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Abstract 9 

This paper investigates the skill of 90 day low flow forecasts using two conceptual hydrological 10 

models and one data-driven model based on Artificial Neural Networks (ANNs) for the Moselle 11 

River. The three models, i.e. HBV, GR4J and ANN-Ensemble (ANN-E), all use forecasted 12 

meteorological inputs (Precipitation P and potential evapotranspiration PET), whereby we 13 

employ ensemble seasonal meteorological forecasts. We compared low flow forecasts for five 14 

different cases of seasonal meteorological forcing: (1) ensemble P and PET forecasts; (2) 15 

ensemble P forecasts and observed climate mean PET; (3) observed climate mean P and 16 

ensemble PET forecasts; (4) observed climate mean P and PET and (5) zero P and ensemble PET 17 

forecasts as input for the models. The ensemble P and PET forecasts, each consisting of 40 18 

members, reveal the forecast ranges due to the model inputs. The five cases are compared for a 19 

lead time of 90 days based on model output ranges, whereas the models are compared based on 20 

their skill of low flow forecasts for varying lead times up to 90 days. Before forecasting, the 21 

hydrological models are calibrated and validated for a period of 30 and 20 years respectively. The 22 

smallest difference between calibration and validation performance is found for HBV, whereas 23 
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the largest difference is found for ANN-E. From the results, it appears that all models are prone 24 

to over-predict runoff during low flow periods using ensemble seasonal meteorological forcing. 25 

The largest range for 90 day low flow forecasts is found for the GR4J model when using 26 

ensemble seasonal meteorological forecasts as input. GR4J, HBV and ANN-E under-predicted 90 27 

day ahead low flows in the very dry year 2003 without precipitation data. The results of the 28 

comparison of forecast skills with varying lead times show that GR4J is less skilful than ANN-E 29 

and HBV. Overall, the uncertainty from ensemble P forecasts has a larger effect on seasonal low 30 

flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions. 31 

 32 

Key words: Moselle River, GR4J, HBV, ANN, low flows, ensemble seasonal meteorological 33 

forecasts 34 

 35 
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1 INTRODUCTION 38 

Rivers in Western Europe usually experience low flows in late summer and high flows in winter. 39 

These two extreme discharge phenomena can lead to serious problems. For example, high flow 40 

events are quick and can put human life at risk, whereas streamflow droughts (i.e. low flows) 41 

develop slowly and can affect a large area. Consequently, the economic loss during low flow 42 

periods can be much bigger than during floods (Pushpalatha et al., 2011;Shukla et al., 2012). In 43 

the River Rhine, severe problems for freshwater supply, water quality, power production and 44 

river navigation were experienced during the dry summers of 1976, 1985 and 2003. Therefore, 45 

forecasting seasonal low flows (Towler et al., 2013;Coley and Waylen, 2006;Li et al., 2008) and 46 

understanding low flow indicators (Vidal et al., 2010;Fundel et al., 2013;Demirel et al., 47 

2013a;Wang et al., 2011;Saadat et al., 2013;Nicolle et al., 2013) have both societal and scientific 48 

value. The seasonal forecast of water flows is therefore listed as one of the priority topics in EU’s 49 

Horizon 2020 research program (EU, 2013). Further, there is an increasing interest to incorporate 50 

seasonal flow forecasts in decision support systems for river navigation and power plant 51 

operation during low flow periods. We are interested in forecasting low flows with a lead time of 52 

90 days, and in presenting the effect of ensemble meteorological forecasts for three hydrological 53 

models. 54 

Generally, two approaches are used in seasonal hydrological forecasting. The first one is a 55 

statistical approach, making use of data-driven models based on relationships between river 56 

discharge and hydroclimatological indicators (Wang et al., 2011;Van Ogtrop et al., 2011;Förster 57 

et al., 2014). The second one is a dynamic approach running a hydrological model with 58 

forecasted climate input.  59 
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The first approach is often preferred in regions where significant correlations between river 60 

discharge and climatic indicators exist, such as sea surface temperature anomalies (Chowdhury 61 

and Sharma, 2009), AMO – Atlantic Multi-decadal Oscillation (Ganguli and Reddy, 62 

2013;Giuntoli et al., 2013), PDO – Pacific Decadal Oscillation (Soukup et al., 2009) and warm 63 

and cold phases of the ENSO – El Nino Southern Oscillation - index (Chiew et al., 2003;Kalra et 64 

al., 2013;Tootle and Piechota, 2004). Kahya and Dracup (1993) identified the lagged response of 65 

regional streamflow to the warm phase of ENSO in the south-eastern United States. In the Rhine 66 

basin, no teleconnections have been found between climatic indices, e.g. NAO and ENSO, and 67 

river discharges (Rutten et al., 2008;Bierkens and van Beek, 2009). However, Demirel et al. 68 

(2013a) found significant correlations between hydrological low flow indicators and observed 69 

low flows. They also identified appropriate lags and temporal resolutions of low flow indicators 70 

(e.g. precipitation, potential evapotranspiration, groundwater storage, lake levels and snow 71 

storage) to build data-driven models. 72 

The second approach is the dynamic seasonal forecasting approach which has long been explored 73 

(Wang et al., 2011;Van Dijk et al., 2013;Gobena and Gan, 2010;Fundel et al., 2013;Shukla et al., 74 

2013;Pokhrel et al., 2013) and has led to the development of the current ensemble streamflow 75 

prediction system (ESP) used by different national climate services like the National Weather 76 

Service in the United States. The seasonal hydrologic prediction systems are most popular in 77 

regions with a high risk of extreme discharge situations like hydrological droughts (Robertson et 78 

al., 2013;Madadgar and Moradkhani, 2013). Well-known examples are the NOAA Climate 79 

Prediction Centre’s seasonal drought forecasting system (available at 80 

http://www.cpc.ncep.noaa.gov), the University of Washington’s Surface Water Monitoring 81 

system (Wood and Lettenmaier, 2006), Princeton University’s drought forecast system (available 82 

at http://hydrology.princeton.edu/forecast) and University of Utrecht’s global monthly 83 
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hydrological forecast system (Yossef et al., 2012). These models provide indications about the 84 

hydrologic conditions and their evolution across the modelled domain using available weather 85 

ensemble inputs (Gobena and Gan, 2010;Yossef et al., 2012). Moreover, Dutra et al. (2014) 86 

showed that global seasonal forecasts of meteorological drought onset are feasible and skilful 87 

using the standardized precipitation index (SPI) and two data sets as initial conditions.  88 

Many studies have investigated the seasonal predictability of low flows in different rivers such as 89 

the Thames and different other rivers in the UK (Bell et al., 2013;Wedgbrow et al., 90 

2002;Wedgbrow et al., 2005), the Shihmen and Tsengwen Rivers in Taiwan (Kuo et al., 2010), 91 

the River Jhelum in Pakistan (Archer and Fowler, 2008), more than 200 rivers in France (Sauquet 92 

et al., 2008;Giuntoli et al., 2013), five semi-arid areas in South Western Queensland, Australia 93 

