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Abstract 17	
  

Aboveground cosmic-ray neutron measurements provide an opportunity to infer soil 18	
  
moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements 19	
  
have shown promise. This study expands such analysis by investigating (1) how the 20	
  
information from aboveground cosmic-ray neutrons can constrain the soil moisture at 21	
  
distinct depths simulated by a land surface model, and (2) how changes in data 22	
  
availability (in terms of retrieval frequency) impact the dynamics of simulated soil 23	
  
moisture profiles. We employ ensemble data assimilation techniques in a ‘nearly-24	
  
identical twin’ experiment applied at semi-arid shrubland, rainfed agricultural field, and 25	
  
mixed forest biomes in the USA. The performance of the Noah land surface model is 26	
  
compared without and with assimilation of observations at hourly intervals and every 2 27	
  
days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the 28	
  
soil moisture simulated by Noah in root zone soil layers (0-100 cm) despite the limited 29	
  
measurement depth of the sensor (estimated to be 12-20 cm). The ability of Noah to 30	
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reproduce a ‘true’ soil moisture profile is remarkably good regardless of the frequency of 1	
  
observations at the semi-arid site. However, soil moisture profiles are better constrained 2	
  
when assimilating synthetic cosmic-ray neutrons observations hourly rather than every 2 3	
  
days at the cropland and mixed forest sites. This indicates potential benefits for 4	
  
hydrometeorological modeling when soil moisture measurements are available at 5	
  
relatively high frequency. Moreover, differences in summertime meteorological forcing 6	
  
between the semi-arid site and the other two sites may indicate a possible controlling 7	
  
factor to soil moisture dynamics in addition to differences in soil and vegetation 8	
  
properties. 9	
  

1 Introduction 10	
  

The water stored in soils controls the hydrometeorology of a region by partitioning the 11	
  
rainfall into surface runoff and infiltration. In addition, soil water controls the amount of 12	
  
available energy used for water vapor exchanges with the atmosphere as opposed to 13	
  
sensible or ground heat exchange. Soil moisture can also potentially impact 14	
  
biogeochemical interactions between land and atmosphere. With the increased 15	
  
frequency of relevant hydrometeorological events (Coumou and Rahmstorf, 2012; 16	
  
Dokken, 2012) such as floods and droughts and consequences to the ecosystem, a 17	
  
more accurate representation of the soil water is needed for improved weather and 18	
  
climate predictions and for better practices in agriculture and water resources planning 19	
  
(Koster et al., 2004; Seneviratne, 2012). 20	
  

In weather and climate models the exchanges of water, heat, and momentum between 21	
  
land and atmosphere are simulated by so-called land surface models (LSMs). Such 22	
  
models have evolved over the last few decades (Best et al., 2011; Bonan et al., 2002; 23	
  
Clark et al., 2011; Niu et al., 2011; Oleson et al., 2008; Pitman, 2003; SELLERS et al., 24	
  
1997; Yang et al., 2011) in part due to comparison studies using flux tower 25	
  
measurements (e.g., (Baker et al., 2008; 2003; Rosolem et al., 2012a; 2012b; Sakaguchi 26	
  
et al., 2011; SELLERS et al., 1989; Wang et al., 2010), such as the Ameriflux network 27	
  
(BALDOCCHI, 2003). However, until recently soil moisture measurements at spatial 28	
  
scales comparable to the horizontal footprint of flux towers and grid sizes employed in 29	
  
LSMs (Wood et al., 2011) had been difficult and costly (Robinson et al., 2008). 30	
  

Traditional point-scale soil moisture measurements are usually available at high 31	
  
frequency (e.g., hourly) but suffer from having a small support volume (a few tens of 32	
  
cm). On the other hand, large-scale soil moisture measurements are available globally 33	
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through satellite remote sensing (Brown et al., 2013; Entekhabi et al., 2010; Kerr et al., 1	
  
2010), but have low-frequency retrievals (1-3 days) and shallow penetration depths (1-5 2	
  
centimeters). This potentially limits knowledge of the root zone soil moisture that 3	
  
provides the link between land and atmosphere via evapotranspiration (Seneviratne et 4	
  
al., 2010). 5	
  

Recent innovative technology provides an opportunity to estimate soil moisture at scales 6	
  
comparable to flux tower footprints using cosmic rays (Zreda et al., 2008). The 7	
  
measurement relies on the natural production of fast (low-energy) neutrons in the soil 8	
  
from high-energy neutrons created by cosmic rays. This process is strongly controlled by 9	
  
the much higher absorbing/moderating power of hydrogen atoms relative to other 10	
  
chemical elements (see Figure 5 in (Zreda et al., 2012)). Therefore, when soil is 11	
  
relatively wet with high hydrogen content, fewer fast neutrons reach the surface than 12	
  
when the soil is dry with low hydrogen content. The cosmic-ray sensor measures the 13	
  
neutron intensity (referred to as moderated neutrons count over a given period of time, 14	
  
usually an hour) which is consequently related to the soil water content. The horizontal 15	
  
effective measurement area is near-constant and approximately 300 m in radius at sea 16	
  
level under a dry atmosphere (Desilets and Zreda, 2013), while the effective 17	
  
measurement depth varies approximately from 10 to 70 cm depending on the total soil 18	
  
water (i.e., pore plus chemically bound “lattice” water, as discussed in (Franz et al., 19	
  
2012a)), see Figure 1. This new technology is being investigated around the globe in 20	
  
newly established networks such as the COsmic-ray Soil Moisture Observing System in 21	
  
the USA (COSMOS; http://cosmos.hwr.arizona.edu) (Zreda et al., 2012), the Australian 22	
  
National Cosmic Ray Soil Moisture Monitoring Facility (CosmOz; 23	
  
http://www.ermt.csiro.au/html/cosmoz.html) (Hawdon et al., 2014), the German 24	
  
Terrestrial Environmental Observatories (TERENO; http://teodoor.icg.kfa-25	
  
juelich.de/overview-en) (Zacharias et al., 2011), and most recently in Africa 26	
  
(http://cosmos.hwr.arizona.edu/Probes/africa.php) and the UK (COSMOS-UK; 27	
  
http://www.ceh.ac.uk/cosmos). 28	
  

Initial efforts to assimilate near-surface cosmic-ray neutrons into hydrometeorological 29	
  
models have shown promising results (Shuttleworth et al., 2013), Han et al., 2014) but 30	
  
focused mainly on the signal associated with the integrated, depth-weighted soil 31	
  
moisture estimates. The present study expands the application of the cosmic-ray soil 32	
  
moisture using ensemble data assimilation techniques. The objectives here are: 33	
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i. to determine how effectively the information from aboveground cosmic-ray neutrons is 1	
  
propagated to individual soil moisture layers in a land surface model; 2	
  

ii. to assess the benefits/limitations of high-frequency retrieval offered by this new 3	
  
technology. 4	
  

Analyses are carried out for the summer period (May through September 2012) at three 5	
  
distinct biomes in the USA using synthetic observations of neutron intensity obtained 6	
  
from the LSM. 7	
  

 8	
  

2 Data and methods 9	
  

2.1 Sites description 10	
  

Site selection was made based on the availability of meteorological forcing data from the 11	
  
