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Abstract  14 

We present results from snow-on and snow-off airborne-scanning LiDAR measurements over 15 

a 53-km
2
 area in the southern Sierra Nevada. We found that snow depth as a function of 16 

elevation increased approximately 15 cm 100 m
-1

, until reaching an elevation of 3300 m, 17 

where depth sharply decreased at a rate of 48 cm 100 m
-1

. Departures from the 15 cm 100 m
-1 

18 

trend, based on one-meter elevation-band means of regression residuals, showed slightly less-19 

steep increases below 2050 m; steeper increases between 2050-3300 m; and less-steep 20 

increases above 3300 m. Although the study area is partly forested, only measurements in 21 

open areas were used. Below approximately 2050 m elevation, ablation and rainfall are the 22 

primary causes of departure from the orographic trend. From 2050 to 3300 m, greater snow 23 

depths than predicted were found on the steeper terrain of the northwest and the less-steep 24 

northeast-facing slopes, suggesting that ablation, aspect, slope and wind redistribution all 25 

play a role in local snow-depth variability. At elevations above 3300 m orographic processes 26 

mask the effect of wind deposition when averaging over large areas. Also, terrain in this 27 

basin becomes less steep above 3300 m. This suggests a reduction in precipitation from 28 

upslope lifting, and/or the exhaustion of precipitable water from ascending air masses. Our 29 



 2 

results suggest a cumulative precipitation lapse rate for the 2100-3300 m range of about 6 cm 1 

100 m
-1

 elevation for the accumulation period of first snowfall, to snowdepth LiDAR 2 

acquisition, December 3
rd

, 2009 to March 23
rd

, 2010. This is a higher gradient than the 3 

widely used PRISM (Parameter-elevation Relationships on Independent Slopes Model) 4 

precipitation products, but similar to that from reconstruction of snowmelt amounts from 5 

satellite snowcover data. Our findings provide a unique characterization of the consistent, 6 

steep average increase in precipitation with elevation in snow-dominated terrain, using high-7 

resolution, highly-accurate data, as well as the importance of solar radiation, wind 8 

redistribution and mid-winter melt with regard to snow distribution. 9 

 10 

1 Introduction  11 

 In mountainous regions of the western United States snowmelt is the dominant 12 

contributor to surface runoff, water use by vegetation and groundwater recharge (Bales et al. 13 

2006; Earman and Dettinger, 2011). Because of their importance and the vulnerability of 14 

mountain snowpacks in a warmer climate, several researchers have recently developed 15 

scenarios for changes in annual and multiyear mountain water cycles, including, trends in 16 

water storage and runoff, groundwater recharge, and feedbacks with vegetation (Peterson et 17 

al., 2000; Marks et al., 2001; Lundquist et al., 2005; Maxwell and Kollet, 2008; Barnett et al., 18 

2008; Anderson and Goulden, 2011; Trujillo et al., 2012). 19 

 Given the challenges to measuring the spatial distribution of mountain precipitation, 20 

the processes controlling its distribution remain poorly understood. However, since a large 21 

majority of precipitation in the middle and upper elevations of the southern Sierra Nevada 22 

falls and accumulates as snow, with limited ablation through much of the winter, we can 23 

examine snow accumulation to assess processes governing the distribution of precipitation.  24 

 Snow accumulation across the mountains is primarily influenced by orographic 25 

processes, involving feedbacks between atmospheric circulation, terrain and the geomorphic 26 

processes of mountain uplift, erosion and glaciation on the earth’s surface (Roe, 2005; Roe 27 

and Baker, 2006; Pedersen et al., 2010; Kessler et al., 2006; Stolar et al., 2007; Galewsky, 28 

2009; Mott et al., 2014). Orographic precipitation is well documented and central to 29 

determining the amount of snow water equivalent (SWE) in mountainous regions. The Sierra 30 

Nevada, a major barrier to land-falling storms from the Pacific, is ideally oriented to produce 31 

orographic precipitation and exerts a strong influence on the upslope amplification of 32 

precipitation and the regional water budget (Pandey et al., 1999). Despite this well-developed 33 
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conceptual understanding, our ability to apply this knowledge at spatial and temporal scales 1 

relevant to questions of regional climate and local water-supply forecasting are limited by 2 

lack of accurate precipitation measurements across mountains (Viviroli et al., 2011). 3 

Additionally, long narrow land-falling bands of extra-tropical Pacific water vapor, referred to 4 

as atmospheric rivers, frequently deposit large fluxes of orographic precipitation as they 5 

ascend over the Sierra Nevada (Neiman et al., 2008; Ralph and Dettinger, 2011). 6 

Atmospheric rivers deposit approximately 40% of total winter snowfall in the Sierra Nevada, 7 

linking ocean-atmosphere interactions and the terrestrial water balance (Dettinger et al., 8 

2011; Guan et al., 2012; Guan et al., 2013a). 9 

 Current mountain-basin operational SWE estimates are made with a limited set of 10 

snow-course and continuous in-situ point measurements from snow pillows. Measurements at 11 

these index sites are used to develop statistically based runoff estimates for the subsequent 12 

spring and summer. While this approach has provided operationally robust predictions in 13 

years near the long-term normal; snow accumulation both varies from year to year and 14 

changes in response to long-term climatic conditions; and has, in recent decades, trended 15 

outside the statistical normal (Milly et al., 2008). Hence our current methods are becoming 16 

less reliable and accurate predictions require a more-comprehensive approach to 17 

understanding the processes affecting precipitation and the probabilities of extremes 18 

(Rahmstorf and Coumou, 2011).  19 

 Accurate estimates of the amount and spatial distribution of both precipitation and 20 

SWE are essential given the shift toward spatially distributed models for forecasts of runoff, 21 

moisture stress and other water-cycle components (Rice et al., 2011; Meromy et al., 2012). 22 

Current operational measurements for precipitation and SWE are limited by scale and by the 23 

heterogeneity of snow-accumulation processes, and do not provide spatially representative 24 

values (Viviroli et al., 2011; Bales et al., 2006 ; Grünewald and Lehining, 2011). Uncertainty 25 

in watershed-scale SWE and precipitation estimates result in part from the lack of 26 

measurements at both the rain-snow transition and highest elevations, and the lack of 27 

representative measurements across different slopes, aspects and canopy conditions (Molotch 28 

and Margulis, 2008).  29 

 Remotely sensed snow properties from satellites and aircraft are used in research, and 30 

on a limited basis in forecasts. In both cases these measurements can be blended using 31 

statistical or spatially explicit models to produce discharge forecasts (Rice et al., 2011; 32 

