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 2 

Abstract 38 

 39 

Water temperature is a primary physical factor regulating the persistence and distribution 40 

of aquatic taxa.  Considering projected increases in air temperature and changes in 41 

precipitation in the coming century, accurate assessment of suitable thermal habitat in 42 

freshwater systems is critical for predicting aquatic species responses to changes in climate 43 

and for guiding adaptation strategies. We use a hydrologic model coupled with a stream 44 

temperature model and downscaled General Circulation Model outputs to explore the 45 

spatially and temporally varying changes in stream temperature for the late 21st century at 46 

the subbasin and ecological province scale for the Columbia River Basin. On average, 47 

stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 48 

2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream 49 

temperature are correlated with changes in air temperature, our results also capture the 50 

important, and often ignored, influence of hydrological processes on changes in stream 51 

temperature. Decreases in future snowcover will result in increased thermal sensitivity 52 

within regions that were previously buffered by the cooling effect of flow originating as 53 

snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil 54 

water flow, and groundwater inflow, are negatively correlated to increases in stream 55 

temperature depending on the ecological province and season.  At the ecological province 56 

scale, the largest increase in annual stream temperature was within the Mountain Snake 57 

ecological province, which is characterized by non-migratory coldwater fish species. 58 

Stream temperature changes varied seasonally with the largest projected stream 59 

temperature increases occurring during the spring and summer for all ecological provinces. 60 

Our results indicate that stream temperatures are driven by local processes and ultimately 61 
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require a physically-explicit modeling approach to accurately characterize the habitat 62 

regulating the distribution and diversity of aquatic taxa. 63 

1. Introduction 64 

The temporal and spatial variability of stream temperature is a primary regulator of 65 

the life-history, behavior, ecological interactions, and distribution of most aquatic species 66 

(Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater 67 

organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water 68 

temperature (Angilletta, 2009), and thus the persistence of populations and the rate of 69 

energy flow through aquatic ecosystems is dependent on the thermal characteristics of a 70 

local habitat (Woodward et al., 2010).  Moreover, much like terrestrial species, the timing 71 

of important life-history traits such as reproduction and migration is heavily dependent on 72 

seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010).  Additionally, 73 

stream temperature plays a large role in chemical kinetic rates and is important for 74 

governing stream management for recreation as well as urban and industrial water supplies. 75 

Therefore, to better understand hydrologic systems and to better manage water resources 76 

in a changing environment, it is critical to predict the potential effects of climate variability 77 

and change on stream temperature, and to characterize how these changes affect the 78 

distribution and diversity of freshwater taxa. 79 

Potential impacts of climate change on stream temperatures have been widely 80 

estimated using field investigations and modeling studies (Webb and Nobilis, 81 

1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb 82 

et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013). 83 

At larger spatial scales, regional regression models have been used to predict the impacts 84 
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of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan, 85 

1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al., 86 

2003;Stefan and Preud'homme, 1993). However, regression methods are not sufficient 87 

predictors of stream temperature because they do not account for hydrologic component 88 

inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al., 89 

1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014). 90 

Neglecting these components severely limits the ability of regression-based models to 91 

accurately predict spatial variability in stream temperature changes, since the contributions 92 

of different sources to streamflow will be modified in a changing climate.  Ignoring the 93 

distinct characteristics of different sources to streamflow therefore negatively impacts the 94 

assessment of the effects of climate change on aquatic biodiversity at landscape (and larger) 95 

scales.   96 

To adequately capture the role of changing hydrology from a changing climate on 97 

stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and 98 

Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974) 99 

stream temperature models, in conjuction with hydrologic models, have been applied with 100 

success. These models allow stream temperature assessments at the local or regional level. 101 

For example, our prevous work in the Sierra Nevada mountain range in California found 102 

subbasin-scale stream temperature differences from region-to-region largely from 103 

localized changes in hydrology from changes in climate. Additionally, Null et al. (2013) 104 

found increasing stream tempreatures with increasing elevation due to the transition from 105 

snow- to rain-dominated, an effect opposite what would be predicted by a model based 106 

solely on air temperature  107 
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The primary objectives of this work are to [1] predict changes in stream temperature 108 

over the coming century across the Columbia River Basin at the ecological province level, 109 

[2] identify the contribution of specific hydrological components (such as snowmelt, 110 

surface water runoff, etc.) to the overall heat and water budget across the watershed, and 111 

[3] add to the literature regarding the role of changing hydrology on changes in stream 112 

temperature. Specifically, we aim to demonstrate the extent to which future changes in 113 

hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil 114 

flow as simulated using global climate projections at the subbasin scale— could critically 115 

affect changes in localized stream temperatures, which are of high importance for aquatic 116 

species. The Columbia River Basin is a snowmelt-dominated region, where projected 117 

increases in global air temperatures are expected to result in early snowmelt runoff. These 118 

changes lead to reduced late spring and summer water discharges that change the thermal 119 

content of stream flow.  Moreover, previous stream temperature assessments indicate that 120 

the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010;Chang 121 

and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in 122 

part by the land use, hydroclimate and topographic variables of the local region (Chang 123 

and Psaris, 2013).  124 

We use a landscape-scale hydrological model—the Soil and Water Assessment 125 

Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that 126 

simulates stream temperature based on the effects of subbasin air temperature and 127 

hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and 128 

runoff processes, and also incorporates a full range of water quality processes (Gassman et 129 

al., 2007). SWAT has been found to accurately simulate streamflow in regions where 130 
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snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012; 131 

Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global 132 

Climate Models, GCMs) using one representative concentration pathway (RCP) associated 133 

with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21st 134 

century was used to drive the calibrated SWAT model at the subbasin-scale. For all 135 

