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Abstract

Water temperature is a primary physical factor regulating the persistence and distribution
of aquatic taxa. Considering projected increases in air temperature and changes in
precipitation in the coming century, accurate assessment of suitable thermal habitat in
freshwater systems is critical for predicting aquatic species responses to changes in climate
and for guiding adaptation strategies. We use a hydrologic model coupled with a stream
temperature model and downscaled General Circulation Model outputs to explore the
spatially and temporally varying changes in stream temperature for the late 21% century at
the subbasin and ecological province scale for the Columbia River Basin. On average,
stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer,
2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream
temperature are correlated with changes in air temperature, our results also capture the
important, and often ignored, influence of hydrological processes on changes in stream
temperature. Decreases in future snowcover will result in increased thermal sensitivity
within regions that were previously buffered by the cooling effect of flow originating as
snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil
water flow, and groundwater inflow, are negatively correlated to increases in stream
temperature depending on the ecological province and season. At the ecological province
scale, the largest increase in annual stream temperature was within the Mountain Snake
ecological province, which is characterized by non-migratory coldwater fish species.
Stream temperature changes varied seasonally with the largest projected stream
temperature increases occurring during the spring and summer for all ecological provinces.

Our results indicate that stream temperatures are driven by local processes and ultimately
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require a physically-explicit modeling approach to accurately characterize the habitat

regulating the distribution and diversity of aquatic taxa.

1. Introduction

The temporal and spatial variability of stream temperature is a primary regulator of
the life-history, behavior, ecological interactions, and distribution of most aquatic species
(Peterson and Kwak, 1999). For example, metabolic processes in ectothermic freshwater
organisms (e.g., fishes, amphibians, invertebrates) are directly regulated by water
temperature (Angilletta, 2009), and thus the persistence of populations and the rate of
energy flow through aquatic ecosystems is dependent on the thermal characteristics of a
local habitat (Woodward et al., 2010). Moreover, much like terrestrial species, the timing
of important life-history traits such as reproduction and migration is heavily dependent on
seasonal thermal regimes (Johnson et al., 2009; Woodward et al., 2010). Additionally,
stream temperature plays a large role in chemical kinetic rates and is important for
governing stream management for recreation as well as urban and industrial water supplies.
Therefore, to better understand hydrologic systems and to better manage water resources
in a changing environment, it is critical to predict the potential effects of climate variability
and change on stream temperature, and to characterize how these changes affect the
distribution and diversity of freshwater taxa.

Potential impacts of climate change on stream temperatures have been widely
estimated using field investigations and modeling studies (Webb and Nobilis,
1994;Mohseni et al., 2003;Caissie, 2006;Hari et al., 2006;Nelson and Palmer, 2007;Webb
et al., 2008;Isaak et al., 2010;van Vliet et al., 2011;Null et al., 2013;Ficklin et al., 2013).

At larger spatial scales, regional regression models have been used to predict the impacts
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of climate change on stream temperatures (Mohseni et al., 1998;Mohseni and Stefan,
1999;Mohseni et al., 1999;Erickson and Stefan, 2000;Bogan et al., 2003;Webb et al.,
2003;Stefan and Preud’homme, 1993). However, regression methods are not sufficient
predictors of stream temperature because they do not account for hydrologic component
inputs to the stream such as snowmelt, groundwater, and surface runoff (Constantz et al.,
1994;Constantz, 1998;Pekarova et al., 2008;Ficklin et al., 2012;MacDonald et al., 2014).
Neglecting these components severely limits the ability of regression-based models to
accurately predict spatial variability in stream temperature changes, since the contributions
of different sources to streamflow will be modified in a changing climate. Ignoring the
distinct characteristics of different sources to streamflow therefore negatively impacts the
assessment of the effects of climate change on aquatic biodiversity at landscape (and larger)
scales.

To adequately capture the role of changing hydrology from a changing climate on
stream temperature, numerical (Isaak et al., 2010; Kim and Chapra, 1997;Sinokrot and
Stefan, 1994) and analytical (Null et al., 2013;Tang and Keen, 2009;Edinger et al., 1974)
stream temperature models, in conjuction with hydrologic models, have been applied with
success. These models allow stream temperature assessments at the local or regional level.
For example, our prevous work in the Sierra Nevada mountain range in California found
subbasin-scale stream temperature differences from region-to-region largely from
localized changes in hydrology from changes in climate. Additionally, Null et al. (2013)
found increasing stream tempreatures with increasing elevation due to the transition from
snow- to rain-dominated, an effect opposite what would be predicted by a model based

solely on air temperature



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

The primary objectives of this work are to [1] predict changes in stream temperature
over the coming century across the Columbia River Basin at the ecological province level,
[2] identify the contribution of specific hydrological components (such as snowmelt,
surface water runoff, etc.) to the overall heat and water budget across the watershed, and
[3] add to the literature regarding the role of changing hydrology on changes in stream
temperature. Specifically, we aim to demonstrate the extent to which future changes in
hydrology—streamflow, surface runoff, snowmelt, groundwater inflow, and lateral soil
flow as simulated using global climate projections at the subbasin scale— could critically
affect changes in localized stream temperatures, which are of high importance for aquatic
species. The Columbia River Basin is a snowmelt-dominated region, where projected
increases in global air temperatures are expected to result in early snowmelt runoff. These
changes lead to reduced late spring and summer water discharges that change the thermal
content of stream flow. Moreover, previous stream temperature assessments indicate that
the Columbia River Basin is sensitive to changes in climate (Mantua et al., 2010;Chang
and Psaris, 2013; Luce et al., 2014); these sensitivities vary spatially and are governed in
part by the land use, hydroclimate and topographic variables of the local region (Chang
and Psaris, 2013).

