
1 

 

 

Oct 14, 2014 

 

Dear Prof. Ralf Merz, 

 

We have revised the manuscript “hess-2014-157: Analyzing runoff processes through 

conceptual hydrological modelling in the Upper Blue Nile basin, Ethiopia “for Hydrology 

and Earth System Sciences (HESS). We wish to thank the editor and the reviewers for 

their thorough and useful suggestions. In our revision, we tried to account for every 

remark or suggestion made by the editor and reviewers. Below you find the comments 

from the editor and reviewers, the reply to the comments by the authors and a marked-up 

manuscript version showing the changes made. The manuscript has been updated 

according to the comments and changes are also highlighted in the manuscript by track 

changes. We hope that this revised version may satisfy the reviewers and the editor. 

 

Kind regards, 

 

Mekete Dessie 
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Comments from editors and reviewers and the corresponding feedback by the 

authors 

 
I. Comments from the editor 

 

Comment  

1) Reviewer One questioned your objective of the paper and you answered:  

„However, we believe that the innovation of this paper should not be sought in these 

aspects but rather in the fact that through a simplified model (i.e. a conceptual model), we 

are able to assess hydrological processes in the Lake Tana basin, which would be 

complex to do if a more sophisticated model were used (one would immediately 

encounter problems due to data scarcity). The insights that are gained learn a lot about the 

hydrology of this system, which up till now was less understood." 

If you want to demonstrate that a simple model works better than a complex one, you 

should apply a complex model and compare that to your simple model. It would be nice 

to see, but I do not see that in the paper.  

You agreed to the reviewer that type of model used does not fully allow to gain additional 

insight in hydrological responses but you argue that you gained (at least) some insights 

about the hydrology of this system, (i.e. catchment). This is not convincing for me but for 

me the main interesting point of the study and the reason why I would see a revised paper 

published is the following: In data scarce regions we have the problem that we have not 

enough data to run complex physically based models. But also it is difficult to run 

reliable conceptual models, because the lack of data for calibration or verification. So we 

need clever simple models that try to use all available information on hydrology. One 

such available information on hydrology is topography and I would guess that in region 

such as the upper Nile basin topography is a good proxy for the variability of most of the 

catchment characteristics. Hence I would like to see the story of the paper directed 

towards the question if a simple topography driven model structure is a good choice for 

such regions. What is the difference to a benchmark model that is based on different basic 

assumptions? 

 

Reply from authors 

 

We thank the editor for his constructive inputs to the paper and we tried to follow his 

suggestions. 

 

a) Comparison with other models 

We made comparisons with two bench mark models. A relatively complex model of Soil 

Water Assessment Tool (SWAT), developed by the United States Department of 

Agriculture (USDA) having many parameters, and the lumped model (FlexB) by Fenicia 

et al. (2008) were used. A brief description of the models and the performance 

comparisons are included in the revised manuscript: shown by track changes in the 
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manuscript: Pages 17 and 18, Line numbers 473 to 517; Fig.9 to Fig.12 on page 42, 43 

and 44. 

 

b) Objective of the paper 

We fully agree with your suggestion. The objective of the paper is to analyze rainfall-

runoff processes in the Upper Blue Nile basin, considering topography as a proxy for the 

variability of most of the catchment characteristics and to show that topography driven 

model structure and use of all available information on hydrology based on topography is 

a good choice for the Upper Blue Nile basin. We want also the paper to get published 

from this perspective. Accordingly, we have included additional clarification of the 

previous reply to Reviewer One, who questioned the objective of the paper (see details 

below in Section II under the comments from the Anonymous Referee #1 and the reply 

from authors). 