Molotch et al., 2005; Fassnacht et al., 2003; Bales et al., 2008; Kerkez et al., 2012). A recent 33 
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review highlighted the promise of aircraft LiDAR measurements for snow-depth mapping at 1 

high spatial resolution and vertical accuracy, using repeat snow-on and snow-off LiDAR 2 

flights (Deems et al., 2013). The emergence of quality research datasets for snow mapping 3 

offers opportunities to assess LiDAR accuracy and coverage in complex, forested terrain, and 4 

its potential for providing a much-needed spatial “ground truth” for watershed-scale snow 5 

depth (Harpold et al., 2014). 6 

 Research reported in this paper was aimed at determining the influences of terrain and 7 

orographic precipitation on patterns of seasonal snow accumulation along a 1650-m elevation 8 

gradient in the southern Sierra Nevada. Three questions posed in this research were: i) what 9 

is the magnitude of the average elevation lapse rate for snow accumulation, ii) what is the 10 

variability in snow accumulation at each elevation along an elevation gradient, and iii) to 11 

what extent do local terrain and wind redistribution influence this pattern. It was also our aim 12 

to evaluate consistency between LiDAR estimated SWE and prior model-based estimates of 13 

accumulated SWE and total precipitation.  14 

 15 

2 Methods 16 

 Our approach involved analysis of: i) LiDAR-based snow-depth estimates derived 17 

from two LiDAR acquisitions, one when the ground was snow free and one near peak snow 18 

accumulation on March 23
rd

, ii) continuous ground-based measurements of snow depth, 19 

SWE, wind speed and air temperature, plus operational bright-band radar observations, and 20 

iii) model estimates of SWE and precipitation. The LiDAR data were used to estimate snow 21 

depth across the study area at a 1-m
2
 spatial resolution in open areas without canopy cover. 22 

The ground measurements were used in interpreting the spatial patterns and in estimating 23 

SWE, and the bright-band radar in determining the rain-snow transition elevation for 24 

precipitation events, an important metric for interpreting snow-depth and SWE along 25 

elevation gradients. 26 

2.1 Location 27 

 Our study area is centered at approximately 36.5°N, 118.7
o
W and includes the 53.1 28 

km
2
 area covered by the two LiDAR flights in the southeastern part of the 135 km

2 
Marble 29 

Fork of the Kaweah River watershed, located in Sequoia National Park in the southern Sierra 30 

Nevada, California (Figure 1). Elevations of the LiDAR acquisition were 1850-3494 m, with 31 

aspects predominantly trending northwest, about orthogonal to the regions southwest 32 

prevailing storm tracks. The land features include glaciated lake basins, cirques and stepped 33 
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plateaus at the highest elevations. Soils are characterized by moraine deposits and well 1 

drained granitic soils, at the lower elevations, and rock outcrops with pockets of course 2 

shallow soil at the higher elevations. The vegetation cover below 3000 m are primarily 3 

coniferous forests that transition with increasing elevation from a Giant Sequoia grove 4 

through mixed-conifer forests, to Red Fir forests. Above 3000 m are increasing areas of bare 5 

rock with subalpine forests and alpine meadows in locations with soil (Figure 2b). 6 

2.2 LiDAR altimetry 7 

 Airborne-scanning LiDAR altimetry was collected by the National Center for 8 

Airborne Laser Mapping (NCALM) using an Optech Gemini
®
 ALTM 1233 airborne-9 

scanning laser (Zhang and Cui, 2007). The two campaigns were conducted in the 2010 water 10 

year: March 23
rd

 for snow covered, and August 15 for snow free conditions (Harpold et al., 11 

2014). The instrument settings used for acquisition generated an average point density greater 12 

than 10 points m
-2

, and a fine-scale beam-sampling footprint of approximately 20 cm (Table 13 

1). Ground points were classified by NCALM through iteratively building a triangulated 14 

surface model with discrete points classified as ground and non-ground (Shrestha et al., 2007; 15 

Slatton et al., 2007). The nominal horizontal and vertical accuracy for a single flight path are 16 

0.5 m and 0.11 m, respectively; but higher accuracy was likely achieved, particularly where 17 

flight paths overlapped.  18 

 A digital surface model (DSM) was created by using first-return points and discarding 19 

outliers >100 m (tallest trees are approximately 85 m) and returns below -0.1 m; where 20 

values in the range of -0.1 to 0 m were classified as 0. A continuous-coverage bare-earth 21 

digital-elevation model (DEM) was created through Kriging of ground points using a linear 22 

variogram with a nugget of 15 cm, a sill of 10 m, a range of 100 m, and a search radius of 23 

100 m, where the minimum number of points was 5 (Guo et al., 2010). We used a 1-m
2
 24 

gridded model for representing our data, as this is the smallest footprint that most closely 25 

matches the expected beam sampling footprint and uncertainty in horizontal accuracy. After 26 

interpolation, digital models of mean elevation and point-return density grids were 27 

georegistered to a common grid for snow-on and snow-off flights. The average point-return 28 

densities were 8 m
-2 

for the surface model and 3 m
-2

 for the bare-earth model. Grids with no 29 

point returns in either flight, primarily under forest canopy, were not used.  30 

 The accuracy of the LiDAR altimetry was evaluated by using 352 geo-registered 2.5 × 31 

2.5 m grid samples of the point cloud along the paved highway in the western part of the 32 

domain, because the highway is plowed regularly surface heights do not change with snow 33 
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accumulation. These samples had a bias of +0.05 m and a standard deviation of 0.07 m, 1 

which is below the estimated combined two-flight instrumental elevation error of 0.11 m 2 

(Xiaoye, 2008; Zhang and Cui, 2007). A possible explanation of the 0.05 m bias for the 3 

snow-on flight is that some sections of the road had a small amount of snow remaining after 4 

plowing. 5 

 A 1-m
2
 gridded digital surface model of the vegetation canopy > 2 m was, created by 6 

subtracting the DSM from the DEM. In order to accurately determine snow depth, values 7 

were further classified into two groups, where snow depth was either greater to or less than 8 

the coincident vegetation height. This allowed us to consider for further analysis only snow 9 

from open slopes or where it had accumulated in the gaps between trees. To reduce the 10 

amount of error we eliminated locations with slopes greater than 55°, warranted by the high 11 

number of erroneous values and known issues of vertical inaccuracies due to slope angle 12 

(Schaer et al., 2007; Deems et al., 2013).  Additionally, we eliminated areas with rapid annual 13 

vegetation growth that had negative snow-depth values (e.g. areas within a wet meadow); and 14 

lastly we filtered out areas with open water, buildings, and parking lots where returns were 15 

not representative of local snow accumulation. Mean snow depth for each 1-m
2
 elevation 16 

band with >100 m
2
 area was computed from the snow-depth grid. Additionally a 5-m 17 

elevation model, aggregated from the 1-m
2
 bare-earth model, was produced to remove 18 

scaling biases in the analysis of slope and aspect (Kienzle, 2004; Erskine et al., 2006).   19 