Ameriflux network (http://ameriflux.lbl.gov), and to include characteristic differences in 12	
  
site-to-site climatology, land cover and soil types, as summarized in Table 1. The soil 13	
  
and vegetation types at each site were assigned the following classifications obtained 14	
  
from the Ameriflux database. The Kendall site located in the Walnut Gulch Experimental 15	
  
Watershed is a semi-arid grassland comprising mainly C4 grasses with a few scattered 16	
  
shrubs with a dominant growing season in response to the summer rains (Scott et al., 17	
  
2010). The Nebraska site located at the University of Nebraska Agricultural Research 18	
  
and Development Center is a rainfed agricultural field characterized by maize-soybean 19	
  
rotation with growth period (planting to harvest) from May to October (VERMA et al., 20	
  
2005). The Park Falls/WLEF tower located in the Park Falls Ranger District of the 21	
  
Chequamegon National Forest is characterized by a managed landscape where logging 22	
  
activities such as thinning and clear-cuts are concentrated in the upland region (DAVIS 23	
  
et al., 2003). The growing seasons are typically short and the winters long and cold 24	
  
(Mackay et al., 2002). Soil moisture availability controls summer evapotranspiration at 25	
  
the Kendall and Nebraska sites and to a lesser extent at the Park Falls (Teuling et al., 26	
  
2009). 27	
  

In order to produce a continuous set of hourly meteorological forcing data for each site 28	
  
for the period of interest (May through September 2012), the following data gap filling 29	
  
rules were applied following (Rosolem et al., 2010): 30	
  

i. If the gap was less than 3 hours, it was filled by linear interpolation. 31	
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ii. If the gap was greater than 3 hours, the missing hours were replaced by values for the 1	
  
same hours averaged over the previous and subsequent 15 days. 2	
  

iii. If any additional gap filling was needed, the missing data were replaced by the 3	
  
average value for the specific hour calculated in the monthly mean diurnal cycle. 4	
  

 5	
  

2.2 Noah Land Surface Model 6	
  

The Noah used operationally at the National Centers for Environmental Prediction 7	
  
(NCEP) for coupled weather and climate modeling (Ek, 2003) was adopted in this study. 8	
  
This LSM is also used in the NASA Land Information System (LIS) (Kumar et al., 2008), 9	
  
and in the Global (Rodell et al., 2004) and North American (Mitchell, 2004) Land Data 10	
  
Assimilation Systems (GLDAS and NLDAS, respectively). 11	
  

The model contains four soil layers that extend two meters below the surface; 12	
  
specifically, a 10-cm thick surface layer, a 30-cm thick root zone layer, a 60-cm thick 13	
  
deep root zone layer, and a 1-m thick sub-root zone layer. The present study focuses on 14	
  
the first three layers of the model where roots are prescribed to be present (0 to 1 m total 15	
  
depth). Soil moisture parameterization is based on the one-dimensional Richards 16	
  
equation (Chen et al., 1996; Ek, 2003). Soil and vegetation parameters were defined 17	
  
from look-up tables and the Noah simulation run at hourly time steps at each selected 18	
  
site. A full description of Noah can be found in (Chen and Dudhia, 2001) and in (Ek, 19	
  
2003) and the model is available from the Research Applications Laboratory at the 20	
  
National Center for Atmospheric Research (RAL/NCAR) at 21	
  
http://www.ral.ucar.edu/research/land/technology/lsm.php.  22	
  

 23	
  

2.3 Cosmic-ray Soil Moisture Interaction Code (COSMIC) 24	
  

In this study the COsmic-ray Soil Moisture Interaction Code (Shuttleworth et al., 2013) is 25	
  
the forward observational operator used in data assimilation. COSMIC is characterized 26	
  
by a simple, physically-based parameterization of belowground processes relevant for 27	
  
soil moisture estimates using cosmic-ray sensors which includes (1) the degradation of 28	
  
the incoming high-energy neutron flux with soil depth, (2) the production of fast neutrons 29	
  
at given depth in the soil, and (3) the loss of the resulting fast neutrons before they reach 30	
  
the soil surface. Despite its simplicity, COSMIC is robust and much more efficient than 31	
  
the traditional Monte Carlo neutron particle model commonly employed in cosmic-ray 32	
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soil moisture applications (Franz et al., 2012b; 2013b; Rosolem et al., 2013). Here, the 1	
  
COSMIC is used to convert soil moisture profiles derived from the Noah into an 2	
  
equivalent neutron intensity as seen by a cosmic-ray sensor. The code has been 3	
  
developed as part of the COSMOS network and is available at 4	
  
http://cosmos.hwr.arizona.edu/Software/cosmic.html. 5	
  

 6	
  

2.4 Ensemble data assimilation 7	
  

Data assimilation combines the information from observations and model predictions in 8	
  
order to estimate the state of a physical system while recognizing both have some 9	
  
degree of uncertainty. Given the complexity of geophysical models in general, ensemble 10	
  
data assimilation techniques were originally developed to decrease the computational 11	
  
cost of the nonlinear filtering problem patterned after the Kalman filter (Kalman, 1960; 12	
  
Kalman and Bucy, 1961) by using a sample of model-state vectors to compute their 13	
  
statistical moments (i.e., mean and covariance) (Evensen, 1994; 2003; Houtekamer and 14	
  
Mitchell, 1998). In the hydrometeorological community interest in ensemble data 15	
  
assimilation methods is growing rapidly for flood forecasting (Clark et al., 2008) and soil 16	
  
moisture applications (e.g., (Draper et al., 2012; Kumar et al., 2012; Li et al., 2012). 17	
  

The ensemble data assimilation method used in this study is an approximation to a 18	
  
general filtering algorithm developed using Bayes Theorem (Wikle and Berliner, 2007), 19	
  
and the method is described in detail by (Anderson, 2003) and (Anderson, 2009). The 20	
  
probability distribution of a model state is approximated by an N-member sample of M-21	
  
dimensional state vectors (xi; i = 1, 2,…, N), where N is the ensemble size (in this study, 22	
  
N = 40) and each xi is an M vector (e.g., soil moisture at each model layer). Because the 23	
  
error distributions for observations taken at different times are usually assumed 24	
  
independent in geophysical applications, each available observation can be assimilated 25	
  
sequentially. Hence, for simplicity, the assimilation of a single scalar observation, y, is 26	
  
used here. The Bayes Theorem is as follows: 27	
  

p(x | Y, y) = p(y | x) p(x | Y) / η       (1) 28	
  

where x is the model state variable, Y is the set of all observations that have already 29	
  
been assimilated which does not include the new observation, y, available at the current 30	
  
time, and η refers to a normalization factor. The ensemble assimilation procedure is 31	
  

summarized below: 32	
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(1) Each ensemble member is advanced from the time of the most recently used 1	
  
observation to a time sufficiently close to the time of the next available observation using 2	
  
the Noah. 3	
  

(2) A prior ensemble estimate of y is created by applying the forward operator h (in this 4	
  
case, COSMIC) to each sample of the prior state.  5	
  

(3) An updated ensemble estimate of y conditioned on the new observation is computed 6	
  
from the prior ensemble estimate of y and the observed value, yo, using Eq. (1). In this 7	
  
study, the Ensemble Adjustment Kalman Filter (EAKF) (Anderson, 2001) is used. 8	
  

In order to account for uncertainty in the model, the prior ensemble estimate of y is 9	
  
approximated as Normal(𝑦!,  𝜎!!) where 𝑦! and 𝜎!! are the sample mean and variance 10	
  

computed from the model ensemble while the uncertainty in the observation, 𝑦!, is 11	
  
defined as 𝜎!!. Given the nature of the cosmic-ray sensor and the large number of counts 12	
  
per integration time (i.e., hourly), the assumption of observation uncertainty to be 13	
  
normally distributed (with 𝜎!! =   𝑦!) is appropriate. The product of Normal(𝑦!,  𝜎!!)  and 14	
  

Normal(𝑦!,  𝜎!!)  in Eq. (1) is computed resulting in a Gaussian updated distribution for y, 15	
  
Normal(𝑦!,  𝜎!!) with an updated variance (𝜎!!) and mean (𝑦!) defined as: 16	
  

𝜎!! = 𝜎!!
!! + 𝜎!! !!

