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Abstract 1 

 We present a community dataset of daily forcing and hydrologic response data for 671 2 

small- to medium-sized basins across the contiguous United States (median basin size of 336 3 

km
2
) that spans a very wide range of hydroclimatic conditions.  Areally averaged forcing data for 4 

the period 1980-2010 was generated for three basin spatial configurations -- basin mean, 5 

Hydrologic Response Units (HRUs) and elevation bands -- by mapping daily, gridded 6 

meteorological datasets to the sub-basin (Daymet) and basin polygons (Daymet, Maurer and 7 

NLDAS).  Daily streamflow data was compiled from the United States Geological Survey 8 

National Water Information System. The focus of this paper is to (1) present the dataset for 9 

community use; and (2) provide a model performance benchmark using the coupled Snow-17 10 

snow model and the Sacramento Soil Moisture Accounting conceptual hydrologic model, 11 

calibrated using the Shuffled Complex Evolution global optimization routine.  After optimization 12 

minimizing daily root mean squared error, 90% of the basins have Nash-Sutcliffe Efficiency 13 

scores ≥ 0.55 for the calibration period and 34% ≥ 0.8. This benchmark provides a reference 14 

level of hydrologic model performance for a commonly used model and calibration system, and 15 

highlights some regional variations in model performance. For example, basins with a more 16 

pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller 17 

seasonal cycle have a positive low flow bias.  Finally, we find that data points with extreme error 18 

(defined as individual days with a high fraction of total error) are more common in arid basins 19 

with limited snow, and, for a given aridity, fewer extreme error days are present as basin snow 20 

water equivalent increases.   21 

  22 
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1. Introduction 23 

 With the increasing availability of gridded meteorological datasets, streamflow records 24 

and computing resources, large sample hydrology studies have become more common in the last 25 

decade or more (i.e. Nathan and McMahon 1990; Perrin et al. 2001; Maurer et al, 2002; Beldring 26 

et al. 2003; Merz and Bloschl 2004; Andreassian et al. 2004; Lohmann et al. 2004; Duan et al. 27 

2006; Oudin et al. 2006; Oudin et al. 2010; Samaniego et al. 2010; Martinez and Gupta 2010; 28 

Nester et al. 2011; Martinez and Gupta 2011; Nester et al. 2012; Livneh and Lettenmaier 2012, 29 

2013; Kumar et al. 2013; Oubeidillah et al. 2013).  Within the United States there have been 30 

several studies to produce large sample hydrometeorological datasets (Maurer et al. 2002; 31 

Lohmann et al. 2004; Duan et al. 2006; Thornton et al. 2012; Xia et al. 2012; Livneh et al. 2013).  32 

Many of these datasets provide gridded data and may need to be further processed by the end 33 

user for their specific hydrologic model configuration.  The Model Parameter Estimation Project 34 

(MOPEX) dataset does provide basin mean hydrometeorological data and observed streamflow 35 

records for 438 basins across the contiguous United States (Schaake et al. 2006) over 30+ years; 36 

making it one of the few, high quality, freely available hydrometeorological datasets with 37 

immediate applicability to catchment type hydrologic models.   38 

 Gupta et al. (2014) emphasize that more large-sample hydrologic studies are needed to 39 

“balance depth with breadth”; most hydrologic studies have traditionally focused on one or a 40 

small number of basins (depth), which hinders the ability to establish general hydrologic 41 

concepts applicable across regions (breadth).  Gupta et al. (2014) go on to discuss practical 42 

considerations for large sample hydrology studies, noting first and foremost that large datasets of 43 

quality basin data need to be available and shared in the community.  In support of this 44 

philosophy, we present a large-sample hydrometeorological dataset and modeling tools to 45 

understand regional variability in hydrologic model performance across the contiguous USA 46 

(Fig. 1). The development of the basin dataset presented herein takes advantage of high quality 47 

freely-available data from various US government agencies and research laboratories.  It 48 

includes (1) daily forcing data for 671 basins for multiple spatial configurations over the 1980-49 

2010 time period; (2) daily streamflow data; (3) basic metadata (e.g. location, elevation, size, and 50 

basin delineation shapefiles) and (4) benchmark model performance which contains the final 51 

calibrated model parameter sets, model output timeseries for all basins as well as summary 52 

graphics for each basin.  This builds on the MOPEX dataset by providing basin mean forcing 53 

data for 233 more basins along with two other spatial configurations and the benchmark model 54 

performance parameter sets and model output. 55 

This dataset and benchmark application is intended for the community to use as a test-bed 56 

to facilitate the evaluation of hydrologic modeling and prediction questions.  To this end, the 57 

benchmark consists of the calibrated, coupled Snow-17 snow model and the Sacramento Soil 58 

Moisture Accounting conceptual hydrologic model for all 671 basins using the Shuffled 59 

Complex Evolution global optimization routine. Development of a large sample hydrologic 60 

dataset such as this will allow for exploration into many important scientific questions.  We 61 
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provide some basic analysis relating to questions such as: 1) What is the model performance 62 

across a large sample of basins and how does model performance vary across basin hydro-63 

climatic conditions? 2) How do error characteristics relate to basin calibration performance and 64 

hydro-climatic conditions?  This basic analysis is intended to highlight some of the important 65 

questions that can be answered through large-sample hydrologic studies and provide example 66 

results for further exploration. 67 

The next section describes the development of the basin dataset from basin selection 68 

through forcing data generation.  It then briefly describes the modeling system and calibration 69 

routine.  Next, example results using the basin dataset and modeling platform are presented.  70 

Finally, concluding thoughts and next steps are discussed.   71 

2. Basin Dataset 72 

 The development of a freely available large sample basin dataset requires several choices 73 

and subsequent data acquisition.  Three major decisions were made and are discussed in this 74 

section: 1) the selection process for the basins, 2) the various basin spatial configurations to be 75 

developed, and 3) selection of underlying forcing dataset used to develop forcing data time 76 

series.  Additionally, aggregation of the necessary streamflow data is described. 77 