We use a landscape-scale hydrological model—the Soil and Water Assessment
Tool (SWAT; Arnold et al. (1998))— combined with a stream temperature model that
simulates stream temperature based on the effects of subbasin air temperature and
hydrology.(Ficklin et al., 2012). The SWAT model efficiently represents snowmelt and
runoff processes, and also incorporates a full range of water quality processes (Gassman et

al., 2007). SWAT has been found to accurately simulate streamflow in regions where
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snowmelt dominates the hydrology (Wang and Melesse, 2005; Watson and Putz, 2012;
Zang et al., 2012). Downscaled output from seven General Circulation Models (or Global
Climate Models, GCMs) using one representative concentration pathway (RCP) associated
with a trajectory of future greenhouse gas accumulation in the atmosphere for the late-21%
century was used to drive the calibrated SWAT model at the subbasin-scale. For all
Columbia River Basin ecological provinces, we spatially and temporally explore the
changes in stream temperature, and interpret these changes with respect to changes in the

hydrologic system.
2. Materials and Methods

2. 1 Study area

The CRB encompasses portions of seven states in the western United States and
the Canadian province of British Columbia. The CRB for this study is defined as the area
that flows into the The Dalles, Oregon (Figure 1) and has a surface area of 613,634 km?.
The water resources in the CRB have been extensively developed in the past 70 years for
hydroelectric power, agricultural irrigation, and urban use. The CRB study area has been
extensively discussed in Hatcher and Jones (2013), Mantua et al. (2010), and Payne et al.
(2004).

Subbasins were aggregated into ecological provinces according to designations
Northwwest Habitat Institute (N.H.I., 2008). Ecological provinces are delineated based on
species composition within the region and environmental conditions. Because the
ecological provinces do not expand into Canada, we extrapolated the boundaries based on
watershed delineations. The ecoprovince areas (Figure 1) for this study average 68,000 km?

and range from 300 km? (Columbia Gorge) to 145,000 km? (Mountain Columbia). For
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descriptive purposes, we further characterize ecological provinces as either ‘warmwater’
(Centrarchidae — bass, bluegill, crappie; Percidae — perch, walleye), ‘coldwater migratory’
(Salmonidae — salmon, steelhead, trout], and ‘coldwater non-migratory’ (Salmonidae —

trout, whitefish) (Table 2), based on predominant focal fish species (N.H.I., 2008).

2.2 Modeling stream flow and water quality using SWAT

We used the SWAT model coupled with a stream temperature model to predict
streamflow and stream temperature throughout the Columbia River Basin at an average
spatial resolution of 250 km?. SWAT is an integrative, mechanistic model that utilizes
inputs of daily weather, topography, land use, and soil type to simulate the spatial and
temporal dynamics of climate, hydrology, plant growth, and erosion (Arnold et al., 1998).
Within SWAT, surface runoff and soil water infiltration were simulated using the modified
Curve Number method (Neitsch et al., 2005). The Penman-Monteith method was used to
estimate potential evapotranspiration. Stream temperature was simulated using the Ficklin
et al. (2012) SWAT stream temperature model that uses local air temperature and

hydrology for stream temperature estimation:

(0.1-sub_snow) + (T, - sub_ gw) + A(T,
sub_ wyld

-(sub_surg+sub _latq))

air,lag

w,local

[1]

where sub_snow is the snowmelt contribution to streamflow within the subbasin (mq),

sub_gw is the groundwater contribution to streamflow within the subbasin (m®), sub_surq
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is the surface water runoff contribution to streamflow within the subbasin (m?), sub_latq
is the soil water lateral flow contribution to streamflow within the subbasin (m3), sub_wyld
is the total water yield (all contributing hydrologic components) contribution to streamflow
within in the subbasin (m?®), Tgw is the groundwater temperature (°C; annual average input
by user), and Tairlag iS the average daily air temperature with a lag (°C), and 1 is a
calibration coefficient relating to the relative contribution of the surface water runoff and
lateral soil water flow to the local water temperature and is included to aid in calibration in
case of improper hydrologic model calibration. The lag (days) is incorporated to allow the
effects of delayed surface runoff and soil water flow into the stream. The 0.1 in Equation

[1] represents the assumed temperature of snowmelt (0.1 °C).

After stream temperature of the local contributing water is determined, the stream

temperature before the effects of air temperature is determined by:

Tw,upstream * (Qoutlet - Sub_Wyld) + (Tw,local * Sub_Wyld)

Qoutlet

Twateriptiai =

[2]

where Tw,upstream IS the temperature of the streamflow entering the subbasin (°C) and Qoutlet

is the streamflow discharge at the outlet of the subbasin.