 

Comment 

2) Concerning the quality of the model and the analysis of model errors: Please add some 

more model performance indicators and parameter uncertainty studies, but just add more 

indicators is not too helpful as many indicators are highly inter-correlated. I think it 

would be helpful to discuss the simulation performance of some single events in much 

more detail based on hydrological understanding and to discuss some simulation results 

such as the modelled soil moisture variability. Are the patterns plausible? Are there some 

observations of hydrological variables which may support the model results? (e.g. 

variability of groundwater level which give hint to simulate groundwater recharge. ) 

Reply from authors 

We accept the comment and we considered the following additional model performance 

indicators and parameter uncertainty studies. 

a) Flow duration curves to illustrate the model performance on flow frequency simulation 

This was recommended by Hongkai Gao (reviewer 2) and we made a comparison of 

simulated and observed flow duration curves for the various models. This is shown in the 

revised manuscript on page 44 (Fig.11 and Fig.12). 

b) Global sensitivity analysis  
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In addition to the local parameter sensitivity analysis, in the revised version global 

sensitivity analysis of the model parameters is included based on the comments of 

Anonymous Referee #1. This is shown on page 46 (Fig.15) in the revised manuscript. 

c) Percent bias (PBIAS) as an additional model performance indicator 

We have included percent bias (PBIAS) as an additional model performance indicator in 

the revised version of the manuscript. It measures the average tendency of the simulated 

data to be larger or smaller than the observations (Gupta et al., 1999). This is shown by 

track changes in the revised manuscript on pages 16 and 17, line numbers 458 to 463. 

The different model performance results are shown on the revised Table 3, page 36.  

d) Verification of model results with some observations of hydrological variables and 

previous studies 

The editor suggested to investigate some observations of hydrological variables which 

may support the model results. In line with this, we tried to find groundwater level 

variation data. However, such data generally lacks in the study region. But studies by 

Kebede (2013) show that one of the study catchments (Gilgel Abay catchment) is 

identified as high groundwater recharge catchment. We have also witnessed this from 

several big springs in the catchment, for example one of such big springs used as a source 

of water supply for Bahir Dar town is in this catchment (Photo shown in the manuscript, 

page 45, Fig.13). This is in line with the results of this model for this catchment 

(baseflow takes the larger proportion in this catchment based on the model result). 

Therefore, these additional observations are included in the revised manuscript, shown by 

track changes on page 22, line numbers 634 to 637. 

 

II) Comments from the Anonymous Referee #1 

General comments 

The paper develops a rainfall-runoff model of medium complexity, distinguishing 

between groundwater, direct runoff and interflow; and splitting the catchments into three 

using topography. The parameter estimation uses a combination of calibration and 

estimation of parameters based on soil properties. The work is a brave attempt to develop 

and test a model for an area that suffers from limited flow, precipitation and hydrological 

properties data. However the paper does not really provide significant advances in 
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understanding hydrological responses or innovation in modeling. The quality of model 

outputs is declared good, but this is arguable and a detailed analysis of model errors has 

not been reported. 

 

Reply from Authors 

The framework used may not be innovative in modeling, as many conceptual models 

have been developed and used. However, we believe that the innovation of this paper 

should not be sought in these aspects but rather in the fact that topography driven model 

structure and use of all available information on hydrology based on topography is a good 

choice for the Upper Blue Nile basin, and  through a simplified topography driven model 

(i.e. a conceptual model), we are able to show and assess hydrological processes in the 

Lake Tana basin and compare such topography driven model with other models (SWAT 

and FlexB models). The insights that are gained learn a lot about the hydrology of this 

system, which up till now was not well understood. We hope that the reviewer may agree 

and that the objective of the paper is sufficiently novel to be published from this 

perspective. 

Concerning the quality of the model outputs and the errors associated with them, they can 

be evaluated based on model performance indicators like the Nash-Sutcliffe Efficiency 

(NSE), Root Mean Squared Error (RMSE), the coefficient of determination (R2), Bias, 

etc.  The visual comparison (Plots) can also give an overall judgment. The authors used 

NSE, RMSE, PBIAS and R2 in addition to the plot comparison of the observed and 

simulated outputs. The statistical results for NSE and R2 were greater than 0. 7, which 

shows the good performance of the model.  