 20 

2.3 Spatial analysis 21 

 To analyze possible correlations between terrain steepness and snow distribution we 22 

calculated the first derivative of slope and snow depth, over distances of 5-100 m, using the 23 

1-m
2
 mean snow depths and the corresponding mean slope for each 1-m elevation band, 24 

computing the correlation at 5-100 m using 5-m steps. Using the derivatives identifies 25 

transition areas. 26 

 For quantifying the combined effect of slope and aspect on snow depth we indexed 27 

aspect on a scale of 1 to -1 using methods adapted from Roberts (1986): 28 

                                 (1)29 

  30 

where VA is the aspect value, A is the azimuth variable or direction for which the calculation 31 

is being indexed to; and FA the focal aspect, e.g. FA = 0° is north and  FA = 45° northeast. 32 
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The aspect value was further scaled by the sine of the slope angle, yielding 0 in flat terrain 1 

and approaching 1 as the mean slope increases to 90°:  2 

          (2) 3 

where IA is aspect intensity and  the slope angle. The method of scaling the cosine of aspect 4 

by sine of slope for A = 0° is referred to as “northness” (Molotch et al., 2004).  5 

 6 

2.4 Ground measurements 7 

 Meteorological data were obtained from six meteorological stations in the flight area 8 

for the period from the first significant snowfall on December 3, 2009 to the March 23
rd

 9 

LiDAR acquisition date, henceforth referred to as the snow-accumulation period. At these 10 

stations temperature was measured using Vaisala HMP-35 and Campbell T-108 sensors, with 11 

wind speed and direction measured using RM Young 5103 sensors. All meteorological 12 

stations measure hourly average wind speed; and two stations, Wolverton and Panther, 13 

recorded maximum wind gusts at 10-second scan intervals. The M3, Topaz, and Emerald 14 

Lake stations are managed by the University of California Santa Barbara, Giant Forest is 15 

operated by the California Air Resources Board (available at: http://mesowest.utah.edu/, 16 

2014) and Case Mountain is managed by the Bureau of Land Management (available at: 17 

http://www.raws.dri.edu/, 2014). The Giant Forest station is located on an exposed shrub-18 

covered slope; the Case Mountain, Wolverton and Panther stations are in forest openings; 19 

Emerald Lake is an alpine cirque; and Topaz and M3 are in alpine fell fields. 20 

 Wind sensors are between 4.2 and 6.5 m above ground level; and we scaled wind 21 

speeds to 10 m using a logarithmic profile to estimate saltation thresholds: 22 

                                    (3) 23 

where  is wind velocity at 10 m,  is measured velocity, z is instrument height, and  the 24 

site specific roughness length. 25 

 To identify periods with the greatest potential for wind redistribution of snow we 26 

filtered for times when temperature was below 0° C and wind velocity above the minimum 27 

saltation threshold of 6.7 m sec
-1

 established by Li and Pomeroy (1997a).  28 
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 Snow depth was measured continuously by 26 ultrasonic snow-depth sensors (Judd 1 

Communications, Salt Lake City, UT) placed on meteorological stations and over or near 2 

snow pillows. These snow-depth sensors have an effective beam width of 22°, and were 3 

mounted up to 4.6 m above the ground on a steel arm extending from a vertical steel pipe 4 

anchored to a U-channel post. This arrangement provided up to a 2.3 m
2
 snow-depth 5 

observation area over flat bare ground, with sampling area decreasing as snow depth 6 

increases. 7 

 The LiDAR measurements, plus ground-based snow-density measurements, were 8 

used to develop estimates of SWE versus elevation. Paired snow-depth and snow-pillow 9 

SWE measurements were part of the California Cooperative Snow Survey network and data 10 

were acquired from the California Department of Water Resources (available at: 11 

http://cdec.water.ca.gov/, 2014) for all 16 operable stations on the western slope of the 12 

southern Sierra Nevada within 100 km north and 50 km south of the study area (Figure 1). 13 

One snow pillow (GNF) is located 2.5 km west-southwest of the LiDAR acquisition area. 14 

Daily snow densities were estimated by dividing the daily mean SWE from the snow pillows 15 

by snow depth from the collocated ultrasonic depth sensors. To minimize the error from 16 

intermittent noise associated with snow pillows we used the daily average SWE and did not 17 

consider measurements under a 20-cm SWE threshold. This procedure was necessary 18 

because complete snow coverage of the snow pillow is unlikely for shallow snow and the 19 

combined uncertainties of depth sensors and snow pillows can yield significant error in 20 

density measurements (Johnson and Schaefer, 2002). In addition, accumulated precipitation 21 

measurements from Alter shielded Belfort gauges at GNF, QUA and CRL and manually 22 

measured daily precipitation from Lodgepole ranger station were compared with SWE 23 

measurements to estimate total precipitation (available at: http://cdec.water.ca.gov/, 2014). 24 

All instrumental data were formatted, calibrated and gap filled by interpolation or correlation 25 

with other sensors and aggregated to daily means prior to analysis (Moffat et al., 2007). 26 

Under 1% of the meteorological data required filtering or gap filling, snow-pillow data 27 

required slightly more (<5%) and snow depth required up to 20%. Stations with data gaps >2 28 

days with no nearby station for interpolation were not used in our analysis.  29 

 30 

2.5 Bright-band radar 31 

 The transition elevation where hydrometeors turn from frozen to liquid, or freezing 32 

level, was determined from analysis of hourly Doppler-radar data from wind profilers located 33 
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upstream of the LiDAR-acquisition area. Radar reflectance is greatest, or brightest, in the 1 

altitude range where precipitation changes from snow to rain, owing to a difference in the 2 

dielectric factor for water and ice and the aggregation of hydrometeors (White et al., 2009; 3 

Ryzhkov and Zrnic, 1998). We analyzed bright-band altitudes and thus identified freezing 4 

levels from observations collected over the 2010 water year snow-accumulation period (12/3-5 

3/23) from the three nearest upwind locations, i.e. Punta Piedras Blancas, Lost Hills, and 6 

Chowchilla, California (available at: http://www.esrl.noaa.gov/psd/data/, 2014) (Figure 1). 7 

 8 

2.6 Model reanalysis 9 

 We calculated spatial SWE from LiDAR snow-depth measurements using mean 10 

snow-density measurements from the 16 snow-pillow sites. These values were compared 11 

with two scales of the widely used PRISM precipitation estimates, plus SWE estimates from 12 

two different MODIS-based SWE reconstruction models (Daly et al., 2008; Daly et al., 1994; 13 