Columbia River Basin ecological provinces, we spatially and temporally explore the 136 

changes in stream temperature, and interpret these changes with respect to changes in the 137 

hydrologic system.  138 

2. Materials and Methods 139 

2. 1 Study area 140 

The CRB encompasses portions of seven states in the western United States and 141 

the Canadian province of British Columbia. The CRB for this study is defined as the area 142 

that flows into the The Dalles, Oregon (Figure 1) and has a surface area of 613,634 km2. 143 

The water resources in the CRB have been extensively developed in the past 70 years for 144 

hydroelectric power, agricultural irrigation, and urban use. The CRB study area has been 145 

extensively discussed in Hatcher and Jones (2013), Mantua et al. (2010), and Payne et al. 146 

(2004). 147 

Subbasins were aggregated into ecological provinces according to designations 148 

Northwwest Habitat Institute (N.H.I., 2008). Ecological provinces are delineated based on 149 

species composition within the region and environmental conditions. Because the 150 

ecological provinces do not expand into Canada, we extrapolated the boundaries based on 151 

watershed delineations. The ecoprovince areas (Figure 1) for this study average 68,000 km2 152 

and range from 300 km2 (Columbia Gorge) to 145,000 km2 (Mountain Columbia).  For 153 
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descriptive purposes, we further characterize ecological provinces as either ‘warmwater’ 154 

(Centrarchidae – bass, bluegill, crappie; Percidae – perch, walleye), ‘coldwater migratory’ 155 

(Salmonidae – salmon, steelhead, trout], and ‘coldwater non-migratory’ (Salmonidae – 156 

trout, whitefish) (Table 2), based on predominant focal fish species (N.H.I., 2008).  157 

 158 

2.2 Modeling stream flow and water quality using SWAT  159 

We used the SWAT model coupled with a stream temperature model to predict 160 

streamflow and stream temperature throughout the Columbia River Basin at an average 161 

spatial resolution of 250 km2.  SWAT is an integrative, mechanistic model that utilizes 162 

inputs of daily weather, topography, land use, and soil type to simulate the spatial and 163 

temporal dynamics of climate, hydrology, plant growth, and erosion (Arnold et al., 1998). 164 

Within SWAT, surface runoff and soil water infiltration were simulated using the modified 165 

Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used to 166 

estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin 167 

et al. (2012) SWAT stream temperature model that uses local air temperature and 168 

hydrology for stream temperature estimation: 169 

        170 

 171 

            172 

           [1] 173 
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sub_gw is the groundwater contribution to streamflow within the subbasin (m3), sub_surq 175 

wyldsub

latqsubsurqsubTgwsubTsnowsub
T

lagairgw

localw
_

))__(()_()_1.0( ,

,








 8 

is the surface water runoff contribution to streamflow within the subbasin (m3), sub_latq 176 

is the soil water lateral flow contribution to streamflow within the subbasin (m3), sub_wyld 177 

is the total water yield (all contributing hydrologic components) contribution to streamflow 178 

within in the subbasin (m3), Tgw is the groundwater temperature (°C; annual average input 179 

by user), and Tair,lag is the average daily air temperature with a lag (°C), and    is a 180 

calibration coefficient relating to the relative contribution of the surface water runoff and 181 

lateral soil water flow to the local water temperature and is included to aid in calibration in 182 

case of improper hydrologic model calibration.  The lag (days) is incorporated to allow the 183 

effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation 184 

[1] represents the assumed temperature of snowmelt (0.1 °C).  185 

 After stream temperature of the local contributing water is determined, the stream 186 

temperature before the effects of air temperature is determined by: 187 

𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 =  
𝑇𝑤,𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 ∗ (𝑄𝑜𝑢𝑡𝑙𝑒𝑡 – 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑) + (𝑇𝑤,𝑙𝑜𝑐𝑎𝑙 ∗ 𝑠𝑢𝑏_𝑤𝑦𝑙𝑑)

𝑄𝑜𝑢𝑡𝑙𝑒𝑡
 188 

                                                                                                                                         [2] 189 

where Tw,upstream is the temperature of the streamflow entering the subbasin (°C) and Qoutlet 190 

is the streamflow discharge at the outlet of the subbasin.  191 

The final stream temperature is calculated by adding a change to the initial stream 192 

temperature in the subbasin from differences between stream and air temperature and travel 193 

time of water through the subbasin. Depending on Tair, the final stream temperature is 194 

estimated as: 195 

𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + (𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 > 0          [3] 196 
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𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙 + ((𝑇𝑎𝑖𝑟 + 𝜀) − 𝑇𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑡𝑖𝑎𝑙) ∗ 𝐾 ∗ (𝑇𝑇) 𝑖𝑓 𝑇𝑎𝑖𝑟 < 0          [4] 197 

where Tair is the average daily air temperature (°C), K is a calibration conductivity 198 

parameter, TT is the travel time of water through the subbasin (hour) and is calculated from 199 

the SWAT simulations, and 𝜀 is an air temperature addition coefficient (°C), which was 200 

included to account for water temperature pulses when Tair is below 0°C. For the case when 201 

the effects of Tair and the hydrologic contributions are such that the final is Twater < 0°C, 202 

the stream temperature model sets Twater to 0.1 °C.  Twater is also assumed to be the 203 

temperature of water discharge to downstream subbasin, and is further routed along the 204 

stream network.  The calibration parameter, K, acts as a proxy for reach-specific adjustment 205 

of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes 206 

resulting in differing geometry. Additional details regarding the stream temperature model 207 

can be found in Ficklin et al. (2012). 208 

Based on our previous work throughout the western United States (Ficklin et al., 209 