(Van Ogtrop et al., 2011), five rivers including Limpopo basin and the Blue Nile in Africa (Dutra 94 

et al., 2013;Winsemius et al., 2014), the Bogotá River in Colombia (Felipe and Nelson, 2009), 95 

the Ohio in the eastern US (Wood et al., 2002;Luo et al., 2007;Li et al., 2009), the North Platte in 96 

Colorado, US (Soukup et al., 2009), large rivers in the US (Schubert et al., 2007;Shukla and 97 

Lettenmaier, 2011) and the Thur River in the north-eastern part of Switzerland (Fundel et al., 98 

2013). The common result of the above mentioned studies is that the skill of the seasonal 99 

forecasts made with global and regional hydrological models is reasonable for lead times of 1-3 100 

months (Shukla and Lettenmaier, 2011;Wood et al., 2002) and these forecasting systems are all 101 

prone to large uncertainties as their forecast skills mainly depend on the knowledge of initial 102 

hydrologic conditions and weather information during the forecast period (Shukla et al., 103 

2012;Yossef et al., 2013;Li et al., 2009;Doblas-Reyes et al., 2009). In a recent study, Yossef et al. 104 

(2013) used a global monthly hydrological model to analyse the relative contributions of initial 105 

conditions and meteorological forcing to the skill of seasonal streamflow forecasts. They 106 

included 78 stations in large basins in the world including the River Rhine for forecasts with lead 107 
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times up to 6 months. They found that improvements in seasonal hydrological forecasts in the 108 

Rhine depend on better meteorological forecasts, which underlines the importance of 109 

meteorological forcing quality particularly for forecasts beyond lead times of 1-2 months.  110 

Most of the previous River Rhine studies use only one hydrological model, e.g. PREVAH 111 

(Fundel et al., 2013) or PCR-GLOBWB (Yossef et al., 2013), to assess the value of ensemble 112 

meteorological forcing, whereas in this study, we compare three hydrological models with 113 

different structures varying from data-driven to conceptual models. The two objectives of this 114 

study are to contrast data-driven and conceptual modelling approaches and to assess the effect of 115 

ensemble seasonal forecasted precipitation and potential evapotranspiration on low flow forecast 116 

quality and skill scores. By comparing three models with different model structures we address 117 

the issue of model structure uncertainty, whereas the latter objective reflects the benefit of 118 

ensemble seasonal forecasts. Moreover, the effect of initial model conditions is partly addressed 119 

using climate mean data in one of the cases.  120 

The analysis complements recent efforts to analyse the effects of ensemble weather forecasts on 121 

low flow forecasts with a lead time of 10 days using two conceptual models (Demirel et al., 122 

2013b), by studying the effects of seasonal ensemble weather forecasts on 90 day low flow 123 

forecasts using not only conceptual models but also data-driven models.  124 

The outline of the paper is as follows. The study area and data are presented in section 2. Section 125 

3 describes the model structures, their calibration and validation set-ups and the methods 126 

employed to estimate the different attributes of the forecast quality. The results are presented in 127 

section 4 and discussed in section 5, and the conclusions are summarised in section 6. 128 

  129 
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2 STUDY AREA AND DATA 130 

2.1 Study area 131 

The study area is the Moselle River basin, the largest sub-basin of the Rhine River basin. The 132 

Moselle River has a length of 545 km. The river basin has a surface area of approximately 27,262 133 

km2. The altitude in the basin varies from 59 to 1326 m, with a mean altitude of 340 m (Demirel 134 

et al., 2013a). There are 26 subbasins with surface areas varying from 102 to 3353 km
2
. 135 

Approximately 410 mm (~130 m3s−1) discharge is annually generated in the Moselle basin 136 

(Demirel et al., 2013b). The outlet discharge at Cochem varies from 14 m3s−1 
in dry summers to 137 

a maximum of 4000 m3s−1 
during winter floods.  138 

The Moselle River has been heavily regulated by dams, power plants, weirs and locks. There are 139 

around 12 hydropower plants between Koblenz and Trier producing energy since the 1960s 140 

(Bormann, 2010). Moreover, there are 12 locks only on the German part of the river (Bormann et 141 

al., 2011).  142 

 143 

2.2 Data 144 

2.2.1 Observed data 145 

Observed daily data on precipitation (P), potential evapotranspiration (PET) and the mean 146 

altitudes (h) of the 26 sub-basins have been provided by the German Federal Institute of 147 

Hydrology (BfG) in Koblenz, Germany (Table 1). PET is estimated using the Penman-Wendling 148 

equation (ATV-DVWK, 2002) and both variables have been spatially averaged by BfG over 26 149 

Moselle sub-basins using areal weights. Observed data from 12 meteorological stations in the 150 

Moselle basin (as part of 49 stations over the Rhine basin), mainly provided by the CHR, the 151 
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DWD, Metéo France, are used to estimate the basin averaged input data (Görgen et al., 2010). 152 

Observed daily discharge (Q) data at Cochem (station #6336050) are provided by the Global 153 

Runoff Data Centre (GRDC), Koblenz. The daily observed data (P, PET and Q) are available for 154 

the period 1951-2006. 155 

 156 
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Table 1 Overview of observed data used 157 

 158 

Variable Name 
Number of 

stations/sub-basins 
Period 

Annual 

Range (mm) 

Time step 

(days) 

Spatial 

resolution 
Source 

Q Discharge  1 1951-2006 163-550 1 Point GRDC 

P Precipitation 26 1951-2006 570-1174  1 Basin average BfG 

PET Potential evapotranspiration 26 1951-2006 512-685  1 Basin average BfG 

h Mean altitude 26 - - - Basin average BfG 

 159 

 160 

 161 
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2.2.2 Ensemble seasonal meteorological forecast data 162 

The ensemble seasonal meteorological forecast data, comprising 40 members, are obtained from 163 

the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting 164 

archive and retrieval system, i.e. MARS system 3 (ECMWF, 2012). This dataset contains regular 165 

0.25 x 0.25 degree latitude-longitude grids and each ensemble member is computed for a lead 166 

time of 184 days using perturbed initial conditions and model physics (Table 2). We estimated 167 

the PET forecasts using the Penman-Wendling equation requiring forecasted surface solar 168 

radiation and temperature at 2 meter above the surface, and the altitude of the sub-basin (ATV-169 

DVWK, 2002). The PET estimation is consistent with the observed PET estimation carried out 170 

by BfG (ATV-DVWK, 2002). The grid-based P and PET ensemble forecast data are firstly 171 

interpolated over 26 Moselle sub-basins using areal weights. These sub-basin averaged data are 172 

then aggregated to the Moselle basin level. 173 

 174 

Table 2 Overview of ensemble seasonal meteorological forecast data 175 

 176 

Data 
Spatial 

resolution 

Ensemble size 

Period 
Time step 

(days) 

Lead 

time 

(days) 

