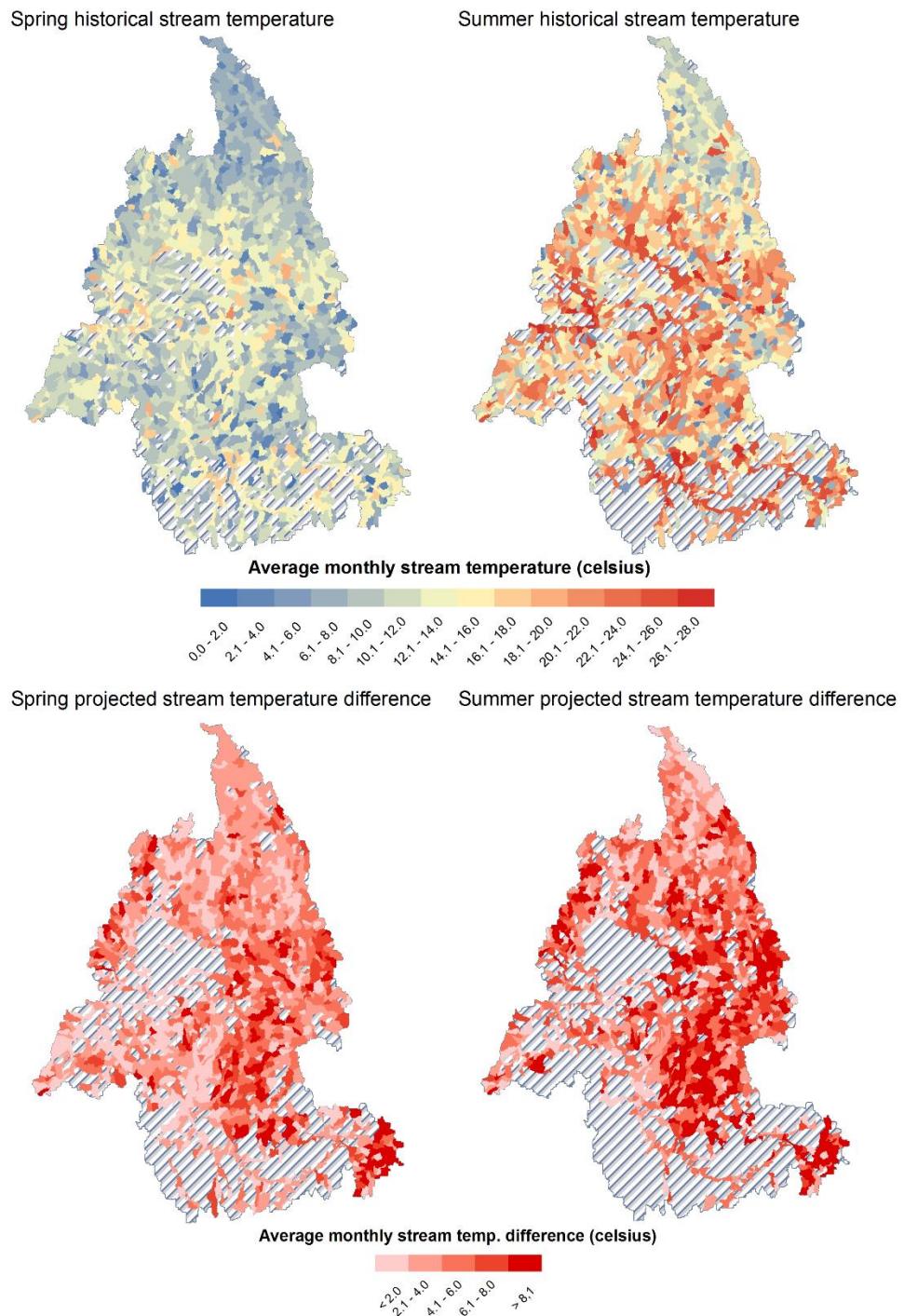

25

26

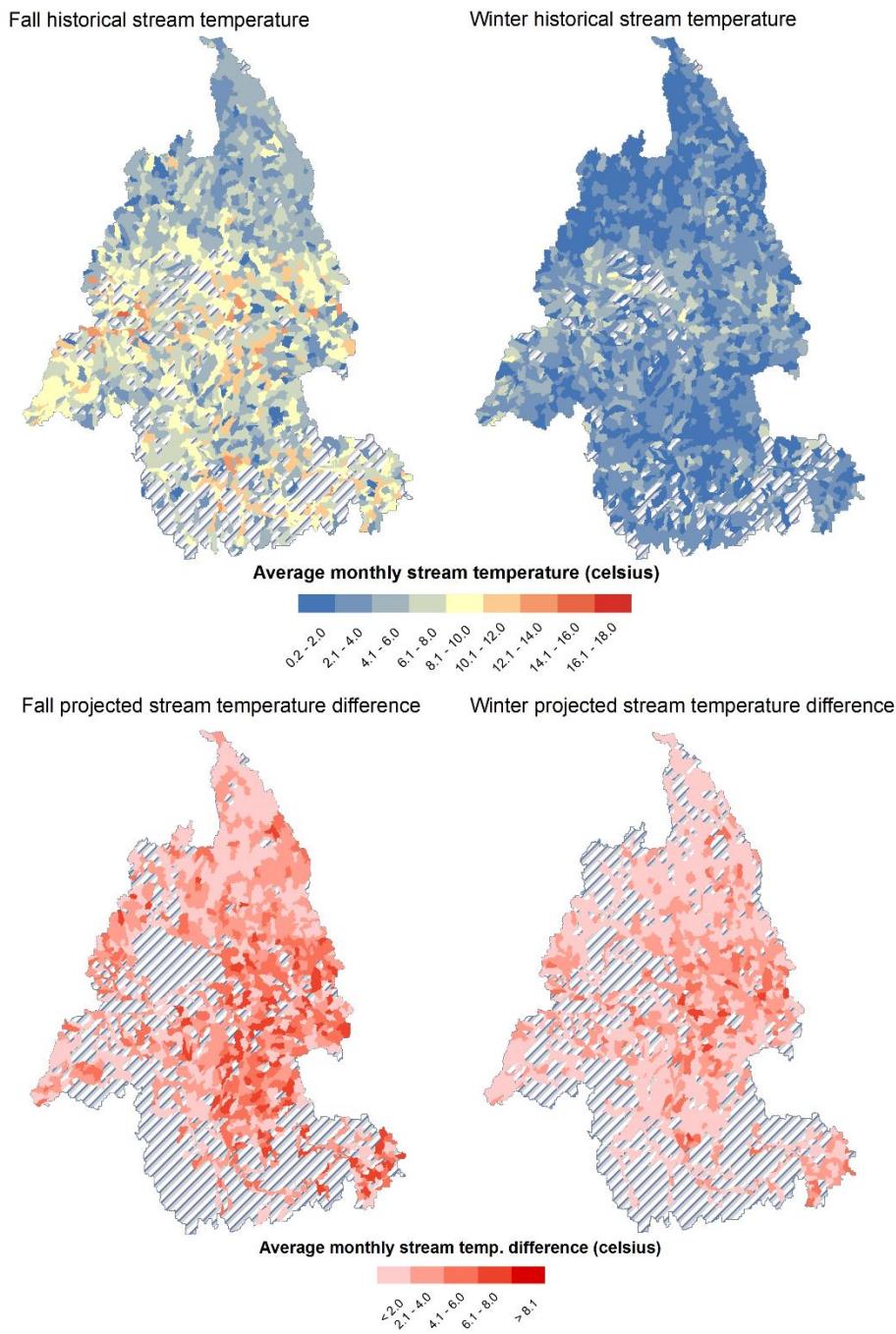
27


28

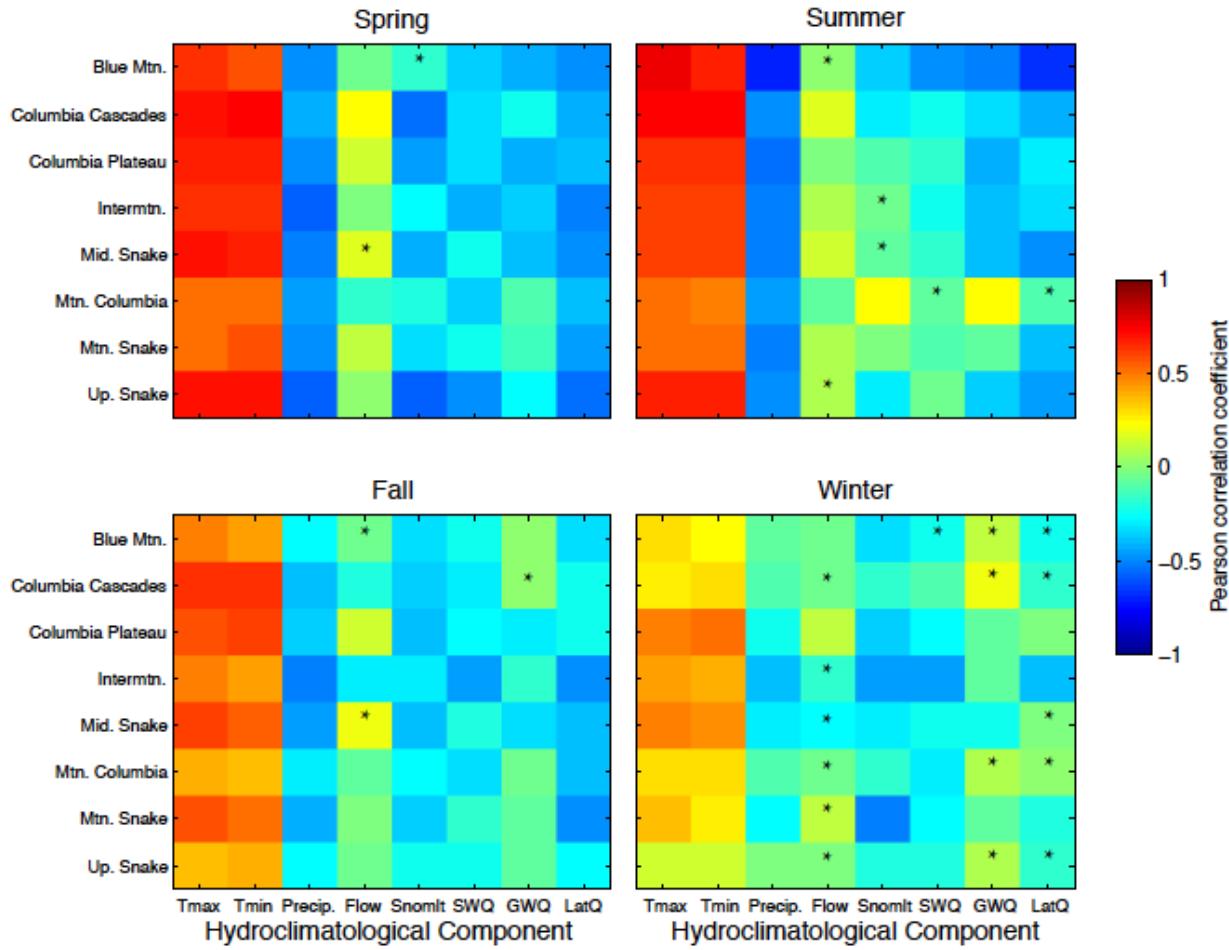
29 Figure 3. Monthly stream temperature error distributions for all stream temperature gauges.


30
31
32
33
34
35

36 Figure 4. Changes in average precipitation and air temperature (maximum and minimum) for the
37 end of the 21st century as compared to the historical time period


38
39
40
41
42
43
44
45
46
47
48
49

50 Figure 5. Spring and summer historical and projected stream temperatures at the subbasin-level.
51 Hatched subbasins indicate that drying occurred under climate projections and were removed
52 from analyses.


53

54 Figure 6. Fall and winter historical and projected stream temperatures at the subbasin-level.
55 Hatched subbasins indicate that drying occurred under climate projections and were removed
56 from analyses.

57
58
59

60 Figure 7. Pearson correlations between changes in stream temperature and hydroclimatological
 61 components for the Columbia River Basin ecological provinces. Tmax = maximum air
 62 temperature; Tmin = minimum air temperature; Precip. = precipitation; Flow = streamflow;
 63 Snomlt = snowmelt; SWQ = surface water runoff; GWQ = groundwater inflow; LatQ = lateral
 64 soil flow. Asterisks represent no significant correlation at $p = 0.05$

65
 66
 67
 68
 69
 70
 71