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Abstract

This paper investigates the skill of 90 day low flow forecasts using two conceptual
hydrological models and two data-driven models based on Artificial Neural Networks
(ANNs) for the Moselle River. One data-driven model, ANN-Indicator (ANN-I), requires
historical inputs on precipitation (P ), potential evapotranspiration (PET), groundwater5

(G) and observed discharge (Q), whereas the other data-driven model, ANN-Ensemble
(ANN-E), and the two conceptual models, HBV and GR4J, use forecasted meteorolog-
ical inputs (P and PET), whereby we employ ensemble seasonal meteorological fore-
casts. We compared low flow forecasts without any meteorological forecasts as input
(ANN-I) and five different cases of seasonal meteorological forcing: (1) ensemble P10

and PET forecasts; (2) ensemble P forecasts and observed climate mean PET; (3)
observed climate mean P and ensemble PET forecasts; (4) observed climate mean
P and PET and (5) zero P and ensemble PET forecasts as input for the other three
models (GR4J, HBV and ANN-E). The ensemble P and PET forecasts, each consisting
of 40 members, reveal the forecast ranges due to the model inputs. The five cases are15

compared for a lead time of 90 days based on model output ranges, whereas the four
models are compared based on their skill of low flow forecasts for varying lead times up
to 90 days. Before forecasting, the hydrological models are calibrated and validated for
a period of 30 and 20 years respectively. The smallest difference between calibration
and validation performance is found for HBV, whereas the largest difference is found for20

ANN-E. From the results, it appears that all models are prone to over-predict low flows
using ensemble seasonal meteorological forcing. The largest range for 90 day low flow
forecasts is found for the GR4J model when using ensemble seasonal meteorological
forecasts as input. GR4J, HBV and ANN-E under-predicted 90 day ahead low flows in
the very dry year 2003 without precipitation data, whereas ANN-I predicted the magni-25

tude of the low flows better than the other three models. The results of the comparison
of forecast skills with varying lead times show that GR4J is less skilful than ANN-E and
HBV. Furthermore, the hit rate of ANN-E is higher than the two conceptual models for
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most lead times. However, ANN-I is not successful in distinguishing between low flow
events and non-low flow events. Overall, the uncertainty from ensemble P forecasts
has a larger effect on seasonal low flow forecasts than the uncertainty from ensemble
PET forecasts and initial model conditions.

1 Introduction5

Rivers in Western Europe usually experience low flows in late summer and high flows
in winter. These two extreme discharge phenomena can lead to serious problems. For
example, high flow events are quick and can put human life at risk, whereas streamflow
droughts (i.e. low flows) develop slowly and can affect a large area. Consequently, the
economic loss during low flow periods can be much bigger than during floods (Push-10

palatha et al., 2011; Shukla et al., 2012). In the River Rhine, severe problems for fresh-
water supply, water quality, power production and river navigation were experienced
during the dry summers of 1976, 1985 and 2003. Therefore, forecasting seasonal low
flows (Towler et al., 2013; Coley and Waylen, 2006; Li et al., 2008) and understand-
ing low flow indicators (Vidal et al., 2010; Fundel et al., 2013; Demirel et al., 2013a;15

Wang et al., 2011; Saadat et al., 2013; Nicolle et al., 2013) have both societal and
scientific value. The seasonal forecast of water flows is therefore listed as one of the
priority topics in EU’s Horizon 2020 research program (EU, 2013). Further, there is an
increasing interest to incorporate seasonal flow forecasts in decision support systems
for river navigation and power plant operation during low flow periods. We are inter-20

ested in forecasting low flows with a lead time of 90 days, and in presenting the effect
of ensemble meteorological forecasts for four hydrological models.

Generally, two approaches are used in seasonal hydrological forecasting. The first
one is a statistical approach, making use of data-driven models based on relationships
between river discharge and hydroclimatological indicators (Wang et al., 2011; Van25

Ogtrop et al., 2011). The second one is a dynamic approach running a hydrological
model with forecasted climate input. The first approach is often preferred in regions
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where significant correlations between river discharge and climatic indicators exist,
such as sea surface temperature anomalies (Chowdhury and Sharma, 2009), AMO –
Atlantic Multi-decadal Oscillation (Ganguli and Reddy, 2013; Giuntoli et al., 2013), PDO
– Pacific Decadal Oscillation (Soukup et al., 2009) and warm and cold phases of the
ENSO – El Nino Southern Oscillation – index (Chiew et al., 2003; Kalra et al., 2013;5

Tootle and Piechota, 2004). Kahya and Dracup (1993) identified the lagged response
of regional streamflow to the warm phase of ENSO in the south-eastern United States.
In the Rhine basin, no teleconnections have been found between climatic indices, e.g.
NAO and ENSO, and river discharges (Rutten et al., 2008; Bierkens and van Beek,
2009). However, Demirel et al. (2013a) found significant correlations between hydro-10

logical low flow indicators and observed low flows. They also identified appropriate
lags and temporal resolutions of low flow indicators (e.g. recipitation, potential evapo-
transpiration, groundwater storage, lake levels and snow storage) to build data-driven
models.