Forecasted P 0.25 x 0.25 degree 39 + 1 control 2002-2005 1 1-90 

Forecasted PET 0.25 x 0.25 degree 39 + 1 control 2002-2005 1 1-90 

 177 

 178 

  179 
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3 METHODOLOGY 180 

3.1 Overview of model structures and forecast scheme 181 

The three hydrological models (GR4J, HBV and ANN-E) are briefly described in sections 3.1.1-182 

3.1.3. Figure 1 shows the simplified model structures. The calibration and validation of the 183 

models is described in section 3.1.4. Five cases with different combinations of ensemble 184 

meteorological forecast input and climate mean input are introduced in section 3.1.5. We provide 185 

a detailed description for each parameter of the three models in section 4.1. 186 
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 187 

 188 

Figure 1 Schematisation of the three models. PET is potential evapotranspiration, P is precipitation and Q is discharge and t is the time 189 

(day).  190 

 191 
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 192 

3.1.1 GR4J 193 

The GR4J model (Génie Rural à 4 paramètres Journalier) is used as it has a parsimonious 194 

structure with only four parameters. The model has been tested over hundreds of basins 195 

worldwide, with a broad range of climatic conditions from tropical to temperate and semi-arid 196 

basins (Perrin et al., 2003). GR4J is a conceptual model and the required model inputs are daily 197 

time series of P and PET (Table 3). All four parameters (Figure 1a) are used to calibrate the 198 

model. The upper and lower limits of the parameters are selected based on previous works (Perrin 199 

et al., 2003;Pushpalatha et al., 2011;Tian et al., 2014). 200 

3.1.2 HBV 201 

The HBV conceptual model (Hydrologiska Byråns Vattenbalansavdelning) was developed by the 202 

Swedish Meteorological and Hydrological Institute (SMHI) in the early 1970´s (Lindström et al., 203 

1997). The HBV model consists of four subroutines: a precipitation and snow accumulation and 204 

melt routine, a soil moisture accounting routine and two runoff generation routines. The required 205 

input data are daily P and PET. The snow routine and daily temperature data are not used in this 206 

study as the Moselle basin is a rain-fed basin. Eight parameters (see Figure 1b) in the HBV model 207 

are calibrated (Engeland et al., 2010;Van den Tillaart et al., 2013;Tian et al., 2014). The eight 208 

parameters are selected for calibration and the parameter ranges are selected based on previous 209 

works (Booij, 2005;Eberle, 2005;Tian et al., 2014). 210 
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3.1.3 ANN-E 211 

An Artificial Neural Network (ANN) is a data-driven model inspired by functional units 212 

(neurons) of the human brain (Elshorbagy et al., 2010). A neural network is a universal 213 

approximator capable of learning the patterns and relation between outputs and inputs from 214 

historical data and applying it for extrapolation (Govindaraju and Rao, 2000). A three-layer feed-215 

forward neural network (FNNs) is the most widely preferred model architecture for prediction 216 

and forecasting of hydrological variables (Adamowski et al., 2012;Shamseldin, 1997;Kalra et al., 217 

2013). Each of these three layers has an important role in processing the information. The first 218 

layer receives the inputs and multiplies them with a weight (adds a bias if necessary) before 219 

delivering them to each of the hidden neurons in the next layer (Gaume and Gosset, 1999). The 220 

weights determine the strength of the connections. The number of nodes in this layer corresponds 221 

to the number of inputs. The second layer, the hidden layer, consists of an activation function 222 

(also known as transfer function) which non-linearly maps the input data to output target values. 223 

In other words, this layer is the learning element of the network which simulates the relationship 224 

between inputs and outputs of the model. The third layer, the output layer, gathers the processed 225 

data from the hidden layer and delivers the final output of the network.  226 

A hidden neuron is the processing element with n inputs (x1, x2, x3, …, xn), and one output y using 227 

Eq (1). 228 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 𝑙𝑜𝑔𝑠𝑖𝑔 [(∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

) + 𝑏] 
(1) 

where 𝑤𝑖  are the weights, b is the bias, and logsig is the logarithmic sigmoid activation function. 229 

We tested the tansig and logsig activation functions and the latter was selected for this study as it 230 

gave better results for low flows. ANN model structures are determined based on the forecast 231 
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objective. In this study, we used a conceptual type ANN model structure: ANN-Ensemble (ANN-232 

E) which requires daily P, PET and historical Q as input. Observed discharge on the forecast 233 

issue day is used to update the model states (Table 3). In other words, the ANN-E model receives 234 

Qobs(t) as input on the time step t when the forecast is issued, and then receives the streamflow 235 

forecast of the previous time step as input for lead times larger than 1 day. Further, forecasted Q 236 

for time step t+j is used as input to forecast Q at t+j+1.  237 

This is a one day memory which also exists in the conceptual models, i.e. GR4J and HBV (Figure 238 

1). The ANN-E is assumed to be comparable with the conceptual models with similar model 239 

structures. The determination of the optimal number of hidden neurons in the second layer is an 240 

important issue in the development of ANN models. Three common approaches are ad hoc (also 241 

known as trial and error), global and stepwise (Kasiviswanathan et al., 2013). We used a global 242 

approach (i.e. Genetic Algorithm) to avoid local minima (De Vos and Rientjes, 2008) and tested 243 

the performance of the networks with one, two and three hidden neurons corresponding to a 244 

number of parameters (i.e. number of weights and biases) of 6, 11 and 16 respectively. Based on 245 

the parsimonious principle, testing ANNs only up to three hidden neurons is assumed to be 246 

enough as the number of parameters increases exponentially for every additional hidden neuron. 247 

 248 

Table 3 Model descriptions. PET is potential evapotranspiration, P is precipitation and Q is 249 

discharge. 250 

 251 

Model Type Input 

Temporal 

resolution 

of input 

Lag between 

forecast issue 

day and final 

day of 

temporal 

averaging 

(days) 

Model 

time 

step 

Model 

lead time 

(days) Conceptual Data-driven  

 
 

P: Ensemble  

PET: Ensemble 

Q: State update 

Daily P 

Daily PET 

P: 0 
PET: 0 
Q: 1 

Daily 1 to 90 
GR4J 
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P: Ensemble  

PET: Ensemble 

Q: State update 

Daily P 

Daily PET 

P: 0 
PET: 0 
Q: 1 

Daily 1 to 90 

  
P: Ensemble  

PET: Ensemble 

Q: State update 

Daily P 

Daily PET 

Daily Q 

P: 0 
PET: 0 
Q: 1 

Daily 1 to 90 

 252 

3.1.4 Calibration and validation of models 253 

A global optimisation method, i.e. Genetic Algorithm (GA) (De Vos and Rientjes, 2008), and 254 

historical Moselle low flows for the period from 1971-2001 are used to calibrate the models used 255 

in this study. The 30-year calibration period is carefully selected as the first low flow forecast is 256 

issued on 01/01/2002. The first three years are used as warm-up period for the hydrological 257 

model. For all GA simulations, we use 100 as population size, 5 as reproduction elite count size, 258 