!!
        (2) 17	
  

and 18	
  

𝑦! = 𝜎!! 𝜎!!
!!𝑦! + 𝜎!! !!𝑦!        (3) 19	
  

respectively. In the EAKF, the prior ensemble distribution of y is then shifted and linearly 20	
  
contracted to create an updated ensemble with sample statistics as in Eqs. (2) and (3). 21	
  
Observation increments are computed as 22	
  

∆𝑦! = 𝜎!! 𝜎!! 𝑦!,! − 𝑦! + 𝑦! − 𝑦!,!     ;   𝑖 = 1,2,… ,𝑁     (4) 23	
  

where the subscript i refers to ensemble member. 24	
  

(4) Increments to the prior ensemble of each state-vector element (xj,i, where j refers to 25	
  
an element of the state vector, while i refers to an ensemble member) are computed by 26	
  
linearly regressing the observation increments (∆𝑦!) onto each state-vector component 27	
  
independently using the prior joint sample statistics, so that: 28	
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∆𝑥!,! = 𝜎!,! 𝜎!! ∆𝑦!     ;   𝑗 = 1,2,… ,𝑀      ;   𝑖 = 1,2,… ,𝑁     (5) 1	
  

The Noah, the COSMIC operator and COSMOS observations have all been 2	
  
implemented into the Data Assimilation Research Testbed (DART) framework (Anderson 3	
  
et al., 2009). Figure 2 shows a schematic diagram of the assimilation and state update 4	
  
procedures used in this study. DART is an open-source community facility that provides 5	
  
software tools for ensemble data assimilation research in geosciences. The modularity 6	
  
of DART makes the interface to new models and observations straightforward and clean. 7	
  
The DART code is available at http://www.image.ucar.edu/DAReS/DART. 8	
  

 9	
  

3 Experimental setup 10	
  

3.1 Perturbed meteorological forcing and initial conditions 11	
  

In order to ensure appropriate ensemble spread throughout the assimilation procedure, 12	
  
time series of cross-correlated perturbation fields were generated for all meteorological 13	
  
forcing inputs from Noah and applied to each individual ensemble member (total of 40 14	
  
members), similar to the approach used by (Shuttleworth et al., 2013), see Table 2 for 15	
  
more details. In all cases, the Latin Hypercube Random Sampling method (McKay et al., 16	
  
1979) was used to generate uniformly-distributed soil moisture values (for each model 17	
  
layer) varying between minimum and saturated soil water contents in the model. We 18	
  
therefore assume no information about the soil moisture profiles prior to the initial 19	
  
simulation time step (i.e., 01 May 2012). All remaining model states were obtained from 20	
  
the previous timestep (30 April 2012 at 23Z) from a spin-up simulation with four repeated 21	
  
cycles (spin-up periods shown in Table 1) using the original meteorological forcing data 22	
  
(i.e., unperturbed) and original model parameters (Figure 3). 23	
  

 24	
  

3.2 Synthetic observations 25	
  

We employ the use of synthetic observations in this study in order to better assess the 26	
  
advantages and limitations of this novel cosmic-ray technology. The approach allows a 27	
  
direct comparison between simulated and ‘true’ soil moisture states at the three sites 28	
  
where no additional soil moisture observations are available at the same spatial scale 29	
  
measured by the cosmic-ray sensors. The use of synthetic observations in data 30	
  
assimilation studies targeted to satellite remote sensing soil moisture missions continues 31	
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to show great importance for advancing our understanding of regional 1	
  
hydrometeorological modeling (Kumar et al., 2012; Nearing et al., 2012; Reichle et al., 2	
  
2008). 3	
  

For each studied location, synthetic neutron intensity observations (referred in the rest of 4	
  
the article simply as “observations”) are generated directly from the Noah in combination 5	
  
with the COSMIC. An additional set of perturbed meteorological forcing (not from the 6	
  
original pool of ensemble members) is generated following the same procedure 7	
  
described in the previous section. Additionally, ten Noah parameters originally identified 8	
  
as influential using a simple “One-At-Time” sensitivity analysis approach (not shown) are 9	
  
perturbed within ± 10% range from their default values to generate a single parameter 10	
  
set (for each location) used in Noah for the synthetic output generation in a “nearly-11	
  
identical twin experiment”. The idea is to emulate some unexpected (or unidentifiable) 12	
  
variability observed in soil moisture due to small spatial-scale heterogeneities (Crow et 13	
  
al., 2012; Famiglietti et al., 2008; Western and Blöschl, 1999) through changes in key 14	
  
parameter values in the Noah model. Identified parameters include fxexp (bare soil 15	
  
evaporation exponent), refdk (reference value for saturated hydraulic conductivity), 16	
  
refkdt (reference value for surface infiltration parameter), bb (Clapp and Hornberger ‘‘b’’ 17	
  
parameter), refsmc (soil moisture threshold for onset of some transpiration stress), 18	
  
drysmc (top layer soil moisture threshold at which direct evaporation from soil ceases), 19	
  
wltsmc (soil moisture wilting point), satdk (saturated hydraulic conductivity), satdw 20	
  
(saturated soil diffusivity), and rs (minimum stomatal resistance). Soil porosity was not 21	
  
included and hence the default values were used for each site. We use the coefficient of 22	
  
variation from the in situ dry soil bulk density collected within the cosmic-ray footprint at 23	
  
all three sites combined as a proxy for the perturbation magnitude (i.e., ±10%) applied to 24	
  
parameter variations to account for uncertainty due to spatial heterogeneity embedded in 25	
  
the single-point simulation (please refer to the supplemental table for detailed description 26	
  
of Noah parameter values). Such perturbations applied both to the meteorological 27	
  
forcing and to above-mentioned parameters produce slightly different soil moisture 28	
  
dynamics (and hence ‘true’ neutron counts) when compared to COSMIC-derived neutron 29	
  
counts when forced with Noah with the original parameter set (not shown). For each site, 30	
  
the spin-up corresponds to the period shown in Table 1, repeated for four times (i.e., four 31	
  
cycles).  32	
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After the spin-up period, the simulated soil moisture at each soil layer from May through 1	
  