The final stream temperature is calculated by adding a change to the initial stream
temperature in the subbasin from differences between stream and air temperature and travel
time of water through the subbasin. Depending on Tair, the final stream temperature is

estimated as:

Twater = Twaterintial + (Tair - Twaterintial) * K * (TT) if Tair >0 [3]
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Twater = Twaterintial + ((Tair + 3) - Twaterintial) * K x (TT) if Tair <0 [4]

where Tair is the average daily air temperature (°C), K is a calibration conductivity
parameter, TT is the travel time of water through the subbasin (hour) and is calculated from
the SWAT simulations, and € is an air temperature addition coefficient (°C), which was
included to account for water temperature pulses when Tairis below 0°C. For the case when
the effects of Tair and the hydrologic contributions are such that the final is Twater < 0°C,
the stream temperature model sets Twater t0 0.1 °C. Twater IS also assumed to be the
temperature of water discharge to downstream subbasin, and is further routed along the
stream network. The calibration parameter, K, acts as a proxy for reach-specific adjustment
of the radiative forcing, such as shading due to a vegetation canopy or geomorphic changes
resulting in differing geometry. Additional details regarding the stream temperature model

can be found in Ficklin et al. (2012).

Based on our previous work throughout the western United States (Ficklin et al.,
2012), the stream temperature model is highly sensitive to changes in A (the calibration
coefficient for the surface runoff and lateral soil water flow contributions to streamflow)
and K (calibration conductivity parameter between air and stream temperature). Previous
work also indicates that simulated stream temperatures are sensitive to changes in
hydrologic components from increases in air temperature. For example, shifting snowmelt
earlier into the winter buffered the effects of increasing air temperature, resulting in only a
minor increase in stream temperature. Stream temperature in the late spring, early summer,
however, decreased from increases in snowmelt. Increasing groundwater streamflow
inputs decreased stream temperatures from the increase in cool water from groundwater.

These results are contingent on the volume and timing of the various hydrologic
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components. For example, the larger the increase in groundwater flow volume to
streamflow, the larger the decrease in stream temperature. Further discussion on the stream

temperature model sensitivity can be found in Ficklin et al. (2012).

2.3 Input Data

SWAT input parameter values for topography, land cover, and soils data were
compiled from freely-available federal and state databases. A 30-meter Digital Elevation
Model (USGS) formed the basis for watershed and sub-basin delineation. Soil properties
were obtained from the STATSGO soil dataset. The 2001 National Land Cover Database
was used for land cover/land use. Meteorological data (air temperature, precipitation, and
wind speed) were extracted from Maurer et al. (2002) and relative humidity and solar
radiation were generated within SWAT (Neitsch et al., 2005).The Columbia River Basin
natural flow data that were used for streamflow calibration were obtained from output from
a calibrated \Variable Infiltration Capacity Model (VIC) model (from
http://cses.washington.edu/) and the United States Geological Survey Hydro-Climatic Data
Network (HCDN; Slack et al. (1993)). These data represent streamflow that would occur
if no reservoirs or streamflow diversions were present within the basin. The HCDN is a
hydrologic dataset developed to study surface water conditions throughout the United
States that only fluctuate with changes in local climatic conditions and is therefore apt for

use in climate change studies (Slack et al., 1993). SWAT was run at the monthly time step.

Climatic projections from seven GCMs (Table 1) and one RCP (8.5) were input
into the calibrated SWAT model. Daily downscaled output from the seven GCMs (RCP
8.5) were obtained from the Downscaled CMIP3 and CMIP5 Climate and Hydrology

Projections archive (Maurer et al., 2013). RCP 8.5 represents the highest increase in

10
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radiative forcing of the Coupled Model Intercomparison Project — phase 5 (CMIP5; Taylor
et al. (2011)) projections, and is based on an increased radiative forcing of 8.5 Wm™
(relative to pre-industrial values) at the end of the 21% century. Downscaling was achieved
using the daily bias-corrected and constructed analogs (BCCA) method (Maurer et al.,
2010). In summary, the BCCA procedure consists of two steps. The first step is a bias
correction using a quantile mapping technique which is applied to raw GCM output.
Quantile mapping bias correction has been widely and successfully used in climate model
downscaling (Wood et al., 2004). The bias correction step is followed by spatial
downscaling using a constructed analogues approach for each day using a linear
combination of days drawn from the historic record (Hidalgo et al., 2008). Maurer et al.
(2010) found that the BCCA method consistently outperformed the Bias-
Correction/Spatial-Downscaling method (BCSD) and the Constructed Analogues (CA)
approach in capturing the daily large-scale skill and translating it to simulated streamflows

that accurately reproduced historical streamflows.

2.4 SWAT streamflow calibration

The program Sequential Uncertainty Fitting Version 2 (SUFI-2; Abbaspour et al.
(2007)) was used to automatically-calibrate SWAT streamflow at 104 sites in the Columbia
River Basin (Figure 1). Initial and default SWAT model parameters were varied
simultaneously until an optimal solution was met. Three statistics were used to evaluate
model efficiency: [1] the Nash-Sutcliffe coefficient (Nash and Sutcliffe, 1970), [2] the
coefficient of determination (R?), and [3] a modified efficiency criterion (®). @ is the result

of the coefficient of determination, R?, multiplied by the regression line slope, m (Krause

11
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et al., 2005). This statistic captures the discrepancy in the magnitude of the observed and
simulated streamflow (captured by m) as well as the dynamics (captured by R?). For all
previously-mentioned statistics, a perfect simulation is represented by a value of 1. A split-
sample approach was used for calibration and validation, and the calibration and validation

periods differed at each streamflow gauge depending on streamflow data availability.

