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Abstract

We present a community dataset of daily forcing and hydrologic response data for 671
small- to medium-sized basins across the contiguous United States (median basin size
of 336 km2) that spans a very wide range of hydroclimatic conditions. Areally averaged
forcing data for the period 1980–2010 was generated for three basin delineations –5

basin mean, Hydrologic Response Units (HRUs) and elevation bands – by mapping
the daily, 1 km gridded Daymet meteorological dataset to the sub-basin and basin poly-
gons. Daily streamflow data was compiled from the United States Geological Survey
National Water Information System. The focus of this paper is to (1) present the dataset
for community use; and (2) provide a model performance benchmark using the cou-10

pled Snow-17 snow model and the Sacramento Soil Moisture Accounting conceptual
hydrologic model, calibrated using the Shuffled Complex Evolution global optimization
routine. After optimization minimizing daily root mean squared error, 90 % of the basins
have Nash–Sutcliffe Efficiency scores >0.55 for the calibration period. This benchmark
provides a reference level of hydrologic model performance for a commonly used model15

and calibration system, and highlights some regional variations in model performance.
For example, basins with a more pronounced seasonal cycle generally have a negative
low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias.
Finally, we find that data points with extreme error (defined as individual days with a
high fraction of total error) are more common in arid basins with limited snow, and, for20

a given aridity, fewer extreme error days are present as basin snow water equivalent
increases.

1 Introduction

With the increasing availability of gridded meteorological datasets, streamflow records
and computing resources, large sample hydrology studies have become more com-25

mon in the last decade or more (e.g. Maurer et al., 2002; Merz and Bloschl, 2004;
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Andreassian et al., 2004; Lohmann et al., 2004; Oudin et al., 2006, 2010; Samaniego
et al., 2010; Nester et al., 2011, 2012; Livneh and Lettenmaier, 2012, 2013; Kumar
et al., 2013; Oubeidillah et al., 2013). Gupta et al. (2014) emphasize that more large-
sample hydrologic studies are needed to “balance depth with breadth” – to wit, most hy-
drologic studies have traditionally focused on one or a small number of basins (depth),5

which hinders the ability to establish general hydrologic concepts applicable across
regions (breadth) (Gupta et al., 2014). Gupta et al. (2014) go on to discuss practical
considerations for large sample hydrology studies, noting first and foremost that large
datasets of quality basin data need to be available and shared in the community.

In support of this philosophy, we present a large-sample hydrometeorological dataset10

and modeling tools to understand regional variability in hydrologic model performance
across the contiguous USA. The development of the basin dataset presented herein
takes advantage of high quality freely-available data from various US government
agencies and research laboratories. It includes (1) daily forcing data for 671 basins
for multiple delineations over the 1980–2010 time period; (2) daily streamflow data;15

(3) basic metadata (e.g. location, elevation, size, and basin delineation shapefiles) and
(4) benchmark model performance which contains the final calibrated model parame-
ter sets, model output timeseries for all basins as well as summary graphics for each
basin. This dataset and benchmark application is intended for the community to use as
a test-bed to facilitate the evaluation of hydrologic modeling and prediction questions.20

To this end, the benchmark consists of the calibrated, coupled Snow-17 snow model
and the Sacramento Soil Moisture Accounting conceptual hydrologic model for all 671
basins using the Shuffled Complex Evolution global optimization routine. We provide
some basic analysis on how this choice of hydrologic modeling method impacts re-
gional variability in model performance.25

The next section describes the development of the basin dataset from basin selection
through forcing data generation. It then briefly describes the modeling system and cal-
ibration routine. Next, example results using the basin dataset and modeling platform
are presented. Finally, concluding thoughts and next steps are discussed.
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2 Basin dataset

The development of a freely available large sample basin dataset requires several
choices and subsequent data acquisition. Three major decisions were made and are
discussed in this section: (1) the selection process for the basins, (2) the various basin
delineations to be developed, and (3) selection of underlying forcing dataset used to5

develop forcing data timeseries. Additionally, aggregation of the necessary streamflow
data is described.