The second approach is the dynamic seasonal forecasting approach which has long15

been explored (Wang et al., 2011; Van Dijk et al., 2013; Gobena and Gan, 2010; Fundel
et al., 2013; Shukla et al., 2013; Pokhrel et al., 2013), which has led to the develop-
ment of the current ensemble streamflow prediction system (ESP) used by different
national climate services like the National Weather Service in the United States. The
seasonal hydrologic prediction systems are most popular in regions with a high risk of20

extreme discharge situations like hydrological droughts (Robertson et al., 2013). Well-
known examples are the NOAA Climate Prediction Centre’s seasonal drought fore-
casting system (available at http://www.cpc.ncep.noaa.gov), the University of Washing-
ton’s Surface Water Monitoring system (Wood and Lettenmaier, 2006), Princeton Uni-
versity’s drought forecast system (available at http://hydrology.princeton.edu/forecast)25

and University of Utrecht’s global monthly hydrological forecast system (Yossef et al.,
2012). These models provide indications about the hydrologic conditions and their evo-
lution across the modelled domain using available weather ensemble inputs (Gobena
and Gan, 2010; Yossef et al., 2012). Many studies have investigated the seasonal
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predictability of low flows in different rivers such as the Thames and different other
rivers in the UK (Bell et al., 2013; Wedgbrow et al., 2002; Wedgbrow et al., 2005),
the Shihmen and Tsengwen Rivers in Taiwan (Kuo et al., 2010), the River Jhelum in
Pakistan (Archer and Fowler, 2008), more than 200 rivers in France (Sauquet et al.,
2008; Giuntoli et al., 2013), five semi-arid areas in South Western Queensland, Aus-5

tralia (Van Ogtrop et al., 2011), five rivers including Limpopo basin and the Blue Nile in
Africa (Dutra et al., 2013; Winsemius et al., 2014), the Bogotá River in Colombia (Fe-
lipe and Nelson, 2009), the Ohio in the eastern US (Wood et al., 2002; Luo et al., 2007;
Li et al., 2009), the North Platte in Colorado, US (Soukup et al., 2009), large rivers in
the US (Schubert et al., 2007; Shukla and Lettenmaier, 2011) and the Thur River in10

the north-eastern part of Switzerland (Fundel et al., 2013). The common result of the
above mentioned studies is that the skill of the seasonal forecasts made with global
and regional hydrological models is reasonable for lead times of 1–3 months (Shukla
and Lettenmaier, 2011; Wood et al., 2002) and these forecasting systems are all prone
to large uncertainties as their forecast skills mainly depend on the knowledge of ini-15

tial hydrologic conditions and weather information during the forecast period (Shukla
et al., 2012; Yossef et al., 2013; Li et al., 2009; Doblas-Reyes et al., 2009). In a re-
cent study, Yossef et al. (2013) used a global monthly hydrological model to analyse
the relative contributions of initial conditions and meteorological forcing to the skill of
seasonal streamflow forecasts. They included 78 stations in large basins in the world20

including the River Rhine for forecasts with lead times up to 6 months. They found that
improvements in seasonal hydrological forecasts in the Rhine depend on better mete-
orological forecasts, which underlines the importance of meteorological forcing quality
particularly for forecasts beyond lead times of 1–2 months.

Most of the previous River Rhine studies use only one hydrological model, e.g. PRE-25

VAH (Fundel et al., 2013) or PCR-GLOBWB (Yossef et al., 2013), to assess the value
of ensemble meteorological forcing, whereas in this study, we compare four hydrolog-
ical models with different structures varying from data-driven to conceptual models.
The two objectives of this study are to contrast data-driven and conceptual modelling
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approaches and to assess the effect of ensemble seasonal forecasted precipitation and
potential evapotranspiration on low flow forecast quality and skill scores. By comparing
four models with different model structures we address the issue of model structure
uncertainty, whereas the latter objective reflects the benefit of ensemble seasonal fore-
casts. Moreover, the effect of initial model conditions is partly addressed using climate5

mean data in one of the cases.
The analysis complements recent efforts to analyse the effects of ensemble weather

forecasts on low flow forecasts with a lead time of 10 days using two conceptual models
(Demirel et al., 2013b), by studying the effects of seasonal ensemble weather forecasts
on 90 day low flow forecasts using not only conceptual models but also data-driven10

models.
The outline of the paper is as follows. The study area and data are presented in

Sect. 2. Section 3 describes the model structures, their calibration and validation set-
ups and the methods employed to estimate the different attributes of the forecast qual-
ity. The results are presented in Sect. 4 and discussed in Sect. 5, and the conclusions15

are summarised in Sect. 6.

2 Study area and data

2.1 Study area

The study area is the Moselle River basin, the largest sub-basin of the Rhine River
basin. The Moselle River has a length of 545 km. The river basin has a surface area20

of approximately 27 262 km2. The altitude in the basin varies from 59 to 1326 m, with a
mean altitude of 340 m (Demirel et al., 2013a). Approximately 410 mm (∼130 m3 s−1)
discharge is annually generated in the Moselle basin (Demirel et al., 2013b). The
outlet discharge at Cochem varies from 14 m3 s−1 in dry summers to a maximum of
4000 m3 s−1 during winter floods.25
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2.2 Data

2.2.1 Observed data

Observed daily data on precipitation (P ) and potential evapotranspiration (PET) have
been obtained from the German Federal Institute of Hydrology (BfG) in Koblenz,
Germany (Table 1). PET is estimated using the Penman–Wendling equation (ATV-5

DVWK, 2002) and both variables have been spatially averaged by BfG over 26 Moselle
sub-basins using areal weights. Observed daily discharge (Q) data at Cochem (sta-
tion #6336050) are provided by the Global Runoff Data Centre (GRDC), Koblenz. The
daily observed data (P , PET and Q) are available for the period 1951–2006.