Model uncertainty arises from a variety of sources, such as model parameterization, 

process representation, equifinality, and calibration accuracy. We agree on the 

importance of a detailed analysis of model errors. In this regard, we carried out more than 

2500 iterations using the Particle Swarm Optimization (PSO) technique to reach to the 

optimal model parameters and minimize calibration errors. We made sensitivity analysis 

of the model parameters to identify the important parameters and rank parameters that 

have significant impact on the model outputs (Fig.14 and Fig. 15 in the revised version of 
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the paper).  Each and every step of the model development has been discussed with the 

possible limitations.  

We agree with the reviewer to further investigate model errors and model clarity based on 

the relevant comments suggested by the reviewer that will be shown on the response to 

the more detailed comments of the reviewer and  the manuscript is revised based on these 

and other comments. 

Comment 

While recognizing the data issues, the authors claim that periods of data are relatively 

high quality; however this has not been shown, for example the reader cannot judge the 

degree of rainfall and flow data errors. The model is rather complex given the data 

restrictions, shown by the sensitivity analysis. The conclusions about hydrological 

processes cannot be justified given the data issues, the use of text book values of 

parameters of unknown applicability here, and the apparent limited performance of the 

model.  

Reply from authors 

The authors’ claim of relatively high quality discharge data for the calibration of the 

models emancipates from the data acquisition methodologies used. Unlike the previous 

water level measurement of twice a day using staff gauges, in this case, the water level 

measurements were made using Mini-Divers, automatic water level recorders (every 10 

min.), and manual readings from a staff gauge (three times a day, at 7 a.m., 1 p.m. and 6 

p.m.). Moreover, rating curves were produced using a recent survey at river cross 

sections.  We do not dare to say that the data is absolutely prefect. However, there is a 

significant improvement to what was available before. We agree that we did not show the 

rating curve plot in the manuscript together with the range of levels to which the rating 

curves were applied. In the revised version, we have shown and elaborated more on the 

accuracy of the rating curves that were established (see below under the detailed 

comments). .  

With respect to the rainfall data, the authors used the available rainfall data from the rain 

gauges in and around the study catchments and discussed the accuracy of the data. In the 

revised version, we have included a figure to show the location of the rain gauges (see 

below under the detailed comments).  
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The reviewer commented on the limitations of the use of text book values of parameters 

of unknown applicability. We agree with the comment and understand the limitation. 

Unfortunately, the study area faces high scarcity of data. In such instances, it is normal to 

consider data from relevant sources with caution. Accordingly, porosity and field 

capacity of the soils were derived from the study area soil texture data based on literature 

recommendation. Similar procedures are followed for the saturated hydraulic 

conductivity for the deep percolation by identifying the likely aquifer formation of the 

study area. We tried to optimize the literature recommended values to get better 

performance of the model (again, we refer to answers to more detailed comments of the 

reviewer). 

 

Comment 

There are various gaps in the description of the method, as I explain in my comments 

below. Overall, I am not confident that this model or the conclusions made about 

processes are justified, and all the evidence points to the model being over-complicated. 

The authors may have been better using a stricter application of the methods of Fenicia et 

al. 2008 to gradually build up the complexity of the model to the justified level, with 

more explicit attention to errors in inputs and outputs. Below are a few more detailed 

comments that may help in a revised version; however in my opinion the aims and 

approach need re-thought. 

 

Reply from authors 

We note the need for the clarification of some of the descriptions of the method that were 

not clear to the reviewer and to the other readers. These will be addressed in reply to the 

detailed comments of the reviewer point by point. We appreciate the suggestion of the 

reviewer to use a stricter application of the methods of Fenicia et al. (2008) in the 

building up of the model and we have  considered it as a bench mark model to compare 

the performance of our topography driven model  and this is accounted in the revised 

version of the paper. 
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More detailed comments (Specific comments) 

Comment 

5293, 3. Model is modified from what? Not clear what is being modified. 5293, 10. 

Differently from what? 

Reply from authors 

As explained on page 5293 in the discussion paper, our model is developed based on the 

works of Jothityangkoon et al. (2001), Krasnostein and Oldham (2004) and Fenicia et al. 