2.1 Basin selection

The United States Geological Survey (USGS) developed an updated version of their
Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) in 2011 (Fal-10

cone et al., 2010; Falcone, 2011). This database contains geospatial information for
over 9000 stream gages maintained by the USGS. As a subset of the GAGES-II
database, a portion of the basins with minimal human disturbance (i.e. minimal land
use changes or disturbances, minimal human water withdrawls) are noted as “refer-
ence” gages. A further sub-setting of the reference gages were made as a follow-on to15

the Hydro-Climatic Data Network (HCDN) 1988 dataset (Slack and Landwehr, 1992).
These gages, marked HCDN-2009 (Lins, 2012), meet the following criteria: (1) have at
least 20 years of complete flow data between 1990–2009 and were active as of 2009,
(2) are a GAGES-II reference gage, (c) have less than 5 % imperviousness as mea-
sured by the National Land Cover Database (NLCD-2006), and (d) passed a manual20

survey of human impacts in the basin by local Water Science Center evaluators (Fal-
cone et al., 2010). There are 704 gages in the GAGES-II database that are considered
HCDN-2009 across CONUS. This study uses that portion of the HCDN-2009 basin
set as the starting point since they should best represent natural flow conditions. After
initial processing and data availability requirements, 671 basins are used for analysis25

in this study. Because these basins have minimal human influence they are almost
exclusively smaller, headwater-type basins.
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2.2 Forcing and streamflow data

The Daymet dataset was selected to derive forcing data for our streamflow simula-
tions (Thornton et al., 2012). Daymet was chosen because of its high spatial resolu-
tion, a necessary requirement to more fully estimate spatial heterogeneity for basins in
complex topography. Daymet is a daily, gridded (1km×1 km) dataset over the CONUS5

and southern Canada and is available from 1980 to present. It is derived solely from
daily observations of temperature and precipitation. The Daymet variables used here
are daily maximum and minimum temperature, precipitation, shortwave downward ra-
diation, day length, and humidity; additionally snow water equivalent is included (not
used in this work). These daily values are estimated through the use of an iterative10

method dependent on local station density and the spatial convolution of a truncated
Gaussian filter for station interpolation, and MT-CLIM to estimate shortwave radiation
and humidity (Thornton et al., 1997, 2000; Thornton and Running, 1999). Daymet does
not include estimates of potential evapotranspiration (PET), a commonly needed input
for conceptual hydrologic models or wind speed and direction. Therefore, PET was es-15

timated using the Priestly–Taylor method (Priestly and Taylor, 1972) and is discussed
further in Sect. 3.

Hydrologic models are run with a variety of spatial configurations, including entire
watersheds (lumped), elevation bands, hydrologic response units (HRUs), or grids. For
this dataset, forcing data were calculated (via areal averaging) for watershed, HRU20

and elevation band delineations. The basin delineations were created from the base
national geospatial fabric for hydrologic modeling developed by the USGS Modeling
of Watershed Systems (MoWS) group. The geospatial fabric is a watershed-oriented
analysis of the National Hydrography Dataset that contains points of interest (e.g.
USGS streamflow gauges), hydrologic response unit boundaries and simplified stream25

segments (not used in this study). This geospatial fabric contains points of interest
that include USGS streamflow gauges and allowed for the determination of upstream
total basin area and basin HRUs. A digital elevation model (DEM) was applied to the
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geospatial fabric dataset to create elevation contour polygon shapefiles for each basin.
The USGS Geo Data Portal (GDP) developed by the USGS Center for Integrated Data
Analytics (CIDA) (Blodgett et al., 2011) was leveraged to produce areally-weighted
forcing data for the various basin delineations over our time period. The GDP per-
forms all necessary spatial subsetting and weighting calculations and returns the are-5

ally weighted timeseries for the specified inputs.
Daily streamflow data for the HCDN-2009 gages were obtained from the USGS Na-

tional Water Information System server (http://waterdata.usgs.gov/usa/nwis/sw) over
the same forcing data time period, 1980–2010. While the period 1980–1990 is not cov-
ered by the HCDN-2009 review, it was assumed that these basins would have minimal10

human disturbances in this time period as well. For the portion of the basins that do
not have streamflow records back to 1980, analysis is restricted to the available data
records.