2. 5 SWAT stream temperature calibration

Monthly stream temperatures were predicted using the SWAT stream temperature
model of Ficklin et al. (2012). This model includes the effects of hydrologic component
inputs (e.g., snowmelt, groundwater, and surface runoff) on stream temperature. Previous
studies have demonstrated that this stream temperature model performs better than linear
regressions that use air temperature alone (Ficklin et al., 2013;Barnhart et al., 2014). The
model requires four calibration parameters for each subbasin in the SWAT setup. Since the
model is not incorporated into the previously mentioned SWAT-CUP software, we utilized
the steady-state S-metric evolutionary multi-objective optimization algorithm (SMS-
EMOA) to calibrate the stream temperature parameters after hydrologic calibration was
performed (Emmerich et al., 2005;Beume et al., 2007). SMS-EMOA is an efficient and
effective Pareto optimization evolutionary algorithm for finding solutions to multi-
objective optimization problems. The algorithm seeks optimal solutions that maximize the
hypervolume (S-metric)—which can be thought of as the volume of dominated space—
and has been theoretically proven to converge to the Pareto set (Fleischer, 2003;Emmerich

et al., 2005;Beume et al., 2007). For a recent application, see Stagge and Moglen (2014).
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For this study, SMS-EMOA was used to seek the optimal set of calibration
parameters to reduce the differences between simulated stream temperatures from SWAT
and observed values. Observed stream temperatures were obtained from 50 sites within the
Columbia River Basin between 1970-1992. Four calibration parameters for each subbasin
were adjusted using the algorithm, and three objectives were specified including the RMSE
values for the January-April, May-August, and September-December time periods to
match the stream temperature rising limb, peak, and falling limb. Further objective
functions were intentionally omitted to simplify the analysis. This decision is justified by
the limited range of stream temperatures matched by the algorithm. Conversely,
hydrological calibration attempts to match flows that vary over orders of magnitude and
therefore require additional objectives to match all portions of the hydrograph.
Convergence of the stream temperature calibration algorithm was assumed to be met when
the S-metric did not vary more than 1% between 3 generations. The final set of solutions
exhibited trade-offs between the three objective functions; therefore, a single solution—
more specifically, a single set of calibration parameters—was then chosen from this set to

be used in the calibrated SWAT simulation.

2. 6 Statistical analyses

The impacts of potential climate change on streamflow and hydrologic components
were evaluated by comparing historical time period (1961-1990) simulations to those using
the GCMs in Table 1 for the late-21° century (2080s; 2081-2099). When describing the
ensemble average (or standard deviation) of a time period (i.e., late-21% century), this value

is the average (or standard deviation) of the seven CMIP5 GCMs for this time period.
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Months are lumped into seasons for temporal analysis and are defined as spring (April-
June), summer (July-September), fall (October and November), and winter (December-
March). These seasons are defined to capture the snowmelt and dry/low flow seasons.
Pearson correlations using a bootstrap method were used to measure the relationship
between annual and seasonal changes in stream temperature and individual
hydroclimatological components. A total of 10,000 bootstrap correlation iterations were
run. Statistical significance was determined at the o = 0.05 level. For statistical
significance, the 5™ and 95" percentiles of the bootstrap correlation iterations must agree
on the correlation sign (+ or -). If the lower (higher) end of our confidence interval is above
(below) zero, we can conclude that the correlation between stream temperature and
hydroclimatological component change is significant at the a = 0.05 level (two-tailed).
Additionally, with changes in climate, it can be expected that drying of streams will occur.
In this study, streams that have no flow for an extended time period of the year (and thus
have no stream temperature) are removed from the stream temperature analyses, but since
drying streams are an important barrier for aquatic species migration, they will be

discussed.

3. Results
3.1 Hydrologic model calibration

NS, R? and ® average and standard deviation values for the calibration and
validation time periods are shown in Table 2. Overall, the model efficiency statistics show
that the SWAT model adequately simulated streamflow compared to observations. The
average NS coefficient for the calibration and validation period was 0.69 and 0.64,

respectively, with a standard deviation of 0.13 for the calibration period and 0.13 for the

14
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validation period. This indicates that a large portion of the NS values for both time periods
varied only 0.13 around their respective means, which is still within acceptable NS limits
(Moriasi et al., 2007). The other model efficiency statistics, R? and ®, indicate similar

model performance.

3. 2 Stream temperature model calibration

After SWAT was calibrated for discharge, the model was used within the SMS-
EMOA algorithm to calibrate the stream temperature model. RMSE values between
observed and simulated daily stream temperatures range from 2-5 °C for the majority of
observation sites. The resulting monthly RMSE values for each site are shown in Figure 2.
No distinct spatial distributions of the magnitude of errors are present. Errors distinguished
by month of year were also quantified (Figure 3). Errors are largest during the summer
months of July through September. Lowest RMSE values were present between December
and February. Also, the model gives highly unrealistic (RMSE >15 °C) results for a
moderate number of points, especially during summer months. This is due to low values
of discharge within reaches during the summer months. Stream temperature is strongly
inversely dependent on streamflow, and very small values of discharge cause the model to
produce uncharacteristically high stream temperature simulation values. The calibrated

stream temperature model parameters can be found in the supplemental information.

3.3 Temperature and precipitation projections

Ensemble average projections of maximum and minimum air temperature and

precipitation, as compared to the historical time period, are shown in Figure 4. Overall, the
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maximum and minimum air temperatures vary spatially throughout the CRB, with an
average ensemble increase of 5.5 °C for maximum air temperature and 5.4 °C for minimum
air temperature. All GCMs agreed that air temperature is expected to increase by the end
of the 21% century. Precipitation projections, on the other hand, varied between downscaled
GCM projections, with an overall average of a 14.4% increase compared to the historical

time period.