2012), the stream temperature model is highly sensitive to changes in   (the calibration 210 

coefficient for the surface runoff and lateral soil water flow contributions to streamflow) 211 

and K (calibration conductivity parameter between air and stream temperature). Previous 212 

work also indicates that simulated stream temperatures are sensitive to changes in 213 

hydrologic components from increases in air temperature. For example, shifting snowmelt 214 

earlier into the winter buffered the effects of increasing air temperature, resulting in only a 215 

minor increase in stream temperature. Stream temperature in the late spring, early summer, 216 

however, decreased from increases in snowmelt. Increasing groundwater streamflow 217 

inputs decreased stream temperatures from the increase in cool water from groundwater. 218 

These results are contingent on the volume and timing of the various hydrologic 219 
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components. For example, the larger the increase in groundwater flow volume to 220 

streamflow, the larger the decrease in stream temperature. Further discussion on the stream 221 

temperature model sensitivity can be found in Ficklin et al. (2012).  222 

2.3 Input Data 223 

SWAT input parameter values for topography, land cover, and soils data were 224 

compiled from freely-available federal and state databases. A 30-meter Digital Elevation 225 

Model (USGS) formed the basis for watershed and sub-basin delineation. Soil properties 226 

were obtained from the STATSGO soil dataset. The 2001 National Land Cover Database 227 

was used for land cover/land use. Meteorological data (air temperature, precipitation, and 228 

wind speed) were extracted from Maurer et al. (2002) and relative humidity and solar 229 

radiation were generated within SWAT (Neitsch et al., 2005).The Columbia River Basin 230 

natural flow data that were used for streamflow calibration were obtained from output from 231 

a calibrated Variable Infiltration Capacity Model (VIC) model (from 232 

http://cses.washington.edu/) and the United States Geological Survey Hydro-Climatic Data 233 

Network (HCDN; Slack et al. (1993)). These data represent streamflow that would occur 234 

if no reservoirs or streamflow diversions were present within the basin. The HCDN is a 235 

hydrologic dataset developed to study surface water conditions throughout the United 236 

States that only fluctuate with changes in local climatic conditions and is therefore apt for 237 

use in climate change studies (Slack et al., 1993). SWAT was run at the monthly time step. 238 

Climatic projections from seven GCMs (Table 1) and one RCP (8.5) were input 239 

into the calibrated SWAT model. Daily downscaled output from the seven GCMs (RCP 240 

8.5) were obtained from the Downscaled CMIP3 and CMIP5 Climate and Hydrology 241 

Projections archive (Maurer et al., 2013). RCP 8.5 represents the highest increase in 242 
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radiative forcing of the Coupled Model Intercomparison Project – phase 5 (CMIP5; Taylor 243 

et al. (2011)) projections, and is based on an increased radiative forcing of 8.5 Wm-2 244 

(relative to pre-industrial values) at the end of the 21st century. Downscaling was achieved 245 

using the daily bias-corrected and constructed analogs (BCCA) method (Maurer et al., 246 

2010). In summary, the BCCA procedure consists of two steps. The first step is a bias 247 

correction using a quantile mapping technique which is applied to raw GCM output. 248 

Quantile mapping bias correction has been widely and successfully used in climate model 249 

downscaling (Wood et al., 2004). The bias correction step is followed by spatial 250 

downscaling using a constructed analogues approach for each day using a linear 251 

combination of days drawn from the historic record (Hidalgo et al., 2008). Maurer et al. 252 

(2010) found that the BCCA method consistently outperformed the Bias-253 

Correction/Spatial-Downscaling method (BCSD) and the Constructed Analogues (CA) 254 

approach in capturing the daily large-scale skill and translating it to simulated streamflows 255 

that accurately reproduced historical streamflows.  256 

 257 

2.4 SWAT streamflow calibration  258 

The program Sequential Uncertainty Fitting Version 2 (SUFI-2; Abbaspour et al. 259 

(2007)) was used to automatically-calibrate SWAT streamflow at 104 sites in the Columbia 260 

River Basin (Figure 1). Initial and default SWAT model parameters were varied 261 

simultaneously until an optimal solution was met. Three statistics were used to evaluate 262 

model efficiency: [1] the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970), [2] the 263 

coefficient of determination (R2), and [3] a modified efficiency criterion (Φ). Φ is the result 264 

of the coefficient of determination, R2, multiplied by the regression line slope, m (Krause 265 
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et al., 2005). This statistic captures the discrepancy in the magnitude of the observed and 266 

simulated streamflow (captured by m) as well as the dynamics (captured by R2). For all 267 

previously-mentioned statistics, a perfect simulation is represented by a value of 1. A split-268 

sample approach was used for calibration and validation, and the calibration and validation 269 

periods differed at each streamflow gauge depending on streamflow data availability.  270 

 271 

2. 5 SWAT stream temperature calibration 272 

Monthly stream temperatures were predicted using the SWAT stream temperature 273 

model of Ficklin et al. (2012). This model includes the effects of hydrologic component 274 

inputs (e.g., snowmelt, groundwater, and surface runoff) on stream temperature. Previous 275 

studies have demonstrated that this stream temperature model performs better than linear 276 

regressions that use air temperature alone (Ficklin et al., 2013;Barnhart et al., 2014). The 277 

model requires four calibration parameters for each subbasin in the SWAT setup. Since the 278 

model is not incorporated into the previously mentioned SWAT-CUP software, we utilized 279 

the steady-state S-metric evolutionary multi-objective optimization algorithm (SMS-280 