3 Hydrologic modeling benchmark

As stated in the introduction, the intended purpose of this dataset is a test-bed to15

facilitate assessment of hydrologic modeling and prediction questions across broad
hydroclimatic variations, and we focus here on providing a benchmark performance
assessment for a widely used calibrated, conceptual hydrologic modeling system. This
type of dataset can be used for many applications including evaluation of new modeling
systems against a well know benchmark system over wide ranging conditions, or as20

a base for comprehensive predictability experiments exploring importance of meteo-
rology or basin initial conditions (e.g. Wood et al., 2014). To this end, we have imple-
mented and tested an initial model and calibration system described below, using the
primary models and objective calibration approach that have been used by the US Na-
tional Weather Service River Forecast Centers (NWSRFCs) in service of operational25

short-term and seasonal streamflow forecasting.
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3.1 Models

The HCDN-2009 basins include those with substantial seasonal snow cover (Fig. 1),
necessitating a snow model is required in addition to a hydrologic model. Within the
NWSRFCs, the coupled Snow-17, Sacramento Soil Moisture Accounting Model (Snow-
17 and SAC-SMA) system is used. Snow-17 is a conceptual air temperature index5

based snow accumulation and ablation model (Anderson, 1973). It uses near sur-
face air temperature to determine the energy exchange at the snow–air interface and
the only time-varying inputs are typically air temperature and precipitation (Anderson,
1973, 2002). The SAC-SMA model is a conceptual hydrologic model that includes rep-
resentation of physical processes such as evapotranspiration, percolation, surface flow,10

sub-surface lateral flow. Required inputs to SAC-SMA are potential evapotranspiration
and water input to the soil surface (Burnash et al., 1973; Burnash, 1995). Snow-17 runs
first and determines the partition of precipitation into rain and snow and the evolution
of the snowpack. Any rain, snowmelt or rain passing unfrozen through the snowpack
for a given timestep becomes direct input to the SAC-SMA model. Finally, streamflow15

routing is accomplished through the use of a simple two-parameter, Nash-type instan-
taneous unit-hydrograph model (Nash, 1957).

3.2 Calibration

We employed a split-sample calibration approach, assigning the first 15 years of avail-
able streamflow data for calibration and the remainder for validation; thus, approxi-20

mately 5500 daily streamflow observations were used for calibration. To initialize the
model calibration moisture states on 1 October, we specified an initial wet SAC-SMA
soil moisture state that was allowed to spin down to equilibrium for a given basin by
running the first year of the calibration period repeatedly and assume no snow pack.
This was done until all SAC-SMA state variables had minimal year over year variations,25

which is a spin-up approach used by the Project for Intercomparison of Land-Surface
Process Schemes (e.g. Schlosser et al., 2000). Determination of optimal calibration
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sampling and spin-up procedures is an area of active research. Spin-up was performed
for every parameter set specified by the optimization algorithm, then the model was in-
tegrated for the calibration period and the RMSE for that parameter set was calculated.

Objective calibration was done by minimizing the root mean squared error (RMSE)
of daily modeled runoff vs. observed streamflow using the Shuffled Complex Evolution5

(SCE) global search algorithm of Duan et al. (1992, 1993). The SCE algorithm uses
a combination of probabilistic and deterministic optimization approaches that system-
atically spans the allowed parameter search space and also includes competitive evo-
lution of the parameter sets (Duan et al., 1993). Prior applications to the SAC-SMA
model have shown good results (Sorooshian et al., 1993; Duan et al., 1994). In the10

coupled Snow-17 & SAC-SMA modeling system, 35 potential parameters are available
for calibration, of which we calibrated 20 parameters having either a priori estimates
(Koren et al., 2000) or those found to be most sensitive following Anderson (2002)
(Table 1). The SCE algorithm was run using 10 different random seed starts for the
initial parameter sets for each basin, in part to evaluate the robustness of the optimum15

in each case, and the optimized parameter set with the minimum RMSE from the ten
different optimization runs was chosen for evaluation.

For Snow-17, six parameters were chosen for optimization (Table 1): the minimum
and maximum melt factors (MFMIN, MFMAX), the wind adjustment for enhanced en-
ergy fluxes to the snow pack during rain on snow (UADJ),the rain/snow partition tem-20

perature, which may not be 0 ◦C (PXTEMP), the snow water equivalent for 100 % snow
covered area (SI), and the gauge catch correction term for snowfall only (SCF). These
parameters were chosen because MFMIN, MFMAX, UADJ, SCF, and SI are defined as
major model parameters by Anderson (2002) with the addition of PXTEMP is shown
by Mizukami et al. (2013). The areal depletion curve (ADC) is considered a major25