(2008). However, we made modifications on some of their model concepts and equations. 

The major modification (variations) made in this paper can be seen from three cases. 

i. The catchment bucket representation concept 

The works of Jothityangkoon et al. (2001), Krasnostein and Oldham (2004) and Fenicia 

et al. (2008) considered the catchment bucket to consist of the soil reservoir and the 

groundwater reservoir. In our model, in addition to the soil and groundwater reservoirs, 

we included the other component that considers the impermeable part of the catchment. 

So, the catchment is divided into the soil and groundwater reservoirs part and the 

impermeable part. As we know that our study catchments have impermeable surfaces 

(with little or no soil cover), we needed to consider this separately in the rainfall-runoff 

process representation of the conceptual model. 

 

ii. Soil surface Catchment characterization 

Catchment characterization was made based on topography. Hence, the catchment was 

divided as steeply, hilly and level and the input data to the model were determined 

accordingly. This is because the model is not a fully distributed model and hence 

topography is considered as a major landscape characteristics to determine the other 

catchment features required for the model.   

iii. Percolation to the groundwater table and hydraulic conductivity for the interflow 

In the soil and groundwater reservoirs, we modified the equations of deep percolation and 

hydraulic conductivity for the interflow component of the soil reservoir. 

For example, in the case of Fenicia et al. (2008), percolation to groundwater reservoir is 

modelled as: 
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where  maxP
 is maximum percolation, uS

 soil storage and feS
 is maximum soil storage. 

For details, refer to Fenicia et al. (2008). In our paper, this is conceptualized differently 

as given in the paper. Moreover, we made a distinction between the upper and deep soil 

hydraulic conductivities such that the hydraulic conductivity for the interflow component 

of the soil reservoir is dealt separately in our modelling approach. Details of the 

equations are shown in the paper. 

It was to reflect these aforementioned points that the authors used the word “modified” 

on page 5293 in the discussion paper. But taking the comment into consideration, we 

have revised the manuscript and rewritten to be clearer. This is shown by track changes in 

the revised manuscript on page 6, line numbers 150 to 160. The two figures (Fig.2 and 

Fig.3 in the first manuscript have now been merged into one figure (Fig.2 in the revised 

manuscript). 

Comment 

Eq 8 and 9. Equations applicable at hill-slope scale? Needs some further justification. 

 

Reply from authors 

Equations 8 and 9 are universal equations. Equation 8 is a universal equation for velocity. 

Displacement
velocity

Time


  

This equation is applicable anywhere as long as the displacement and time are 

determined accurately. In our case, the displacement is assumed to be the average slope 

length of the catchment (distance subsurface flow travels) and the time is the subsurface 

flow response time (the time the subsurface flow takes to reach to its exit). 

Equation 9 is Darcy’s equation that describes the flow of a fluid through a porous 

medium. It is applicable for a porous medium as long as the flow is laminar (which 

generally is the case in the case of a natural groundwater flow). Similar application of 

Darcy’s Law to the groundwater aquifer within a planar hillslope has been indicated in 

Jothityangkoon et al. (2001). 
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Comment 

How can all these parameters be justified? Why are there only seven – they need 

estimated for each of the three slope classifications? 

 

Reply from authors 

The model parameters are justified from calibration, validation, sensitivity analysis and 

performance studies of the model. From the model development, we identified seven 

parameters and these were calibrated using the Particle Swarm Optimization (PSO) 

technique. From the local model sensitivity analysis, we showed that three of the seven 

model parameters are hardly sensitive and there is little confidence in the model’s 

correspondence with these parameters and they can be reduced without appreciable 

impact on the model (This is shown on pages 5306 and 5307 in the discussion paper 

under Section 6.3). However, the global sensitivity analysis (Fig.15 in the revised 

manuscript) still shows that all the parameters are sensitive. 

The seven parameters for the three slope classifications are reached as follows. 