0.7 as cross over fraction, 2000 as maximum number of iterations and 5000 as the maximum 259 

number of function evaluations based on the studies by De Vos and Rientjes (2008) and 260 

Kasiviswanathan et al. (2013). The evolution starts from the population of 100 randomly 261 

generated individuals. The population in each iteration is called a generation and the fitness of 262 

every individual in the population is evaluated using the objective function. The best 70 percent 263 

of the population (indicated as cross over fraction) survives in the process of 2000 iterations.  264 

The validation period spans from 1951-1970. The definition of low flows, i.e. discharges below 265 

the Q75 threshold of ~113 m3s−1, is based on previous work by Demirel et al. (2013a). Prior 266 

parameter ranges and deterministic equations used for dynamic model state updates of the 267 

conceptual models based on observed discharges on the forecast issue day are based on the study 268 

by Demirel et al. (2013b). In this study, we use a hybrid Mean Absolute Error (MAE) based on 269 

HBV 

ANN-E 
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only low flows (𝑀𝐴𝐸𝑙𝑜𝑤) and inverse discharge values (𝑀𝐴𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑒) as objective function (see 270 

Eq.(4)). 271 

Mean Absolute Error 𝑙𝑜𝑤 : 
1

𝑚
∑|𝑄𝑠𝑖𝑚(𝑗) − 𝑄𝑜𝑏𝑠(𝑗)|

𝑚

𝑗=1

 
(2) 

where 𝑄𝑜𝑏𝑠 and 𝑄𝑠𝑖𝑚 are the observed and simulated values for the j-th observed low flow day 272 

(i.e. 𝑄𝑜𝑏𝑠 < 𝑄75) and m is the total number of low flow days. 273 

 274 

Mean Absolute Error 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 : 
1

𝑛
∑ |

1

𝑄𝑠𝑖𝑚(𝑖) + 𝜖
−

1

𝑄𝑜𝑏𝑠(𝑖) + 𝜖
|

𝑛

𝑖=1

 

 

(3) 

where n is the total number of days (i.e. 𝑚 < 𝑛), and 𝜖 is 1% of the mean observed discharge to 275 

avoid infinity during zero discharge days (see Pushpalatha et al.,(2012)). The hybrid Mean 276 

Absolute Error is defined as 277 

𝑀𝐴𝐸ℎ𝑦𝑏𝑟𝑖𝑑 = 𝑀𝐴𝐸𝑙𝑜𝑤  +  𝑀𝐴𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑒 (4) 

 278 

The 𝑀𝐴𝐸𝑙𝑜𝑤 and 𝑀𝐴𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑒 were not normalised to calculate 𝑀𝐴𝐸ℎ𝑦𝑏𝑟𝑖𝑑 metric. It should be 279 

noted that we didn’t fully neglect the high and intermediate flows using 𝑀𝐴𝐸𝑖𝑛𝑣𝑒𝑟𝑠𝑒 , whereas 280 

only low flow periods are considered in 𝑀𝐴𝐸𝑙𝑜𝑤. This is one of the advantages of using the 281 

𝑀𝐴𝐸ℎ𝑦𝑏𝑟𝑖𝑑 metric and also avoids redundancy. 282 

 283 
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3.1.5 Model storage update procedure for HBV and GR4J models 284 

The storages in the two conceptual models are updated based on the observed discharge on the 285 

forecast issue day. In our previous study (Demirel et al., 2013c), we derived empirical relations 286 

between the simulated discharge and the fast runoff for each model to divide the observed 287 

discharge between the fast and slow runoff components ( Eq. (5) and (6)). 288 

𝑘_𝐺𝑅4𝐽 =
𝑄𝑑

𝑄𝑟 + 𝑄𝑑
 (5) 

𝑘_𝐻𝐵𝑉 =
𝑄𝑓

𝑄𝑓 + 𝑄𝑠
 (6) 

The 𝑄𝑓 and 𝑄𝑠 in the HBV model, and 𝑄𝑟 and 𝑄𝑑 in the GR4J model are estimated using the 289 

fractions above and the observed discharge value on the forecast issue day. The routing storage 290 

(R) in the GR4J model is updated for a given value of the X3 parameter using Eq.(7). Moreover, 291 

the surface water (SW) and groundwater (GW) storages in the HBV model are updated for given 292 

values of KF, ALFA and KS parameters using Eq. (8) and (9). 293 

𝑄𝑟 = 𝑅 {1 − [1 + (
𝑅

𝑋3
)

4

]

−1/4

} (7) 

𝑆𝑊 = (
𝑄𝑓

𝐾𝐹
)

(
1

(1+𝐴𝐿𝐹𝐴)
)

 (8) 

𝐺𝑊 =
𝑄𝑠

𝐾𝑆
 (9) 

The remaining two storages S (in GR4J) and SM (in HBV) are updated using the calibrated model 294 

run until the forecast issue day (i.e. top-down approach).  295 

 296 

  297 



Revised Manuscript for HESS  23.12.2014 

19/51 

 

3.1.6 Case description 298 

In this study, three hydrological models are used for the seasonal forecasts. Five ensemble 299 

meteorological forecast input cases for ANN-E, GR4J and HBV models are compared: (1) 300 

ensemble P and PET forecasts (2) ensemble P forecasts and observed climate mean PET (3) 301 

observed climate mean P and ensemble PET forecasts (4) observed climate mean P and PET (5) 302 

zero P and ensemble PET forecasts (Table 4). P and PET forecasts are joint forecasts in our 303 

modelling practice. For example, if the first ensemble member is called from P then the first 304 

member from PET is also called to force the hydrological model.  305 

Cases 1-4 are the different possible combinations of ensemble and climate mean meteorological 306 

forcing. Case 5 is analysed to determine to which extent the precipitation forecast in a very dry 307 

year (2003) is important for seasonal low flow forecasts. It should be noted that all available 308 

historical data (1951-2006) were used to estimate the climate mean. For example the climate 309 

mean for January 1st is estimated by the average of 55 January 1st values in the available period 310 

(1951-2006). 311 

Table 4 Details of the five input cases 312 

 313 

Case Precipitation  

(P) 

The number of 

ensemble members 

(P) 

Potential 

evapotranspiration 

(PET) 

The number of 

ensemble members 

(PET) 

1 Ensemble forecast 40 Ensemble forecast 40 

2 Ensemble forecast 40 Climate mean 1 

3 Climate mean 1 Ensemble forecast 40 

4 Climate mean 1 Climate mean 1 

5 Zero  0 Ensemble forecast 40 

 314 

 315 
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3.2 Forecast Skill Scores 316 

Three probabilistic forecast skill scores (Brier Skill Score, reliability diagram, hit and false alarm 317 

rates) and one deterministic forecast skill score (Mean Forecast Score) are used to analyse the 318 

results of low flow forecasts with lead times of 1-90 days. Forecasts for each day in the test 319 

period (2002-2005) are used to estimate these scores. The Mean Forecast Score focusing on low 320 

flows is introduced in this study, whereas the other three scores have been often used in 321 

meteorology (WMO, 2012) and flood hydrology (Velázquez et al., 2010;Renner et al., 322 