EMOA) to calibrate the stream temperature parameters after hydrologic calibration was 281 

performed (Emmerich et al., 2005;Beume et al., 2007). SMS-EMOA is an efficient and 282 

effective Pareto optimization evolutionary algorithm for finding solutions to multi-283 

objective optimization problems. The algorithm seeks optimal solutions that maximize the 284 

hypervolume (S-metric)—which can be thought of as the volume of dominated space—285 

and has been theoretically proven to converge to the Pareto set (Fleischer, 2003;Emmerich 286 

et al., 2005;Beume et al., 2007). For a recent application, see Stagge and Moglen (2014). 287 
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For this study, SMS-EMOA was used to seek the optimal set of calibration 288 

parameters to reduce the differences between simulated stream temperatures from SWAT 289 

and observed values. Observed stream temperatures were obtained from 50 sites within the 290 

Columbia River Basin between 1970-1992. Four calibration parameters for each subbasin 291 

were adjusted using the algorithm, and three objectives were specified including the RMSE 292 

values for the January-April, May-August, and September-December time periods to 293 

match the stream temperature rising limb, peak, and falling limb. Further objective 294 

functions were intentionally omitted to simplify the analysis. This decision is justified by 295 

the limited range of stream temperatures matched by the algorithm. Conversely, 296 

hydrological calibration attempts to match flows that vary over orders of magnitude and 297 

therefore require additional objectives to match all portions of the hydrograph. 298 

Convergence of the stream temperature calibration algorithm was assumed to be met when 299 

the S-metric did not vary more than 1% between 3 generations. The final set of solutions 300 

exhibited trade-offs between the three objective functions; therefore, a single solution—301 

more specifically, a single set of calibration parameters—was then chosen from this set to 302 

be used in the calibrated SWAT simulation.  303 

 304 

2. 6 Statistical analyses  305 

The impacts of potential climate change on streamflow and hydrologic components 306 

were evaluated by comparing historical time period (1961-1990) simulations to those using 307 

the GCMs in Table 1 for the late-21st century (2080s; 2081-2099). When describing the 308 

ensemble average (or standard deviation) of a time period (i.e., late-21st century), this value 309 

is the average (or standard deviation) of the seven CMIP5 GCMs for this time period. 310 
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Months are lumped into seasons for temporal analysis and are defined as spring (April-311 

June), summer (July-September), fall (October and November), and winter (December-312 

March). These seasons are defined to capture the snowmelt and dry/low flow seasons. 313 

Pearson correlations using a bootstrap method were used to measure the relationship 314 

between annual and seasonal changes in stream temperature and individual 315 

hydroclimatological components. A total of 10,000 bootstrap correlation iterations were 316 

run. Statistical significance was determined at the α = 0.05 level. For statistical 317 

significance, the 5th and 95th percentiles of the bootstrap correlation iterations must agree 318 

on the correlation sign (+ or -). If the lower (higher) end of our confidence interval is above 319 

(below) zero, we can conclude that the correlation between stream temperature and 320 

hydroclimatological component change is significant at the α = 0.05 level (two-tailed). 321 

Additionally, with changes in climate, it can be expected that drying of streams will occur. 322 

In this study, streams that have no flow for an extended time period of the year (and thus 323 

have no stream temperature) are removed from the stream temperature analyses, but since 324 

drying streams are an important barrier for aquatic species migration, they will be 325 

discussed.  326 

3. Results 327 

3.1 Hydrologic model calibration 328 

 NS, R2 and Φ average and standard deviation values for the calibration and 329 

validation time periods are shown in Table 2. Overall, the model efficiency statistics show 330 

that the SWAT model adequately simulated streamflow compared to observations. The 331 

average NS coefficient for the calibration and validation period was 0.69 and 0.64, 332 

respectively, with a standard deviation of 0.13 for the calibration period and 0.13 for the 333 
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validation period. This indicates that a large portion of the NS values for both time periods 334 

varied only 0.13 around their respective means, which is still within acceptable NS limits 335 

(Moriasi et al., 2007). The other model efficiency statistics, R2 and Φ, indicate similar 336 

model performance.  337 

 338 

3. 2 Stream temperature model calibration 339 

After SWAT was calibrated for discharge, the model was used within the SMS-340 

EMOA algorithm to calibrate the stream temperature model. RMSE values between 341 

observed and simulated daily stream temperatures range from 2-5 °C for the majority of 342 

observation sites. The resulting monthly RMSE values for each site are shown in Figure 2. 343 

No distinct spatial distributions of the magnitude of errors are present. Errors distinguished 344 

by month of year were also quantified (Figure 3). Errors are largest during the summer 345 

months of July through September. Lowest RMSE values were present between December 346 

and February. Also, the model gives highly unrealistic (RMSE >15 °C) results for a 347 

moderate number of points, especially during summer months. This is due to low values 348 

of discharge within reaches during the summer months. Stream temperature is strongly 349 

inversely dependent on streamflow, and very small values of discharge cause the model to 350 

produce uncharacteristically high stream temperature simulation values. The calibrated 351 

stream temperature model parameters can be found in the supplemental information.  352 

 353 

3.3 Temperature and precipitation projections 354 

 Ensemble average projections of maximum and minimum air temperature and 355 

precipitation, as compared to the historical time period, are shown in Figure 4. Overall, the 356 
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maximum and minimum air temperatures vary spatially throughout the CRB, with an 357 

average ensemble increase of 5.5 °C for maximum air temperature and 5.4 °C for minimum 358 

air temperature. All GCMs agreed that air temperature is expected to increase by the end 359 

of the 21st century. Precipitation projections, on the other hand, varied between downscaled 360 

GCM projections, with an overall average of a 14.4% increase compared to the historical 361 

time period. 362 

 363 

3.4 Stream temperature projections 364 

Figures 5 and 6 display the spring/summer and fall/winter historical and projected 365 

stream temperatures for the CRB. Simulated stream temperatures are projected to increase 366 

throughout the CRB, with largest increases occurring in the east-central portion of the 367 