parameter in Snow-17. However, to avoid expanding the parameter space by the num-
ber of ordinates on the curve (typically 10), we manually specified the ADC accord-
ing to regional variations in latitude, topographic characteristics (e.g. plains, hills or
mountains) and typical air mass characteristics (e.g. maritime polar, continental polar)
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(as suggested in Anderson, 2002). The remaining Snow-17 parameters were set in
the same manner. Following the availability of a priori parameter estimates for SAC-
SMA from a variety of datasets and various calibration studies with SAC-SMA (Ko-
ren et al., 2000; Anderson et al., 2006; Pokhrel and Gupta, 2010; Zhang et al., 2012)
11 parameters from SAC-SMA are included for calibration (Table 1). We use an in-5

stantaneous unit hydrograph, represented as a two-parameter Gamma distribution for
streamflow routing (Sherman, 1932; Clark, 1945; Nash, 1957; Dooge, 1959), the pa-
rameters of which were inferred as part of calibration.

Finally, the scaling parameter in the Priestly–Taylor PET estimate is also calibrated.
The Priestly–Taylor (P-T) equation (Priestly and Taylor, 1972) can be written as:10

PET =
a
λ
·
s · (Rn −G)

s+γ
(1)

Where λ is the latent heat of vaporization, Rn is the net radiation estimated using day of
year, all Daymet variables and equations to estimate the various radiation terms (Allen
et al., 1998; Zotarelli et al., 2009), G is the soil heat flux (assumed to be zero in this15

case), s is the slope of the saturation vapor pressure–temperature relationship, γ is the
psychrometric constant and a is the P-T coefficient. The P-T coefficient replaces the
aerodynamic term in the Penman–Monteith equation and varies by the typical condi-
tions of the area where the P-T equation is being applied with humid forested basins
typically having smaller values and exposed arid basins having larger values (Shut-20

tleworth and Calder, 1979; Morton, 1983; ASCE 1990).Thus the P-T coefficient was
included in the calibration since it should vary from basin to basin.

4 Benchmark results

4.1 Assessment objectives and metrics

Assessment of the models will focus on overall performance across the basin set,25

regional variations, and error characteristics. Nash–Sutcliffe efficiency (NSE) (Nash
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and Sutcliffe, 1970) and the decomposition components of NSE (Gupta et al., 2009)
are the first metrics examined in two variations. Because NSE scores model perfor-
mance relative to the observed climatological mean, regions in which the model can
track a strong seasonal cycle (large flow autocorrelation) perform relatively better when
measured by NSE, and this seasonal enhancement may be imparted when using NSE5

as the objective function for both the calibration and validation phases (e.g. Schaefli
et al., 2007). Additionally, basins with higher streamflow variance and frequent precip-
itation events have better model performance. Therefore, to give a more standardized
picture of model performance across varying hydroclimatologies, the NSE was recom-
puted using the long-term monthly mean flow instead of mean flow (denoted MNSE10

hereafter), thus preventing climatological seasonality from inflating the NSE and more
accurately ranking basins by the degree to which the model added value over clima-
tology in response to weather events (Schaefli et al., 2005). MNSE in this context is
defined for each day of year (DOY) via a 31 day window centered on a given DOY. The
long-term flow for that 31 day “month” is computed giving rise to a “monthly” mean flow.15

Using this type of climatology as the base for an NSE type analysis provides improved
standardization in basins with large flow autocorrelations.

Also, several other advanced, more physically based, metrics of model performance
are provided. First, three diagnostic signatures based on the flow duration curve (FDC)
from Yilmaz et al. (2008) are computed: (1) the top 2 % flow bias, (2) the bottom 30 %20

flow bias and (3) the bias of the slope of the middle portion (20–70 percentile) of the
FDC. Second, examination of the time series of squared error contribution to the RMSE
statistic was performed to highlight events in which the model performs poorlyfollowing
Clark et al. (2008). This analysis was performed to gauge the representativeness of
performance metrics over the model record by using the sorted (highest to lowest)25

time series of squared error to identify the N number of the largest error days and
determine their fractional error contribution to the total. Finally, we extend this analysis
to introduce, a simple, normalized general error index for application and comparison
across varying modeling and calibration studies. We coin the index, E50, the fraction
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of calibration points contributing 50 % of the error (Fig. 7c). This captures the number
of points determining the majority of the error and thus the optimal parameter set.