2009;Thirel et al., 2008). For the three models, i.e. GR4J, HBV and ANN-E, the forecast 323 

probability for each forecast day is estimated as the ratio of the number of ensemble members 324 

non-exceeding the preselected thresholds (here Q75) and the total number of ensemble members 325 

(i.e. 40 members) for that forecast day.  326 

3.2.1 Brier Skill Score (BSS) 327 

The Brier Skill Score (BSS) (Wilks, 1995) is often used in hydrology to evaluate the quality of 328 

probabilistic forecasts (Devineni et al., 2008;Hartmann et al., 2002;Jaun and Ahrens, 329 

2009;Roulin, 2007;Towler et al., 2013).  330 

Brier Skill Score: 1 −
𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐵𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦
 (10) 

where the 𝐵𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is the Brier Score (BS) for the forecast, defined as: 331 

Brier Score: 
1

𝑛
∑(𝐹𝑡 − 𝑂𝑡)2

𝑛

𝑡=1

 (11) 

where 𝐹𝑡 refers to the forecast probability, 𝑂𝑡 refers to the observed probability (𝑂𝑡=1 if the 332 

observed flow is below the low flow threshold, 0 otherwise), and n is the sample size. 333 

𝐵𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦 is the BS for the climatology, which is also calculated from Eq. (11) for every year 334 
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using climatological probabilities. BSS values range from minus infinity to 1 (perfect forecast). 335 

Negative values indicate that the forecast is less accurate than the climatology and positive values 336 

indicate more skill compared to the climatology. 337 

3.2.2 Reliability Diagram 338 

The reliability diagram is used to evaluate the performance of probabilistic forecasts of selected 339 

events, i.e. low flows. A reliability diagram represents the observed relative frequency as a 340 

function of forecasted probability and the 1:1 diagonal shows the perfect reliability line 341 

(Velázquez et al., 2010;Olsson and Lindström, 2008). This comparison is important as reliability 342 

is one of the three properties of a hydrological forecast (WMO, 2012). A reliability diagram 343 

shows the portion of observed data inside preselected forecast intervals. 344 

In this study, exceedence probabilities of 50%, 75%, 85%, 95%, and 99% are chosen as 345 

thresholds to categorize the discharges from mean flows to extreme low flows. The forecasted 346 

probabilities are then divided into bins of probability categories; here, five bins (categories) are 347 

chosen 0-20%, 20%-40%, 40%-60%, 60%-80% and 80%-100%. The observed frequency for 348 

each day is chosen to be 1 if the observed discharge is below the low flow threshold, or 0, if not.  349 

3.2.3 Hit and False Alarm Rates 350 

We used hit and false alarm rates to assess the effect of ensembles on low flow forecasts for 351 

varying lead times. The hit and false alarm rates indicate respectively the proportion of events for 352 

which a correct warning was issued, and the proportion of non events for which a false warning 353 

was issued by the forecast model. These two simple rates can be easily calculated from 354 

contingency tables (Table 5) using Eq. (12) and (13). These scores are often used for evaluating 355 

flood forecasts (Martina et al., 2006), however, they can also be used to estimate the utility of low 356 



Revised Manuscript for HESS  23.12.2014 

22/51 

 

flow forecasts as they indicate the models’ ability to correctly forecast the occurrence or non-357 

occurrence of preselected events (i.e. 𝑄75 low flows). There are four cases in a contingency table 358 

as shown in Table 5. 359 

 360 
Table 5 Contingency table for the assessment of low-flow events based on the Q75 361 

 362 

 Observed Not observed 

Forecasted hit: the event forecasted to 

occur and did occur 

false alarm: event forecasted 

to occur, but did not occur 

Not forecasted miss: the event forecasted not 

to occur, but did occur 

correct negative: event 

forecasted not to occur and did 

not occur 

 363 

 364 

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =
ℎ𝑖𝑡𝑠

(ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠)
 (12) 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)
 (13) 

3.2.4 Mean Forecast Score (MFS) 365 

The Mean Forecast Score (MFS) is a new skill score which can be derived from either 366 

probabilistic or deterministic forecasts. The probabilities are calculated for the days when low 367 

flow occurred. In this study we used a deterministic approach for calculating the observed 368 

frequency for all three models. For all three models, ensembles are used for estimating forecast 369 

probabilities. The score is calculated as below only for deterministic observed low flows. 370 

 371 

 372 
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Mean Forecast Score ∶
1

𝑚
∑ 𝐹𝑗

𝑚

𝑗=1

 (14) 

where 𝐹𝑗 is the forecast probability for the j-th observed low flow day (i.e. 𝑂𝑗 ≤ 𝑄75) and m is the 373 

total number of low flow days. The probability of a deterministic forecast can be 0 or 1, whereas 374 

it varies from 0 to 1 for ensemble members. For instance, if 23 of the 40 ensemble forecast 375 

members indicate low flows for the j-th low flow day then 𝐹𝑗 = 23/40. It should be noted that this 376 

score is not limited to low flows as it has a flexible forecast probability definition which can be 377 

adapted to any type of discharges. MFS values range from zero to 1 (perfect forecast). 378 

  379 
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4 RESULTS 380 

4.1 Calibration and validation 381 

Table 6 shows the parameter ranges and the best performing parameter sets of the three models. 382 

The GR4J and HBV models have both well-defined model structures; therefore, their calibration 383 

was more straightforward than the calibration of the ANN models. Calibration of the ANN-E 384 

model was done in two steps. First, the number of hidden neurons was determined by testing the 385 

performance of the ANN-E model with one, two and three hidden neurons.  386 

 387 

Table 6 Parameter ranges and calibrated values of the pre-selected three models 388 

Parameter Unit Range 
Calibrated 

value 
Description 

GR4J model 

X1 [mm] 10-2000 461.4 Capacity of the production store  
X2 [mm] -8 to +6 -0.3 Groundwater exchange coefficient  
X3 [mm] 10-500 80.8 One day ahead capacity of the routing store  
X4 [d] 0-4 2.2 Time base of the unit hydrograph  

HBV model 
FC [mm] 200-800 285.1 Maximum soil moisture capacity  
LP [-] 0.1-1 0.7 Soil moisture threshold for reduction of 

evapotranspiration  
BETA [-] 1-6 2.2 Shape coefficient  
CFLUX [mm/d] 0.1-1 1.0 Maximum capillary flow from upper response 

box to soil moisture zone  
ALFA [-] 0.1-3 0.4 Measure for non-linearity of low flow in quick 

runoff reservoir  
KF [d

-1
] 0.005-0.5 0.01 Recession coefficient for quick flow reservoir  

KS [d
-1

] 0.0005-0.5 0.01 Recession coefficient for base flow reservoir  
PERC [mm/d] 0.3-7 0.6 Maximum flow from upper to lower response 

box  
ANN-E model 

W1 [-] -10 to +10  -2.3 Weight of connection between 1
st
 input node (P) and 

hidden neuron 

W2 [-] -10 to +10 0.03 Weight of connection between 2
nd

 input node (PET) 

and hidden neuron 

W3 [-] -10 to +10 -0.02 Weight of connection between 3
rd

 input node  

(Q(t-1)) and hidden neuron 

W4 [-] -10 to +10 3.7 Weight of connection between hidden neuron and 

output node 

B1 [-] -10 to +10 0.02 Bias value in hidden layer 
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B2 [-] -10 to +10 1.1 Bias value in output layer 