Rice and Bales, 2011; Rice et al., 2011). Using the available 4-km and 800-m PRISM model 14 

output we summed precipitation for December-March at the spatial extent of the LiDAR 15 

acquisition. The 4-km data were monthly for the 2010 water year and the 800-m data were 16 

monthly 30-year mean climatology. We then calculated the cumulative precipitation for each 17 

1-m elevation band across the elevation gradient of both data sets, and aggregated values to 18 

the resolution of the comparative data.  19 

 One reconstruction data set gives 2000-2009 accumulation-period means of the entire 20 

Kaweah River watershed, calculated at a 500-m resolution, based on 300-m elevation-bin 21 

averages of MODSCAG snowcover data, local ground-based meteorological measurements 22 

and a temperature-index snowmelt equation that was calibrated with snow-pillow data (Rice 23 

and Bales, 2013). Fractional snowcover was adjusted for canopy using 2 standard deviations 24 

of the elevation-band mean.  25 

 The second reconstructed SWE data were developed using the algorithm developed 26 

by Molotch (2009) and applied to the Sierra Nevada as described in Guan et al. (2013b). 27 

Fractional snowcover was adjusted for canopy using vegetation data from the Global Forest 28 

Resource Assessment 2000. The Guan values were a subset taken from a December-March 29 

Sierra Nevada wide calculation.  The primary difference between this method and the one 30 

developed by Rice and Bales (2013) is that the Guan et al. (2013b) method includes an 31 

explicit treatment of all radiative and turbulent fluxes, whereas the Rice and Bales (2013) 32 

method uses a degree-day melt-flux calculation.   33 
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 1 

3. Results 2 

3.1 LiDAR-measured snow depth 3 

 Of the 53.1-km
2
 planer footprint of the LiDAR survey, 0.8 km

2
 were over water or in 4 

areas that exceeded filter thresholds of the digital surface model (DSM). An additional 0.01 5 

km
2
 of area with slope >55°, roads and buildings, and rapidly growing meadow vegetation 6 

were also removed from the analysis. The total snow-covered area where both LiDAR and 7 

ground returns were available at a density >1 m
-2

 was 40.2 km
2
, and of this area 5.0 km

2
 was 8 

under canopy and also eliminated from this analysis. This left an area of 35.2 km
2
 remaining 9 

for analysis, and of this <0.2 km
2
, mostly below 2300 m, was snow free. Mean snow depth, 10 

measured by LiDAR, increased with altitude from 1850 to 3300 m elevation, with depths 11 

decreasing above 3300 m (Figure 2a). Up to 3300 m, snow depth shows a strong correlation 12 

with elevation (R
2
 = 0.974, p < 0.001), increasing at 15 cm per 100 m elevation, with a steep 13 

increase in snow depth at 2000-2050 m. Above 3300 m, snow depth sharply decreased at a 14 

rate of -48 cm per 100 m (R
2
 = 0.830, p < 0.001). The mean "open" snow-covered area in 15 

each 1-m elevation band was 1.7 ha, with a range of 0.1 to 7.3 ha. Overall, 67% of the study 16 

area (excluding water or developed areas) was free of canopy, including most of the 5.6 km
2
 17 

area above 3300 m. The increase in snow depth with elevation up to 3300 m is accompanied 18 

by a decrease in canopy cover with elevation. Canopy cover, based on the canopy-height 19 

model, is greater than 40% below 2600 m, and near zero above 3200 m (Figure 2b). 20 

 21 

3.2 Wind and topographic effects 22 

 Hourly average wind speed at the 6 meteorological stations showed that the highest 23 

potential for redistributing snow was from the westerly directions, with a few periods of 24 

strong winds from the northeast at Topaz (Figure 3). Winds were highest at the 3 stations 25 

above 2800 m and, to a lesser extent, at one lower-elevation station, Giant Forest, which is 26 

located in an exposed area free of upwind vegetation. Only five instantaneous gusts over 6.7 27 

m sec
-1

 were recorded at Panther during the snow-accumulation period, and in one instance at 28 

Wolverton; and no hourly averages at these sites were over 6.7 m sec
-1

.  29 

 Snow depths were lowest on the southwest and southeast facing slopes, and highest 30 

on the northwest- and northeast-facing slopes (Figure 2c). This pattern was most pronounced 31 

at elevations above 2400 m; and depths were low especially in the southeast between 2300-32 
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2700 m, which is a small fraction of the area at this elevation (Figure 2c). The aspect with the 1 

least overall area is northeast and the greatest areal aspect representation faces northwest.  2 

 The changes in mean snow depth and slope (Figures 2a and 2d), over 5-100 m 3 

averaging lengths, show an (anti) correlation at -0.16 to -0.36, with the most-negative 4 

correlation at 35 m (data not shown). The most-rapid changes in slope with elevation show 5 

the least increase in snow depth, this is most evident up to 3300 m, above which the terrain 6 

becomes flatter (Figure 2e).  7 

 The combined effects of slope and aspect express the “aspect intensity” (IA), where 8 

higher values represent more terrain at that aspect and/or greater slope angles (Figure 4a). 9 

This analysis reveals the slope- and aspect-feature space of the study area, where the 10 

predominant sloped aspects of north, southwest, west and northwest have positive IA
 
values. 11 

Conversely, south, northeast, east and southeast have negative values closer to zero and are 12 

therefore less represented in the study area. At elevations <2000 m, moderate east- and 13 

southeast-facing slopes, indicated by the slightly negative IA values, quickly rise to steeper 14 

north, northwest and west slopes, as indicated by the higher and positive IA values (Figure 15 

4a). Near 2400 m, southwest aspects become more predominant than north, as indicated by 16 

the crossover in IA values, and at higher elevations aspect becomes equally represented by 17 

west, southwest and northwest, with some southerly aspects (negative north IA values) above 18 

2800 m (Figure 4a). 19 

 To evaluate the terrain effects secondary to elevation we applied a regression to all 20 

snow depths as a function of elevation using the slope (0.15) and intercept (-169) from the 21 

snow depth measured by LiDAR at 1850-3300 m (Figure 4b). The residuals from this 22 

regression were then correlated with each of the predominant IA values (Table 2, Figures 4c 23 

and 4d). IA snow-depth anomalies for the lowest elevations (1850-2051 m), were negatively 24 

correlated with the southeast, at the mid elevations (2051-3301 m) most positively correlated 25 

with the northwest, and at the highest elevations (3300-3494 m) most positively correlated 26 

with the southwest (Figures 4c and 4d).  27 

 28 

3.3 Bright-band radar 29 

 The radar-sounding data include 8287 hourly observations (353 missing) from the 3 30 

sites. While individual observations of freezing levels ranged from 200 to 2700 m, the 95
th