Parameters for the recharge  ( 1  and 2 ) 

In the three slope classification, 1  is to consider for the recharge from the steeply slope 

into the medium slope surface and 2 is for the recharge from the medium slope surface 

into the flat slope surface. There is no parameter for the steeply slope surface since there 

is no surface that recharges it. So, there are two parameters for the three slope 

classifications. 

Parameter for the impermeable surface of the catchment ( )   

In this case, the catchment is divided into two surfaces (impermeable surface with no or 

little soil cover and the soil surface). The parameter  is introduced to represent the 

fraction of impermeable surface within the total catchment and this part of the catchment 

is not classified as steeply, medium and flat slopes since the classification of this part of 

the catchment into such classes is not important. So we have one parameter.  

The parameters  , , 1k
 and ,s uK
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These parameters   and   are introduced to account variability of permeability and deep 

percolation of soil with soil water storage. 1k
 relates discharge and storage for the ground 

water and ,s uK
 is the saturated hydraulic conductivity in the upper soil layer.  We 

assumed that these parameters are less influenced by topography and each model 

parameter is assumed to be same for each slope classification of the catchment. 

Moreover, it looks quit inconsistent to separate the groundwater system in the catchment 

and we preferred all the three slope based classified catchments to share the same 

groundwater reservoir. 

In this perspective, we will have in total seven parameters for the three slope 

classifications. We agree with the reviewer that we did not provide this explanation in the 

paper. In the revised version of the paper, clarifications have been added. These are 

shown by track changes in the revised manuscript on pages 11 and 12, line numbers 304 

to 328. 

Comment 

5300, 1-4. Local relevance of the text book values? Really the textbook should provide 

ranges, which are fed into calibration (further increasing the calibration problem). 

 

Reply from authors 

We estimated porosity and field capacity of the soils and the saturated hydraulic 

conductivity for the deep percolation from literature recommendations. We agree with the 

comment and understand the limitation. However, owing to the high scarcity of data in 

the study area, it still remains necessary to consider data from relevant sources with 

caution. Hence, the soil texture class data of the catchments were used to estimate 

porosity and field capacity of the soils. From studies by Cosby et al. (1984), we note that 

soil texture is closely related to the variability in soil moisture parameters (porosity and 

field capacity of the soils). Similar procedures are followed for the saturated hydraulic 

conductivity for the deep percolation in that its value is estimated by identifying the 

likely aquifer formation of the study area. In fact, the literatures provide a range of 

values. In such instances, we considered average values and we tried to optimize the 

values by iterating to get the best model performance results. 



12 

 

Comment 

5300, 12. We need to see location map of these gauges – as precipitation is the key input 

–and know something about their accuracy. Was the PE spatially variable? 

What assumptions have been made about stream flow routing and stream-groundwater 

interactions? 

Reply from authors 

The location map of the rain gauges have been provided in the revised version of the 

manuscript. This is shown in the manuscript on page 41, Fig.7.  

Generally rainfall data are obtained on daily basis. The data for most of the stations are 

consistent and continuous, particularly for first class stations like Dangila, Adet and 

Debretabor. However, we encountered gaps in some stations like Sekela Station for some 

periods in the year. In such instances, only the rainfall data from the other stations is 

considered. As discussed in the paper, most of the rainfall stations in Gilgel Abay 

catchment are installed at the water divides and there is no station in the middle of the 

catchment. In this regard, the Gumara catchment is with higher density of rainfall 

stations. PE is also spatially variable. Based on the comment, the above discussions on 

the rainfall data have been included in the revised manuscript to let the readers know the 

accuracy of the rainfall data. This is shown by track changes in the revised manuscript on 

page 14, line numbers 384 to 391. 

In this paper of hydrological modeling, stream-groundwater interactions are assumed to 

be minimal and the groundwater is assumed to recharge the streams from deep 

percolation of rainfall on the catchments that produces baseflow of the rivers/streams. 

The storage effect of the streams when considered on the basis of average daily flows of 

the streams is assumed to be negligible and hence streamflow routing was not considered 

for such smaller streams. This clarification has been shown in the revised manuscript by 

track changes on page 12, line numbers 324-328. 