4.2 Overall performance

The 671 basins span the entire CONUS and cover a wide range of hydro-climatic con-
ditions. They range from wet, warm basins in the Southeast (SE) US to hot and dry5

basins in the Southwest (SW) US, to wet cool basins in the Northwest (NW) and dry
cold basins in the intermountain western US (Fig. 1). This allows us to simulate a va-
riety of energy and water limited basins with different snow storage, elevation, slope,
and precipitation characteristics. There are many energy limited basins with dryness
ratios as small as 0.2 and many water limited basins with dryness ratios as large as10

4.5 (Fig. 1b). As noted in Sect. 2b, no additional quality control was performed on the
candidate basins before calibration. For completeness and to highlight some of the
tradeoffs made when performing large sample hydrologic studies, all basins are kept
for analysis in this work.

For the calibration period, 90 % (604) of the basins produce a NSE greater than15

0.55, while 72 % (484) of the basins had a validation period NSE> 0.55 (Fig. 2a). The
decomposition of the NSE (Gupta et al., 2009) shows that nearly all basins have too
little modeled variance (values less than one) for both the calibration and validation
phases (Fig. 2b). The total volume biases are generally small with 94 % (79 %) of
the basins having a calibration (validation) period total flow bias within 10 % of ob-20

served (Fig. 2c). These are expected results when using RMSE for the objective func-
tion (Gupta et al., 2009) and reaffirm that our implementation of SCE is calibrating the
model properly.

The model under predicts high flow events in nearly all basins during calibration
and slightly less so for the validation period (Fig. 3a). This is an expected result when25

using RMSE as the objective function because the optimal calibration underestimates
flow variability (Gupta et al., 2009). Low flow periods are more evenly over and under
predicted (Fig. 3b) for both the calibration and validation time frames with 58 % and
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61 % of basins having more modeled low flow. Finally, the bias in the slope of the FDC
is generally under predicted with ∼ 75 % of basins having a negative model bias (FDC
slope is negative, thus a negative bias indicates the model slope is more positive and
that the modeled flow variability is too compressed). The slope of the FDC indicates the
variance of daily flows, which primarily relate to the seasonal cycle or the “flashiness”5

of a basin. Again this indicates model variability is less than observed, at both short
and longer time scales. In aggregate, these results agree with Fig. 2 and are expected
based on the analysis of Gupta et al. (2009). Optimization using RMSE or NSE as
the objective function generally results in under prediction of flow variance and near
zero total flow bias (Fig. 2). This manifests itself in the simulated hydrograph as under10

predicted high flows, generally over predicted low flows and a more positive slope to
the middle portion of the FDC (Fig. 3). It is worth repeating that the goal of this initial
application is to provide to community with a benchmark of model performance using
well known models, calibration systems and widely used, simple objective functions,
thus the use of RMSE.15

4.3 Spatial variability

It is informative to examine spatial patterns of the aforementioned metrics to elucidate
factors leading to weak (and strong) model performance. Poor performing basins are
most common along the high plains and desert southwest (Fig. 4a, Sect. 3c). When
examining MNSE (Fig. 4b), basins with high non-seasonal streamflow variance and fre-20

quent precipitation events (Gulf Coast and Pacific NW) have the highest model MNSE,
while most of the snowmelt dominated basins see MNSE scores reduced relative to
NSE, particularly in the validation phase (Figs. 2a and 4c). This indicates that RMSE
as an objective function may not be well suited for model calibration in basins with high
flow autocorrelation (Kavetski and Fenicia, 2011; Evin et al., 2014).25

Areas with low validation NSE and MNSE scores have generally large biases when
looking at FDC metrics as well (Fig. 5). Focusing on the high plains, high flow biases
of ±50 % are common. Extreme negative low flow biases are also present along the

5611

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/5599/2014/hessd-11-5599-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/5599/2014/hessd-11-5599-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 5599–5631, 2014

Hydrometeorological
dataset for the

contiguous USA

A. J. Newman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

high plains and desert SW along with a general model trend to have large negative
FDC slope biases, consistent with a poorly calibrated model. For the 72 % of basins
with validation NSE> 0.55 (basins with yellow-green to dark red colors in Fig. 5a),
there is no noticeable spatial pattern across CONUS in regard to high flow periods.
However, basins with a more pronounced seasonal cycle (e.g. snowpack dominated5

watersheds, central California) generally have a negative low flow bias, while basins
with a smaller seasonal cycle have a positive low flow bias. Correspondingly, basins
with a pronounced seasonal cycle generally have a near zero or positive slope of the
FDC bias, while basins with a smaller seasonal cycle have a negative slope bias.