2.1 Basin Selection 78 

 The United States Geological Survey (USGS) developed an updated version of their 79 

Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) in 2011 (Falcone et al. 80 

2010; Falcone 2011).  This database contains geospatial information for over 9,000 stream gages 81 

maintained by the USGS.  As a subset of the GAGES-II database, a portion of the basins with 82 

minimal human disturbance (i.e. minimal land use changes or disturbances, minimal human 83 

water withdrawls) are noted as “reference” gages.  A further sub-setting of the reference gages 84 

were made as a follow-on to the Hydro-Climatic Data Network (HCDN) 1988 dataset (Slack and 85 

Landwehr 1992).  These gages, marked HCDN-2009 (Lins 2012), meet the following criteria: 1) 86 

have at least 20 years of complete flow data between 1990-2009 and were active as of 2009, 2) 87 

are a GAGES-II reference gage, c) have less than 5 percent imperviousness as measured by the 88 

National Land Cover Database (NLCD-2011, Jin et al. 2013), and d) passed a manual survey of 89 

human impacts in the basin by local Water Science Center evaluators (Falcone et al. 2010).  90 

There are 704 gages in the GAGES-II database that are considered HCDN-2009 across the 91 

contiguous United States (CONUS).  This study uses that portion of the HCDN-2009 basin set as 92 

the starting point since they should best represent natural flow conditions.  After initial 93 

processing and data availability requirements, 671 basins are used for analysis in this study (Fig. 94 

1b).  Because these basins have minimal human influence they are almost exclusively smaller, 95 

headwater-type basins.   96 

2.2 Forcing and Streamflow Data 97 
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   98 

 Hydrologic models are run with a variety of spatial configurations, including entire 99 

watersheds (lumped), elevation bands, hydrologic response units (HRUs), or grids. For this 100 

dataset, forcing data were calculated (via areal averaging) for watershed, HRU and elevation 101 

band spatial configurations.  The basin spatial configurations were created from the base national 102 

geospatial fabric for hydrologic modeling developed by the USGS Modeling of Watershed 103 

Systems (MoWS) group (Viger 2014; Viger and Bock 2014).  The geospatial fabric is a 104 

watershed-oriented analysis of the National Hydrography Dataset that contains points of interest 105 

(e.g. USGS streamflow gauges), hydrologic response unit boundaries and simplified stream 106 

segments (not used in this study).  This geospatial fabric contains points of interest that include 107 

USGS streamflow gauges and allowed for the determination of upstream total basin area and 108 

basin HRUs (Viger 2014; Viger and Bock 2014). A digital elevation model (DEM) was applied 109 

to the geospatial fabric dataset to create elevation contour polygon shapefiles for each basin.  The 110 

USGS Geo Data Portal (GDP) developed by the USGS Center for Integrated Data Analytics 111 

(CIDA) (Blodgett et al. 2011) was leveraged to produce areally-weighted forcing data for the 112 

various basin spatial configurations over our time period.   The GDP performs all necessary 113 

spatial subsetting and weighting calculations and returns the areally weighted timeseries for the 114 

specified inputs.    115 

 The Daymet dataset was selected as the primary gridded meteorlogical dataset to derive 116 

forcing data for our streamflow simulations (Thornton et al. 2012).  Daymet was chosen because 117 

of its high spatial resolution, a necessary requirement to more fully estimate spatial heterogeneity 118 

for basins in complex topography.  Daymet is a daily, gridded (1x1 km) dataset over the CONUS 119 

and southern Canada and is available from 1980 to present.  It is derived solely from daily 120 

observations of temperature and precipitation.  The Daymet variables used here are daily 121 

maximum and minimum temperature, precipitation, shortwave downward radiation, day length, 122 

and humidity; additionally snow water equivalent is included (not used in this work).  These 123 

daily values are estimated through the use of an iterative method dependent on local station 124 

density and the spatial convolution of a truncated Gaussian filter for station interpolation, and the 125 

Mountain Climate simulator (MT-CLIM) to estimate shortwave radiation and humidity 126 

(Thornton et al. 1997; Thornton and Running 1999; Thornton et al. 2000).  Daymet does not 127 

include estimates of potential evapotranspiration (PET), a commonly needed input for conceptual 128 

hydrologic models or wind speed and direction.  Therefore, PET was estimated using the 129 

Priestly-Taylor method (Priestly and Taylor 1972) and is discussed further in section 3.  Data 130 

quality is an ever-present issue in hydrologic modeling, and while the input data to Daymet are 131 

subject to rigorous quality control checks (Durre et al. 2008; 2010) potential errors may remain 132 

(Menne et al. 2009; 2010; Oubeidillah et al. 2013).  Additionally, the Maurer et al. (2002) and 133 

National Land Data Assimilation System (NLDAS) (Xia et al. 2012) 12 km gridded datasets 134 

were processed to provide daily forcing data for the basin lumped configuration, resulting in 135 

three distinct datasets available for future forcing data impact studies. 136 
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 Daily streamflow data for the HCDN-2009 gages were obtained from the USGS National 137 

Water Information System server (http://waterdata.usgs.gov/usa/nwis/sw) over the same forcing 138 

data time period, 1980-2010.  While the period 1980-1990 is not covered by the HCDN-2009 139 

review, it was assumed that these basins would have minimal human disturbances in this time 140 

period as well.   For the portion of the basins that do not have streamflow records back to 1980, 141 

analysis is restricted to the available data records.  The USGS provides streamflow data flags to 142 

identify periods of estimated flow and are included here.  However, other data quality 143 

information is unavailable without further investigation and not available in this dataset.  For 144 

reference, 90% (604) of the basins have 20% or fewer flow days estimated and 75% (503 basins) 145 

have 10% or less flow values estimated. 146 

The 671 basins span the entire CONUS and cover a wide range of hydro-climatic 147 

conditions.    They range from wet, warm basins in the Southeast (SE) US to hot and dry basins 148 

in the Southwest (SW) US, to wet cool basins in the Northwest (NW) and dry cold basins in the 149 

intermountain (Rocky Mountains in Fig. 1a) western US.  Figure 1b displays the basin annual 150 

precipitation (colored shading) along with symbols to denote rain and snow dominated basins.  151 