2.2.2 Ensemble seasonal meteorological forecast data10

The ensemble seasonal meteorological forecast data, comprising 40 members, are
obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF)
seasonal forecasting archive and retrieval system, i.e. MARS system 3 (ECMWF,
2012). This dataset contains regular 0.25◦ ×0.25◦ latitude-longitude grids and each
ensemble member is computed for a lead time of 184 days using perturbed initial15

conditions and model physics (Table 2). We estimated the PET forecasts using the
Penman–Wendling equation requiring forecasted surface solar radiation and tempera-
ture at 2 m above the surface, and the altitude of the sub-basin (ATV-DVWK, 2002). The
mean altitudes of the 26 sub-basins have been provided by BfG in Koblenz, Germany.
The PET estimation is consistent with the observed PET estimation carried out by BfG20

(ATV-DVWK, 2002). The grid-based P and PET ensemble forecast data are firstly in-
terpolated over 26 Moselle sub-basins using areal weights. These sub-basin averaged
data are then aggregated to the Moselle basin level.
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3 Methodology

3.1 Overview of model structures and forecast scheme

The four hydrological models (GR4J, HBV, ANN-E and ANN-I) are briefly described in
Sects. 3.1.1–3.1.3. Figure 1 shows the simplified model structures. The calibration and
validation of the models is described in Sect. 3.1.4. Five cases with different combina-5

tions of ensemble meteorological forecast input and climate mean input are introduced
in Sect. 3.1.5.

3.1.1 GR4J

The GR4J model (Génie Rural à 4 paramètres Journalier) is used as it has a parsimo-
nious structure with only four parameters. The model has been tested over hundreds of10

basins worldwide, with a broad range of climatic conditions from tropical to temperate
and semi-arid basins (Perrin et al., 2003). GR4J is a conceptual model and the re-
quired model inputs are daily time series of P and PET (Table 3). The four parameters
in GR4J represent the maximum capacity of the production store (X1), the groundwater
exchange coefficient (X2), the one day ahead capacity of the routing store (X3) and the15

time base of the unit hydrograph (X4). All four parameters (Fig. 1a) are used to cali-
brate the model. The upper and lower limits of the parameters are selected based on
previous works (Perrin et al., 2003; Pushpalatha et al., 2011; Tian et al., 2014).

3.1.2 HBV

The HBV conceptual model (Hydrologiska Byråns Vattenbalansavdelning) was devel-20

oped by the Swedish Meteorological and Hydrological Institute (SMHI) in the early
1970’s (Lindström et al., 1997). The HBV model consists of four subroutines: a precipi-
tation and snow accumulation and melt routine, a soil moisture accounting routine and
two runoff generation routines. The required input data are daily P and PET. The snow
routine and daily temperature data are not used in this study as the Moselle basin is a25
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rain-fed basin. Eight parameters (see Fig. 1b) in the HBV model are calibrated (Enge-
land et al., 2010; Van den Tillaart et al., 2013; Tian et al., 2014). The ranges of the eight
parameters for calibration are selected based on previous works (Booij, 2005; Eberle,
2005; Tian et al., 2014).

3.1.3 ANN-E and ANN-I5

An Artificial Neural Network (ANN) is a data-driven model inspired by functional units
(neurons) of the human brain (Elshorbagy et al., 2010). A neural network is a universal
approximator capable of learning the patterns and relation between outputs and inputs
from historical data and applying it for extrapolation (Govindaraju and Rao, 2000). A
three-layer feed-forward neural network (FNNs) is the most widely preferred model ar-10

chitecture for prediction and forecasting of hydrological variables (Adamowski et al.,
2012; Shamseldin, 1997; Kalra et al., 2013). Each of these three layers has an impor-
tant role in processing the information. The first layer receives the inputs and multiplies
them with a weight (adds a bias if necessary) before delivering them to each of the
hidden neurons in the next layer (Gaume and Gosset, 2003). The weights determine15

the strength of the connections. The number of nodes in this layer corresponds to the
number of inputs. The second layer, the hidden layer, consists of an activation func-
tion (also known as transfer function) which non-linearly maps the input data to output
target values. In other words, this layer is the learning element of the network which
simulates the relationship between inputs and outputs of the model. The third layer, the20

output layer, gathers the processed data from the hidden layer and delivers the final
output of the network.

A hidden neuron is the processing element with n inputs (x1, x2, x3, . . . , xn), and
one output y using Eq. (1).

y = f (x1, x2, x3, . . . , xn) = logsig

[(
n∑

i=1

xi wi

)
+ b

]
(1)25
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where wi are the weights, b is the bias, and logsig is the logarithmic sigmoid activa-
tion function. We tested the tansig and logsig activation functions and the latter was
selected for this study as it gave better results for low flows. ANN model structures
are determined based on the forecast objective. In this study, we used two different
ANN model structures: ANN-Ensemble (ANN-E) and ANN-Indicator (ANN-I). The first5

model, i.e. NN-E, requires daily P , PET and historical Q as input. Historical Q from the
previous day is used to update the model states (Table 3). This is a one day memory
which also exists in the conceptual models, i.e. GR4J and HBV (Fig. 1). The ANN-E
is assumed to be comparable with the conceptual models with similar model struc-
tures. The second model, ANN-I, uses historical Q to update initial model conditions10

and three low flow indicators, i.e. P , PET and G, as model input. The model uses his-
torical data and does not require forecasted weather inputs. The appropriate lags and
temporal resolutions of these indicators have been identified using the discharge data
for the period of 1978–2006 in a previous study by Demirel et al. (2013a). The deter-
mination of the optimal number of hidden neurons in the second layer is an important15

issue in the development of ANN models. Three common approaches are ad hoc (also
known as trial and error), global and stepwise (Kasiviswanathan et al., 2013). We used
a global approach (i.e. Genetic Algorithm) (De Vos and Rientjes, 2008) and tested the
performance of the networks with one, two and three hidden neurons corresponding
to a number of parameters (i.e. number of weights and biases) of 6, 11 and 16, re-20

spectively. Based on the parsimonious principle, testing ANNs only up to three hidden
neurons is assumed to be enough as the number of parameters increases exponen-
tially for every additional hidden neuron.