 389 

Second, daily P, PET and Q are used as three inputs for the tested ANN-E model with one, two 390 

and three hidden neurons due to the fact that these inputs are comparable with the inputs of the 391 

GR4J and HBV models. Figure 2a shows that the performance of the ANN-E model does not 392 

improve with additional hidden neurons. Based on the performance in the validation period, one 393 

hidden neuron is selected. GR4J and HBV are also calibrated. The results of the three models 394 

used in this study are presented in Figure 2b. 395 

The performances of GR4J and HBV are similar in the calibration period, whereas HBV 396 

performs better in the validation period (Figure 2b). This is not surprising, since HBV has a more 397 

sophisticated model structure than GR4J.  398 

 399 

It should be noted that the effect of anthropogenic activities (e.g. flood preventive regulations and 400 

urbanisation) on the alteration of flow magnitude and dynamics is not obvious as we found weak 401 

positive trends in all P, PET and Q series (p<0.025 for the three variables using Man Kendall 402 

method) which might be caused by climatic changes. Other studies reported that the trends in 403 

flood stages in Moselle River were not significant (Bormann et al., 2011). 404 

 405 

 406 
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 407 

 408 

 409 
 410 

Figure 2 Calibration and validation results of a) the ANN-E model with one, two and three hidden neurons and b) the three models 411 

used in this study. The same calibration (1971-2001) and validation (1951-1970) periods are used for both plots. 412 

 413 
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4.2 Effect of ensembles on low flow forecasts for 90 day lead time 414 

The effect of ensemble P and PET on GR4J, HBV and ANN-E is presented as a range bounded 415 

by the lowest and highest forecast values in Figure 3a and b. The two years, i.e. 2002 and 2003, 416 

are carefully selected as they represent a relatively wet year and a very dry year respectively. 417 

Figure 3a shows that there are significant differences between the three model results. The 90 day 418 

ahead low flows in 2002 are mostly over-predicted by the ANN-E model, whereas GR4J and 419 

HBV over-predict low flows observed after August. The over-prediction of low flows is more 420 

pronounced for GR4J than for the other three models. The over-prediction of low flows by ANN-421 

E is mostly at the same level. This less sensitive behaviour of ANN-E to the forecasted ensemble 422 

inputs shows the effect of the logarithmic sigmoid transfer function on the results. Due to the 423 

nature of this algorithm, input is rescaled to a small interval [0, 1] and the gradient of the sigmoid 424 

function at large values approximates zero (Wang et al., 2006). Further, ANN-E is also not 425 

sensitive to the initial model conditions updated on every forecast issue day. The less pronounced 426 

over-prediction of low flows by HBV compared to GR4J may indicate that the slow responding 427 

groundwater storage in HBV is less sensitive to different forecasted ensemble P and PET inputs 428 

(Demirel et al., 2013b).  429 
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 430 

 431 
 432 

Figure 3 Range (shown as grey shade) of low flow forecasts in a) 2002 (the wettest year of the test period with 101 low flow days) b) 433 

2003 (the driest year of the test period with 192 low flow days) for a lead time of 90 days using ensemble P and PET as input for 434 

GR4J, HBV and ANN-E models (case 1 – 2002 and 2003). The gaps in the figures indicate non-low flow days (i.e. censored). 435 
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 436 

The results for 2003 are slightly different than those for 2002. As can be seen from Figure 3b the 437 

number of low flow days has increased in the dry year, i.e. 2003, and the low flows between 438 

August and November are not captured by any of the 40-ensemble forecasts using ANN-E. The 439 

most striking result in Figure 3b is that the low flows observed in the period between April and 440 

May are not captured by any of the three models, i.e. GR4J, HBV and ANN-E. The poor 441 

performance of the models during the spring period can be explained by the high precipitation 442 

amount in this period. The poor simulation of high flows in the preceding winter months can have 443 

an effect on the forecasts too. The 90 day low flows between October and November are better 444 

forecasted by GR4J and HBV than the ANN-E model. The two hydrological models used in this 445 

study have well defined surface and ground water components. Therefore, they react to the 446 

weather inputs in a physically meaningful way. However, in black box models, the step functions 447 

(transfer functions or activation functions) may affect the model behaviour. The ANN model will 448 

then react to a certain range of inputs based on the objective function. This feature of ANN is the 449 

main reason for the erratic behaviour in Figure 4b and the small (and uniform) uncertainty range 450 

in the figures (e.g. Figure 3). 451 

 452 

For the purpose of determining to which extent ensemble P and PET inputs and different initial 453 

conditions affect 90 day low flow forecasts, we run the models with different input combinations 454 

such as ensemble P or PET and climate mean P or PET and zero precipitation. Figure 4a shows 455 

the forecasts using ensemble P and climate mean PET as input for three models. The picture is 456 

very similar to Figure 3b as most of the observed low flows fall within the constructed forecast 457 

range by GR4J and HBV. The forecasts issued by GR4J are better than those issued by the other 458 

two models. However, the range of forecasts using GR4J is larger than for the other models 459 
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showing the sensitivity of the model for different precipitation inputs. It is obvious that most of 460 

the range in all forecasts is caused by uncertainties originating from ensemble precipitation input.  461 
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 462 

 463 
Figure 4 Range (shown as grey shade) of low flow forecasts in 2003 for a lead time of 90 days using a) ensemble P and climate mean 464 

PET (case 2) b) climate mean P and ensemble PET as input for GR4J, HBV and ANN-E models (case 3). The gaps in the figures 465 

indicate non-low flow days (i.e. censored). 466 
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 467 