In terms of annual mean CDFs, Daymet estimated basin mean temperatures range from -2 ºC to 152 

23 ºC with precipitation amounts of 0.7 to 9.4 mm day
-1

 (Fig. 2).  Annual observed mean runoff 153 

ranges from 0.01 to 9.3 mm day
-1

 with PET estimates ranging from 1.9 to 4.8 mm day
-1

.  154 

Interestingly, this implies that Daymet precipitation itself is not enough to balance the observed 155 

runoff in some basins and is consistent with other recent large sample hydrologic studies 156 

(Oubeidillah et al. 2013).  Seasonal variations in these four variables are large as well, with some 157 

basins reaching mean winter time temperatures lower than -10 ºC and summer time mean 158 

temperatures higher than 25 ºC (not shown).  The seasonal water balance varies greatly with 159 

some basins experiencing much higher precipitation and runoff rates in one season versus 160 

another (e.g. spring runoff peaks in mountain snowmelt dominated basins).  As expected, PET 161 

varies seasonally with a minimum in winter and a maximum in summer. 162 

Figure 3 gives cumulative density functions (CDFs) for various physical descriptors of 163 

the basin set.  The basins range in size from roughly 1 to 25,800 km
2
 with the median basin size 164 

being about 335 km
2
 and have mean elevations spanning from nearly sea level (10 m) to high 165 

alpine elevations (3570 m) with a median elevation of 462 m.  Notably, 75 basins have mean 166 

elevations > 2000 m.  Corresponding to the large range of elevations in the basin set, the mean 167 

slopes vary considerably, spanning over 2 orders of magnitude from near zero to over 200 m km
-168 

1
.  The basin set covers a wide range of basin shapes with aspect ratios ranging from 0.08 to 169 

about 11.  Finally, there is a large range of forest covers across the basin set which may have 170 

implications for hydrologic similarity (Oudin et al. 2010) with 20% of the basins having less than 171 

(more than) 14% (98%) forest cover  and the median basin having about 80% forest cover 172 

(NLCD-2011 ).   173 

 174 

http://waterdata.usgs.gov/usa/nwis/sw


 7 

This basin set allows us to simulate a variety of energy and water limited basins with 175 

different snow storage, elevation, slope, and precipitation characteristics.  Figure 4a shows runoff 176 

ratio (USGS streamflow/Daymet precipitation) versus the aridity index (Daymet 177 

Precipitation/PET).  Immediately it can be seen that some basins lie above the water limit line 178 

(Y=1) indicating more runoff than precipitation and many basins are near it (Y > 0.9).  In these 179 

cases the model calibration process would struggle to produce an unbiased calibration, or never 180 

in basins above the water limit, because the basic water balance requires nearly zero 181 

evapotranspiration (ET) or is not satisfied.  This requires a modification to incoming 182 

precipitation, which is discussed in the next section.  Not coincidentally, the basins near and 183 

above the water limit are colder basins (mean annual T < 10 ºC) with frozen precipitation during 184 

colder months.  Additionally, two basins lie to the right of the curved line (Y = 1 – 1/aridity) 185 

indicating a surplus of water.  These basins may also require modifications to input precipitation, 186 

but it is less clear in this case as observations of precipitation are generally underestimates, 187 

especially for snowfall (e.g. Yang et al. 1998).  Examining the basin set using model output 188 

terms in the Budyko framework, there are many energy limited basins with dryness ratios as 189 

small as 0.2 and many water limited basins with model estimated dryness ratios as large as 4.5 190 

(Fig. 4b).  Note that now no basins lie above the water limit, indicating bulk precipitation 191 

corrections were applied as needed during the calibration process.  Examination of 192 

hydrometeorlogical forcing datasets across a large spatial extent through the lens of water and 193 

energy balance draws attention to gross errors in the forcing or streamflow datasets and permits 194 

any identified errors to be placed into spatial and temporal context, a benefit of large sample 195 

studies. 196 

As noted above, no additional quality control was performed on the candidate basins 197 

before calibration.  For completeness and to more fully highlight some of the benefits and 198 

tradeoffs made when performing large sample hydrologic studies, all basins are kept for analysis 199 

in this work. 200 

3. Hydrologic modeling benchmark 201 

 As stated in the introduction, the intended purpose of this dataset is a test-bed to facilitate 202 

assessment of hydrologic modeling and prediction questions across broad hydroclimatic 203 

variations, and we focus here on providing a benchmark performance assessment for a widely 204 

used calibrated, conceptual hydrologic modeling system.  This type of dataset can be used for 205 

many applications including evaluation of new modeling systems against a well known 206 

benchmark system over wide ranging conditions, or as a base for comprehensive predictability 207 

experiments exploring importance of meteorology or basin initial conditions.  To this end, we 208 

have implemented and tested an initial model and calibration system described below, using the 209 

primary models and objective calibration approach that have been used by the US National 210 

Weather Service River Forecast Centers (NWSRFCs) in service of operational short-term and 211 

seasonal streamflow forecasting. 212 
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3.1 Models 213 