CRB. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 368 

°C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. It is important to note that 369 

a large number of subbasins were removed from this analysis due to no-flow conditions 370 

(i.e., running completely dry or icing-up) from changes in climate (hatched areas in Figures 371 

5 and 6). Of these, winter had the largest number of subbasins removed from the analysis 372 

(31%), followed by fall (18%), summer (16%), and spring (15%). The average period of 373 

subbasins with no-flow conditions is projected to 34%, or 81 months out of the 240 months 374 

for the 2080s time period. We consider these subbasins to not be reliable refugia for aquatic 375 

species. 376 

Simulated stream temperature changes also vary at the ecological province scale 377 

(Table 3). At the annual time scale, the largest stream temperature increases (4.3 °C) 378 

occurred within the Mountain Snake ecological province, which is characterized by cold-379 
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water migratory fish species. The largest inter-annual variation around the mean occurred 380 

in the Upper Snake ecological province, which is characterized by non-migratory 381 

coldwater species, with a +/- 3.8 °C standard deviation. Important differences between 382 

ecological provinces occurred at the seasonal time scale. Overall, the largest spring 383 

increase in stream temperature occurred in the Mountain Snake (5.0 °C) and Upper Snake 384 

(4.3 °C), both containing coldwater species. The largest summer temperature increase 385 

compared to the historical time period was for the Mountain Snake ecological province 386 

with a 7 °C increase in average monthly stream temperature, followed by Upper Snake (6 387 

°C), Blue Mountain (5.3 °C), Intermountain (5.0 °C), and Mountain Columbia (5.0 °C), 388 

indicating that ecological provinces with coldwater species will experience some of the 389 

largest increases in stream temperature in the basin. These large increases are expected 390 

during the summer because air temperature is at its highest and streamflow is at its lowest.  391 

Fall and winter had the smallest increases in stream temperature including a CRB 392 

average of 2.9 °C for fall and 1.6 °C for winter. This was expected because this is when air 393 

temperatures are the lowest, and cold precipitation recharge and streamflow are highest, 394 

resisting stream temperature increases. The basins with the highest stream temperature 395 

increases for the fall and winter time period were the Mountain Snake and Blue Mountain 396 

(4.0/2.1 °C). 397 

 398 

3.5 Sensitivities of stream temperature changes to air temperature 399 

We define TSmax and TSmin as the thermal sensitivity or stream temperature change 400 

per 1 °C of maximum or minimum air temperature change. For the entire CRB and the 401 

water year annual time scale, the value for the average TSmax is 0.6 and that for TSmin is 402 
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0.86, demonstrating that, on average, the increases in stream temperature seen by the 2080s 403 

are to a larger degree tied to future changes in minimum air temperatures (Table 4). On the 404 

seasonal time scale, stream temperature changes during the summer were the most sensitive 405 

to changes in maximum air temperature with TSmax equal to 0.8, followed by spring (0.7), 406 

fall (0.5), and winter (0.3). For minimum air temperature sensitivities, however, spring 407 

values of TSmin were the highest of all seasons, equal to 0.9, followed by summer (0.8), fall 408 

(0.5), and winter (0.3). Air temperature sensitivities varied by ecological province as well 409 

as by season. At the annual and seasonal time scales the Intermountain, Middle Snake, and 410 

Mountain Snake ecological provinces exhibited the highest values of TSmax.  411 

 For minimum air temperatures, the ecological provinces that were the most 412 

sensitive were Columbia Cascade, Mountain Snake, and Upper Snake. Summer once again 413 

had the highest overall TSmin values. However, the largest TSmin values were found in the 414 

winter and spring seasons, with the Columbia Cascades in the winter (1.4) and the 415 

Mountain Snake and Upper snake exhibiting TSmin values of 1.1 and 1.2 in the spring. 416 

Overall, it can be seen that spring has higher TSmin values than TSmax, a possible artifact of 417 

snowmelt (see Discussion).  418 

 419 

3.6 Sensitivities of stream temperature to changes in hydroclimatological components 420 

3.6.1 Correlations at the Columbia River Basin scale 421 

At the CRB scale, all stream temperature changes were significantly correlated to 422 

all hydroclimatic components during the spring and fall seasons for the 2080s (Table 5), 423 

suggesting that during these seasons stream temperatures are highly sensitive to changing 424 

environments. For summer, groundwater inflow change was the only variable not 425 
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significantly correlated to stream temperature changes. For winter, streamflow and 426 

groundwater inflow changes were the only variables not significantly correlated to stream 427 

temperature changes (see Discussion). 428 

  429 

3.6.2 Correlations at the ecological province scale 430 

 Correlations between stream temperature and hydroclimatological components at 431 

the seasonal time scale and ecological province spatial scale for the 2080s suggest that 432 

multiple hydroclimatological components affect stream temperatures (Figure 7). As 433 

expected, maximum and minimum air temperatures were significantly positively correlated 434 

to changes in stream temperatures for all seasons and nearly all ecological provinces. The 435 

only two ecological provinces where no significant correlations were found between air 436 

and stream temperature were the Blue Mountain and Upper Snake provinces (see 437 

Discussion), which are characterized by migratory salmonids and non-migratory 438 

salmonids, respectively. Additionally, precipitation changes were negatively correlated to 439 

stream temperature changes for all seasons and nearly all ecological provinces. 440 

For spring, nearly all hydroclimatological components were significantly correlated 441 

to stream temperature changes for each ecological province. Streamflow changes were not 442 

correlated to stream temperature changes within the Blue Mountain, Intermountain, and 443 