Figure 4b shows the forecasts using climate mean P and ensemble PET as input for three models, 468 

i.e. GR4J, HBV and ANN-E. Interestingly, only GR4J could capture the 90 day low flows 469 

between July and November using climate mean P and ensemble PET showing the ability of the 470 

model to handle the excessive rainfall. None of the low flows were captured by HBV, whereas 471 

very few low flow events were captured by ANN-E (Figure 4b). The precipitation information is 472 

crucial for the conceptual models to forecast low flows for a lead time of 90 days. The narrow 473 

uncertainty band indicates that the effect of the PET ensemble on the forecasts is less pronounced 474 

as compared to the effect of the P ensemble.  475 

Figure 5a shows the forecasts using climate mean P and PET as input for three models. The 476 

results are presented by point values without a range since only one deterministic forecast is 477 

issued. There are significant differences in the results of the three models. For instance, all 90 day 478 

ahead low flows in 2003 are over-predicted by HBV, whereas the over-prediction of low flows is 479 

less pronounced for ANN-E. It is remarkable that GR4J can forecast a very dry year accurately 480 

using the climate mean. The low values of the calibrated maximum soil moisture capacity and 481 

percolation parameters of HBV (FC and PERC) can be the main reason for over-prediction of all 482 

low flows as the interactions of parameters with climate mean P input can result in higher model 483 

outputs.  484 
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 485 

 486 
 487 

Figure 5 Low flow forecasts in 2003 for a lead time of 90 days using a) both climate mean P and PET (case 4) and b) zero P and 488 

ensemble PET (case 5) as input for GR4J, HBV and ANN-E models. The gaps in the figures indicate non-low flow days (i.e. 489 

censored). 490 

 491 
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 492 

We also assessed the seasonal forecasts using zero P and ensemble PET as inputs for three 493 

models (Figure 5b). Not surprisingly, both GR4J and HBV under-predicted most of the low flows 494 

when they are run without precipitation input. The results of the case 5 confirm that the P input is 495 

very crucial for improving low flow forecasts although obviously less precipitation is usually 496 

observed in a low flow period compared to other periods.  497 

Figure 6 shows the performance of the three models in the test period using perfect P and PET 498 

forecasts as input. This is an idealistic case showing that GR4J model performs better than the 499 

other two models. It is interesting to note that ANN-E model does not produce constant 500 

predictions as in the previous figures showing the ability of this black box model to perform 501 

comparable to the conceptual models when configured and trained properly. 502 

 503 

 504 
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 505 

 506 

Figure 6 Benchmark reference forecasts using the three models (GR4J, HBV and ANN-E) using observed P and PET (i.e. perfect 507 

forecasts) 508 

 509 
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 510 

We also show the minimum and maximum prediction errors for each case in Table 7. There are 511 

large differences in case 1 and 2 as compared to the other cases. It is also obvious that the 512 

uncertainty range is larger in case 1 than in case 2 for the conceptual models. This is also what 513 

we see in Figure 3 and Figure 4 above. 514 

 515 

Table 7 Minimum and maximum prediction errors for low flow forecasts for a lead time of 90 516 

days during the test period 2002-2005  517 

 518 

Model Minimum , Median and Maximum MAE (m3/s) 

Case 1 Case 2 Case 3 Case 4 Case 5 
HBV [23  101  785] [23  72  600] [108  119  135] [105  105  105] [57  57  57] 
GR4J [33  122  906] [36  75  646] [46  61  111] [44  44  44] [55  58  59] 

ANN-E [17  94  227] [18  72  221] [65  73  80] [65  65  65] [16  16  17] 

 519 

4.3 Effect of ensembles on low flow forecast skill scores 520 

Figure 7 compares the three models and the effect of ensemble P and PET on the skill of 521 

probabilistic low flow forecasts with varying lead times. In this figure, four different skill scores 522 

are used to present the results of probabilistic low flow forecasts issued by GR4J, HBV and 523 

ANN-E. From an operational point of view, the main purpose of investigating the effect of 524 

ensembles and model initial conditions on ensemble low flow forecasts with varying lead times is 525 

to improve the forecast skills (e.g. hit rate, reliability, BSS and MFS) and to reduce false alarms 526 

and misses. From Figure 7 we can clearly see that the results of GR4J show the lowest BSS, MFS 527 

and hit rate. The false alarm rate of forecasts using GR4J is also the lowest compared to those 528 

using other models. The decrease in false alarm rates after a lead time of 20 days shows the 529 

importance of initial condition uncertainty for short lead time forecasts. The limit is around 20 530 

days for ANN-E and shorter for the other two models. When the forecast is issued on day (t), the 531 

model states are updated using the observed discharge on that day (t). For GR4J and HBV we 532 
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used the deterministic state update procedure described in section 3.1.5. However, the models 533 

probably spin-up after some days and improve the results for false alarm rate are improved. For 534 

longer lead times the error is better handled by the models. We further analysed the forecasted 535 

meteorological forcing data (P and PET) to see if there is any difference between the short lead 536 

time (~20 days) and long lead time (e.g. 90 days). This is done for three different lead times for 537 

each model when the false alarm rate was highest (i.e. 12, 15 and 21 days based on the false 538 

alarm rates of GR4J, HBV and ANN-E respectively.). We compared the boxplots from these 539 

problematic lead times with the 90 day lead time (not shown here but available in the review 540 

reports). It is interesting to note that the ranges for P and PET are larger at 90 day lead time as 541 

compared to shorter lead times. However, the observed P and PET values (i.e. perfect forecasts) 542 

are covered by the large ranges resulting in higher hit rates (i.e. lower false alarm rates). In other 543 

words, for short lead times, 12, 15 and 21 days in particular, the ranges for P and PET are smaller 544 

than those for the 90 day lead time but the observed P and PET values are usually missed causing 545 

higher false alarm rates in the results.  546 

It appears from the results that ANN-E and HBV show a comparable skill in forecasting low 547 

flows up to a lead time of 90 days.  548 

 549 
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 552 

Figure 7 Skill scores for forecasting low flows at different lead times for three different hydrological models for the test period 2002-553 

2005. Note that all forecasts (including high and low flow time steps) are used to estimate these skill scores. 554 
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 555 

Figure 8 compares the reliability of probabilistic 90 day low flows forecasts below different 556 

thresholds (i.e. Q75, Q90 and Q95) using ensemble P and PET as input for three models. The 557 

figure shows that the Q75 and Q90 low flow forecasts issued by the HBV model are more 558 

reliable compared to the other models. Moreover, all three models under-predict most of the 559 

forecast intervals. It appears from Figure 8c that very critical low flows (i.e. Q99) are under-560 

predicted by the GR4J model. 561 

 562 

 563 
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 564 

 565 

 566 
 567 

Figure 8 Reliability diagram for different low flow forecasts a) Low flows below Q75 threshold (584 observed events in the test period 568 

2002-2005) b) Low flows below Q90 threshold (250 observed events) c) Low flows below Q99 threshold (20 observed events). The 569 

forecasts are issued for a lead time of 90 days for the test period 2002-2005 using ensemble P and PET as input for GR4J, HBV and 570 

ANN-E models. 571 

 572 

 573 
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5 DISCUSSION 574 

To compare data-driven and conceptual modelling approaches and to evaluate the effects of 575 

seasonal meteorological forecasts on low flow forecasts, 40-member ensembles of ECMWF 576 

seasonal meteorological forecasts were used as input for three low flow forecast models.  577 

These models were calibrated using a hybrid low flow objective function. Although combining 578 

two metrics offered a selective evaluation of low flows, we have noted an important caveat using 579 

the second component of the hybrid metric as it is less sensitive as compared to the first part of 580 

the hybrid metric resulting in higher (optimistic) values for most cases. The different units had no 581 

effect on our calibration results as the ultimate calibration target value is zero (i.e. unit 582 

independent). Other studies also combined different metrics with different units (Nash Sutcliffe, 583 