 The HCDN-2009 basins include those with substantial seasonal snow cover (Fig. 1b), 214 

necessitating a snow model in addition to a hydrologic model.  Within the NWSRFCs, the 215 

coupled Snow-17, Sacramento Soil Moisture Accounting Model (Snow-17 and SAC-SMA) 216 

system is used.  Snow-17 is a conceptual air temperature index based snow accumulation and 217 

ablation model (Anderson 1973).  It uses near surface air temperature to determine the energy 218 

exchange at the snow-air interface and the only time-varying inputs are typically air temperature 219 

and precipitation (Anderson 1973; Anderson 2002). The SAC-SMA model is a conceptual 220 

hydrologic model that includes representation of physical processes such as evapotranspiration, 221 

percolation, surface flow, sub-surface lateral flow. Required inputs to SAC-SMA are potential 222 

evapotranspiration and water input to the soil surface (Burnash 1973; Burnash 1995).  Snow-17 223 

runs first and determines the partition of precipitation into rain and snow and the evolution of the 224 

snowpack.  Any rain, snowmelt or rain passing unfrozen through the snowpack for a given 225 

timestep becomes direct input to the SAC-SMA model.  Finally, streamflow routing is 226 

accomplished through the use of a simple two-parameter, Nash-type instantaneous unit-227 

hydrograph model (Nash 1957).    228 

3.2 Calibration 229 

 We employed a split-sample calibration approach following Klemes (1986), assigning the 230 

first 15 years of available streamflow data for calibration and the remainder for validation then 231 

repeating the calibration using the last 15 years and the initial remaining period for validation; 232 

thus, approximately 5500 daily streamflow observations were used for each calibration.  To 233 

initialize the model calibration moisture states on 1 October, we specified an initial wet SAC-234 

SMA soil moisture state that was allowed to spin down to equilibrium for a given basin by 235 

running the first year of the calibration period repeatedly and assumed no initial snow pack.  This 236 

was done until all SAC-SMA state variables had minimal year over year variations, which is a 237 

spin-up approach used by the Project for Intercomparison of Land-Surface Process Schemes (e.g. 238 

Schlosser et al. 2000).  Determination of optimal calibration sampling and spin-up procedures is 239 

an area of active research.  Spin-up was performed for every parameter set specified by the 240 

optimization algorithm, then the model was integrated for the calibration period and the RMSE 241 

for that parameter set was calculated.  242 

 Objective calibration was done by minimizing the root mean squared error (RMSE) of 243 

daily modeled runoff versus observed streamflow using the Shuffled Complex Evolution (SCE) 244 

global search algorithm of Duan et al. (1992, 1993).  The SCE algorithm uses a combination of 245 

probabilistic and deterministic optimization approaches that systematically spans the allowed 246 

parameter search space and also includes competitive evolution of the parameter sets (Duan et al. 247 

1993).  Prior applications to the SAC-SMA model have shown good results (Sorooshian et al. 248 

1993; Duan et al. 1994).  In the coupled Snow-17 and SAC-SMA modeling system, 35 potential 249 

parameters are available for calibration, of which we calibrated 20 parameters having either a 250 
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priori estimates (Koren et al. 2000) or those found to be most sensitive following Anderson 251 

(2002) (Table 1).  The SCE algorithm was run using 10 different random seed starts for the 252 

initial parameter sets for each basin, in part to evaluate the robustness of the optimum in each 253 

case, and the optimized parameter set with the minimum RMSE from the ten different 254 

optimization runs was chosen for evaluation. 255 

 For Snow-17, six parameters were chosen for optimization (Table 1):  The minimum and 256 

maximum melt factors (MFMIN, MFMAX), the wind adjustment for enhanced energy fluxes to 257 

the snow pack during rain on snow (UADJ), the rain/snow partition temperature, which may not 258 

be 0ºC (PXTEMP), the snow water equivalent for 100% snow covered area (SI), and the gauge 259 

catch correction term for snowfall only (SCF).  These six parameters were chosen because 260 

MFMIN, MFMAX, UADJ, SCF, and SI are defined as major model parameters by Anderson 261 

(2002).  PXTEMP was also shown to be important in the Snow-17 model by Mizukami et al. 262 

(2013).  The SCF is critical in many snow dominated basins as precipitation is generally 263 

underestimated in these types of basins (e.g. Yang et al. 1998) and is certainly underestimated in 264 

some basins in Daymet as shown in Figures 3 and 4. 265 

The areal depletion curve (ADC) is considered a major parameter in Snow-17.  However, to 266 

avoid expanding the parameter space by the number of ordinates on the curve (typically 10), we 267 

manually specified the ADC according to regional variations in latitude, topographic 268 

characteristics (e.g. plains, hills or mountains) and typical air mass characteristics (e.g. maritime 269 

polar, continental polar) (as suggested in Anderson, 2002).  The remaining Snow-17 parameters 270 

were set in the same manner.  Following the availability of a priori parameter estimates for SAC-271 

SMA from a variety of datasets and various calibration studies with SAC-SMA (Koren et al. 272 

2000; Anderson et al. 2006; Pokhrel and Gupta 2010; Zhang et al. 2012) 11 parameters from 273 

SAC-SMA are included for calibration (Table 1). We use an instantaneous unit hydrograph, 274 

represented as a two-parameter Gamma distribution for streamflow routing (Sherman 1932; 275 

Clark 1945; Nash 1957; Dooge 1959), the parameters of which were inferred as part of 276 

calibration.  . 277 

Finally, the scaling parameter in the Priestly-Taylor PET estimate is also calibrated.  The 278 

Priestly-Taylor (P-T) equation (Priestly and Taylor 1972) can be written as: 279 

     
 

 
 
        

   
  (1) 280 

Where λ (MJ kg
-1

) is the latent heat of vaporization, Rn (MJ m
-2

 day
-1

) is the net radiation  281 

estimated using day of year, all Daymet variables and equations to estimate the various radiation 282 

terms (Allen et al. 1998; Zotarelli et al. 2009), G (MJ m
-2

 day
-1

) is the soil heat flux  (assumed to 283 

be zero in this case), s (kPa ºC
-1

) is the slope of the saturation vapor pressure-temperature 284 

relationship, γ (kPa ºC
-1

) is the psychrometric constant and a (unitless) is the P-T coefficient. The 285 

P-T coefficient replaces the aerodynamic term in the Penman-Monteith equation and varies by 286 
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the typical conditions of the area where the P-T equation is being applied with humid forested 287 

basins typically having smaller values and exposed arid basins having larger values 288 