3.4 Stream temperature projections

Figures 5 and 6 display the spring/summer and fall/winter historical and projected
stream temperatures for the CRB. Simulated stream temperatures are projected to increase
throughout the CRB, with largest increases occurring in the east-central portion of the
CRB. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2
°C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. It is important to note that
a large number of subbasins were removed from this analysis due to no-flow conditions
(i.e., running completely dry or icing-up) from changes in climate (hatched areas in Figures
5 and 6). Of these, winter had the largest number of subbasins removed from the analysis
(31%), followed by fall (18%), summer (16%), and spring (15%). The average period of
subbasins with no-flow conditions is projected to 34%, or 81 months out of the 240 months
for the 2080s time period. We consider these subbasins to not be reliable refugia for aquatic
species.

Simulated stream temperature changes also vary at the ecological province scale
(Table 3). At the annual time scale, the largest stream temperature increases (4.3 °C)

occurred within the Mountain Snake ecological province, which is characterized by cold-
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water migratory fish species. The largest inter-annual variation around the mean occurred
in the Upper Snake ecological province, which is characterized by non-migratory
coldwater species, with a +/- 3.8 °C standard deviation. Important differences between
ecological provinces occurred at the seasonal time scale. Overall, the largest spring
increase in stream temperature occurred in the Mountain Snake (5.0 °C) and Upper Snake
(4.3 °C), both containing coldwater species. The largest summer temperature increase
compared to the historical time period was for the Mountain Snake ecological province
with a 7 °C increase in average monthly stream temperature, followed by Upper Snake (6
°C), Blue Mountain (5.3 °C), Intermountain (5.0 °C), and Mountain Columbia (5.0 °C),
indicating that ecological provinces with coldwater species will experience some of the
largest increases in stream temperature in the basin. These large increases are expected
during the summer because air temperature is at its highest and streamflow is at its lowest.

Fall and winter had the smallest increases in stream temperature including a CRB
average of 2.9 °C for fall and 1.6 °C for winter. This was expected because this is when air
temperatures are the lowest, and cold precipitation recharge and streamflow are highest,
resisting stream temperature increases. The basins with the highest stream temperature
increases for the fall and winter time period were the Mountain Snake and Blue Mountain

(4.0/2.1 °C).

3.5 Sensitivities of stream temperature changes to air temperature
We define TSmax and TSmin as the thermal sensitivity or stream temperature change
per 1 °C of maximum or minimum air temperature change. For the entire CRB and the

water year annual time scale, the value for the average TSmax is 0.6 and that for TSmin is
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0.86, demonstrating that, on average, the increases in stream temperature seen by the 2080s
are to a larger degree tied to future changes in minimum air temperatures (Table 4). On the
seasonal time scale, stream temperature changes during the summer were the most sensitive
to changes in maximum air temperature with TSmax equal to 0.8, followed by spring (0.7),
fall (0.5), and winter (0.3). For minimum air temperature sensitivities, however, spring
values of TSmin Were the highest of all seasons, equal to 0.9, followed by summer (0.8), fall
(0.5), and winter (0.3). Air temperature sensitivities varied by ecological province as well
as by season. At the annual and seasonal time scales the Intermountain, Middle Snake, and
Mountain Snake ecological provinces exhibited the highest values of TSmax.

For minimum air temperatures, the ecological provinces that were the most
sensitive were Columbia Cascade, Mountain Snake, and Upper Snake. Summer once again
had the highest overall TSmin values. However, the largest TSmin Values were found in the
winter and spring seasons, with the Columbia Cascades in the winter (1.4) and the
Mountain Snake and Upper snake exhibiting TSmin values of 1.1 and 1.2 in the spring.
Overall, it can be seen that spring has higher TSmin values than TSmax, a possible artifact of

snowmelt (see Discussion).

3.6 Sensitivities of stream temperature to changes in hydroclimatological components
3.6.1 Correlations at the Columbia River Basin scale

At the CRB scale, all stream temperature changes were significantly correlated to
all hydroclimatic components during the spring and fall seasons for the 2080s (Table 5),
suggesting that during these seasons stream temperatures are highly sensitive to changing

environments. For summer, groundwater inflow change was the only variable not
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significantly correlated to stream temperature changes. For winter, streamflow and
groundwater inflow changes were the only variables not significantly correlated to stream

temperature changes (see Discussion).

3.6.2 Correlations at the ecological province scale

Correlations between stream temperature and hydroclimatological components at
the seasonal time scale and ecological province spatial scale for the 2080s suggest that
multiple hydroclimatological components affect stream temperatures (Figure 7). As
expected, maximum and minimum air temperatures were significantly positively correlated
to changes in stream temperatures for all seasons and nearly all ecological provinces. The
only two ecological provinces where no significant correlations were found between air
and stream temperature were the Blue Mountain and Upper Snake provinces (see
Discussion), which are characterized by migratory salmonids and non-migratory
salmonids, respectively. Additionally, precipitation changes were negatively correlated to
stream temperature changes for all seasons and nearly all ecological provinces.

For spring, nearly all hydroclimatological components were significantly correlated
to stream temperature changes for each ecological province. Streamflow changes were not
correlated to stream temperature changes within the Blue Mountain, Intermountain, and
Upper Snake ecological provinces, which are characterized by warmwater species,
migratory coldwater salmonids, and non-migratory coldwater salmonids, respectively. We
also found that snowmelt changes within the Blue Mountain ecological province were not

correlated to stream temperature changes. However, within the Blue Mountain ecological
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province we find that snowmelt is not a large portion of the hydrological cycle during this
season.