RMSE, R
2
 and NumSC, i.e. the number of sign changes in the errors) into one objective function 584 

(Hamlet et al., 2013). However, the modellers should carefully use the hybrid function introduced 585 

in this study, in particular when comparing different model results. Plotting the two parts of this 586 

hybrid function as a Pareto front can lead to a more clear picture than simply summing the two 587 

metrics. 588 

In this study, different input combinations were compared to distinguish between the effects of 589 

ensemble P and PET and model initial conditions on 90 day low flow forecasts. The models 590 

could reasonably forecast low flows when ensemble P was introduced into the models. This result 591 

is in line with that of Shukla and Lettenmaier (2011) who found that seasonal meteorological 592 

forecasts have a greater influence than initial model conditions on the seasonal hydrological 593 

forecast skills. Moreover, our analyses show that the better forecast performance for longer lead 594 

times is an obvious artefact since the higher hit rates are the result of a more uncertain (larger 595 

range) forecasts. The probabilistic skill scores focuses on the forecasts, the uncertainty in the 596 
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meteorological forcing data should be carefully scrutinized using different quantitative screening 597 

methods e.g. box plots. 598 

Two other related studies also showed that the effect of a large spread in ensemble seasonal 599 

meteorological forecasts is larger than the effect of initial conditions on hydrological forecasts 600 

with lead times longer than 1-2 months (Li et al., 2009;Yossef et al., 2013). The encouraging 601 

results of low flow forecasts using ensemble seasonal precipitation forecasts for the hydrological 602 

models confirm the utility of seasonal meteorological forcing for low flow forecasts. Shukla et al. 603 

(2012) also found useful forecast skills for both runoff and soil moisture forecasting at seasonal 604 

lead times using the medium range weather forecasts.  605 

In this study, we also assessed the effects of ensemble P and PET on the skill scores of low flow 606 

forecasts with varying lead times up to 90 days. In general, the four skill scores show similar 607 

results. Not surprisingly, all models under-predicted low flows without precipitation information 608 

(zero P). The most evident two patterns in these scores are that first, the forecast skill drops 609 

sharply until a lead time of 30 days and second, the skill of probabilistic low flow forecasts 610 

issued by GR4J is the lowest, whereas the skill of forecasts issued by ANN-E is the highest 611 

compared to the other two models. Further, our study showed that data-driven models can be 612 

good alternatives to conceptual models for issuing seasonal low flow forecasts (e.g. Figure 6).  613 

The two hydrological models used in this study have well defined surface and ground water 614 

components. Therefore, they react to the weather inputs in a physically meaningful way. 615 

However, in black box models, the step functions (transfer functions or activation functions) may 616 

limit model sensitivity after the training. The ANN model will then react to a certain range of 617 

inputs based on the objective function. This feature of an ANN is the main reason for the small 618 

(and uniform) uncertainty range in the figures. The over prediction of the models is closely 619 

related to the over prediction of the P by the ensembles. Low flows are usually over predicted by 620 
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the models for the entire period. However, there are under-predictions of low flows for some days 621 

in November-December as well. Before June, none of the low flows are captured by the ensemble 622 

members. The best performing period is the fall and the worst performing period is the spring 623 

period for the models. The poor performance of the models during the spring period can be 624 

explained by the high precipitation amount in this period. Since the first part of the objective 625 

function used in this study solely focuses on low flows, the high flow period is less important in 626 

the calibration. The low flows occurring in the spring period are, therefore, missed in the 627 

forecasts. The simulation of snow cover during winter and snow melt during the spring can both 628 

have effects on the forecasts too. 629 

  630 
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6 CONCLUSIONS 631 

Three hydrological models have been compared regarding their performance in the calibration, 632 

validation and forecast periods, and the effect of seasonal meteorological forecasts on the skill of 633 

low flow forecasts has been assessed for varying lead times. The comparison of three different 634 

models help us to contrast data-driven and conceptual models in low flow forecasts, whereas 635 

running the models with different input combinations, e.g. climate mean precipitation and 636 

ensemble potential evapotranspiration, help us to identify which input source led to the largest 637 

range in the forecasts. A new hybrid low flow objective function, comprising the mean absolute 638 

error of low flows and the mean absolute error of inverse discharges, is used for comparing low 639 

flow simulations, whereas the skill of the probabilistic seasonal low flow forecasts has been 640 

evaluated based on the ensemble forecast range, Brier Skill Score, reliability, hit/false alarm rates 641 

and Mean Forecast Score. The latter skill score (MFS) focusing on low flows is firstly introduced 642 

in this study. In general our results showed that; 643 

 Based on the results of the calibration and validation, one hidden neuron in ANN was 644 

found to be enough for seasonal forecasts as additional hidden neurons did not increase 645 

the simulation performance. The difference between calibration and validation 646 

performances was smallest for the HBV model, i.e. the most sophisticated model used in 647 

this study.  648 

 Based on the results of the comparison of different model inputs for two years (i.e. 2002 649 

and 2003), the largest range for 90 day low flow forecasts is found for the GR4J model 650 

when using ensemble seasonal meteorological forecasts as input. Moreover, the 651 

uncertainty arising from ensemble precipitation has a larger effect on seasonal low flow 652 

forecasts than the effects of ensemble potential evapotranspiration. All models are prone 653 
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to over-predict low flows using ensemble seasonal meteorological forecasts. However, the 654 

precipitation forecasts in the forecast period are crucial for improving the low flow 655 

forecasts. As expected, all three models, i.e. GR4J, HBV and ANN-E under-predicted 90 656 

day ahead low flows in 2003 without rainfall data. 657 

 Based on the results of the comparison of forecast skills with varying lead times, the false 658 

alarm rate of GR4J is the lowest indicating the ability of the model of forecasting non-659 

occurrence of low flow days. The low flow forecasts issued by HBV are more reliable 660 

compared to the other models. The hit rate of ANN-E is higher than that of the two 661 

conceptual models used in this study. Overall, the ANN-E and HBV models are the best 662 

performing two of the three models using ensemble P and PET.  663 

 664 

Further work should examine the effect of model parameters and initial conditions on the 665 

seasonal low flow forecasts as the values of the maximum soil moisture and percolation related 666 

parameters of conceptual models can result in over- or under-prediction of low flows. The 667 

uncertainty increases in seasonal meteorological forecasts can lead to better skill scores as an 668 

artefact of large ranges in input. Therefore, the quality of the model inputs should be assessed in 669 

addition to the model outputs. It is noteworthy to mention that the data-driven model developed 670 

in this study, i.e. ANN-E, can be applied to other large river basins elsewhere in the world. 671 

Surprisingly, ANN-E and HBV showed a similar skill for seasonal forecasts, where a priori we 672 

expected that the two conceptual models, GR4J and HBV, would show similar results up to a 673 

lead time of 90 days. 674 

  675 
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