 31 

percentile values were in the range of 950-2550 m (Figure 5). The greatest variability and 32 

highest mean freezing level occurred at the coastal station of Punta Piedras, with the lowest 33 



 12 

values at the furthest-inland station of Chowchilla. This decline in mean freezing levels going 1 

from the coast, inland, suggests that the snow level drops as the air mass moves inland. The 2 

third quartile of the freezing level of the farthest-inland station, Chowchilla, is 2063 m; this 3 

closely tracks the break in the coefficient of variation and correlation between snow depth 4 

and elevation observed from LiDAR at 2050 m (Figure 2a and 5), and the steep increase in 5 

snow depth from 1950 to 2050 m elevation (Figure 2d). 6 

 7 

3.4 Ground measurements 8 

 Accumulated precipitation and SWE track each other closely at the two higher-9 

elevation sites (CRL and QUA) but at the lowest site measured (GNF) SWE was up to 21 cm 10 

less than total precipitation, showing some melt prior to the LiDAR acquisition (Figure 6). 11 

Total precipitation at the lowest total precipitation gauges was 75 cm at GNF (2027 m) and 12 

was 72 at Lodgepole (2053 m). 13 

 The LiDAR flights were 18 days after mean peak depth and three weeks before mean 14 

peak SWE (Figures 7a, 7b). The mean and standard deviation of snow depth during LiDAR 15 

acquisition, recorded by the 26 depth sensors in the Wolverton and Panther areas, plus the 16 16 

operational sensors co-located with snow pillows, was 210 +38 cm. This was 19% less than 17 

the mean peak depth of 266 +44 cm recorded on March 4
th

. However the mean SWE 18 

recorded by the 16 snow pillows during LiDAR acquisition was 82 +16 cm, 2% less than the 19 

mean peak SWE of 83 +20 on April 14. Two snow pillows, the lowest, Giant Forest (GNF) at 20 

2027 m, and the most southerly, Quaking Aspen (QUA) at 2195 m, reached peak SWE one 21 

week before acquisition, on March 15
th

, and had ablated 9% and 7 % SWE, respectively, 22 

prior to the time of the LiDAR acquisition (Figure 7b). All other snow pillows either gained 23 

SWE or ablated <5 % in the period prior to the snow LiDAR acquisition. Snow depths 24 

measured at the snow-pillow sites on the days of the LiDAR flights failed to show the 25 

elevation patterns apparent in the LiDAR depths (Figure 8).  26 

 Daily density values calculated for the 16 snow pillows for Feb 1 to Apr 30 indicate a 27 

general trend of increasing density and consistent intra-site patterns of accumulation and 28 

densification corresponding with stormy and clear conditions (Figure 7). Over the 3-month 29 

period, density decreased with each accumulation event and increased through densification 30 

as the snowpack settled, metamorphosed and integrated free water from melt or rain. At the 31 

time of the LiDAR flights the mean density was 384 kg m
-3

, with a range of +83 kg m
-3

 and 32 

standard deviation of 42 kg m
-3

, across the 1036-m elevation range represented in these data. 33 
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The combined measurement error of snow-pillow and depth-sensor instruments used in the 1 

density calculation can be greater than the range of variability reported here (Johnson and 2 

Schaefer, 2002). We found low spatial variability in density that showed no significant 3 

relationship with elevation at our sites. This observation concurs with other studies of 4 

mountain snowpacks finding spatial consistency in the density of mountain snowpacks (Jonas 5 

et al., 2009; Mizukami and Perica, 2008).  6 

 7 

3.5 Model reanalysis 8 

 The 4-km resolution PRISIM data were comprised of 7 grid elements in the study 9 

domain, whereas the 800-m product had approximately 4225 grid elements. Both PRISM 10 

data show a small upward trend in precipitation and elevation up to ~3300 m and a reversal 11 

of this trend at the higher elevations. The 4-km and 800-m PRISM data demonstrate similar 12 

magnitudes of increase in precipitation with elevation, 2-3 cm 100 m
-1 

respectively. Because 13 

of this small precipitation lapse rate, the PRISM estimates diverge from the LiDAR values 14 

below about 2800 m. Total precipitation measured at two locations near the lower extent of 15 

the LiDAR footprint during the accumulation period was 72 cm at Lodgepole (2053 m) and 16 

75 cm at Giant Forest (2027 m) (available at: http://cdec.water.ca.gov/, 2014) (Figure 1). 17 

When compared with the LiDAR SWE estimates on Figure 9 both stations show slightly 18 

more precipitation. 19 

 Total precipitation was also measured at two additional snow-pillow sensors, CRL 20 

(3170 m) and QUA (2195 m) (Figure 1). From Figure 6 it is apparent that snow does not 21 

account for all of the precipitation at elevations below 2200 m, but does above this elevation 22 

where rain had little influence for the accumulation period prior to the LiDAR flight. Thus 23 

the LiDAR data should reflect total precipitation above 2200 m. 24 

 The LiDAR SWE and the two reconstructed-snowmelt calculations have similar 25 

slopes of about 6 cm 100 m
-1 

(Figure 9). The calculations from Guan et al. (2013b) most 26 

closely match the LiDAR estimates up to 3300 m where those from Rice and Bales (2013) 27 

are offset 20-40 cm but show a slight decrease in depth at the highest elevations. In contrast 28 

the two PRISM precipitation models deviate from the LiDAR SWE estimates at elevations 29 

below 2800 m and have markedly different slopes.   30 

 31 

4 Discussion 32 
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 The overall increase in precipitation with elevation observed with airborne LiDAR is 1 

consistent with the orographic effect of mountains on precipitation (Roe, 2005; Roe and 2 

Baker, 2006). Variability of the snow accumulation along the elevation gradient and 3 

deviations from a regular increase with elevation can be attributed to the interactions of 4 

topography, wind and storm tracks. Deviations from a linear increase are apparent at the 5 

lower rain-snow-transition elevations, at higher elevations near the ridge, and at intermediate 6 

elevations that have a variety of aspect and steepness characteristics.  7 

4.1. Variability of orographic trends 8 

 Elevations over 3300 m showed the greatest negative departure from the overall 9 

orographic trend, likely due to the southwest-to-northeast trending terrain flattening out and 10 

no longer providing the necessary lift for the same rate of adiabatic cooling (Figs. 2 and 4). 11 