Upper Snake ecological provinces, which are characterized by warmwater species, 444 

migratory coldwater salmonids, and non-migratory coldwater salmonids, respectively. We 445 

also found that snowmelt changes within the Blue Mountain ecological province were not 446 

correlated to stream temperature changes. However, within the Blue Mountain ecological 447 
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province we find that snowmelt is not a large portion of the hydrological cycle during this 448 

season. 449 

 For the summer season, no relationships were found for streamflow, snowmelt, 450 

surface runoff, and groundwater inflows within multiple ecological provinces. Overall, 451 

streamflow was found to be significantly correlated with stream temperature within the 452 

Columbia Cascades and Middle Snake, which are characterized by coldwater migratory 453 

salmonids, and Mountain Columbia, which is characterized by non-migratory coldwater 454 

salmonids, ecological provinces.  Within the Columbia Plateau, Intermountain, and 455 

Mountain Columbia ecological provinces, we find snowmelt to still be a large portion of 456 

the hydrological cycle, thus any reductions of snowmelt do not significantly affect stream 457 

temperature. Lastly, surface runoff and groundwater inflows were not significantly 458 

correlated to the stream temperature changes in the Mountain Columbia and Upper Snake 459 

ecological provinces and the Mountain Snake ecological province, respectively. Within 460 

these regions we did not find large changes in surface runoff or groundwater inflows. 461 

 For the fall season, we find that changes in stream temperature within the Blue 462 

Mountain ecological province, which is characterized by migratory coldwater salmonids, 463 

is only positively correlated to changes in maximum and minimum air temperature, and 464 

thus loses its ties to the other hydrology-related components. Note also that during the fall 465 

season groundwater inflow changes become a non-significant factor in stream temperature 466 

changes for five out of the eight ecological provinces. The only ecological provinces where 467 

groundwater inflow changes were significantly correlated to stream temperature changes 468 

were the Columbia Plateau, Intermountain, characterized by warmwater species, and the 469 

Middle Snake, which is characterized by coldwater migratory species.  These are regions 470 
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where groundwater inflows increased and therefore contributed cooling effects during this 471 

time period. 472 

 During the winter season, changes in multiple hydroclimatological components 473 

within multiple ecological provinces are not significantly correlated to changes in stream 474 

temperature. Generally, changes in maximum air temperature, minimum air temperature, 475 

precipitation, snowmelt, and surface runoff are still significantly correlated to changes in 476 

stream temperature. These relationships make sense because during the winter season, 477 

increases in maximum and minimum air temperatures in conjunction with changes in 478 

precipitation will have the largest effects on two hydrological components: snowmelt and 479 

surface runoff. This is the season where snowmelt-dominated regions with large snowmelt 480 

components may perhaps become rain-dominated regions with large surface runoff 481 

components. 482 

 483 

4. Discussion and Conclusions  484 

The importance of stream temperature to aquatic species distributions, interactions, 485 

behavior, and persistence is well documented (Matthews, 1998), particularly for coldwater-486 

adapted taxa such as trout and salmon (Milner et al., 2003;McCullough, 1999).  487 

Considering predicted increases in air temperature in the coming century, accurate 488 

assessment of suitable thermal habitat is critical for predicting species responses to changes 489 

in climate.  Accordingly, recent research has investigated the potential impacts of climate 490 

change on aquatic taxa by explicitly incorporating regression-based stream temperature 491 

predictions into ecological models (Britton et al., 2010;Al-Chokhachy et al., 2013). While 492 

simplified regression studies may boast low RMSE values between simulated and observed 493 
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stream temperatures, the relatively broad spatial scale of many of these studies (Mohseni 494 

et al., 2003), neglects the variety of local hydrological systems that are differentially driven 495 

by the array of inputs to each system (e.g., snowmelt, groundwater, runoff). The resulting 496 

stream temperature model inaccuracies from this approach, clustered in particular regions 497 

can be particularly problematic when investigating local population responses and range 498 

shifts at the edge of species’ distributions. Our results highlight this issue by characterizing 499 

the varied relative contributions of different hydrological component inputs among 500 

ecological provinces and suggest the complex system-level regulation of stream 501 

temperature 502 

As with any modeling study, modeling errors originate from multiple sources. 503 

Wilby and Harris (2006) discuss these aforementioned uncertainties in detail and ranked 504 

their importance in decreasing order as follows: differences in GCM output, downscaling 505 

methods, hydrological model structure, hydrological model parameters, and then 506 

greenhouse gas emission scenario. While their work was performed for a hydrological 507 

model, the results still hold true for our stream temperature model. Particular to this study, 508 

in order to quantify the differences between errors due to parameter uncertainty and GCM 509 

(or projection) uncertainty, much more work needs to be done and is well beyond the scope 510 

of this work.  511 

However, we do note that our simulations for stream temperature demonstrated 512 

higher errors during the summer months. This is due to low and fluctuating discharge 513 

values that ultimately affect stream temperature. Also, it is likely due to the fact that 514 

hydrologic components may influence stream temperature differently during different 515 

seasons. For this study, we used annual calibration parameters and allowed them to vary 516 
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for each subbasin. An alternative approach would be to utilize seasonally varying 517 

calibration parameters, and to analyze the dynamic (i.e., seasonal) influence of hydrologic 518 

components on stream temperature. This may better capture the stream temperature 519 

fluctuations in the summer months. Nonetheless, our spatially resolved methodology using 520 

a mechanistic model, SWAT, better characterizes the complex processes of stream 521 

temperature throughout the CRB by accounting for the hydrologic components 522 

contributing to stream temperature and its variation.   523 

   Within the CRB, Wenger et al. (2013) used air temperature as a surrogate for 524 

stream temperature to predict the response of Bull trout (Salmonidae: Salvelinus 525 

confluentus) to predicted changes in climate, while Beer and Anderson (2013) used air 526 

temperature-stream temperature relationships to predict the impacts of climate change on 527 

salmonid life-histories.  These approaches are common (Britton et al., 2010;Tisseuil et al., 528 