(Shuttleworth and Calder 1979; Morton 1983; ASCE 1990). Thus the P-T coefficient was 289 

included in the calibration since it should vary from basin to basin. 290 

4. Benchmark results 291 

4.1 Assessment Objectives and Metrics 292 

 Assessment of the models will focus on overall performance across the basin set, regional 293 

variations, and error characteristics.  Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970) 294 

and two of the decomposition components of NSE, variance bias (α) and total volume bias (β) 295 

(Gupta et al. 2009) are the first metrics examined in two variations.  Because NSE scores model 296 

performance relative to the observed climatological mean, regions in which the model can track 297 

a strong seasonal cycle (large flow autocorrelation) perform relatively better when measured by 298 

NSE, and this seasonal enhancement may be imparted when using NSE as the objective function 299 

for both the calibration and validation phases (e.g. Schaefli et al. 2007).  Additionally, basins 300 

with higher streamflow variance and frequent precipitation events have better model 301 

performance.  Therefore, to give a more standardized picture of model performance across 302 

varying hydroclimatologies, the NSE was recomputed using the long-term monthly mean flow 303 

instead of mean flow (denoted MNSE hereafter), thus preventing climatological seasonality from 304 

inflating the NSE and more accurately ranking basins by the degree to which the model added 305 

value over climatology in response to weather events (Garrick et al. 1978; Martinec and Rango 306 

1989; Schaefli et al. 2005).  MNSE in this context is defined for each day of year (DOY) via a 307 

31-day window centered on a given DOY.  The long-term flow for that 31-day “month” is 308 

computed giving rise to a “monthly” mean flow.  Using this type of climatology as the base for 309 

an NSE type analysis provides improved standardization in basins with large flow 310 

autocorrelations.  This definition is similar to the one proposed by Garrick et al. (1978) but with 311 

the addition of the 31-day smoother, which is done to provide a smoother reference climatology. 312 

 Also, several other advanced, more physically based, metrics of model performance are 313 

provided.  First, three diagnostic signatures based on the flow duration curve (FDC) from Yilmaz 314 

et al. (2008) are computed: 1) the top 2% flow bias, 2) the bottom 30% flow bias and 3) the bias 315 

of the slope of the middle portion (20-70 percentile) of the FDC. Second, examination of the 316 

time series of squared error contribution to the RMSE statistic was performed to highlight events 317 

in which the model performs poorly following Clark et al. (2008). This analysis was performed 318 

to gauge the representativeness of performance metrics over the model record by using the sorted 319 

(highest to lowest) time series of squared error to identify the N number of the largest error days 320 

and determine their fractional error contribution to the total.  Finally, we extend this analysis to 321 

introduce, a simple, normalized general error index for application and comparison across 322 

varying modeling and calibration studies.  We coin the index, E50, the fraction of calibration 323 
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points contributing 50% of the error.  This captures the number of points determining the 324 

majority of the error and thus the optimal parameter set. 325 

4.2 Spatial variability 326 

 It is informative to examine spatial patterns of the aforementioned metrics to elucidate 327 

factors leading to weak (and strong) model performance.  This also allows for identification of 328 

outlier basins and characterization of contributing factors (i.e. forcing or streamflow data issues 329 

or poor calibration).  Poor performing basins are most common along the high plains and desert 330 

southwest (Fig 5a, section 3c).  When examining MNSE (Fig 5b), basins with high non-seasonal 331 

streamflow variance and frequent precipitation events (SE and NW US) have the highest model 332 

MNSE, while most of the snowmelt dominated basins see MNSE scores reduced relative to NSE, 333 

particularly in the validation phase (Fig. 5c).  This indicates that RMSE as an objective function 334 

may not be well suited for model calibration in basins with high flow autocorrelation (Kavetski 335 

and Fenicia 2011; Evin et al. 2014).  This is confirmed by comparing Fig. 5d to Fig. 5c, basins 336 

with large flow autocorrelations (one week mean flow for example) generally have lower MNSE 337 

scores.   338 

 Areas with low validation NSE and MNSE scores have generally large biases when 339 

looking at FDC metrics as well (Fig. 6).  Focusing on the high plains, high flow biases of ± 50% 340 

are common.  Extreme negative low flow biases are also present along the high plains and desert 341 

SW along with a general model trend to have large negative FDC slope biases, consistent with a 342 

poorly calibrated model.  For the 72% of basins with validation NSE > 0.55 (basins with yellow-343 

green to dark red colors in Fig. 6a), there is no noticeable spatial pattern across CONUS in 344 

regard to high flow periods.  However, basins with a more pronounced seasonal cycle (e.g. 345 

snowpack dominated watersheds, central West coast) generally have a negative low flow bias, 346 

while basins with a smaller seasonal cycle have a positive low flow bias (Fig. 6b).  347 

Correspondingly, basins with a pronounced seasonal cycle generally have a near zero or positive 348 

slope of the FDC bias, while basins with a smaller seasonal cycle have a negative slope bias (Fig. 349 

6c). 350 

 Past applications similar conceptual snow and hydrologic modeling systems across the 351 

CONUS have shown comparable spatial performance patterns.  Clark et al. (2008) applied many 352 

conceptual models to a subset of the MOPEX basin set and found poor performance in arid 353 

regions. Martinez and Gupta (2010), using a monthly water balance model found the best 354 

performance generally along the east coast, most of SE CONUS, and along the west coast with 355 

scattered good performance in the Rocky Mountains.  They found that many basins along the 356 

High Plains and north side of the Appalachian Mountains perform poorly.  They also note that 357 

arid regions have high variability error (variability bias term in KGE).  358 

4.3 Cumulative Performance  359 
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 Two basic cumulative thresholds for model performance are highlighted here, NSE 360 

values of 0.55 and 0.8.  An NSE of 0.55 indicates some model skill, and an NSE of 0.8 suggests 361 

reasonably good model performance.  For the calibration period, 90% (604) of the basins have a 362 