3.1.4 Calibration and validation of models

A global optimisation method, i.e. Genetic Algorithm (GA) (De Vos and Rientjes, 2008),25

and historical Moselle low flows for the period from 1971–2001 are used to calibrate
the models used in this study. The 30-year calibration period is carefully selected as
the first low flow forecast is issued on 1 January 2002. For all GA simulations, we use
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100 as population size, 5 as reproduction elite count size, 0.7 as cross over fraction,
2000 as maximum number of iterations and 5000 as the maximum number of function
evaluations based on the studies by De Vos and Rientjes (2008) and Kasiviswanathan
et al. (2013). The validation period spans from 1951–1970. The definition of low flows,
i.e. discharges below the Q75 threshold of sim113 m3 s−1, is based on previous work5

by Demirel et al. (2013a). Prior parameter ranges and deterministic equations used for
dynamic model state updates of the conceptual models based on observed discharges
on the forecast issue day are based on the study by Demirel et al. (2013b). In this
study, we use a hybrid Mean Absolute Error (MAE) based on only low flows (MAElow)
and inverse discharge values (MAEinverse) as objective function (see Eq. 4).10

Mean Absolute Errorlow :
1
m

m∑
j=1

|Qsim(j ) − Qobs(j )| (2)

where Qobs and Qsim are the observed and simulated values for the j th observed low
flow day (i.e. Qobs <Q75) and m is the total number of low flow days.

Mean Absolute Errorinverse :
1
n

n∑
i=1

∣∣∣∣ 1
Qsim(i ) + ε

− 1
Qobs(i ) + ε

∣∣∣∣ (3)

where n is the total number of days (i.e. m<n), and ε is 1 % of the mean observed15

discharge to avoid infinity during zero discharge days.

MAEhybrid = MAElow + MAEinverse (4)

The MAElow and MAEinverse were not normalised as the different units had no effect on
the calibration results.

3.1.5 Case description20

In this study, four hydrological models are used for the seasonal forecasts. While only
historical input is used for the ANN-I model, five ensemble meteorological forecast input
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cases for ANN-E, GR4J and HBV models are compared: (1) ensemble P and PET
forecasts, (2) ensemble P forecasts and observed climate mean PET, (3) observed
climate mean P and ensemble PET forecasts, (4) observed climate mean P and PET,
(5) zero P and ensemble PET forecasts (Table 4).

Cases 1–4 are the different possible combinations of ensemble and climate mean5

meteorological forcing. Case 5 is analysed to determine to which extent the precipita-
tion forecast in a very dry year (2003) is important for seasonal low flow forecasts.

3.2 Forecast skill scores

Three probabilistic forecast skill scores (Brier Skill Score, reliability diagram, hit and
false alarm rates) and one deterministic forecast skill score (Mean Forecast Score) are10

used to analyse the results of low flow forecasts with lead times of 1–90 days. Fore-
casts for each day in the test period (2002–2005) are used to estimate these scores.
The Mean Forecast Score focusing on low flows is introduced in this study, whereas
the other three scores have been often used in meteorology (WMO, 2012) and flood
hydrology (Velázquez et al., 2010; Renner et al., 2009; Thirel et al., 2008). For the three15

models, i.e. GR4J, HBV and ANN-E, the forecast probability for each forecast day is
estimated as the ratio of the number of ensemble members non-exceeding the prese-
lected thresholds (here Q75) and the total number of ensemble members (i.e. 40 mem-
bers) for that forecast day. The ANN-I model issues a single deterministic forecast,
therefore, the probability for each forecast day is either zero or one.20

3.2.1 Brier Skill Score (BSS)

The Brier Skill Score (BSS) (Wilks, 1995) is often used in hydrology to evaluate the
quality of probabilistic forecasts (Devineni et al., 2008; Hartmann et al., 2002; Jaun
and Ahrens, 2009; Roulin, 2007; Towler et al., 2013).

Brier Skill Score : 1 −
BSforecast

BSclimatology
(5)25
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where the BSforecast is the Brier Score (BS) for the forecast, defined as:

Brier Score :
1
N

N∑
t=1

(Ft − Ot)
2 (6)

where Ft refers to the forecast probability, Ot refers to the observed probability (Ot =1
if the observed flow is below the low flow threshold, 0 otherwise), and N is the sample
size. BSclimatology is the BS for the climatology, which is also calculated from Eq. (6) for5

every year using climatological probabilities. BSS values range from minus infinity to 1
(perfect forecast). Negative values indicate that the forecast is less accurate than the
climatology and positive values indicate more skill compared to the climatology.

3.2.2 Reliability diagram

The reliability diagram is used to evaluate the performance of probabilistic forecasts10

of selected events, i.e. low flows. A reliability diagram represents the observed rel-
ative frequency as a function of forecasted probability and the 1 : 1 diagonal shows
the perfect reliability line (Velázquez et al., 2010; Olsson and Lindström, 2008). This
comparison is important as reliability is one of the three properties of a hydrological
forecast (WMO, 2012). A reliability diagram shows the portion of observed data inside15

preselected forecast intervals.
In this study, non-exceedence probabilities of 50, 75, 85, 95, and 99 % are chosen

as thresholds to categorize the discharges from mean flows to extreme low flows. The
forecasted probabilities are then divided into bins of probability categories; here, five
bins (categories) are chosen 0–20, 20–40, 40–60, 60–80 and 80–100 %. The observed20

frequency for each day is chosen to be 1 if the observed discharge non-exceeds the
threshold, or 0, if not.
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3.2.3 Hit and false alarm rates