4.4 Error characteristics10

When examining fractional error statistics for the basin set, 15 basins have single days
that contribute at least half the total squared error, whereas at the median, the largest
error day contributes 8.3 % of the total squared error for the median basin (Fig. 6). The
fractional error contribution for the 10, 100 and 1000 largest error days for the median
basin are 33, 70 and 96 % of the total squared error respectively. This indicates that15

for nearly all basins, there are 100 or fewer points that drive the RMSE and therefore
optimal model parameters. This type of analysis can be undertaken for any objective
function to identify the most influential points and allow for more in-depth examination of
forcing data, streamflow records, calibration strategies (i.e. Kavetski et al., 2006; Vrugt
et al., 2008; Beven and Westerberg, 2011; Beven et al., 2011; Kauffeldt et al., 2013),20

or if different model physics are warranted.
The spatial distribution of fractional error contributions show that the issue of model

performance being explained by a relatively small set of days is more prevalent in arid
regions of CONUS (SW US and high plains) as well as basins slightly inland from the
east coast of CONUS. (Fig. 7a and b). The arid basins are generally dry with sporadic25

high precipitation (and flow) events, while the Appalachian basins are wetter (Fig. 1)
with extreme precipitation events interspersed throughout the record. Basins with sig-
nificant snowpack tend to have lower error contributions from the largest error days
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(Fig. 7a and b). The E50 metric highlights mean peak snow water equivalent (SWE)
and frequent precipitation basins as well. These regions contain and order of mag-
nitude more days than the high plains and desert SW, giving insight into how repre-
sentative of the entire streamflow timeseries the optimal model parameter set really
is.5

Additionally, ranking the basins using their fractional error characteristics provides
a similar insight. As the aridity index increases, the fractional error contribution in-
creases for basins with little to no mean peak SWE. For basins with significant SWE,
the fractional error contribution decreases with increasing aridity (Fig. 8). Alternatively,
for a given aridity index the fractional error contribution for N days will decrease with10

increasing SWE. This dynamic arises because more arid basins with SWE produce
a relatively greater proportion of their runoff from snowmelt, without intervening rainfall.
This implies that the optimized model produces a more uniform error distribution with
less heteroscedasity in basins with more SWE. Moreover, as the fractional error con-
tribution for the 10 largest error days increases, model NSE generally decreases in the15

validation phase (Fig. 9). This indicates fractional error metrics are related to overall
model performance and that calibration methods to reduce extreme error days should
improve model performance. This is not unexpected due to the fact that the residu-
als from an RMSE type calibration are heteroscedastic. Arid basins typically have few
high flow events, which are generally subject to larger errors when minimizing RMSE.20

Using advanced calibration methodologies that account for heteroscedasticy (Kavetski
and Fenicia, 2011; Evin et al., 2014) may produce improved calibrations for arid basins
in this basin set and provide different insights into model behavior using this type of
analysis.

4.5 Limitations and uncertainties25

One interesting example of the usefulness (and a potential limitation) of large sam-
ple hydrology stemming from this work lies in the identification of issues with forcing
datasets. When examining calibrated model performance in the Pacific Northwest, it
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is seen that several basins along the Olympic Peninsula have low outlier NSE scores.
Tracing this unexpected result, we find the Daymet forcing data available for those
basins has a negative temperature bias, preventing mid-winter rain and melt episodes
in the modeling system, identifying scope to improve the Daymet forcing. Moreover,
winter periods of observed precipitation and streamflow rises coincide with subzero5

Tmax in the Daymet dataset, also suggesting areas to improve the Daymet forcing.
This limits interpretation of these results and other large sample hydrologic studies.

As noted by Gupta et al. (2014), large sample hydrology requires a tradeoff between
breadth and depth. The lack of depth inhibits discovery of data quality issues and intro-
duces outliers in any analysis (e.g. Fig. 9). Explanation of these outliers is sometimes10

difficult due to the lack of familiarty with those specific basins and any forcing or valida-
tion data peculiarities.

5 Summary and discussion

Most hydrologic studies focus in detail on a small number of watersheds, providing
comprehensive but highly local insights, and may be limited in their ability to inform15

general hydrologic concepts applicable across regions (Gupta et al., 2014). To facili-
tate large-sample hydrologic studies, large-sample basin datasets and corresponding
benchmarks of model performance using standard methodology across all basins need
to be freely available to the community. To that end, we have compiled a community
dataset of daily forcing and streamflow data for 671 basins and provide a benchmark20

of performance using a widely used conceptual a hydrologic modeling and calibration
scheme over a wide range of conditions.