Above 3300 m, the reduced lift over flatter terrain, the exhaustion of precipitable water as 12 

storms rise less steeply and the horizontal displacement of falling snow likely all contribute 13 

to declining precipitation at the higher elevations (Mott et al., 2014; Houze Jr., 2012). These 14 

processes have been approximated in the Sierra Nevada through simulations based on the 15 

convergence of the boundary layer and slope of the local terrain but, until now, have been 16 

difficult to observe (Alpert, 1986).  17 

 However, as other researchers have noted, it is also difficult to identify the effects of 18 

specific storms on snowpack ablation due to the variability of atmospheric conditions close to 19 

the earth’s surface (Lundquist et al., 2008). The extent to which high-altitude Sierra Nevada 20 

catchments receive more precipitation than adjacent low-altitude areas varies from storm to 21 

storm, and from year to year, from occasions during which nearly equal amounts of 22 

precipitation fall at high and low altitudes to occasions when 10 or more times as much 23 

precipitation falls at the higher altitudes (Dettinger et al., 2004). In the northern Sierra 24 

Nevada, the blocking and associated terrain-parallel southerly flow of air masses, referred to 25 

as the Sierra barrier jet, can enhance lower versus higher-elevation precipitation (Neiman et 26 

al., 2008). Conversely, in the Central Sierra Nevada, it has been reported that seasonally, the 27 

ratio between higher- versus lower-elevation annual winter-season total precipitation 28 

averages about 3, but in some years, the ratio drops to as low as 1 (as in 1991) or rises to as 29 

much as 4 or 5 (Dettinger, et al., 2004). 30 

 31 

While the particular orographic patterns reported here could be unique to the 2010 water 32 

year, similar patterns have been observed in the mountains of Europe and previous works 33 
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have shown consistency in the interannual spatial patterns of snow accumulation (Grünwald, 1 

et al. 2014; Sturm and Wagner, 2010; Deems et al., 2008). 2 

4.2. Wind redistribution and radiation effects 3 

 While wind affects snow accumulation during a storm, the combined effects of wind 4 

and radiation are apparent in post-depositional changes in snow depth. As the same 5 

topographic variables influence both wind and radiation, separating the effects based on an 6 

analysis of seasonal snow-depth is challenging.  7 

 The high-spatial-resolution of LiDAR snow-depth measurements point to two 8 

possible controls of wind redistribution on snow. While wind patterns from a single station 9 

may be a poor indicator of the wind fields influencing snow redistribution across the entire 10 

domain, we expect snow transport by wind to be coarsely defined by the consensus of the 11 

local station’s wind direction when temperatures are below zero within 24 h of a snowstorm 12 

(Figs. 1 and 3). However, the Topaz Lake station, located in smooth terrain with limited 13 

upwind influence, may best represent the wind patterns of the free atmosphere and 14 

predominant southwest storm winds. We attribute the inconsistent wind direction of other 15 

stations to the terrain induced turbulence of the free atmosphere upwind of the stations. The 16 

M3 and Emerald Lake sites have upwind obstacles, and the Wolverton and Panther stations 17 

have low wind speeds, reflecting the muting effect of tall forest cover on wind speed and 18 

consequently snow redistribution (Fig. 3).  19 

 Consistent with prevailing winds from the southwest, we observed more accumulation 20 

on the northeast slopes and less on the southwest; however, in our domain northeast has the 21 

least total area of all aspect quadrants and hence these areas may be underrepresented in the 22 

analysis (Fig. 2c). 23 

 The aspect intensity variable (IA) combines the influences of slope and aspect, and 24 

serves as a proxy for several processes affecting snow depth, e.g. radiation, upslope 25 

orographic deposition and potentially wind and gravitational redistribution. As a result some 26 

local anomalies, such as deep-snow-patch development, are likely masked when considering 27 

topography and snow depth as elevation-band means.  28 

 Examining residuals from a linear orographic trend by IA suggests that the steeper, 29 

northwest-facing slopes at the mid elevations and northerly slopes at the lowest elevations 30 

show the greatest snow depths, likely due to the combined effects of wind deposition and 31 

lower radiation influx (Fig. 4c and d). Conversely, low- to mid-elevation slopes prone to the 32 

combined effects of ablation and wind erosion have the least snow. These findings suggest 33 
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that departures from the overall orographic trend can be observed in the elevation profile 1 

using IA; but there are limitations to the approach as used here.  2 

 It is also possible that there is limited utility in extrapolating prevailing winds from 3 

meteorological stations to predict effects of wind on snow redistribution because of the 4 

turbulence from local terrain. Research into the relationship between slope, aspect and wind 5 

has revealed that small-scale slope breaks and surface roughness have the most-significant 6 

effects on where snow accumulates locally (Li and Pomeroy, 1997b; Winstral et al., 2002; 7 

Fang and Pomeroy, 2009; Pomeroy and Li, 2000). While not part of this analysis, 8 

classification of downwind terrain has also been effective for identifying snow-patch 9 

development and persistence of localized wind deposition, offering a deterministic 10 

explanation for the spatial stationarity of snow (Winstral et al., 2002; Schirmer et al., 2011). 11 

The IA variable may also be effective for classifying locations where these processes are 12 

likely to occur. 13 

4.3. Sublimation 14 

 Wind-driven sublimation may also play a role in the departure from the linear increase 15 

in snow depth at the higher elevations, where the highest wind velocities and thus greatest 16 

suspension of snow occur (Figs. 3). 17 

 In dry intercontinental locations, sublimation rates can be in excess of 50 %, but are 18 

much lower in the maritime climate of the Sierra Nevada and lowest during the accumulation 19 

period (Ellis et al., 2010; Essery and Pomeroy, 2001). Studies conducted at 2800 and 3100 m 20 

in the Emerald Lake basin, located in the center of our measurement domain, found net losses 21 

due to evaporation and sublimation of <10% for the period between 1 December and 1 April 22 

(Marks and Dozier, 1992; Marks et al., 1992). Consequently, we consider the 2010 water 23 

year cumulative loss due to sublimation and snowmelt to be limited (< 10 %) prior to the 24 