We used hit and false alarm rates to assess the effect of ensembles on low flow fore-
casts for varying lead times. The hit and false alarm rates indicate respectively the
proportion of events for which a correct warning was issued, and the proportion of
non events for which a false warning was issued by the forecast model. These two5

simple rates can be easily calculated from contingency tables (Table 5) using Eqs. (7)
and (8). These scores are often used for evaluating flood forecasts (Martina et al.,
2006), however, they can also be used to estimate the utility of low flow forecasts as
they indicate the models’ ability to correctly forecast the occurrence or non-occurrence
of preselected events (i.e. Q75 low flows). There are four cases in a contingency table10

as shown in

hit rate =
hits

(hits + misses)
(7)

false alarm rate =
false alarms

(correct negatives + false alarms)
. (8)

3.2.4 Mean Forecast Score (MFS)15

The Mean Forecast Score (MFS) is a new skill score which can be derived from ei-
ther probabilistic or deterministic forecasts. These probabilities are calculated only for
the days that low flows occurred. Table 6 shows the low flow contingency table for
calculating MFS. In this study we used a deterministic approach for calculating the ob-
served frequency for all four models. However, a deterministic approach for calculating20

the forecast probability is used only for the ANN-I model. For the other three models,
ensembles are used for estimating forecast probabilities.
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The score is calculated as below only for deterministic observed low flows (left col-
umn in Table 6).

Mean Forecast Score :
1
m

m∑
j=1

Fj (9)

where Fj is the forecast probability for the j th observed low flow day (i.e. Oj ≤Q75)
and m is the total number of low flow days. For instance, if 23 of the 40 ensemble5

forecast members indicate low flows for the j th low flow day then Fj =23/40. It should
be noted that this score is not limited to low flows as it has a flexible forecast probability
definition which can be adapted to any type of discharges. MFS values range from zero
to 1 (perfect forecast).

4 Results10

4.1 Calibration and validation

Table 7 shows the parameter ranges and the best performing parameter sets of the
four models. The GR4J and HBV models have both well-defined model structures;
therefore, their calibration was more straightforward than the calibration of the ANN
models. Calibration of the ANN models was done in two steps. First, the number of15

hidden neurons was determined by testing the performance of the ANN-E model with
one, two and three hidden neurons.

Second, daily P , PET and Q are used as three inputs for the tested ANN-E model
with one, two and three hidden neurons due to the fact that these inputs are comparable
with the inputs of the GR4J and HBV models. Figure 2a shows that the performance20

of the ANN-E models does not improve with additional hidden neurons. Based on the
performance in the validation period, one hidden neuron is selected. GR4J, HBV and
ANN-I are also calibrated accordingly. Based on the results of the first step, ANN-I with
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one hidden neuron is calibrated for its long term averaged inputs. The results of the
four models used in this study are presented in Fig. 2b.

The performances of GR4J and HBV are similar in the calibration period, whereas
HBV performs better in the validation period (Fig. 2b). This is not surprising, since HBV
has a more sophisticated model structure than GR4J. The performance of ANN-E and5

ANN-I is similar in both calibration and validation periods.

4.2 Effect of ensembles on low flow forecasts for 90 day lead time

The effect of ensemble P and PET on GR4J, HBV and ANN-E is presented as a range
bounded by the lowest and highest forecast values in Fig. 3a and b. In these figures,
there is no range for the ANN-I results as the model issues only one forecast using10

historical low flow indicators as input. The two years, i.e. 2002 and 2003, are care-
fully selected as they represent a relatively wet year and a very dry year respectively.
Figure 3a shows that there are significant differences between the four model results.
The 90 day ahead low flows in 2002 are mostly over-predicted by the ANN-E model,
whereas GR4J and HBV over-predict low flows observed after August. The forecast15

results of ANN-I are considerably better than the results of the other three models.
The over-prediction of low flows is more pronounced for GR4J than for the other three
models. The over-prediction of low flows by ANN-E is mostly at the same level. This
less sensitive behaviour of ANN-E to the forecasted ensemble inputs shows the effect
of the logarithmic sigmoid transfer function on the results. Due to the nature of this20

algorithm, input is rescaled to a small interval [0, 1] and the gradient of the sigmoid
function at large values approximates zero (Wang et al., 2006). Further, ANN-E is also
not sensitive to the initial model conditions updated on every forecast issue day. The
less pronounced over-prediction of low flows by HBV compared to GR4J may indicate
that the slow responding groundwater storage in HBV is less sensitive to different fore-25

casted ensemble P and PET inputs (Demirel et al., 2013b).
The results for 2003 are slightly different than those for 2002. As can be seen from

Fig. 3b the number of low flow days has increased in the dry year, i.e. 2003, and the
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low flows between August and November are not captured by any of the 40-ensemble
forecasts using ANN-E. Moreover, ANN-I performed better in 2002 than in 2003. The
most striking result in Fig. 3b is that the low flows observed in the period between April
and May are not captured by any of the three models, i.e. GR4J, HBV and ANN-E. The
90 day low flows between October and November are better forecasted by GR4J and5

HBV than the ANN-E model.
For the purpose of determining to which extent ensemble P and PET inputs and dif-

ferent initial conditions affect 90 day low flow forecasts, we run the models with different
input combinations such as ensemble P or PET and climate mean P or PET and zero
precipitation. Figure 4a shows the forecasts using ensemble P and climate mean PET10

as input for three models. The picture is very similar to Fig. 3b as most of the observed
low flows fall within the constructed forecast range by GR4J and HBV. The forecasts
issued by GR4J are better than those issued by the other two models. However, the
range of forecasts using GR4J is larger than for the other models showing the sensitiv-
ity of the model for different precipitation inputs. It is obvious that most of the range in15

all forecasts is caused by uncertainties originating from ensemble precipitation input.
The results of the fourth model, ANN-I, are the same as in Fig. 3b and therefore, they
are not presented again in the remaining figures.