September 2012 was then used as input data for the COSMIC to generate a ‘true’ 2	
  
equivalent neutron intensity time series (counts per hour). This ‘true’ neutron intensity is 3	
  
finally perturbed following a probability distribution associated with the uncertainty 4	
  
observed in the actual cosmic-ray sensors as described by (Zreda et al., 2008) 5	
  
(𝜎!!"#$%&

! =   𝑁!"#$%&; where Ncounts is the neutron intensity), and a time-series of hourly 6	
  

synthetic observations is produced for each site. In addition, a subset from the hourly 7	
  
time-series is produced assuming observations are available every other day (for 8	
  
simplicity, defined always at noon GMT). The 2-day frequency was selected because it 9	
  
is similar to the temporal resolution likely to be achieved by the most recent satellite 10	
  
remote sensing soil moisture missions (Brown et al., 2013; Entekhabi et al., 2010; Kerr 11	
  
et al., 2010). In order to avoid undesired instabilities at the beginning of the simulation, 12	
  
no observation is assimilated during the first 24 hours. A schematic diagram of the 13	
  
experimental setup is shown in Figure 3. 14	
  

We use these observations in our experiments to evaluate the ability of Noah to 15	
  
reproduce the synthetically observed neutron intensity and consequently to analyze the 16	
  
updated soil moisture profile against the ‘true’ soil moisture state. Notice that the neutron 17	
  
intensity time-series produced in this study are not rescaled to correspond to the location 18	
  
of the original COSMOS probe site in the San Pedro, as discussed by (Zreda et al., 19	
  
2012). This is because we want to preserve the site-specific count statistics to better 20	
  
describe measurement uncertainty (lower count rates, on average, will tend to be more 21	
  
uncertain compared to locations where count rates are relatively high). Moreover, there 22	
  
are no systematic biases between observed and simulated neutron counts (not shown), 23	
  
and data assimilation is performed with zero-mean random errors only (Dee, 2005). 24	
  
Observing System Simulation Experiments (OSSE) such as those proposed in this study 25	
  
allow us to accurately isolate the signal in the neutron measurements that comes directly 26	
  
from the soil moisture (through the COSMIC) for more rigorous analyses. Model 27	
  
structural deficiencies, which could potentially result in systematic biases, are therefore 28	
  
not accounted for, and observation uncertainties not related to soil moisture (e.g., 29	
  
atmospheric water vapor, changes in biomass) do not impact the simulations. In 30	
  
addition, independent observations of soil moisture profiles representing similar 31	
  
horizontal effective measurement area are generally not available. 32	
  

 33	
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4 Results 1	
  

4.1 Assimilation of neutron counts 2	
  

For all analyzed sites, the assimilation of summertime neutron observations in Noah 3	
  
improves the dynamics relative to the true neutron count time-series in comparison with 4	
  
the no Data Assimilation case (i.e., ‘no DA’) (Figure 4). The ensemble mean of the prior 5	
  
distribution is used for all ensemble simulations throughout this study. As discussed in 6	
  
Section 1, the higher the neutron counts at a specific location, the lower the integrated 7	
  
soil moisture is expected to be. Rainfall events are therefore associated with sharp 8	
  
decreases in the neutron counts following by a relatively slower dry-down period. 9	
  
Noticeably, the Kendall site (Figure 4a) is characterized by an initial long period with very 10	
  
low or no rain (pre-monsoon) until early-July, followed by more frequent rainfall events 11	
  
(monsoon) between July and early-September. Both the Nebraska and Park Falls sites 12	
  
(Figure 4b and 4c, respectively) show the opposite rainfall pattern with an initial period 13	
  
with frequent rainfall (slightly more frequent at Park Falls) until about mid-June/early-14	
  
July, followed by a relatively dry period for about 1-2 months (slightly longer at Park 15	
  
Falls). Notice that 2012 was one of the driest years on record for the Midwestern USA 16	
  
(Blunden and Arndt, 2013). 17	
  

Both assimilation cases (i.e., with hourly-available observations – ‘DA 1-hour’ shown as 18	
  
the red line; and with observations available once every 2 days – ‘DA 2-day’ shown as 19	
  
green circles) suggest superior performance compared with the case without 20	
  
assimilation (light blue line) (Table 3). Overall, the ‘DA 1-hour’ case approaches more 21	
  
rapidly to the true neutron counts and also exhibits a tendency for relatively smaller 22	
  
differences when compared to the ‘DA 2-day’ case. Notably, at the onset of the monsoon 23	
  
at Kendall (i.e., early-July), the low frequency assimilation case does not reproduce the 24	
  
high-frequency dynamics as well as the ‘DA 1-hour’ case (Figure 4a). At the Nebraska 25	
  
and Park Falls sites (Figures 4b and 4c), there is not much improvement in Noah-26	
  
derived neutron counts from the ‘DA 2-day’ relative to the ‘no DA’ in periods where little 27	
  
or no rainfall occurs. 28	
  

The use of synthetic observations ensures that the neutron signal from the measurement 29	
  
comes from direct contribution of soil moisture dynamics solely, and that any model 30	
  
structural deficiency does not impact the results. Hence, a potential limitation of an 31	
  
OSSE is that the results can be very optimistic in comparison to a data assimilation 32	
  
experiment using real observations. For instance, when comparing against real 33	
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observations, one would like the RMSE (which represents the accuracy of the ensemble 1	
  
mean state relative to the observations) to be comparable to the total spread (which 2	
  
contains both the ensemble spread and observational error signals). In that case, the 3	
  
RMSE is defined as the square root of the average squared difference between the 4	
  

model estimates and the observations while the total spread is defined as 𝜎!! + 𝜎!!, 5	
  

where 𝜎!! + 𝜎!!  represents the total variance (i.e., the sum of the ensemble variance, 6	
  

𝜎!!, plus the observational error variance, 𝜎!!). In our case, however, one way to test the 7	
  

success of an OSSE is to compare the RMSE computed with respect to the ‘true’ 8	
  
observations with the ensemble spread (𝜎!) directly because the variance of the ‘true’ 9	
  

observations (𝜎!!) is by definition zero.   10	
  

Figure 5 shows the comparison between the RMSE (black circles) and spread (red 11	
  
diamonds) for all analyzed cases at all sites. Overall, the magnitudes for the spread 12	
  
compare well with the ones for RMSE suggesting that this is a successful assimilation 13	
  
experiment. Notice that these two quantities tend to be closest to each other for the ‘DA 14	
  
1-hour’ case (right column) and the largest differences are seen for the ‘No DA’ case (left 15	
  
column). The rapid reduction in total spread at the Kendall site with time for the ‘No DA’ 16	
  
case is due to the fact that soil moisture presents a strong ‘damping’ signal, especially in 17	
  
the first few months when little rainfall occurs (May-July). This is fundamentally the same 18	
  
behavior observed when models are ‘spun-up’ or ‘warmed-up’ for a selected period of 19	
  
time prior to their final analysis simulation. Consequently, individual ensemble members 20	
  
move towards a preferred state. Notice that this behavior is not clearly observed at the 21	
  
Nebraska and Park Falls site where rainfall occurs continuously in the first months (May-22	
  
July). In comparison to the ‘No DA’ case, RMSE for both assimilation cases are reduced, 23	
  
with the lowest RMSE values found for the ‘DA -1hour’ case. 24	
  

As expected, the time at which rainfall occurs appears to control the characteristics of 25	
  
both statistical quantities. We therefore identified two patterns that emerged in Figure 5. 26	
  
The first pattern is associated with a rapid increase in both RMSE and spread during 27	
  
large rainfall events (rapid reduction in neutron counts as shown in Figure 4). These are 28	
  
more clearly observed for the ‘DA 2-day’ cases (middle-column) at Kendall (mid-May, 29	
  
early-July, mid-August, and early-September) and at Nebraska (mid-July, late-August, 30	
  
and mid-September). These peaks are substantially reduced when observations of 31	
  
neutron counts are assimilated at higher frequency (i.e., ‘DA 1-hour’ as shown in the 32	
  