For the summer season, no relationships were found for streamflow, snowmelt,
surface runoff, and groundwater inflows within multiple ecological provinces. Overall,
streamflow was found to be significantly correlated with stream temperature within the
Columbia Cascades and Middle Snake, which are characterized by coldwater migratory
salmonids, and Mountain Columbia, which is characterized by non-migratory coldwater
salmonids, ecological provinces. Within the Columbia Plateau, Intermountain, and
Mountain Columbia ecological provinces, we find snowmelt to still be a large portion of
the hydrological cycle, thus any reductions of snowmelt do not significantly affect stream
temperature. Lastly, surface runoff and groundwater inflows were not significantly
correlated to the stream temperature changes in the Mountain Columbia and Upper Snake
ecological provinces and the Mountain Snake ecological province, respectively. Within
these regions we did not find large changes in surface runoff or groundwater inflows.

For the fall season, we find that changes in stream temperature within the Blue
Mountain ecological province, which is characterized by migratory coldwater salmonids,
is only positively correlated to changes in maximum and minimum air temperature, and
thus loses its ties to the other hydrology-related components. Note also that during the fall
season groundwater inflow changes become a non-significant factor in stream temperature
changes for five out of the eight ecological provinces. The only ecological provinces where
groundwater inflow changes were significantly correlated to stream temperature changes
were the Columbia Plateau, Intermountain, characterized by warmwater species, and the

Middle Snake, which is characterized by coldwater migratory species. These are regions
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where groundwater inflows increased and therefore contributed cooling effects during this
time period.

During the winter season, changes in multiple hydroclimatological components
within multiple ecological provinces are not significantly correlated to changes in stream
temperature. Generally, changes in maximum air temperature, minimum air temperature,
precipitation, snowmelt, and surface runoff are still significantly correlated to changes in
stream temperature. These relationships make sense because during the winter season,
increases in maximum and minimum air temperatures in conjunction with changes in
precipitation will have the largest effects on two hydrological components: snowmelt and
surface runoff. This is the season where snowmelt-dominated regions with large snowmelt
components may perhaps become rain-dominated regions with large surface runoff

components.

4. Discussion and Conclusions

The importance of stream temperature to aquatic species distributions, interactions,
behavior, and persistence is well documented (Matthews, 1998), particularly for coldwater-
adapted taxa such as trout and salmon (Milner et al., 2003;McCullough, 1999).
Considering predicted increases in air temperature in the coming century, accurate
assessment of suitable thermal habitat is critical for predicting species responses to changes
in climate. Accordingly, recent research has investigated the potential impacts of climate
change on aquatic taxa by explicitly incorporating regression-based stream temperature
predictions into ecological models (Britton et al., 2010;Al-Chokhachy et al., 2013). While

simplified regression studies may boast low RMSE values between simulated and observed
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stream temperatures, the relatively broad spatial scale of many of these studies (Mohseni
et al., 2003), neglects the variety of local hydrological systems that are differentially driven
by the array of inputs to each system (e.g., snowmelt, groundwater, runoff). The resulting
stream temperature model inaccuracies from this approach, clustered in particular regions
can be particularly problematic when investigating local population responses and range
shifts at the edge of species’ distributions. Our results highlight this issue by characterizing
the varied relative contributions of different hydrological component inputs among
ecological provinces and suggest the complex system-level regulation of stream
temperature

As with any modeling study, modeling errors originate from multiple sources.
Wilby and Harris (2006) discuss these aforementioned uncertainties in detail and ranked
their importance in decreasing order as follows: differences in GCM output, downscaling
methods, hydrological model structure, hydrological model parameters, and then
greenhouse gas emission scenario. While their work was performed for a hydrological
model, the results still hold true for our stream temperature model. Particular to this study,
in order to quantify the differences between errors due to parameter uncertainty and GCM
(or projection) uncertainty, much more work needs to be done and is well beyond the scope

of this work.

However, we do note that our simulations for stream temperature demonstrated
higher errors during the summer months. This is due to low and fluctuating discharge
values that ultimately affect stream temperature. Also, it is likely due to the fact that
hydrologic components may influence stream temperature differently during different

seasons. For this study, we used annual calibration parameters and allowed them to vary
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for each subbasin. An alternative approach would be to utilize seasonally varying
calibration parameters, and to analyze the dynamic (i.e., seasonal) influence of hydrologic
components on stream temperature. This may better capture the stream temperature
fluctuations in the summer months. Nonetheless, our spatially resolved methodology using
a mechanistic model, SWAT, better characterizes the complex processes of stream
temperature throughout the CRB by accounting for the hydrologic components
contributing to stream temperature and its variation.

Within the CRB, Wenger et al. (2013) used air temperature as a surrogate for
stream temperature to predict the response of Bull trout (Salmonidae: Salvelinus
confluentus) to predicted changes in climate, while Beer and Anderson (2013) used air
temperature-stream temperature relationships to predict the impacts of climate change on
salmonid life-histories. These approaches are common (Britton et al., 2010;Tisseuil et al.,
2012;Al-Chokhachy et al., 2013), yet overlook important differences in the inputs
influencing stream temperature across the basin. For example, our results suggest that
hydrologic contributions from snowmelt are relatively important drivers of stream
temperature within ecological provinces with primarily non-migratory coldwater focal fish
species. The influence of snowmelt tends to buffer stream temperatures against increases
in air temperature during the year relative to other areas in the watershed. In this case, a
regression-based approach to estimating stream temperature or the use of air temperature
as a surrogate for stream temperature will tend to overestimate stream temperature, and
thus underestimate the amount of suitable thermal habitat for coldwater species. In
addition, decreases in snowcover (and snowmelt) in the future will result in increased

thermal sensitivity within these formerly buffered regions. For example, current stream
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temperatures in the Mountain Snake ecological province are buffered by relatively high
levels of snowmelt, yet decreases in future snowcover are predicted to result in this
province experiencing the greatest seasonal and annual increases in stream temperature in
the coming century.