 

Comment 

Figure 6. Does not look like great performance to me. Needs some more insightful 

plots to elucidate magnitude and nature of errors. 
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Reply from authors 

The quality of the model outputs and the errors associated with them are usually 

evaluated based on model performance indicators like the Nash-Sutcliffe Efficiency 

(NSE), Root Mean Squared Error (RMSE), the coefficient of determination (R2), Bias, 

etc.  The visual comparison (Plots) can also give an overall judgment. The authors used 

NSE, RMSE and R2 in addition to the plot comparison of the observed and simulated 

outputs. The statistical results for NSE and R2 were greater than 0.7, which shows the 

good performance of the model. The plots of the simulated and observed discharges of 

Fig. 6 in the paper can show this, but it is true that there are some deviations of the 

simulated discharge from the observed ones at some points in the time series. There can 

be various reasons for this, as explained in the paper. One instance can be the rainfall 

data. As can be seen from Fig.7 in the revised manuscript, there are no rain gauges in the 

middle of the Gilgel Abay catchment and given the high spatial variability of the rainfall 

in the whole Blue Nile basin, this can create its own uncertainty on the model 

performance. Fig. 6 (now Fig.10 in the revised manuscript) has been updated to include 

comparisons with other benchmark models and also to give better visualization for the 

magnitude and nature of errors. This is shown in the revised manuscript on page 43, 

Fig.10. 

 

Comment 

Eq 20, 21. Authors claim that the gauged flow data are high accuracy – it would be useful 

for the reader to see the rating curves, together with the range of levels to which the 

rating curves were applied. 

Stochastic optimization implies the stochastic nature of the input errors were considered? 

How are rainfall errors considered? Stochastic optimization gives stochastic outputs, 

which is misprepresented, or at least under-utilized, by reporting optimal parameter 

values. 
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Reply from authors 

The rating curves together with the range of levels to which the rating curves were 

applied have been provided in the revised version of the manuscript (shown in Fig.8 in 

the revised manuscript on page 41).  

In the model calibration, we did not use stochastic optimization that depends on one or 

more of the input data subject to randomness. The input data (for example rainfall) are 

observed data (soil data have been estimated from relevant sources when observed data 

are absent). For the model calibration, we used the particle Swarm Optimization (PSO) 

technique. PSO optimizes a problem by having a population of candidate solutions, here 

particles, and moving these particles around in the search-space according to simple 

mathematical formulae over the particle's position and velocity. Each particle's movement 

is influenced by its local best known position but, is also guided toward the best known 

positions in the search-space, which are updated as better positions are found by other 

particles. 

Comment 

5302, 5. Why only 7 parameters? Each catchment was split into different runoff 

production units to represent variation in catchment properties using topography, so why 

not 21 parameters? 

Can the splitting into three areas be shown on a map, e.g. using color coding? 

 

Reply from authors 

This comment, “why 7 parameters? “, is similar to a comment given by the reviewer 

above (Page 10). The explanation is given there.  

Using color coding, the splitting of the study catchments into three using topography is 

shown in the revised manuscript on page 39, Fig.4. 

 

Comment 

5304, 5. Figures 5 and 6 do not show this very well. Some more insightful plots about the 

errors are needed. In Figure 5, it seems there are some rather serious errors. E.g. the 

wetting up period deserves some discussion, In Fig 6, I cannot really see the nature or 

magnitude of the errors; however there are clearly some systematic errors that need 
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critical discussion. The flow regime / climate in the validation period seems quite similar 

to the calibration period, so comparable performance is expected. 

Validation should ideally test the model to breaking point. 

 

Reply from authors 

This comment is similar to one of the comments above. Figures 5 and 6 in the discussion 

paper are plots of predicted and observed discharge and precipitation of the Gumara and 

the Gilgel Abay catchments for the calibration and validation periods. We still believe 

that the plot simulates well the general behavior of the observed streamflow hydrographs. 