Figure 4b shows the forecasts using climate mean P and ensemble PET as input for
three models, i.e. GR4J, HBV and ANN-E. Interestingly, only GR4J could capture the20

90 day low flows between July and November using climate mean P and ensemble PET
showing the ability of the model to handle the excessive rainfall. None of the low flows
were captured by HBV, whereas very few low flow events were captured by ANN-E
(Fig. 4b).

Figure 5 shows the forecasts using climate mean P and PET as input for three mod-25

els. The results are presented by point values without a range since only one deter-
ministic forecast is issued. There are significant differences in the results of the three
models. For instance, all 90 day ahead low flows in 2003 are over-predicted by HBV,
whereas the over-prediction of low flows is less pronounced for ANN-E. It is remarkable
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that GR4J can forecast a very dry year accurately using the climate mean. The low val-
ues of the calibrated maximum soil moisture capacity and percolation parameters of
HBV (FC and PERC) can be the main reason for over-prediction of all low flows as
the interactions of parameters with climate mean P input can result in higher model
outputs.5

We also assessed the seasonal forecasts using zero P and ensemble PET as in-
puts for three models (figure not shown). Not surprisingly, both GR4J and HBV under-
predicted most of the low flows when they are run without precipitation input. The
results of the case 5 confirm that the P input is very crucial for improving low flow
forecasts although obviously less precipitation is usually observed in a low flow period10

compared to other periods. Interestingly, the results of ANN-E are relatively better than
the other two conceptual models showing the ability of partly data-driven models for
seasonal low flow forecasts.

4.3 Effect of ensembles on low flow forecast skill scores

Figure 6 compares the three models and the effect of ensemble P and PET on the skill15

of probabilistic low flow forecasts with varying lead times. In this figure, four different
skill scores are used to present the results of probabilistic low flow forecasts issued
by GR4J, HBV and ANN-E. From an operational point of view, the main purpose of
investigating the effect of ensembles and model initial conditions on ensemble low flow
forecasts with varying lead times is to improve the forecast skills (e.g. hit rate, reliabil-20

ity, BSS and MFS) and to reduce false alarms and misses. As anticipated, all scores
decrease with increasing lead time. From Fig. 6 we can clearly see that the results of
GR4J show the lowest BSS, MFS and hit rate. The false alarm rate of forecasts using
GR4J is also the lowest compared to those using other models. The decrease in false
alarm rates after a lead time of 20 days shows the importance of initial condition un-25

certainty for short lead time forecasts. For longer lead times the error is better handled
by the models. It appears from the results that ANN-E and HBV show a comparable
skill in forecasting low flows up to a lead time of 90 days. It should be noted that the
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probabilistic skill scores for ANN-I were calculated only for a lead time of 90 days and
are not shown in Fig. 6. The mean forecast score and hit rate are equal to one, confirm-
ing the good deterministic ANN-I forecast results in Fig. 3a and b. However, the ANN-I
model is less skilful than climatology (i.e. BSS<0) for non-low flow events. Similarly,
the false alarm rate of ANN-I is equal to one, showing that the model predicts only low5

flows and misses all non-low flow events. This is from the fact that ANN-I is solely de-
veloped for forecasting on low flow days. In other words, only observed low flows and
corresponding input data with appropriate lags and temporal resolutions were used for
the ANN-I model during calibration and validation.

Figure 7 compares the reliability of probabilistic 90 day low flows forecasts below10

different thresholds (i.e. Q75, Q90 and Q95) using ensemble P and PET as input for
three models. The figure shows that the Q75 and Q90 low flow forecasts issued by the
HBV model are more reliable compared to the other models. Moreover, all three models
under-predict most of the forecast intervals. It appears from Fig. 7c that very critical low
flows (i.e. Q99) are under-predicted by the GR4J model.15

5 Discussion

To compare data-driven and conceptual modelling approaches and to evaluate the
effects of seasonal meteorological forecasts on low flow forecasts, 40-member ensem-
bles of ECMWF seasonal meteorological forecasts were used as input for four low flow
forecast models. Different input combinations were compared to distinguish between20

the effects of ensemble P and PET and model initial conditions on 90 day low flow fore-
casts. The models could reasonably forecast low flows when ensemble P was intro-
duced into the models. This result is in line with that of Shukla and Lettenmaier (2011)
who found that seasonal meteorological forecasts have a greater influence than initial
model conditions on the seasonal hydrological forecast skills. Two other related stud-25

ies also showed that the effect of a large spread in ensemble seasonal meteorological
forecasts is larger than the effect of initial conditions on hydrological forecasts with lead
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times longer than 1–2 months (Li et al., 2009; Yossef et al., 2013). The encouraging
results of low flow forecasts using ensemble seasonal precipitation forecasts for the
hydrological models confirm the utility of seasonal meteorological forcing for low flow
forecasts. Shukla et al. (2012) also found useful forecast skills for both runoff and soil
moisture forecasting at seasonal lead times using the medium range weather forecasts.5

In this study, we also assessed the effects of ensemble P and PET on the skill scores
of low flow forecasts with varying lead times up to 90 days. In general, the four skill
scores show similar results. Not surprisingly, all models under-predicted low flows with-
out precipitation information (zero P ). The most evident two patterns in these scores
are that first, the forecast skill drops sharply until a lead time of 30 days and second,10

the skill of probabilistic low flow forecasts issued by GR4J is the lowest, whereas the
skill of forecasts issued by ANN-E is the highest compared to the other two models.
Further, our study showed that data-driven models can be good alternatives to con-
ceptual models for issuing seasonal low flow forecasts. Despite the successful results
of ANN-Indicator, there are still limitations to the applicability of this model: first, the15

model is area dependent as its input and temporal scales were chosen for the Moselle
sub-basin. Second, the model is limited to low flow forecasts as the model is calibrated
and validated for observed low flows.