2012;Al-Chokhachy et al., 2013), yet overlook important differences in the inputs 529 

influencing stream temperature across the basin.  For example, our results suggest that 530 

hydrologic contributions from snowmelt are relatively important drivers of stream 531 

temperature within ecological provinces with primarily non-migratory coldwater focal fish 532 

species.  The influence of snowmelt tends to buffer stream temperatures against increases 533 

in air temperature during the year relative to other areas in the watershed.  In this case, a 534 

regression-based approach to estimating stream temperature or the use of air temperature 535 

as a surrogate for stream temperature will tend to overestimate stream temperature, and 536 

thus underestimate the amount of suitable thermal habitat for coldwater species.  In 537 

addition, decreases in snowcover (and snowmelt) in the future will result in increased 538 

thermal sensitivity within these formerly buffered regions.  For example, current stream 539 
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temperatures in the Mountain Snake ecological province are buffered by relatively high 540 

levels of snowmelt, yet decreases in future snowcover are predicted to result in this 541 

province experiencing the greatest seasonal and annual increases in stream temperature in 542 

the coming century. 543 

 Some of the relationships between stream temperature and hydroclimatic changes 544 

at the CRB scale were expected, such as increases in maximum air temperature and 545 

minimum air temperature resulting in increases in stream temperature, which were 546 

significant for all seasons for the entire CRB. This relationship is well-established and 547 

many models have been developed solely based on air-stream temperature relationships 548 

(Stefan and Preud'homme, 1993;Mohseni and Stefan, 1999). Also, a decrease in 549 

precipitation led to an increase in stream temperature, largely because greater runoff and 550 

infiltration leads to larger volumes of water in the stream channel, and thus increases the 551 

amount of energy needed to heat the water. Precipitation changes had the largest negative 552 

correlations during the spring and summer seasons, followed by fall and winter. Both 553 

surface runoff and lateral soil flow changes follow the same correlation patterns as 554 

precipitation, as both are inherently tied to the amount of incoming precipitation. 555 

Additionally, streamflow is tied to all hydrological components within the subbasin and 556 

the incoming streamflow that is entering the streamflow reach. Since streamflow is a mix 557 

of incoming hydrologic components, it is difficult to determine correlations. However, 558 

much research has assumed that streamflow and stream temperature changes are inversely 559 

correlated (van Vliet et al., 2011). The correlations within this study were significant and 560 

positively correlated for the spring, summer, and fall seasons; however, all correlations 561 
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were below 0.10, which suggests the correlations were relatively minor, especially 562 

compared to other components. 563 

 Snowmelt changes were negatively correlated during the spring, fall, and winter 564 

seasons, and positively correlated during the summer season. A decrease in snowmelt will 565 

lead to an increase in stream temperature because the cooling effect that snowmelt has on 566 

stream temperature is no longer present. In summer, snowmelt and stream temperature 567 

were positively correlated (albeit not significant), suggesting the counterintuitive notion 568 

that an increase in snowmelt led to an increase in stream temperature. This can be explained 569 

largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with 570 

streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89 571 

(5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still 572 

a component of the hydrologic cycle during the summer season.   573 

Lastly, groundwater inflow changes to the stream channel were negatively 574 

correlated to stream temperature change at the CRB scale for the spring and fall seasons. 575 

This also makes sense, as groundwater temperature is generally cooler than the stream 576 

temperature of the water already within the channel. Quite often, stream temperature 577 

variations of cool water are used for tracer studies to determine where surface and 578 

groundwater flows are exchanging water (Anderson, 2005;Constantz et al., 2003). 579 

However, no significant correlation was found during the summer, when groundwater is a 580 

large source of stream flow. This is likely because groundwater is the main source of water 581 

for this season, any climate-induced changes in groundwater will not have a major effect 582 

on stream temperature because the main water source for streamflow is still groundwater. 583 

For example, if 85% of the streamflow comes from groundwater, and is then decreased to 584 
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75%, the change in stream temperature isn’t likely to significantly change. Additionally, 585 

no groundwater inflow change correlations were found for the winter season.  586 

 Species’ responses to stream temperature occur within populations and are based 587 

on local environmental conditions.  Consequently, accurate assessment of local variation 588 

in stream temperature is critical and only possible when local system drivers are accurately 589 

represented in stream temperature models.  While stream temperature is primarily 590 

influenced by air temperature, this study emphasized the important effects of other 591 

contributors (e.g., runoff, groundwater, snowmelt) that are differentially represented across 592 

the CRB.  Also, we have characterized the ecological provinces by warmwater and 593 

coldwater focal fish species, which was done for qualitative biological assessments and not 594 

as a predictive approach.  However, these groupings have provided important information 595 

regarding factors driving differential variation in stream temperatures across seasons in the 596 

context of the biological groups experiencing particular stream temperature changes.  River 597 

basins encompass a spatially heterogeneous array of biological communities and these 598 

communities are regulated by a spatially heterogeneous array of environmental conditions.  599 

These environmental conditions are driven by local processes and require a systems-based 600 

approach to accurately characterize the habitat regulating the distribution and diversity of 601 

aquatic taxa. 602 
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Table 1. Coupled Model Intercomparison Project – phase 5 General Circulation Models 829 

used in this study 830 

Modeling Group CMIP5 Model 

Canadian Centre for Climate 

Modeling & Analysis 
canesm2 

Météo-France / Centre National de 

Recherches Météorologiques, France 
cnrm-cm5 

Geophysical Fluid Dynamics 

Laboratory, USA 
gfdl-cm3 

Institut Pierre Simon Laplace, France ipsl-cm5a-mr 

Center for Climate System Research 

(The University of Tokyo), National 

Institute for Environmental Studies, 

and Frontier Research Center for 

Global Change (JAMSTEC), Japan 

miroc5 

Max Planck Institute for 

Meteorology, Germany 
mpi-esm-lr 

Meteorological Research Institute, 

Japan 
mri-cgcm3 
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 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 
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Table 2. Summary of streamflow calibration statistics. 844 

        845 

*NS: Nash-Sutcliffe coefficient 846 

   *R2: coefficient of determination 847 

* Φ: coefficient of determination multiplied by slope of regression 848 

line, b 849 

    850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 Calibration Validation 

 Average Std. Dev. Average Std. Dev. 