Some of the relationships between stream temperature and hydroclimatic changes
at the CRB scale were expected, such as increases in maximum air temperature and
minimum air temperature resulting in increases in stream temperature, which were
significant for all seasons for the entire CRB. This relationship is well-established and
many models have been developed solely based on air-stream temperature relationships
(Stefan and Preud’homme, 1993;Mohseni and Stefan, 1999). Also, a decrease in
precipitation led to an increase in stream temperature, largely because greater runoff and
infiltration leads to larger volumes of water in the stream channel, and thus increases the
amount of energy needed to heat the water. Precipitation changes had the largest negative
correlations during the spring and summer seasons, followed by fall and winter. Both
surface runoff and lateral soil flow changes follow the same correlation patterns as
precipitation, as both are inherently tied to the amount of incoming precipitation.
Additionally, streamflow is tied to all hydrological components within the subbasin and
the incoming streamflow that is entering the streamflow reach. Since streamflow is a mix
of incoming hydrologic components, it is difficult to determine correlations. However,
much research has assumed that streamflow and stream temperature changes are inversely
correlated (van Vliet et al., 2011). The correlations within this study were significant and

positively correlated for the spring, summer, and fall seasons; however, all correlations
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were below 0.10, which suggests the correlations were relatively minor, especially
compared to other components.

Snowmelt changes were negatively correlated during the spring, fall, and winter
seasons, and positively correlated during the summer season. A decrease in snowmelt will
lead to an increase in stream temperature because the cooling effect that snowmelt has on
stream temperature is no longer present. In summer, snowmelt and stream temperature
were positively correlated (albeit not significant), suggesting the counterintuitive notion
that an increase in snowmelt led to an increase in stream temperature. This can be explained
largely because snowmelt changes did not occur at all in 975 (60% of the subbasins with
streamflow) of the CRB subbasins, while for spring, fall, and winter, these values were 89
(5%), 50 (3%) and 48 (3%), respectively. These observations suggest that snowmelt is still
a component of the hydrologic cycle during the summer season.

Lastly, groundwater inflow changes to the stream channel were negatively
correlated to stream temperature change at the CRB scale for the spring and fall seasons.
This also makes sense, as groundwater temperature is generally cooler than the stream
temperature of the water already within the channel. Quite often, stream temperature
variations of cool water are used for tracer studies to determine where surface and
groundwater flows are exchanging water (Anderson, 2005;Constantz et al., 2003).
However, no significant correlation was found during the summer, when groundwater is a
large source of stream flow. This is likely because groundwater is the main source of water
for this season, any climate-induced changes in groundwater will not have a major effect
on stream temperature because the main water source for streamflow is still groundwater.

For example, if 85% of the streamflow comes from groundwater, and is then decreased to
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75%, the change in stream temperature isn’t likely to significantly change. Additionally,
no groundwater inflow change correlations were found for the winter season.

Species’ responses to Stream temperature occur within populations and are based
on local environmental conditions. Consequently, accurate assessment of local variation
in stream temperature is critical and only possible when local system drivers are accurately
represented in stream temperature models. While stream temperature is primarily
influenced by air temperature, this study emphasized the important effects of other
contributors (e.g., runoff, groundwater, snowmelt) that are differentially represented across
the CRB. Also, we have characterized the ecological provinces by warmwater and
coldwater focal fish species, which was done for qualitative biological assessments and not
as a predictive approach. However, these groupings have provided important information
regarding factors driving differential variation in stream temperatures across seasons in the
context of the biological groups experiencing particular stream temperature changes. River
basins encompass a spatially heterogeneous array of biological communities and these
communities are regulated by a spatially heterogeneous array of environmental conditions.
These environmental conditions are driven by local processes and require a systems-based
approach to accurately characterize the habitat regulating the distribution and diversity of

aquatic taxa.
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Table 1. Coupled Model Intercomparison Project — phase 5 General Circulation Models

used in this study

Modeling Group

Canadian Centre for Climate
Modeling & Analysis

Météo-France / Centre National de
Recherches Météorologiques, France

Geophysical Fluid Dynamics
Laboratory, USA

Institut Pierre Simon Laplace, France

Center for Climate System Research
(The University of Tokyo), National
Institute for Environmental Studies,
and Frontier Research Center for
Global Change (JAMSTEC), Japan

Max Planck Institute for
Meteorology, Germany
Meteorological Research Institute,
Japan

CMIP5 Model

canesm?2
cnrm-cm5

gfdl-cm3

ipsl-cm5a-mr

miroch

mpi-esm-Ir

mri-cgcm3
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Table 2. Summary of streamflow calibration statistics.