March 23
rd

 LiDAR acquisition at all elevation bands, with more melt occurring at the lowest 25 

elevations and on the southeast-facing slopes, as indicated by the loss of SWE measured at 26 

the low-elevation snow-pillow sites and reduced snow depths on the southeast mid-elevation 27 

slopes (Fig. 2c, 6, and 7). 28 

4.4 Rain–snow transition 29 

 At lower elevations, e.g. below 2050 m, a mix of rain and snow precipitation appears 30 

to influence the amount of seasonal snow accumulation. Local SWE measurements are only 31 

available at one location below 2050 m (GNF); and this station does show a very small loss 32 

of SWE in mid-February as a result of a rain-on-snow event (Fig. 6). Nevertheless, given the 33 
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expected large storm-to-storm variation in freezing level, the relatively sharp transition in 1 

slope of LiDAR-measured snow accumulation at about 2050 m suggests most precipitation 2 

above this elevation fell as snow in the winter 2010.  3 

 In addition, seasonal snow at the lowest elevations and on south-facing slopes has 4 

greater positive net energy exchange (from radiation or condensation), and is most 5 

susceptible to melt during the accumulation period. LiDAR snow-depth results show lower 6 

depths on south-facing versus greater depths on north-facing slopes (Fig. 2c).  7 

4.5   Snow density 8 

 Our March 23
rd

, calculations of snow density based on snow depth and snow pillow 9 

measurements are uncorrelated with depth or elevation but varied < 11 % from the mean, 10 

within the combined uncertainty of the sensors used to calculate them (Figs.1 and 8). Elder et 11 

al. (1998), Anderton et al. (2004) and Anderson et al. (2014) found the variability of spring 12 

snow density to be insignificantly correlated with elevation in their studies, while Zhong et 13 

al. (2014) found negative correlations with elevation in a meta study of densities in the 14 

former USSR. A range of results has also been reported for the snow density correlation with 15 

depth showing both positive and negative correlations depending on the age of the snow and 16 

season (Arons and Colbeck, 1995; McCrieight and Small 2014).  17 

 These seemingly contradictory findings can be explained by the seasonal and climatic 18 

effects on snow depth and the snowpack energy balance and their affect on snow density. 19 

Snow-depth is often positively correlated with elevation and the energy balance of the 20 

snowpack often negatively correlated with elevation; the magnitude of these effects depends 21 

on season and climate (Jonas et al., 2009; Sturm et al., 2010b). For example in winter, when 22 

there are low levels of solar influx on low albedo snowpacks, snow depth, which is positively 23 

correlated with elevation, has a greater influence on density. Conversely, in springtime, or in 24 

a warmer climate, a warming snowpack may reverse any previous correlation or be 25 

uncorrelated with elevation. Thus our assumption of uniform density may not be accurate for 26 

early winter but provides a reasonable estimate for spring snowpack conditions when the 27 

LiDAR snowdepth measurement was made. 28 

4.6   Other measures of orographic trends 29 

 Although orographic precipitation is a well-documented first-order process, in the 30 

Sierra Nevada it is not well described at the watershed to basin scale owing to the very 31 

limited availability of ground-based precipitation measurements. Each set of comparative 32 

measurements used in this study provides a different index of orographic response: (i) 33 
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LiDAR is a one-time snapshot of snow depth; (ii) point SWE data are small samples from 1 

highly variable spatial values, (iii) reconstructed snowmelt, or retrospective gridded SWE, 2 

reflect precipitation minus evaporation and sublimation; and (iv) PRISM is a retrospective 3 

precipitation estimate, based largely on lower-elevation stations. Nevertheless these 4 

complementary data offer spatially relevant indices of seasonally accumulated precipitation.  5 

 As Fig. 8 shows, snow depths from snow-pillow sites fail to capture the elevation 6 

patterns apparent in the LiDAR data. This pattern is also apparent in the SWE values from 7 

the same sites (Fig. 7b). While the shallowest depth is registered at the lowest elevation site 8 

(GNF, 2027 m), where a greater percentage of precipitation falls as rain, the other sites do not 9 

show a consistent increase in depth with elevation. Thus current operational measurements in 10 

the Sierra Nevada are insufficient to capture orographic trends in snow depth and 11 

precipitation. 12 

 The less-steep increase in precipitation with elevation seen in the two PRISM profiles 13 

versus the LiDAR results are thought to be primarily due to the limited number of mountain 14 

stations used to calculate the PRISM trends. SWE loss from ablation and rain versus snowfall 15 

are important components of the observed LiDAR lapse rates at lower elevations, particularly 16 

below 2050m; these processes should have only a small influence above that elevation. 17 

Evidence for this can be seen in three locations of coincident SWE and cumulative 18 

precipitation measurements (Fig. 6). The accumulated SWE and total precipitation at the two 19 

higher-elevation stations, CRL and QUA, are in close agreement; and the lowest station, 20 

GNF, shows 21cm more total precipitation and slight loss of SWE on 18
th

 - 23
rd

 March, prior 21 

to the date of LiDAR acquisition, demonstrating that measurable rain and melt occurred at 22 

the site. In addition, precipitation station in the Kaweah basin near the LiDAR footprint 23 

(LDG, 2053 m) had an accumulation-period total of 72 cm, higher than the LiDAR SWE 24 

estimate and lower than both PRISM estimates for the same time period (Fig. 9). The 25 

difference in annual precipitation at these sites versus annual SWE accumulation reflects in 26 

part the contribution of both rain and snow and mid-winter melt at this elevation. Thus, 27 

divergence of the PRISM and reconstructed SWE at elevations below 2200m is expected. 28 

Temperature records in the area suggest only a small amount of winter melt at 2100m, with 29 

very little winter melt and precipitation as rain above 2400m (Rice and Bales, 2013).  30 

 The general pattern of SWE reconstructed from snowmelt by Guan et al. (2013) 31 

compares with the LiDAR data, being somewhat higher at the highest elevations, lower in the 32 

mid elevations, and similar at the lower elevations. Even though the reconstruction was based 33 
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on energy-balance modeling, the match is somewhat surprising given the coarseness of the 1 

reconstruction model relative to the complex topography of the basin. 2 

 The Rice and Bales (2013) reconstruction, in which snowmelt was indexed to 3 

amounts and rates at the snow-pillow sites, has less SWE, particularly at the mid to lower 4 

elevations. This offset may stem in part from the higher 106% of average 2010 seasonal 5 

precipitation versus 90% of average precipitation in the 2000–2009 snowmelt reconstruction 6 

period. Further, the reconstructed SWE estimates by Rice and Bales (2013) are based on a 7 

temperature-index calculation, versus a full energy-balance approach used by Guan et al. 8 

(2013). Also, some offset in both reconstructed SWE estimates may reflect a bias in snow-9 

covered-area estimates, which have a 500-m spatial resolution and are heavily influenced by 10 

canopy. That is, the LiDAR data represent open areas, and the reconstructed SWE values 11 

represent the full domain, but are empirically corrected for canopy. 12 

 13 

5. Conclusions 14 

 The current results show elevation as the primary determinant of snow depth near the 15 

time of peak accumulation over 1650 m on the west slope of the southern Sierra Nevada. 16 