The methodology to develop ANN models for seasonal forecasts as described in this
study can be generalized to any other river basin in the world. Particularly the ANN-20

Indicator type of model can be very useful for regions where seasonal climate forecast
data are not available. Moreover, a similar approach consisting fives cases of input
combination can be applied to other geographical areas and other regime types for
evaluating the effect of model inputs on the forecasts. The objective function based on
the hybrid mean absolute error can be applied to all other low flow calibration problems,25

data-driven models in particular.
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6 Conclusions

Four hydrological models have been compared regarding their performance in the cali-
bration, validation and forecast periods, and the effect of seasonal meteorological fore-
casts on the skill of low flow forecasts has been assessed for varying lead times. The
comparison of four different models helped us contrast data-driven and conceptual5

models in low flow forecasts, whereas running the models with different input com-
binations, e.g. climate mean precipitation and ensemble potential evapotranspiration,
helped us identify which input source led to the largest range in the forecasts. A new
hybrid low flow objective function, comprising the mean absolute error of low flows and
the mean absolute error of inverse discharges, is used for comparing low flow sim-10

ulations, whereas the skill of the probabilistic seasonal low flow forecasts has been
evaluated based on the ensemble forecast range, Brier Skill Score, reliability, hit/false
alarm rates and Mean Forecast Score. The latter skill score (MFS) focusing on low
flows is firstly introduced in this study. In general our results showed that;

– Based on the results of the calibration and validation, one hidden neuron in ANNs15

was found to be enough for seasonal forecasts as additional hidden neurons did
not increase the simulation performance. Interestingly, the data-driven models,
i.e. ANN-E and ANN-I, performed similarly in the calibration and validation periods
showing the utility of identified indicators in simulating low flows by ANN-I. The
difference between calibration and validation performances was smallest for the20

HBV model, i.e. the most sophisticated model used in this study.

– Based on the results of the comparison of different model inputs, the largest range
for 90 day low flow forecasts is found for the GR4J model when using ensemble
seasonal meteorological forecasts as input. Moreover, the uncertainty arising from
ensemble precipitation has a larger effect on seasonal low flow forecasts than the25

effects of ensemble potential evapotranspiration. All models are prone to over-
predict low flows using ensemble seasonal meteorological forecasts. However,
the precipitation forecasts in the forecast period are crucial for improving the low
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flow forecasts. As expected, all three models, i.e. GR4J, HBV and ANN-E under-
predicted 90 day ahead low flows in 2003 without rainfall data.

– Based on the results of the comparison of forecast skills with varying lead times,
the low flow forecasts using GR4J are less skilful than the other three models.
However, the false alarm rate of GR4J is also the lowest indicating the ability of5

the model of forecasting non-occurrence of low flow days. The low flow forecasts
issued by HBV are more reliable compared to the other models. The ANN-I model
can predict the magnitude of the low flows better than the other three models.
However, ANN-I is not successful in distinguishing between low flow events and
non-low flow events for a lead time of 90 days. The hit rate of ANN-E is higher10

than that of the two conceptual models used in this study. Overall, the ANN-E and
HBV models are the best performing two of the three models using ensemble P
and PET.

Further work should examine the effect of model parameters and initial conditions on
the seasonal low flow forecasts as the values of the maximum soil moisture and perco-15

lation related parameters of conceptual models can result in over- or under-prediction
of low flows. It is noteworthy to mention that the two data-driven models developed in
this study, i.e. ANN-E and ANN-I, can be applied to other large river basins elsewhere
in the world. Surprisingly, ANN-E and HBV showed a similar skill for seasonal fore-
casts although we expected that the two conceptual models, GR4J and HBV, would20

show similar results up to a lead time of 90 days. The skill score results of ANN-I may
seem contradictory, but they show that ANN-I is useless to predict whether a low flow
(as defined, below a threshold) will occur or not. For that purpose, one of the other
three models will be required. Though, if one of the other models predicts that a low
flow below a threshold will occur, ANN-I can be used to predict the magnitude of low25

flows, better than the other three models.
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Table 1. Overview of observed data used.

Variable Name Number of Period Time Spatial Source
stations/ step resolution

sub-basins (days)

Q Discharge 1 1951–2006 1 Point GRDC
P Precipitation 26 1951–2006 1 Basin average BfG
PET Potential evapotranspiration 26 1951–2006 1 Basin average BfG
h Mean altitude 26 – – Basin average BfG
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Table 2. Overview of ensemble seasonal meteorological forecast data.

Data Spatial Ensemble Period Time Lead
resolution size step time

(days) (days)

Forecasted P 0.25◦ ×0.25◦ 39+1 control 2002–2005 1 1–90
Forecasted PET 0.25◦ ×0.25◦ 39+1 control 2002–2005 1 1–90
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Table 3. Model descriptions. PET is potential evapotranspiration, P is precipitation, G is ground-
water and Q is discharge.