	
   13	
  

right column). No large rainfall event was identified at the Park Falls site (Figure 4). 1	
  
Consequently, this pattern was not observed in Figure 5. 2	
  

The second pattern relates to the overall timing of the summer rainfall. At the Kendall 3	
  
site, once the monsoon period begins (early-July), the assimilation of observations 4	
  
successfully constrains the model which produces consistent equivalent neutron counts 5	
  
(Figures 5b and 5c). In other words, rainfall pulses provide “new information” to the 6	
  
assimilation system. For the two other sites (Nebraska and Park Falls), an active rainfall 7	
  
period lasts until early-July and is then followed by a period of low or no rainfall 8	
  
(arguably, no substantial “information” to the assimilation system). In this case, we 9	
  
observe a tendency for lower spread values in comparison to RMSE at both sites for the 10	
  
‘DA 2-day’ case. This tendency disappears when high-frequency observations are 11	
  
assimilated (i.e., ‘DA 1-hour’) at the Park Falls site. For the Nebraska site, although still 12	
  
present, the tendency is reduced for the ‘DA 1-hour’. These results highlight the quality 13	
  
of the OSSE carried out in this study as well as the distinct performance of the 14	
  
assimilation system due to different timing in rainfall events occurred at all three 15	
  
Ameriflux sites. 16	
  

Finally, the results summarized in Table 3 show better overall performance for ‘DA 1-17	
  
hour’ compared to ‘DA 2-day’, with both cases being almost always superior to the ‘No 18	
  
DA’ case. In almost all cases, computed statistics with respect to the true counts are 19	
  
better than those computed with the synthetic observations. This is expected because 20	
  
an additional degree of randomness is introduced in the synthetic observations (i.e., light 21	
  
gray circles in Figure 4). The degree of improvement compares well with the results from 22	
  
(Shuttleworth et al., 2013). 23	
  

 24	
  

4.2 Impact of near-surface cosmic-ray neutrons on simulated soil moisture 25	
  
profiles 26	
  

In the case of cosmic-ray sensors, the dynamics of equivalent neutron counts observed 27	
  
can be assumed to be a proxy for integrated, depth-weighted variation of soil moisture at 28	
  
sub-kilometer scales, as shown in (Shuttleworth et al., 2013). Here, we expand this 29	
  
analysis by assessing how well all root zone layers in the Noah (prescribed as the first 30	
  
one meter of soil in the model) are simulated with and without the assimilation of 31	
  
observed neutron counts. The effective sensor depth computed from the synthetic 32	
  



	
   14	
  

observations at all three sites varies on average from ~12 cm during the wet period to 1	
  
~20 cm in the dry months. This corresponds to the entire surface (first) soil layer of Noah 2	
  
with an additional contribution from the second soil layer in the model (10-40 cm layer). 3	
  
Overall results are summarized in Table 4, and presented for each site in Figures 6, 7, 4	
  
and 8. 5	
  

In those figures, the left column is related to the first soil layer, and the right column is 6	
  
related to the deepest layer analyzed. The top row corresponds to the actual soil 7	
  
moisture simulated by Noah for the three cases (i.e., ‘no DA’, ‘DA 2-day’, and ‘DA 1-8	
  
hour’) in comparison to the true soil moisture state (same color-coding as before). The 9	
  
middle row shows the difference between the Noah-derived and true soil moisture. We 10	
  
selected an “uncertainty range” of ± 0.02 m3 m-3 as our target for comparison which is 11	
  
similar to the accuracy found in more traditional point-scale measurements (TOPP et al., 12	
  
1980) and also comparable to the accuracy of cosmic-ray sensors (Franz et al., 2012a; 13	
  
Rosolem et al., 2013). Note that the target accuracy from satellite remote sensing 14	
  
products is twice as big, as discussed by (Brown et al., 2013; Entekhabi et al., 2010; 15	
  
Kerr et al., 2010). The bottom row corresponds to a simple convergence criterion based 16	
  
on the results from the middle row. For each hourly time step, we check whether the 17	
  
difference with respect to the true soil moisture is within the “uncertainty range”. If it is 18	
  
within this range, the value is added to the current number of counts, and the percentage 19	
  
convergence is taken with respect to the total number of points analyzed at that given 20	
  
time. As an example, if the first point found within the “uncertainty range” is located in 21	
  
position 50 of the time array, its convergence is computed as 2% (i.e., 1/50). If the next 22	
  
time step is also within this range, its convergence is computed as ~3.9% (i.e., 2/51), 23	
  
and so on. With this simple metric we can determine not only the overall percentage of 24	
  
hours when the difference was within this uncertainty range (obtained at the end of the 25	
  
simulation) but also how the convergence evolves as the simulation period progresses. 26	
  

At the Kendall site, the results suggest overall improved performance of Noah for all soil 27	
  
layers (including those beyond the sensor effective depth) when observed neutron 28	
  
counts are assimilated regardless of the availability of observations (Figure 6a-f). 29	
  
Differences between ‘DA 1-hour’ and ‘DA 2-day’ cases are larger at deeper soil layers 30	
  
with ‘DA 1-hour’ showing superior performance. For the ‘no DA’ case, only the soil 31	
  
moisture at the first layer in the model is within the uncertainty range for the majority of 32	
  
the simulated period. The soil moisture for the ‘DA 2-day’ case compares relatively well 33	
  



	
   15	
  

with the true soil moisture at the first two layers but estimated soil moisture in the third 1	
  
layer is almost always outside of the uncertainty range. The ‘DA 1-hour’ case, however, 2	
  
shows a remarkable response to neutron count and effectively simulates the soil 3	
  
moisture dynamics at all Noah soil layers (basic statistics are calculated and presented 4	
  
in Table 4). 5	
  

The convergence calculated for the Kendall site suggests that, overall, soil moisture is 6	
  
constrained more effectively when observations of cosmic-ray neutrons are assimilated 7	
  
into Noah (Figure 6g-i). For the first soil layer, total convergence levels are high in all 8	
  
cases and little difference is observed between the two DA cases. The benefit of 9	
  
assimilating observed neutron counts is more clear in the results for the second layer, 10	
  
with no substantial differences between the high- and low-frequency assimilation 11	
  
strategies. However, the impact of higher retrieval frequency becomes evident in the 12	
  
third soil layer in which soil moisture is only successfully constrained in the ‘DA 1-hour’ 13	
  
case. 14	
  

The results from the Nebraska and Park Falls sites are comparable and they show 15	
  
superior performance of Noah when assimilating neutron counts at high-frequency 16	
  
(Figures 7a-f and 8a-f). Surprisingly, for the first two soil layers in Noah the dynamics of 17	
  
soil moisture obtained from the ensemble average for ‘DA 2-day’ is similar to the model 18	
  
behavior for the ‘no DA’ case. In addition, ‘no DA’ soil moisture at the deepest analyzed 19	
  
layer at the Nebraska site follows the true soil moisture states quite well. This is likely 20	
  
related to the fact that the initial conditions randomly obtained in the model were already 21	
  
similar to the true soil moisture state (in terms of ensemble averages) for the ‘no DA’ 22	
  
case, although the overall magnitude of the spread is much larger compared to 23	
  
assimilation cases (Table 4). At Park Falls, the results from the deepest soil layer 24	
  
analyzed show superior performance of ‘DA 1-hour’ while ‘no DA’ and ‘DA 2-day’ have 25	
  
similar dynamics especially after late-June. 26	
  

The convergence criterion computed for the first two soil layers in Noah at the Nebraska 27	
  
and Park Falls sites (Figures 7g-h and 8g-h) are slightly different from the results 28	
  
discussed for the Kendall site (Figure 6g-h).  First, the percentage of points within the 29	
  
uncertainty range at these two sites is greater than the percent values obtained at 30	
  