Overall, application of the basin set to assessing an objectively calibrated concep-
tual hydrologic model representation of the 671 watersheds yielded Nash–Sutcliffe Effi-
ciency (NSE) scores of > 0.55 for 90 % of the basins. Performance of the models varied25

regionally, and the main factors influencing this variation were found to be aridity and
precipitation intermittency, contribution of snowmelt, and runoff seasonality. Analysis
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of the cumulative fractional error contributions from the largest error days showed that
the presence of significant snow water equivalent (SWE) offset the negative impact of
increasing aridity on simulation performance. Although this modeling application uti-
lized low-order hydrologic models with a single-objective calibration strategy, the find-
ings provide a baseline for assessing more complex strategies in each area, includ-5

ing multi-objective calibration of more highly distributed hydrologic models (e.g., in Shi
et al., 2008). The dataset and model demonstration also provides a starting point for
hydrologic prediction experiments (e.g. Wood et al. (2014), which utilized 425 of the
models to investigate the sources of seasonal streamflow prediction skill). The unusu-
ally broad variation of hydroclimatologies represented by the dataset, which contains10

forcings and streamflow obtained by consistent methodology, makes it a notable re-
source for these and other future large-sample watershed-scale hydrologic analysis
efforts.

This dataset and applications presented are made available to the community (see
http://ral.ucar.edu/projects/hap/flowpredict/subpages/modelvar.php).15
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Table 1. Table describing all parameters calibrated and their bounds for calibration.

Parameter Description Units Calibration Range

Snow-17

MFMAX Maximum melt factor mm ◦C−1 6 h−1 0.8–3.0
MFMIN Minimum melt factor mm ◦C−1 6 h−1 0.01–0.79
UADJ Wind adjustment for enhanced flux during rain on snow km 6 h−1 0.01–0.40
SI SWE for 100 % snow covered area mm 1.0–3500.0
SCF Snow gauge undercatch correction factor – 0.1–5.0
PXTEMP Temperature of rain/snow transition ◦C −1.0–3.0

SAC-SMA

UZTWM Upper zone tension water maximum storage mm 1.0–800.0
UZFWM Upper zone free water maximum storage mm 1.0–800.0
LZTWM Lower zone tension water maximum storage mm 1.0–800.0
LZFPM Lower zone free water primary maximum storage mm 1.0–1000.0
LZFSM Lower zone free water secondary maximum storage mm 1.0–1000.0
UZK Upper zone free water lateral depletion rate day−1 0.1–0.7
LZPK Lower zone primary free water depletion rate day−1 0.00001–0.025
LZSK Lower zone secondary free water depletion rate day−1 0.001–0.25
ZPERC Maximum percolation rate – 1.0–250.0
REXP Exponent of the percolation equation – 0.0–6.0
PFREE Fraction percolating from upper to lower zone free water storage – 0.0–1.0

Others

USHAPE Shape of unit hydrograph – 1.0–5.0
USCALE Scale of unit hydrograph – 0.001–150.0
PT Priestly–Taylor coefficient – 1.26–1.74
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Figures 559 

 560 

Figure 1.  (a) Location of the 671 HCDN-2009 basins across the contiguous United States used 561 

in the basin dataset with precipitation shaded. Circles denote basins with > 90% of their 562 

precipitation falling as rain, squares with black outlines denote basins with > 10% of their 563 

precipitation falling as snow as determined by using a 0ºC daily mean Daymet temperature 564 

threshold.  State outlines are in thin gray and hydrologic regions in thin red. (b) Model derived 565 

Budyko analysis for the 671 basins with basin mean temperature shaded (colored dots) and three 566 

derivations of the Budyko curve (dashed lines).  567 

Figure 1. (a) Location of the 671 HCDN-2009 basins across the contiguous United States used
in the basin dataset with precipitation shaded. Circles denote basins with > 90 % of their precip-
itation falling as rain, squares with black outlines denote basins with > 10 % of their precipitation
falling as snow as determined by using a 0 ◦C daily mean Daymet temperature threshold. State
outlines are in thin gray and hydrologic regions in thin red. (b) Model derived Budyko analysis
for the 671 basins with basin mean temperature shaded (colored dots) and three derivations of
the Budyko curve (dashed lines).
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 568 

Figure 2.  (a) Cumulative density functions (CDFs) for model Nash-Sutcliffe efficiency (NSE) 569 