Generally, the errors do not seem to have a trend. However, we notice that the model 

errors tend to increase during wetting up periods in most instances. Initially, the soils are 

relatively dry and most of the rainfall during the beginning of the rainy season is not 

effective to produce runoff in the model as the soil reservoir has to be filled first to 

generate the faster component of the runoff. In the model, mostly average conditions 

prevail owning to average input data (rainfall, soil, catchment characteristic, etc.). 

Besides model uncertainties, the rainfall data quality can also affect the model 

performance, mainly in the case of the Gilgel Abay catchment. The comments and 

discussions on the model errors have been incorporated in the revised manuscript (shown 

by track changes on page 19, line numbers 542-548). 

The flow data used for validation is from 2000-2005 (6 years data) and for calibration is 

the 2011 and 2012 years data for Gumara and the 2012 data for Gilgel Abay. Each year 

data is different, depending on the climate of the year and catchment conditions. 

However, the trend is similar each year such that there is high discharge in the rainy 

season (June to September) and a decreasing trend of discharge after September in line 

with the dry season. The 6 years discharge data are considered sufficient to run validation 

tests. 

Comment 

5304, 14. I didn’t follow what this meant. Which data are averaged over the year? 
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Reply from authors 

The modelled discharges appear to be less variable over time than the observed 

discharges. Therefore, the sentence on page 5304, line 14 in the discussion paper is to 

explain this. We used average daily rainfall data, average soil data (e.g. porosity, field 

capacity, and soil depth), average catchment characteristics data (e.g. slope, slope length) 

to mention some for the model inputs. Hence, this averaged condition may be one source 

of error such that the model may not exactly mimic extremes like peak discharges. We 

have included these clarifications in the revised paper (shown by track changes on page 

20, line numbers 554-558). 

Comment 

5305-5306. I don’t see how these observations are meaningful given the errors in the 

model. There seem to be large errors in the flow peaks, so the model cannot be used as a 

basis for concluding upon importance of direct runoff. 

 

Reply from authors 

Generally, the model performance and the model errors have to be explained based on 

commonly employed model performance indicators. In modeling, the usual practice is 

that if the model performance indicator results are above a recommended value (for 

example > 0.5 for NSE and R2), then the model is taken as acceptable and model results 

are considered meaningful. Our modeling approach is not different from this. The authors 

used NSE, RMSE and R2 in addition to the plot comparison of the observed and 

simulated outputs. The statistical results for NSE and R2 were greater than 0.7, which 

shows the good performance of the model. The plots of the simulated and observed 

discharges of Fig.9 and Fig.10 (in the revised paper) can show this, but it is true that there 

are some deviations of the simulated discharge from the observed ones at some points in 

the time series. This is the limitation of the model. To build more confidence on the 

model results, we have also used benchmark models (SWAT and FlexB models) to 

evaluate the performance of the model. All models show good performance in the 

calibration period. We understand that the model results are very important clues to 

understand the runoff processes in this data scarce region of the Upper Blue Nile basin 
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and for the general water resources planning in the area. But we do not dare to say that 

the results are absolutely perfect. 

Comment 

Figure 7. Local sensitivity analysis – value of this is unclear give high uncertainty in 

parameter values. Global analysis would be more useful. 

5307 - Sensitivity analysis results support the view that the model is too complex; or at 

least components of it are too complex 

 

Reply from authors 

The optimal model parameters are obtained using the particle Swarm Optimization (PSO) 

algorithm, which performs global analysis. In Figure 7 (in the discussion paper), we 

investigated the local sensitivity of each model parameter when the parameter value is 

different from the optimal one, keeping the other model parameter values constant (equal 

to the global optimal value). Based on the comment, we also made global sensitivity 

analysis and results are depicted in Fig.15 in the revised manuscript. Further discussions 

are also shown in the revised manuscript (shown by track changes on pages 23 and 24, 

line numbers 666-669 and 673-681). 

Comment 

5307, 23. This is not an encouraging performance. Probably a two or three-parameter 

model could achieve this. 