Kendall (compare for instance, ‘DA 1-hour’ case across all sites). There is a much 31	
  
sharper increase in the convergence criterion with time at these two sites as opposed to 32	
  
the pattern observed for Kendall. However, unlike the Kendall site where the patterns of 33	
  



	
   16	
  

both DA cases were somewhat similar, it is much more clear for both the Nebraska and 1	
  
Park Falls cases that the ‘DA 1-hour’ is able to update soil moisture much more rapidly 2	
  
than the ‘DA 2-day’ when compared to the response to the ‘no DA’ case. As mentioned 3	
  
previously, the convergence results for the ‘no DA’ case at the third soil layer in the 4	
  
model are likely to be related to the initial conditions from the ensemble mean being 5	
  
already to close to the true states (Figures 6i and 7i). 6	
  

4.3 Impact of retrieval frequency on simulated soil moisture dynamics 7	
  

The previous sub-section reports the improved ability of Noah to estimate soil moisture 8	
  
profiles when assimilating cosmic-ray neutron counts measured aboveground, and 9	
  
included some initial comparison between assimilation frequencies (‘DA 1-hour’ and ‘DA 10	
  
2-day’). In this section we compare the “average” performance of Noah for continuous 11	
  
periods of 2 days after the cosmic-ray neutron measurement is assimilated into the 12	
  
model throughout the simulation period. The aim is to evaluate Noah performance within 13	
  
individual time windows when neutron measurements are assimilated every 2 days, 14	
  
every hour, or not assimilated. In this study, the RMSE of soil moisture is calculated with 15	
  
respect to the true state for a fixed time-window of 2 days applied throughout the entire 16	
  
simulation period. For comparison, the results discussed in the previous section were 17	
  
based on actual model simulations at hourly timescales. The results are presented in 18	
  
Figure 9 with top, middle, and bottom rows corresponding, respectively to the Kendall, 19	
  
Nebraska, and Park Falls sites, with left and right columns corresponding to the 20	
  
shallowest and deepest Noah soil layers analyzed in this study (same color-coding as 21	
  
shown in previous figures). 22	
  

The first noticeable result from Figure 9 is that the average performance of Noah (i.e., 23	
  
using the 2-day time windows) when trying to simulate true soil moisture profiles is best 24	
  
when neutron measurements are assimilated at hourly timescales (i.e., ‘DA 1-hour’) at 25	
  
all sites. At the Kendall site, which is characterized by a long dry period followed by the 26	
  
monsoon onset early in July, the performance of Noah for the ‘DA 2-day’ case is similar 27	
  
to that obtained with ‘DA 1-hour’ at the first two layers of the model (Figure 9a-b), and 28	
  
slightly worse at the deepest layer (Figure 9c). Surprisingly, a different pattern emerges 29	
  
from both the Nebraska and Park Falls sites where an initial period of frequent rainfall is 30	
  
followed by a relatively long dry period which also starts in July (Figure 9d-i). In those 31	
  
cases, the performance of ‘DA 2-day’ is not improved substantially in comparison to ‘no 32	
  
DA’, and a noticeable increase in RMSE is observed in both cases right after rainfall 33	
  



	
   17	
  

ceases in July. Unlike the ‘DA 1-hour’ case, the ‘DA 2-day’ case allows for Noah to freely 1	
  
advance in time for the rest of the 2-day period once it has assimilated the neutron count 2	
  
measurement, and because the true simulation was generated with a different set of 3	
  
parameters than the cases analyzed here, model simulations in the ‘DA 2-day’ case are 4	
  
unable to represent the dynamics of dry-down appropriately due to different soil 5	
  
properties. The lack of rainfall in this case, reduces the potential magnitude for soil 6	
  
moisture updates (i.e., ‘model innovation’), and hence the dynamics of the model are 7	
  
little improved. The results shown here suggest the performance of summertime cosmic-8	
  
ray neutron data assimilation may be slightly dependent on climatological conditions 9	
  
(i.e., meteorological forcing), and the period during which rainfall occurs in the summer, 10	
  
while also depending on model uncertainties due to lack of representativeness of key 11	
  
soil and vegetation properties at the scale of interest (here, accounted for by the fact that 12	
  
true soil moisture is generated from a model simulation obtained with slightly perturbed 13	
  
parameter values).  14	
  

   15	
  

5 Summary and conclusions 16	
  

The use of cosmic-ray neutron sensors for soil moisture monitoring has been fast 17	
  
growing because the technique provides root-zone soil moisture estimates at 18	
  
unprecedented spatial scales and at high temporal resolution. This paper evaluates the 19	
  
ability of a land surface model to translate the information obtained from cosmic-ray 20	
  
neutrons observed aboveground into soil moisture estimates for individual soil layers. A 21	
  
“nearly-identical twin experiment” approach is adopted in which observations of cosmic-22	
  
ray neutrons were generated from the land surface model with a slightly different model 23	
  
configuration (perturbed key soil and vegetation parameters). Below we discuss the 24	
  
implications and summarize the main findings of this work. 25	
  

How effectively is the information from aboveground cosmic-ray neutrons translated to 26	
  
individual soil moisture layers in the model? 27	
  

When assimilating neutron counts at high frequency, the performance of the land 28	
  
surface model is remarkably improved in comparison with the soil moisture profiles 29	
  
simulated without data assimilation. This finding is observed for all three biomes with 30	
  
degree of improvement varying slightly from site-to-site. Of importance, we found that 31	
  
water in the soil is better estimated at depths well below the effective sensor depth and 32	
  



	
   18	
  

encompassing the entire rooting zone in the model. Therefore, the high observational 1	
  
frequency of the cosmic-ray sensors can potentially introduce additional benefits relative 2	
  
to assimilating local/regional soil moisture observations from satellite remote sensing 3	
  
products available at coarser temporal resolution. However, care must be taken when 4	
  
accounting for measurement uncertainty by removing any potential signal in the 5	
  
measurement from other sources of hydrogen (atmospheric water vapor, water in 6	
  
biomass), hence isolating or maximizing the soil moisture information content in the 7	
  
measurement. Another important aspect is to ensure sufficient ensemble spread from 8	
  
the model to avoid, for instance, filter divergence (over-confidence in the model), or 9	
  
alternatively directly inserting observations with little or no model influence (over-10	
  
confidence in the observations) (Anderson, 2007; Hamill et al., 2001; Houtekamer and 11	
  