NS 0.69 0.13 0.64 0.13 

R2 0.75 0.10 0.75 0.08 

Φ 0.62 0.15 0.65 0.13 
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Table 3. Stream temperature changes and focal fish species groups for the Columbia River Basin ecological provinces during the 

2080s. 

 

 

 

 

 

 

 

 

 

 

Ecological 

province 
Spring (°C) Summer (°C) Fall (°C) Winter (°C) Annual (°C) 

Focal Fish Species 

Blue Mountain 3.7 5.3 3.2 2.1 3.5 coldwater migratory 

Columbia 

Cascades 
2.6 4.1 2.0 1.2 2.4 

coldwater migratory 

Columbia 

Plateau 
2.0 3.8 2.0 1.5 2.2 

warmwater 

Intermountain 3.3 5.0 2.7 1.5 3.0 warmwater 

Middle Snake 2.4 3.7 2.3 1.4 2.2 coldwater migratory 

Mountain 

Columbia 
3.6 5.0 2.4 1.5 3.1 

coldwater non-migratory 

Mountain Snake 5.0 7.0 4.0 2.1 4.3 coldwater migratory 

Upper Snake 4.3 6.0 3.3 1.6 3.6 coldwater non-migratory 
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Table 4. Sensitivities of stream temperature changes to changes in maximum and minimum air 1 

temperatures for the Columbia River Basin during the 2080s 2 

Maximum air temperature     

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.5 0.8 0.4 0.6 

Columbia Cascades 0.5 0.7 0.7 0.3 0.6 

Columbia Plateau 0.5 0.4 0.7 0.0 0.4 

Intermountain 0.7 0.8 1.1 0.6 0.8 

Middle Snake 0.5 0.5 0.8 0.9 0.7 

Mountain Columbia 0.4 0.7 0.7 0.3 0.5 

Mountain Snake 0.7 1.0 1.0 0.0 0.7 

Upper Snake 0.6 0.7 0.8 0.3 0.6 

 

     

 

Minimum air temperature 

Ecological province 
Spring 

(°C/°C) 

Summer 

(°C/°C) 

Fall 

(°C/°C) 

Winter 

(°C/°C) 

Annual 

(°C/°C) 

Blue Mountain 0.7 0.7 0.9 0.0 0.6 

Columbia Cascades 0.2 0.7 0.8 1.4 0.7 

Columbia Plateau 0.2 0.6 0.8 0.4 0.5 

Intermountain 0.7 0.9 0.8 0.0 0.6 

Middle Snake 0.8 0.9 1.0 0.5 0.6 

Mountain Columbia 0.3 0.9 0.6 0.2 0.5 

Mountain Snake 0.7 1.1 1.0 0.5 0.8 

Upper Snake 0.8 1.2 0.9 0.5 0.9 
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Table 5. Pearson correlations between stream temperature and individual hydroclimatological 3 

changes for the entire Columbia River Basin during the 2080s.  4 

Hydroclimatological 

Component 
Spring Summer Fall Winter 

Maximum air temperature 0.67 0.61 0.49 0.36 

Minimum air temperature 0.65 0.61  0.47 0.34 

Precipitation -0.51 -0.50 -0.36 -0.20 

Streamflow 0.08 0.07 -0.10 -0.02* 

Snowmelt -0.36 0.10 -0.31 -0.26 

Surface runoff -0.39   -0.08 -0.30 -0.28 

Groundwater inflow -0.24 -0.04* -0.12 0.00* 

Lateral soil flow -0.42 -0.32 -0.36 -0.07 

* indicates there was no significant correlation at p =0.05 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Figures 19 

Figure 1. Columbia River Basin study area ecological provinces with streamflow and stream 20 

temperature gauges for calibration. 21 

 22 
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Figure 2. Root mean square errors of the simulated and observed stream temperatures 23 

 24 
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 27 
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Figure 3. Monthly stream temperature error distributions for all stream temperature gauges. 29 
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Figure 4. Changes in average precipitation and air temperature (maximum and minimum) for the 36 

end of the 21st century as compared to the historical time period 37 

 38 
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 47 

 48 

 49 
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Figure 5. Spring and summer historical and projected stream temperatures at the subbasin-level. 50 

Hatched subbasins indicate that drying occurred under climate projections and were removed 51 

from analyses.  52 

 53 
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Figure 6. Fall and winter historical and projected stream temperatures at the subbasin-level. 54 

Hatched subbasins indicate that drying occurred under climate projections and were removed 55 

from analyses. 56 

 57 

 58 

 59 
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Figure 7. Pearson correlations between changes in stream temperature and hydroclimatological 60 

components for the Columbia River Basin ecological provinces. Tmax = maximum air 61 

temperature; Tmin = minimum air temperature; Precip. = precipitation; Flow = streamflow; 62 

Snomlt = snowmelt; SWQ = surface water runoff; GWQ = groundwater inflow; LatQ = lateral 63 

soil flow. Asterisks represent no significant correlation at p =0.05 64 
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