Model type Input Temporal Lag between Model Model

Conceptual Data-driven resolution forecast issue time lead
of input day and final step time

day of temporal (days)
averaging
(days)

GR4J P : Ensemble Daily P P : 0 Daily 1 to 90
PET: Ensemble Daily PET PET: 0
Q: State update Q: 1

HBV P : Ensemble Daily P P : 0 Daily 1 to 90
PET: Ensemble Daily PET PET: 0
Q: State update Q: 1

ANN-E P : Ensemble Daily P P : 0 Daily 1 to 90
PET: Ensemble Daily PET PET: 0
Q: State update Daily Q Q: 1

ANN-I P : Observed 110-day mean P P : 0 Daily 90
PET: Observed 180-day mean PET PET: 210
G: Observed 90-day mean G G: 210
Q: State update
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Table 4. Details of the five input cases.

Case Precipitation Potential evapotranspiration

1 Ensemble forecast Ensemble forecast
2 Ensemble forecast Climate mean
3 Climate mean Ensemble forecast
4 Climate mean Climate mean
5 Zero Ensemble forecast
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Table 5. Contingency table for the assessment of Q75 forecasts.

Observed Not observed

Forecasted hit : the event forecasted to false alarm: event forecasted
occur and did occur to occur, but did not occur

Not forecasted miss: the event forecasted not correct negative: event forecasted
to occur, but did occur not to occur and did not occur
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Table 6. Low flow contingency table for the assessment of forecasts.

Observed low flows

Deterministic Probabilistic

Forecasted low flows

Oj =1 (Low flow Oj =Observed
observed) frequency based on

long term climate (e.g.
Deterministic Fj =1 (Low flow 34/50 years indicates

forecasted if more than low flow for day j )
half of the ensemble
members indicate low flows) Fj =1 or 0
otherwise 0

Probabilistic Oj =1 Oj =Observed
frequency based on

Fj =Forecast frequency long term climate
Probablistic based on 40 ensemble

members (e.g. 23/40 Fj =Forecast frequency
members indicate low based on 40 ensemble
flows for day j ) members
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Table 7. Parameter ranges and calibrated values of the pre-selected four models.

Parameter Unit Range Calibrated Description
value

GR4J model

X1 [mm] 10–2000 461.4 Capacity of the production store

X2 [mm] −8 to +6 −0.3 Groundwater exchange coefficient

X3 [mm] 10–500 80.8 One day ahead capacity of the routing store

X4 [d] 0–4 2.2 Time base of the unit hydrograph

HBV model

FC [mm] 200–800 285.1 Maximum soil moisture capacity

LP [−] 0.1–1 0.7 Soil moisture threshold for reduction of
evapotranspiration

BETA [−] 1–6 2.2 Shape coefficient

CFLUX [mm d−1] 0.1–1 1.0 Maximum capillary flow from upper response
box to soil moisture zone

ALFA [−] 0.1–3 0.4 Measure for non-linearity of low flow in quick
runoff reservoir

KF [d−1] 0.005–0.5 0.01 Recession coefficient for quick flow reservoir

KS [d−1] 0.0005–0.5 0.01 Recession coefficient for base flow reservoir

PERC [mm d−1] 0.3–7 0.6 Maximum flow from upper to lower response box

ANN-E model

W1 [−] −10 to +10 −2.3 Weight of connection between 1st input node and
hidden neuron

W2 [−] −10 to +10 0.03 Weight of connection between 2nd input node and
hidden neuron

W3 [−] −10 to +10 −0.02 Weight of connection between 3rd input node and
hidden neuron

W4 [−] −10 to +10 3.7 Weight of connection between 4th input node
and hidden neuron

B1 [−] −10 to +10 0.02 Bias value in hidden layer

B2 [−] −10 to +10 1.1 Bias value in output layer

ANN-I model

W1 [−] −10 to +10 0.4 Weight of connection between 1st input node
and hidden neuron

W2 [−] −10 to +10 0.9 Weight of connection between 2nd input node
and hidden neuron

W3 [−] −10 to +10 0.9 Weight of connection between 3rd input node
and hidden neuron

W4 [−] −10 to +10 0.6 Weight of connection between 4th input node
and hidden neuron

B1 [−] −10 to +10 0.001 Bias value in hidden layer

B2 [−] −10 to +10 0.3 Bias value in output layer
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Figure 1. Schematisation of the four models. PET is potential evapotranspiration, P is precipi-
tation, G is groundwater, Q is discharge and t is the time (day).
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Figure 2. Calibration and validation results of (a) the ANN-E model with one, two and three
hidden neurons and (b) the four models used in this study. The same calibration (1971–2001)
and validation (1951–1970) periods are used for both plots.
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Figure 3. Range (shown as grey shade) of low flow forecasts in (a) 2002 (the wettest year of
the test period) (b) 2003 (the driest year of the test period) for a lead time of 90 days using
ensemble P and PET as input for GR4J, HBV and ANN-E models and using historical P , PET
and G as input for the ANN-I model (case 1 – 2002 and 2003).
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Figure 4. Range (shown as grey shade) of low flow forecasts in 2003 for a lead time of 90 days
using (a) ensemble P and climate mean PET (case 2) (b) climate mean P and ensemble PET
as input for GR4J, HBV and ANN-E models (case 3).
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Figure 5. Low flow forecasts in 2003 for a lead time of 90 days using both climate mean P and
PET as input for GR4J, HBV and ANN-E models (case 4).
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Figure 6. Skill scores for forecasting low flows at different lead times for three different hydro-
logical models.
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Figure 7. Reliability diagram for different low flow forecasts (a) low flows below Q75 threshold
(b) low flows below Q90 threshold (c) low flows below Q99 threshold. The forecasts are issued
for a lead time of 90 days for the test period 2002–2005 using ensemble P and PET as input
for GR4J, HBV and ANN-E models.
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