Mitchell, 1998). 12	
  

How does frequency of available observations of cosmic-ray neutrons influence model 13	
  
performance? 14	
  

We use the RMSE calculated for every 2-day time-window as a metric for model 15	
  
performance. At the Kendall site, ‘DA 1-hour’ and ‘DA 2-day’ showed good agreement 16	
  
for soil moisture in the first two layers of the model (0-10 and 10-40 cm). However, the 17	
  
benefits of high-frequency retrievals in the case of cosmic-ray neutron observations is 18	
  
also observed for the third soil layer in Noah (40-100 cm), where ‘DA 1-hour’ is much 19	
  
superior to ‘DA 2-day’. Particularly to the Noah, the distribution of roots is directly 20	
  
proportional to the thickness of each soil layer. Therefore, the third layer of the model 21	
  
plays a significant role in determining evapotranspiration rates at the surface. 22	
  
Summertime is characterized by an initial relatively dry period which lasts for about 2 23	
  
months followed by the monsoon. 24	
  

Unlike the results at Kendall, the comparison between ‘DA 1-hour’ and ‘DA 2-day’ for 25	
  
Nebraska and Park Falls suggest that the performance of Noah for the ‘DA 1-hour’ case 26	
  
is always superior to that from ‘DA 2-day’ in all soil layers analyzed. Surprisingly, the 27	
  
model performance for the ‘DA 2-day’ case is not much different from simulations made 28	
  
without assimilating cosmic-ray neutron counts (i.e., ‘no DA’ case). A distinct 29	
  
characteristic from both the Nebraska and Park Falls sites in comparison to Kendall is 30	
  
the overall dynamics of soil water in the summertime. At Nebraska and Park Falls, a 31	
  
relatively wet period with frequent rainfall is observed at the beginning of the 32	
  
summertime period, lasting for about 2 months, and followed by a relatively dry period 33	
  



	
   19	
  

with low or no rainfall. Overall, the benefits of assimilating neutron measurements at 1	
  
relatively higher frequency are more clearly observed at the Nebraska and Park Falls 2	
  
sites relative to the semi-arid Kendall. This could indicate that the assimilation 3	
  
performance of summertime cosmic-ray measurements at high temporal resolution may 4	
  
depend not only on heterogeneity of soil properties (accounted for by slightly perturbing 5	
  
model parameter from true soil moisture states) but also slightly on meteorological 6	
  
forcing and its climatology (namely, rainfall). Also, these findings suggest an important 7	
  
role of high-frequency measurements to better constrain soil moisture states simulated 8	
  
by hydrometeorological models when applied to drought monitoring given that the 9	
  
summer of 2012 was one of the driest on record in the Midwestern USA region.   10	
  

Due to the characteristics of the sensor, the integration time used to compute neutron 11	
  
intensity should potentially be longer than one hour at some locations. In practice, this is 12	
  
done to reduce the uncertainty in the measurement and consequently ensure an 13	
  
accurate estimate of soil moisture. For instance, neutron count rates integrated over the 14	
  
entire day were used in a humid forest ecosystem located in western of Germany 15	
  
because hourly count rates were too low for accurate soil moisture measurements 16	
  
(Bogena et al., 2013). The results presented in our study show that care must be taken 17	
  
when integrating the cosmic-ray measurements over a longer-period while combining 18	
  
with models, suggesting a potential trade-off between individual sensor accuracy and 19	
  
successful representation of soil moisture profile dynamics. This could imply in an 20	
  
‘optimal range’ for integration of neutron counts for a specific site location but the 21	
  
investigation is beyond the scope of this study. For example, our initial preliminary 22	
  
analysis indicated little difference between the ‘DA 2-day’ case with another assimilation 23	
  
case where neutron measurements were assimilated daily. 24	
  

This study focused on the analysis using synthetic observations mainly because (1) 25	
  
there is a lack of independent soil moisture observations corresponding to similar 26	
  
effective horizontal area measured by the cosmic-ray sensor, and (2) the neutron 27	
  
intensity signal is entirely derived from soil moisture dynamics, which allows us to focus 28	
  
on the key aspects of the neutron-soil moisture interactions. Neither the COSMIC 29	
  
operator nor the Noah have explicitly dealt with additional sources of hydrogen (Franz et 30	
  
al., 2013a) other than the lattice water (explicitly described by a parameter in COSMIC; 31	
  
see (Shuttleworth et al., 2013)). Typical sources include surface water (Franz et al., 32	
  
2012a), atmospheric water vapor (Rosolem et al., 2013), biomass (Franz et al., 2013b), 33	
  



	
   20	
  

and litter layer, carbohydrates of soil organic matter and belowground biomass (Bogena 1	
  
et al., 2013). For instance, changes in biomass over time may become important 2	
  
especially at the Nebraska (cropland) site. However, as with any OSSE, there are some 3	
  
limitations in our approach because the uncertainties due to the above-mentioned 4	
  
sources of hydrogen are not introduced in the measurements. Furthermore, any 5	
  
potential structural deficiency in Noah when simulating soil moisture is ignored in this 6	
  
OSSE, hence model adjustments to remove or reduce systematic biases (Draper et al., 7	
  
2011; Kumar et al., 2012; Yilmaz and Crow, 2013) need not be applied. As a 8	
  
consequence, the results from the OSSE are likely to indicate better agreement relative 9	
  
to those obtained from assimilation of real neutron measurements. The assimilation of 10	
  
actual cosmic-ray neutron measurements will be investigated in the near future. 11	
  

Finally, these results can also give some additional insights into applications of data 12	
  
assimilation to satellite remote sensing products whose measurements are provided 13	
  
globally at coarser temporal resolution. However, it is not the intention of the present 14	
  
study to directly compare the value of the cosmic-ray observations with more traditional 15	
  
satellite remote sensing products, especially because their horizontal effective 16	
  
measurement areas are quite different (Robinson et al., 2008) and hence are likely to be 17	
  
influenced differently by distinct factors (see Figure 1 in (Crow et al., 2012)). Such 18	
  
analyses are beyond the scope of this study but we encourage the use of cosmic-ray 19	
  
sensors in combination with satellite remote sensing products for hydrometeorological 20	
  
applications because the information content from each measurement can be strongly 21	
  
linked to their individual dynamics. 22	
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Table 1. Site information obtained from Ameriflux database (http://ameriflux.lbl.gov). 1	
  
MAT = Mean Annual Temperature, and MAP = Mean Annual Precipitation. Notice the 2	
  
analyzed period in this study is a subset of the available data from each site and it is 3	
  
defined from 2012-05-01_00Z* to 2012-09-30_23Z*. 4	
  

Site Latitude Longitude Land cover Soil type 
MAT 

(oC) 

MAP 

(cm) 

Spin-up period* 

(one cycle) 

Kendall 31o	
  74’N 109o	
  94’W Grasslands Loam 
16 41 

2010-01-01_00Z to 

2012-12-31_23Z   

Nebraska 41o	
  10’N 	
  	
  96o	
  26’W Croplands Silty	
  Clay	
  Loam 
10 78 

2011-01-01_00Z to 

2012-12-31_23Z 

Park Falls 45o	
  56’N 	
  	
  90o	
  16’W Mixed	
  forest Sandy	
  Loam 
4 82 

2011-01-01_00Z to 

2012-12-31_23Z 

* Date/time format as follows YYYY-MM-DD_HH, where YYYY is the year, MM is the 5	
  
month, DD is the day of the month, and HH is the hour in GMT.6	
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Table 2. Perturbation magnitudes of meteorological inputs used by Noah for individual 1	
  
ensemble members in this study. The perturbation distribution is either log-Normal (i.e., 2	
  
multiplying the reference variable) or Normal (i.e., adding to or subtracting from a 3	
  
reference value). Values within parentheses correspond respectively to mean and 4	
  
standard deviation. Notice, vegetation greenness fraction has been added to the list 5	
  
given its strong sensitivity in Noah (Miller et al., 2006). The adopted magnitude values 6	
  
follow standard procedures described in the literature, including (Dunne and Entekhabi, 7	
  