NS

Calibration Validation
Average | Std. Dev. | Average | Std. Dev.
0.69 0.13 0.64 0.13
0.75 0.10 0.75 0.08
0.62 0.15 0.65 0.13

*NS: Nash-Sutcliffe coefficient

*R2: coefficient of determination

* @: coefficient of determination multiplied by slope of regression
line, b
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Table 3. Stream temperature changes and focal fish species groups for the Columbia River Basin ecological provinces during the
2080s.

Ecological . ) Focal Fish i

c0 (_ngca Spring (°C) | Summer (°C) | Fall (°C) | Winter (°C) | Annual (°C) ocal Fish Species
province
Blue Mountain 3.7 5.3 3.2 2.1 35 coldwater migratory
Columbia 26 41 20 12 24 coldwater migratory
Cascades
Columbia 20 38 20 15 22 warmwater
Plateau
Intermountain 3.3 5.0 2.7 15 3.0 warmwater
Middle Snake 24 3.7 2.3 1.4 2.2 coldwater migratory
Mountalln 36 5.0 24 15 31 coldwater non-migratory
Columbia
Mountain Snake 5.0 7.0 4.0 2.1 4.3 coldwater migratory
Upper Snake 4.3 6.0 3.3 1.6 3.6 coldwater non-migratory




1
2

Maximum air temperature

Table 4. Sensitivities of stream temperature changes to changes in maximum and minimum air
temperatures for the Columbia River Basin during the 2080s

Ecological province Spring Summer Fall Winter Annual
(°C/I°C) (°CI°C) (°CI°C) (°CI°C) (°CI°C)
Blue Mountain 0.7 0.5 0.8 0.4 0.6
Columbia Cascades 0.5 0.7 0.7 0.3 0.6
Columbia Plateau 0.5 0.4 0.7 0.0 0.4
Intermountain 0.7 0.8 11 0.6 0.8
Middle Snake 0.5 05 0.8 0.9 0.7
Mountain Columbia 0.4 0.7 0.7 0.3 0.5
Mountain Snake 0.7 1.0 1.0 0.0 0.7
Upper Snake 0.6 0.7 0.8 0.3 0.6
Minimum air temperature
Ecological province Spring Summer Fall Winter Annual
(°C/I°C) (°C/I°C) (°C/I°C) (°C/I°C) (°CI°C)
Blue Mountain 0.7 0.7 0.9 0.0 0.6
Columbia Cascades 0.2 0.7 0.8 14 0.7
Columbia Plateau 0.2 0.6 0.8 0.4 0.5
Intermountain 0.7 0.9 0.8 0.0 0.6
Middle Snake 0.8 0.9 1.0 0.5 0.6
Mountain Columbia 0.3 0.9 0.6 0.2 0.5
Mountain Snake 0.7 11 1.0 0.5 0.8
Upper Snake 0.8 1.2 0.9 0.5 0.9
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Table 5. Pearson correlations between stream temperature and individual hydroclimatological

changes for the entire Columbia River Basin during the 2080s.

Hydroclimatological

Component Spring | Summer | Fall Winter
Maximum air temperature 0.67 0.61 0.49 0.36
Minimum air temperature 0.65 0.61 0.47 0.34

Precipitation -0.51 -0.50 -0.36 -0.20

Streamflow 0.08 0.07 -0.10 -0.02*
Snowmelt -0.36 0.10 -0.31 -0.26
Surface runoff -0.39 -0.08 -0.30 -0.28
Groundwater inflow -0.24 -0.04* -0.12 0.00*
Lateral soil flow -0.42 -0.32 -0.36 -0.07

* indicates there was no significant correlation at p =0.05
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Figures

Figure 1. Columbia River Basin study area ecological provinces with streamflow and stream
temperature gauges for calibration.
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Figure 2. Root mean square errors of the simulated and observed stream temperatures
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29  Figure 3. Monthly stream temperature error distributions for all stream temperature gauges.

Seasonal Distribution of
Stream Temperature Simulation Errors

]
]
0
S 0 i
@)
e
—
o
P
—
Ll
k]
Lo
© — ]
=) 0
O - 0
! : 0 i
c 0 0 |
© v T
E ! 1 1 |
+— ! u [ ! |
o) 0 ' \ | | 0
o - |] \ | I_:_
o o : : H : ! L
o - T R
| '
—,—: :—v— ! !
| | h 1 :
T S — T
- : L1l . !
[
i : . - : ! : i
: ' I_‘_' 1 1—‘—:
. T - | |
i l_:_ I] L - 1 1
o - _ = —_ —_
I

1 2 3 4 5 6 7 8 9 10 11 12
Month

30
31

32
33
34

35



36
37

38
39

40
41
42
43
44
45
46
47
48

49

Figure 4. Changes in average precipitation and air temperature (maximum and minimum) for the

end of the 21 century as compared to the historical time period
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50  Figure 5. Spring and summer historical and projected stream temperatures at the subbasin-level.
51  Hatched subbasins indicate that drying occurred under climate projections and were removed
52  from analyses.
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54 Figure 6. Fall and winter historical and projected stream temperatures at the subbasin-level.
55  Hatched subbasins indicate that drying occurred under climate projections and were removed
56  from analyses.
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Figure 7. Pearson correlations between changes in stream temperature and hydroclimatological
components for the Columbia River Basin ecological provinces. Tmax = maximum air
temperature; Tmin = minimum air temperature; Precip. = precipitation; Flow = streamflow;
Snomlt = snowmelt; SWQ = surface water runoff; GWQ = groundwater inflow; LatQ = lateral
soil flow. Asterisks represent no significant correlation at p =0.05
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