NSE greater than 0.55, while 72% (484) of the basins had a validation period NSE > 0.55 (Fig 363 

7a).  At the NSE > 0.8 level, 34% (225) basin models perform better during calibration and 12% 364 

(78) basin models meet that criteria during the validation phase.   When using MNSE, 85% and 365 

57% (568 and 385) of the basins lie above 0.55 and 17% and 4% (114 and 29) of the basins lie 366 

above 0.8 during the calibration and validation phases.  The decomposition of the NSE (Gupta et 367 

al. 2009) shows that and 90% of basins have a calibration (validation) model-observation flow 368 

correlation > 0.75 (0.68) and 30% (12%) of basins have a model-observation flow correlation > 369 

0.9 (Fig 7b).  However, nearly all basins have too little modeled variance (values less than one) 370 

for both the calibration and validation phases (Fig. 7c).  The total volume biases are generally 371 

small with 94% (79%) of the basins having a calibration (validation) period total flow bias 372 

within 10% of observed (Fig. 7d).  These are expected results when using RMSE for the 373 

objective function (Gupta et al. 2009) and reaffirm that our implementation of SCE is calibrating 374 

the model properly. 375 

 Figure 8 highlights the full split sample approach for calibration following Klemes 376 

(1986).  It is seen that the calibration and validation statistics give quite similar results regardless 377 

of which time period is used for calibration and validation using the Daymet data.  This could 378 

indicate that both halves of the data are equally challenging to model with this modeling system.  379 

We have also included basin calibrations using the first 15 years only for the Maurer et al. (2002) 380 

and NLDAS-II (Xia et al. 2012) datasets.  It can be seen that the Daymet forcing provides better 381 

model performance overall than both Maurer et al. and NLDAS forcing data.  This likely relates 382 

to the coarser resolution of the Maurer et al. and NLDAS data (12 km) and the somewhat small 383 

basin sizes in this basin set.   More importantly the inclusion of the Klemes (1986) split-sample 384 

approach provides users of this dataset two parameter estimates for each basin using different 385 

calibration periods, while the inclusion of three total forcing datasets begins to allow for 386 

ensemble type forcing data impact studies across a large basin sample size.  In the remaining 387 

discussion, only model performance results using the first half of the split sample for calibration 388 

are presented. 389 

   With respect to advanced diagnostics, the model under predicts high flow events in 390 

nearly all basins during calibration and slightly less so for the validation period (Fig. 9a).  This is 391 

an expected result when using RMSE as the objective function because the optimal calibration 392 

underestimates flow variability (Gupta et al. 2009).  Low flow periods are more evenly over and 393 

under predicted (Fig. 9b) for both the calibration and validation time frames with 58% and 61% 394 

of basins having more modeled low flow.  Finally, the bias in the slope of the FDC is generally 395 

under predicted with about 75% of basins having a negative model bias (FDC slope is negative, 396 

thus a negative bias indicates the model slope is more positive and that the modeled flow 397 

variability is too compressed).  The slope of the FDC indicates the variance of daily flows, which 398 
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primarily relate to the seasonal cycle or the “flashiness” of a basin.  Again this indicates model 399 

variability is less than observed, at both short and longer time scales.  In aggregate, these results 400 

agree with Figure 5 and are expected based on the analysis of Gupta et al. (2009).  Optimization 401 

using RMSE or NSE as the objective function generally results in under prediction of flow 402 

variance and near zero total flow bias (Fig 7).  This manifests itself in the simulated hydrograph 403 

as under predicted high flows, generally over predicted low flows and a more positive slope to 404 

the middle portion of the FDC (Fig. 9).  It is worth repeating that the goal of this initial 405 

application is to provide to community with a benchmark of model performance using well 406 

known models, calibration systems and widely used, simple objective functions, thus the use of 407 

RMSE.   408 

4.4 Error Characteristics  409 

 When examining fractional error statistics for the basin set, 15 basins have single days 410 

that contribute at least half the total squared error (potential outlier basins), whereas at the 411 

median, the largest error day contributes 8.3% of the total squared error for the median basin (Fig 412 

10).  The fractional error contribution for the 10, 100 and 1000 largest error days for the median 413 

basin are 33%, 70% and 96% of the total squared error respectively.  This indicates that for 414 

nearly all basins, there are 100 or fewer points that drive the RMSE and therefore optimal model 415 

parameters.  This type of analysis can be undertaken for any objective function to identify the 416 

most influential points and allow for more in-depth examination of forcing data, streamflow 417 

records, calibration strategies (i.e. Kavetski et al. 2006; Vrugt et al. 2008; Beven and Westerberg 418 

2011; Beven et al. 2011; Kauffeldt et al. 2013), or if different model physics are warranted.   419 

 The spatial distribution of fractional error contributions show that the issue of model 420 

performance being explained by a relatively small set of days is more prevalent in arid regions of 421 

CONUS (desert SW US and high plains) as well as basins slightly inland from the east coast of 422 

CONUS (Fig 11a-b).  The arid basins are generally dry with sporadic high precipitation (and 423 

flow) events, while the Appalachian basins are wetter (Fig. 1b) with extreme precipitation events 424 

interspersed throughout the record.  Basins with significant snowpack tend to have lower error 425 

contributions from the largest error days (Fig. 11a-b).  The E50 metric highlights mean peak 426 

snow water equivalent (SWE) and frequent precipitation basins as well.  These regions contain 427 

and order of magnitude more days than the high plains and desert SW, giving insight into how 428 

representative of the entire streamflow timeseries the optimal model parameter set really is. 429 