2005; Kumar et al., 2012; Margulis et al., 2002; Reichle and Koster, 2004; Reichle et al., 8	
  
2008; 2007; 2002; Sabater et al., 2007; Walker and Houser, 2004; Zhang et al., 2010; 9	
  
Zhou et al., 2006). 10	
  

Noah Forcing Perturbation Magnitude 

Wind Speed (m s-1) log-Normal(1,0.3) 

Air temperature (K) Normal(0,5) 

Relative Humidity (fraction) log-Normal(1,0.2) 

Surface Pressure (Pa) Normal(0,10) 

Incoming Shortwave Radiation (W m-2) log-Normal(1,0.3) 

Incoming Longwave Radiation (W m-2) Normal(0,50) 

Precipitation rate (kg m-2 s-1) log-Normal(1,0.5) 

Vegetation greenness fraction (-) Normal(0,0.05) 

 11	
  

 12	
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Table 3. Summary of statistics computed for Noah for assimilation of synthetic neutron 1	
  
intensity measurements in counts per hour (cph). Metrics are computed with respect to 2	
  
both true counts and synthetic observations, respectively ‘w.r.t. True’ and ‘w.r.t. Obs’. 3	
  
The ensemble mean of the prior distribution is used for all ensemble simulations. 4	
  

Site Simulation 
Mean Bias RMSE 

Total Spread 
R2 

w.r.t. Obs w.r.t. True w.r.t. Obs w.r.t. True w.r.t. Obs w.r.t. True 

Kendall 

no DA -89 -90 119 109 96 0.89 0.94 

DA 2-day -9 -13 63 60 57 0.91 0.92 

DA 1-hour 0 -1 63 60 50 0.91 0.92 

Nebraska 

no DA -15 -14 49 32 51 0.90 0.97 

DA 2-day -13 -15 45 28 40 0.89 0.97 

DA 1-hour -8 -8 38 12 37 0.93 1.00 

Park Falls 

no DA -8 -8 30 15 36 0.82 0.98 

DA 2-day -6 -8 27 14 27 0.81 0.96 

DA 1-hour -2 -2 25 3 26 0.84 1.00 

 5	
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Table 4. Summary of statistics computed for Noah for assimilation of synthetic neutron intensity measurements for all sites. All 1	
  
metrics are calculated only when individual layer convergence is above 40% for the case ‘DA 1-hour’ (see bottom panel of Figures 6, 2	
  
7, and 8), and with respect to the true soil moisture state. The ensemble mean of the prior distribution is used for all ensemble 3	
  
simulations. Numerical values are rounded to the first three decimal points.  4	
  

Noah 

Soil Moisture 

(m3 m-3) 

Mean Bias RMSE Spread R2 

No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour No DA DA 2-day DA 1-hour 

Kendall 

θ1 (0 – 10 cm) 0.009 -0.003 -0.003 0.011 0.006 0.005 0.019 0.007 0.003 0.988 0.990 1.000 

θ2 (10 – 40 cm) 0.037 0.009 0.006 0.042 0.011 0.007 0.033 0.012 0.006 0.907 0.981 0.995 

θ3 (40 – 100 cm) 0.071 0.030 0.009 0.072 0.033 0.012 0.051 0.032 0.015 0.906 0.872 0.989 

Nebraska 

θ1 (0 – 10 cm) 0.004 0.005 0.001 0.010 0.009 0.004 0.016 0.008 0.003 0.978 0.987 0.996 

θ2 (10 – 40 cm) 0.007 0.011 0.006 0.017 0.013 0.007 0.022 0.009 0.003 0.962 0.987 0.998 

θ3 (40 – 100 cm) 0.012 0.012 0.009 0.012 0.012 0.009 0.038 0.018 0.007 0.999 0.998 0.993 

Park Falls 

θ1 (0 – 10 cm) 0.005 0.007 0.001 0.009 0.009 0.003 0.018 0.008 0.003 0.984 0.985 0.996 

θ2 (10 – 40 cm) 0.006 0.008 0.002 0.010 0.010 0.004 0.022 0.009 0.003 0.986 0.987 0.997 

θ3 (40 – 100 cm) 0.007 0.013 0.005 0.011 0.015 0.007 0.031 0.013 0.005 0.974 0.980 0.990 



	
   34	
  

 1	
  

Figure 1. Schematic representation of the effective measurement volume for the cosmic-ray soil moisture sensor. The effective depth 2	
  

depicted in the figure refers to the overall range in the sensor (Zreda et al., 2008). Notice the effective depth estimated for the 3	
  

synthetic experiments in this study varies approximately between 12 and 20 cm (refer to text). 4	
  

  5	
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 1	
  

Figure 2. Schematic representation of the data assimilation and state update procedures in the Data Assimilation Research Testbed 2	
  

(DART) used in this study. Adapted from original DART diagram available at http://www.image.ucar.edu/DAReS/DART.3	
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 1	
  

Figure 3. Experimental setup used in this study for data assimilation of synthetic observations of cosmic-ray neutrons. 2	
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 1	
  

Figure 4. Equivalent neutron intensity (counts per hour - cph) simulated by Noah coupled to COSMIC without (no DA) and with data 2	
  

assimilation characterized by low- and high-frequency retrievals (respectively, DA 2-day and DA 1-hour) compared to synthetic 3	
  

observations (obs) and true intensities. The ensemble mean of the prior distribution is shown for all ensemble simulations.4	
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 1	
  

Figure 5. Root-Mean-Squared-Error (RMSE) calculated for the ensemble mean relative to the ‘true’ observations (black circles) in 2	
  

comparison to the ensemble spread (red diamonds). The ensemble mean of the prior distribution is used for all ensemble 3	
  

simulations. 4	
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 1	
  

Figure 6. Comparison of soil moisture dynamics at the Kendall site for the first three soil layers in Noah. Top row: Simulated soil 2	
  

moisture (θ) without (no DA) and with data assimilation characterized by low- and high-frequency retrievals (respectively, DA 2-day 3	
  

and DA 1-hour) compared to the true soil moisture states. Middle row: The difference between simulated soil moisture and the true 4	
  

states (Δθ) within pre-defined uncertainty ranges (dashed gray lines). Bottom row: Convergence criterion within uncertainty ranges. 5	
  

Results show actual model time steps (i.e., hourly). The ensemble mean of the prior distribution is shown for all ensemble 6	
  

simulations.7	
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  1	
  

Figure 7. Same as Figure 6 but for Nebraska.2	
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  1	
  

Figure 8. Same as Figure 6 but for Park Falls.2	
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 1	
  

Figure 9. Comparison of Noah performance in representing soil moisture dynamics for the first three soil layers with respect to the 2	
  

true soil moisture state. The metric used is the Root-Mean-Squared-Error (RMSE) calculated over individual 2-day periods 3	
  

continuously. Results are shown for Noah without (no DA) and with data assimilation characterized by low- and high-frequency 4	
  

retrievals (respectively, DA 2-day and DA 1-hour). The ensemble mean of the prior distribution is used for all ensemble simulations.  5	
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