LiDAR data reveal patterns potentially associated with orographic processes, mean freezing 17 

level, slope, terrain orientation and wind redistribution. Snow depth increased approximately 18 

15 cm per 100 m elevation
 
from snow line to about 3300 m and, equivalent to approximately 19 

6 cm SWE per 100 m elevation. This lapse rate is nearly equal to the SWE-reconstruction 20 

approach, but higher than the widely used PRISM precipitation data. Localized departures 21 

from this trend of +30 to -140 cm from the km-scale pattern of linear increase with elevation 22 

are seen in an elevation profile of 1-m elevation bands. Interestingly, snow depth decreased 23 

by approximately 48 cm per 100 m elevation from 3300 to 3494 m elevation. Both PRISM 24 

and SWE reconstructions show a leveling off or reductions in SWE at higher elevations as 25 

well.  26 

 The characterization of snow depth and SWE elevation lapse rates is unique given the 27 

high accuracy and high spatial resolution of these data. Moreover, the analysis of the 28 

residuals from this elevational trend reveals the role of aspect as a controlling factor, 29 

highlighting the importance of solar radiation and wind redistribution with regard to snow 30 

distribution. While previous works have come to similar conclusions, the use of LiDAR data 31 

reveals these signals in a spatially explicit manner. As LiDAR data become more available, 32 
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the analyses performed here provide a framework for evaluating the sensitivity of snow-1 

distribution patterns to variability in location and climate. 2 
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Table 1.  Target parameters and attributes for LiDAR flights 

Flight parameters Instrument attributes 

altitude AGL 600 m wavelength 1064 nm 

flight speed 65 m sec
-1

 beam divergence 0.25 mrad 

swath width 233.62 m laser PRF 100 kHz 

swath overlap 50% scan frequency 55 Hz 

point density 10.27 m
 2
 scan angle + 14° 

cross track res. 0.233 m scan cutoff 3° 

down track res. 0.418 m scan offset 0° 
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 1 

Table 2. Regression of snow-depth residuals with aspect intensity ( IA) 

Elevation, m 

R
2 
/intercept/slope

a
 

North Northwest Southwest West 

1850-2050 0.32/-23/124 0.22/-26.4/74.3 0.34/2.0/-531.4 0.14/-28/81 

2051-3300 0.22/1/102 0.42/-10/134 0.00/3/10 0.37/-15/160 

3301-3494 0/-68/-260 0.08/-72/594 0.32/-105/1625 0.25/-91/1028 

a
All p < 0.001, with exception of north at 3301-3494 m and southwest at 2051-3300 m. 

The 3 elevations and aspects with the highest R
2
 values are in bold. 
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 16 

Figure 1. Study area and instrument locations. Left, California with Sierra Nevada, outline of 17 

Sequoia and Kings Canyon National Parks and location of radar stations. Center,  location of 18 



 31 

snow sensors, and meteorological stations from north to south: Graveyard Meadow (GRV), 1 

Green Mountain (GRM), Chilkoot Meadow (CHM), Poison Ridge (PSR), Kaiser Pass (KSP), 2 

Huntington Lake (HNT), Upper Burnt Corral (UBC), Tamarack Summit (TMR), Bishop Pass 3 

(BSH), Black Cap Basin (BCB), Charlotte Lake (CRL), Lodgepole met (Ldg), Giant Forest 4 

(GNF), Chagoopa Plateau (CHP), Farewell Gap (FRW), Case Mountain met (Csm), Casa 5 

Vieja (CSV), and Quaking Aspen (QUA). Upper right, elevation and 50-m contour map with 6 

locations of meteorological stations in LiDAR footprint. Bottom right is LiDAR measured 1-7 

m snow depth in areas free of vegetation. 8 

 9 

Figure 2. a) Snow depth (blue) with regression lines and approximate December 3 - March 23 10 

bright-band radar freezing level noted, snow depth percent coefficient of variation (dark red); 11 

b) percent canopy cover, c) 35-m running average of mean snow depth and stacked area by 12 

elevation for each 90
o
 quadrant of aspect, d) mean slope of 1-m elevation band, and e) first 13 

derivative of mean slope (green) and snow depth (blue) over 35-m running average. 14 

 15 

Figure 3. Hourly average wind speed and direction for approximate December 3 - March 23 16 

accumulation period, top; periods with highest probability of snow redistribution bottom, 17 

radius scale in m sec
-1

, azimuth in degrees, and north at 0
o
. 18 

 19 

Figure 4. a) Aspect intensity of LiDAR domain by elevation, b) residuals of mean March 23
rd

 20 

snow depth using model regression of slope, 1850-3300 m, from Figure 2a, c) regression of 21 

residuals for 1850-2050 m (black, dashed line) and 3301-3494m (gray, solid line) showing 22 

departures from elevation trend for NE and SW aspect intensity, and d) 2051-3300 m (green, 23 

dotted line) in SE and NW. 24 

 25 

Figure 5. December 3
rd

 - March 23
rd

 accumulation period hourly bright-band freezing level 26 

recorded at three wind-profiler stations upwind of the study area; locations shown in Figure 27 

1. Dots are 5th and 95th percentile. 28 

 29 



 32 

Figure 6. Accumulated gauge precipitation and snow-pillow SWE for the 3 sites with both 1 

measurements. Locations are shown in Figure 1. 2 

 3 

Figure 7. In-situ measurements of: a) snow depth, b) SWE and c) density; for all west-slope 4 

snow-pillow and depth sensors in sites located within 1
o
 latitude of study area. Upper panels 5 

show data for individual stations, with highest and lowest elevations plotted in bold. Lower 6 

panels show mean in black, with +1 standard deviation shaded in grey; vertical blue line 7 

indicates March 23
rd

 LiDAR acquisition dates. Figure 1 shows station names and locations. 8 

 9 

Figure 8. Observed snow depth on the March 23
rd

 LiDAR acquisition date for all west-slope 10 

snow-pillow sites equipped with depth sensors, plotted over mean LiDAR snow depth (dark 11 

gray) and 1 standard deviation (light gray). Giant Forest (GNF), Farewell Gap (FRW), and 12 

Chagoopa Plateau (CHP) are within 21 km of the measurement domain. Chilkoot Meadow 13 

(CHM) and Poison Ridge (PSR) are the sites furthest to the northwest. Locations shown on 14 

Figure 1. 15 

 16 

Figure 9.  Elevation trend of cumulative precipitation for the Kaweah River watershed for 17 

two scales of PRISM and two reconstructions of SWE from daily snowmelt estimates, for 18 

December - March, with March 23, 2010 LiDAR SWE estimate and 2 cumulative 19 

precipitation gauge measurements. 20 
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