(solid) for the calibration (red) and validation periods (blue) and NSE using the long-term 570 

monthly mean flows (MNSE, dark shaded and dashed), (b) CDFs for the variance bias in the 571 

decomposition of the NSE, (c) total volume bias in the decomposition of the NSE.  572 

 573 

Figure 2. (a) Cumulative density functions (CDFs) for model Nash–Sutcliffe efficiency (NSE)
(solid) for the calibration (red) and validation periods (blue) and NSE using the long-term
monthly mean flows (MNSE, dark shaded and dashed), (b) CDFs for the variance bias in the
decomposition of the NSE, (c) total volume bias in the decomposition of the NSE.
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 574 

Figure 3. (a) Cumulative density functions (CDFs) for model high flow bias for the calibration 575 

(red) and validation periods (blue), (b) model low flow bias, (c) model flow duration curve slope 576 

bias. 577 

  578 

Figure 3. (a) Cumulative density functions (CDFs) for model high flow bias for the calibration
(red) and validation periods (blue), (b) model low flow bias, (c) model flow duration curve slope
bias.
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 579 
Figure 4.  (a) Spatial distribution of Nash-Sutcliffe efficiency (NSE), (b) Nash-Sutcliffe 580 

efficiency using long-term monthly mean flows (MNSE) rather than the long-term mean flow, 581 

(c) MNSE – NSE for the validation period. 582 

 583 

 584 

  585 

Figure 4. (a) Spatial distribution of Nash–Sutcliffe efficiency (NSE), (b) Nash–Sutcliffe efficiency
using long-term monthly mean flows (MNSE) rather than the long-term mean flow, (c) MNSE–
NSE for the validation period.
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 586 

Figure 5. (a) Spatial distribution of the high flow bias, (b) low flow bias, (c) flow duration curve 587 

bias for the validation period. 588 

 589 

 590 

Figure 5. (a) Spatial distribution of the high flow bias, (b) low flow bias, (c) flow duration curve
bias for the validation period.
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 591 

Figure 6. Fractional contribution of the total squared error for the 1, 10, 100, 1000 largest error 592 

days.  The box plots represent the 671 basins with the blue area defining the interquartile range, 593 

the whiskers representing reasonable values and the red crosses denoting outliers.  The median is 594 

given by the red horizontal line with the notch in the box denoting the 95 % confidence interval 595 

of the median value.  596 

 597 

  598 

Figure 6. Fractional contribution of the total squared error for the 1, 10, 100, 1000 largest error
days. The box plots represent the 671 basins with the blue area defining the interquartile range,
the whiskers representing reasonable values and the red crosses denoting outliers. The median
is given by the red horizontal line with the notch in the box denoting the 95 % confidence interval
of the median value.
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 599 
Figure 7.  (a) Spatial distribution of the fractional contribution of total squared error for the 600 

largest day during the validation period, (b) 10 largest error days, (c) the number of days 601 

contributing 50% of the total objective function error, E50.  602 

Figure 7. (a) Spatial distribution of the fractional contribution of total squared error for the
largest day during the validation period, (b) 10 largest error days, (c) the number of days con-
tributing 50 % of the total objective function error, E50.
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 603 

Figure 8. Ranked fractional squared error contribution for the 100 largest error days for the 671 604 

basins versus the aridity index with mean maximum snow water equivalent (SWE) shaded.  Each 605 

dot represents a ~32 basin bin defined by the rank of the fractional error contribution for the 100-606 

largest error days for all basins.  The dashed vertical black lines denote the 95% confidence 607 

interval for the mean of the fractional error contribution for a given bin. 608 

  609 

Figure 8. Ranked fractional squared error contribution for the 100 largest error days for the
671 basins vs. the aridity index with mean maximum snow water equivalent (SWE) shaded.
Each dot represents a ∼ 32 basin bin defined by the rank of the fractional error contribution
for the 100-largest error days for all basins. The dashed vertical black lines denote the 95 %
confidence interval for the mean of the fractional error contribution for a given bin.
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 610 

Figure 9.  Nash-Sutcliffe efficiency versus the fractional error of the 10 largest error days for the 611 

validation period for all basins with basin mean peak snow water equivalent (mm) colored. 612 
Figure 9. Nash–Sutcliffe efficiency vs. the fractional error of the 10 largest error days for the
validation period for all basins with basin mean peak snow water equivalent (mm) colored.
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