 Additionally, ranking the basins using their fractional error characteristics provides a 430 

similar insight.  As the aridity index increases, the fractional error contribution increases for 431 

basins with little to no mean peak SWE.  For basins with significant SWE, the fractional error 432 

contribution decreases with increasing aridity (Fig. 12).  Alternatively, for a given aridity index 433 

the fractional error contribution for N days will decrease with increasing SWE.  This dynamic 434 

arises because more arid basins with SWE produce a relatively greater proportion of their runoff 435 

from snowmelt, without intervening rainfall.  This implies that the optimized model produces a 436 



 14 

more uniform error distribution with less heteroscedasity in basins with more SWE.  Moreover, 437 

as the fractional error contribution for the 10 largest error days increases, model NSE generally 438 

decreases in the validation phase (Fig. 13).  This indicates fractional error metrics are related to 439 

overall model performance and that calibration methods to reduce extreme error days should 440 

improve model performance.  This is not unexpected due to the fact that the residuals from an 441 

RMSE type calibration are heteroscedastic.  Arid basins typically have few high flow events, 442 

which are generally subject to larger errors when minimizing RMSE.  Using advanced 443 

calibration methodologies that account for heteroscedasticy (Kavetski and Fenicia 2011; Evin et 444 

al. 2014) may produce improved calibrations for arid basins in this basin set and provide 445 

different insights into model behavior using this type of analysis. 446 

4.5 Limitations and Uncertainties 447 

 One interesting example of the usefulness (and a potential limitation) of large sample 448 

hydrology stemming from this work lies in the identification of issues with forcing datasets. 449 

Figures 3 and 4 show Daymet has too little precipitation in certain regions which is also seen in 450 

Oubeidillah et al. (2013).  When examining calibrated model performance in the Pacific 451 

Northwest, it is seen that several basins along the west coast have low outlier NSE scores.  452 

Tracing this unexpected result, we find the Daymet forcing data available for those basins has a 453 

negative temperature bias, preventing mid-winter rain and melt episodes in the modeling system, 454 

identifying scope to improve the Daymet forcing.  Moreover, winter periods of observed 455 

precipitation and streamflow rises coincide with subzero Tmax in the Daymet dataset, also 456 

suggesting areas to improve the Daymet forcing.  The large sample of basins in this region (91) 457 

allowed for identification of the outlier basins and the underlying causes. 458 

 This may also limit interpretation of these results and other large sample hydrologic 459 

studies. As noted by Gupta et al. (2014), large sample hydrology requires a tradeoff between 460 

breadth and depth.  The lack of depth may inhibit discovery and identification of all data quality 461 

issues and the underlying causes of outliers in any analysis (e.g. Fig 13).  Explanation of these 462 

outliers is sometimes difficult and not complete in the initial development and analysis due to the 463 

lack of familiarity with specific basins and any forcing or validation data peculiarities.  However, 464 

providing forcing data, model parameters and model output permits additional focused studies 465 

and helps reduce these limitations.  Additional prescreening using the methods of Martinez and 466 

Gupta (2011) can also help identify outliers due to data quality issues and help identify basins 467 

and regions where model physics errors are present. 468 

5. Summary and Discussion  469 

Most hydrologic studies focus in detail on a small number of watersheds, providing 470 

comprehensive but highly local insights, and may be limited in their ability to inform general 471 

hydrologic concepts applicable across regions (Gupta et al. 2014).  To facilitate large-sample 472 

hydrologic studies, large-sample basin datasets and corresponding benchmarks of model 473 
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performance using standard methodology across all basins need to be freely available to the 474 

community.  To that end, we have compiled a community dataset of daily forcing and 475 

streamflow data for 671 basins and provide a benchmark of performance using a widely used 476 

conceptual a hydrologic modeling and calibration scheme over a wide range of conditions. 477 

 Overall, application of the basin set to assessing an objectively calibrated conceptual 478 

hydrologic model representation of the 671 watersheds yielded calibration Nash-Sutcliffe 479 

Efficiency (NSE) scores of > 0.55 (0.8) for 90 (34) percent of the basins.  Performance of the 480 

models varied regionally, and the main factors influencing this variation were found to be aridity 481 

and precipitation intermittency, contribution of snowmelt, and runoff seasonality.   Analysis of 482 

the cumulative fractional error contributions from the largest error days showed that the presence 483 

of significant snow water equivalent (SWE) offset the negative impact of increasing aridity on 484 

simulation performance.  This study has identified potential outlier basins for this modeling 485 

system and has provided insights into potential forcing data limitations.   Although this modeling 486 

application utilized a conceptual hydrologic model with a single-objective calibration strategy, 487 

the findings provide a baseline for assessing more complex strategies in each area, including 488 

multi-objective calibration of more highly distributed hydrologic models (e.g., in Shi et al 2008).  489 

The unusually broad variation of hydroclimatologies represented by the dataset, which contains 490 

forcing and streamflow data obtained by consistent methodology and retains outlier basins, 491 

makes it a notable resource for these and other future large-sample watershed-scale hydrologic 492 

analysis efforts.   493 

This dataset and applications presented are made available to the community. (see 494 

http://ral.ucar.edu/projects/hap/flowpredict/subpages/modelvar.php or 495 

http://dx.doi.org/10.5065/D6MW2F4D )  496 
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Table 1. Table describing all parameters calibrated and their bounds for calibration.   740 

Parameter Description Units Calibration Range 

Snow-17 

MFMAX Maximum melt factor mm ºC
-1

 6-hr
-1

 0.8 – 3.0 

MFMIN Minimum melt factor mm ºC
-1

 6-hr
-1

 0.01– 0.79 

UADJ Wind adjustment for enhanced flux during 

rain on snow 

km 6-hr
-1

 0.01– 0.40 

SI SWE for 100% snow covered area mm 1.0 – 3500.0 

SCF Snow gauge undercatch correction factor - 0.1 – 5.0 

PXTEMP Temperature of rain/snow transition ºC -1.0 – 3.0 

    

SAC-SMA 

UZTWM Upper zone tension water maximum 

storage 

mm 1.0 – 800.0 

UZFWM Upper zone free water maximum storage mm 1.0 – 800.0 

LZTWM Lower zone tension water maximum 

storage 

mm 1.0 – 800.0 

LZFPM Lower zone free water primary maximum 

storage 

mm 1.0 – 1000.0 

LZFSM Lower zone free water secondary 

maximum storage 

mm 1.0 – 1000.0 

UZK Upper zone free water lateral depletion 

rate 

day
-1

 0.1 – 0.7 

LZPK Lower zone primary free water depletion 

rate 

day
-1

 0.00001 – 0.025 

LZSK Lower zone secondary free water depletion 

rate 

day
-1

 0.001 – 0.25 

ZPERC Maximum percolation rate - 1.0 – 250.0 

REXP Exponent of the percolation equation - 0.0 – 6.0 

PFREE Fraction percolating from upper to lower 

zone free water storage 

- 0.0 – 1.0 

    

Others 

USHAPE Shape of unit hydrograph - 1.0 – 5.0 

USCALE Scale of unit hydrograph - 0.001 – 150.0 

PT Priestly-Taylor coefficient - 1.26 – 1.74 

 741 

 742 

  743 
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Figures 744 

 745 

Figure 1.  (a) Contiguous United States (US) with states (gray), rivers (blue) and major 746 

hydrologic regions (red). Text indicates major geographic regions discussed in text.  (b) Location 747 

of the 671 HCDN-2009 basins across the contiguous US used in the basin dataset with 748 

precipitation shaded. Circles denote basins with > 90% of their precipitation falling as rain, 749 

squares with black outlines denote basins with > 10% of their precipitation falling as snow as 750 

determined by using a 0ºC daily mean Daymet temperature threshold.  State outlines are in thin 751 

gray and hydrologic regions in thin red.  752 
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 753 

Figure 2. Annual cumulative density functions (CDFs) of runoff (mm day
-1

) (black, bottom X-754 

axis), precipitation (mm day
-1

) (blue, bottom X-axis), potential evapotranspiration (mm day
-1

) 755 

(green, bottom X-axis), and temperature (
ᵒ
C) (red, top X-axis). 756 

 757 
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 758 

Figure 3.  Cumulative density functions of basin size (km
2
) (black), basin mean elevation (m) 759 

(red), mean slope (m km
-1

) (blue), and fractional forest cover (green) for the basin set. 760 

  761 
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 762 

Figure 4. (a) Runoff ratio of observed runoff to Daymet estimated precipitation versus ratio of 763 

Daymet estimated precipitation to Priestly-Taylor estimated potential evapotranspiration (PET).    764 

(b) Model derived Budyko analysis using model evapotransipiration (ET), PET and total surface 765 
water input (rain plus melt, RAIM) for the 671 basins and three derivations of the Budyko curve 766 

(dashed lines). Basin mean temperature shaded (coloring) in both panels. 767 
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 768 
Figure 5. (a) Spatial distribution of Nash-Sutcliffe efficiency (NSE), (b) Nash-Sutcliffe 769 

efficiency using long-term monthly mean flows (MNSE) rather than the long-term mean flow, 770 

(c) MNSE – NSE for the validation period, (d) weekly flow autocorrelation. 771 

 772 

 773 

  774 
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 775 

Figure 6. (a) Spatial distribution of the high flow bias, (b) low flow bias, (c) flow duration curve 776 

bias for the validation period. 777 

  778 
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779 
Figure 7.  (a) Cumulative density functions (CDFs) for model Nash-Sutcliffe efficiency (NSE) 780 

(solid) for the calibration (red) and validation periods (blue) and NSE using the long-term 781 

monthly mean flows (MNSE, dark shaded and dashed), CDFs for (b) simulated-observed flow 782 

correlation in the decomposition of the NSE, (c) for the variance bias in the decomposition of the 783 

NSE, and (d) total volume bias in the decomposition of the NSE.  784 
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 786 

Figure 8. Cumulative density functions for model Nash-Sutcliffe efficiency for the calibration 787 

(solid) and validation (dashed) period using three different forcing datasets (Daymet, Maurer, 788 

NLDAS).  The Daymet dataset was calibrated using the first 15 years (Split 1
st
) and validated 789 

against the remaining data and also calibrated using the last 15 years (Split 2
nd

) and validated 790 

against the initial streamflow data.  Maurer and NLDAS calibrations performed using the first 15 791 

years of observed streamflow only. 792 

 793 
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 794 

Figure 9. (a) Cumulative density functions (CDFs) for model high flow bias for the calibration 795 

(red) and validation periods (blue), (b) model low flow bias, (c) model flow duration curve slope 796 

bias. 797 
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 798 

Figure 10. Fractional contribution of the total squared error for the 1, 10, 100, 1000 largest error 799 

days.  The box plots represent the 671 basins with the blue area defining the interquartile range, 800 

the whiskers representing reasonable values and the red crosses denoting outliers.  The median is 801 

given by the red horizontal line with the notch in the box denoting the 95 % confidence interval 802 

of the median value.  803 

 804 

  805 
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 806 
Figure 11.  (a) Spatial distribution of the fractional contribution of total squared error for the 807 

largest day during the validation period, (b) 10 largest error days, (c) the number of days 808 

contributing 50% of the total objective function error, E50.  809 
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 810 

Figure 12. Ranked fractional squared error contribution for the 100 largest error days for the 671 811 

basins versus the aridity index with mean maximum snow water equivalent (SWE) shaded.  Each 812 

dot represents a 32 basin bin defined by the rank of the fractional error contribution for the 100-813 

largest error days for all basins.  The dashed vertical black lines denote the 95% confidence 814 

interval for the mean of the fractional error contribution for a given bin. 815 

  816 



 36 

 817 

Figure 13.  Nash-Sutcliffe efficiency versus the fractional error of the 10 largest error days for 818 

the validation period for all basins with basin mean peak snow water equivalent (mm) colored. 819 
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