 

Reply from authors 

As shown in the paper, the results of NSE and R2, for the direct parameter transferability 

test to other catchment were 0.58 and 0.6 respectively. The authors’ suggestion of 

encouraging performance is based on these results. As it can be seen, the results are not 

bad. But the authors still stressed the need for further tests on similar catchments, as 

shown in the paper. We understand that various types of models with different number of 

parameters can be considered. Probably a two or three-parameter model could also give 

acceptable performance results, but such types of models are black box types and may 

not help for understanding the runoff processes in a particular catchment. 
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Comment 

5309, 10. This conclusions is not justified from the results. The effect of the 

topographically-based division of the catchment has not been explored at all? 

Reply from authors 

In the paper, the effect of the topographically-based division of the catchment is reflected 

mainly with respect to the input data to the model. Since the model was not a fully 

distributed model, it was necessary to use average catchment data. For this, we used 

topography as a proxy for the variability of most of the catchment characteristics like soil 

data (soil depth, porosity and field capacity) and undertake catchment classification. The 

explanations on page 5309, lines 9 and 10 in the discussion paper are to emphasize this 

role of topography in the model.  Moreover, we also showed the effects of topography on 

runoff and we obtained that hillslopes (medium and steep slope areas) generated almost 

no direct runoff as saturated excess flow. 

In line to the comment, we have further elaborated the discussion of the effect of the 

topographically-based division of the catchment in relation to the benchmark models. 

This is shown by track changes in the revised manuscript on pages 20 and 21, line 

numbers 560-585. 

 

III) Comments from Hongkai Gao  (Reviewer 2) 

General comments 

This manuscript is very interesting for me. The writing is clear and concise. The authors 

applied a new modelling framework (Savenije, 2010) to do runoff production area 

classification by topography information. Slope was used as criteria to do the 

classification. 

The model structure is simple but reasonable. The number of free parameters is also 

limited to 7, which dramatically reduces the equaifinality. Although the model did not 

apply the normally used curve in soil reservoir to represent the distribution of water 

storage capacity (Zhao, 1992), the results are also excellent, which is intriguing for me. 

The authors cooperated topographic information and soil texture information into the 

model. The average slope gradient and slope length are parameterized into the conceptual 

model by semi-empirical relations. The porosity and field capacity of soil are used to 
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determine the storage capacity. All the functions are clear and reasonable for me. But 

there are still several things needs to be clarified. 

Comment 

1. Following the comments from Prof. Merz and Anonymous Referee #1, I also think a 

benchmark model is necessary in this paper to illustrate the better performance or 

transferability of this modelling approach than traditional lumped models which neglect 

the heterogeneity of catchments. Not only hydrograph, but also the flow duration curve 

shall be shown to illustrate the model performance on flow frequency simulation. 

 

Reply from authors 

We accepted the comment to use a benchmark model as an alternative to compare the 

results with our topography driven model. We chose the lumped model with lumped 

input data (FlexB) by Fenicia et al. (2008) and a relatively complex model of Soil Water 

Assessment Tool (SWAT), developed by the United States Department of Agriculture 

(USDA) having many parameters, as benchmark models to assess the benefits and 

performance of topography-driven semi-distributed modelling of this paper. A brief 

description of the models and the performance comparisons are included in the revised 

manuscript: shown by track changes in the manuscript: Pages 17 and 18, line numbers 

473-517 and pages 20 and 21, line numbers 560-585. Model simulation comparisons 

have been also shown in Fig.9 and Fig.10.  

We thank Hongkai Gao for his suggestion to show the flow duration curve to illustrate 

the model performance on flow frequency simulation. Accordingly, we have shown the 

flow duration curve of the models (including the benchmark models). The flow duration 

curves for the different models have been shown in the revised manuscript on page 44, 

Fig. 11 and Fig.12.  

Comment 

2. The model structure is not very clear for me, although it is mentioned in the text and 

shown in Figure 2 and Figure 3. I suggest the authors show the inter-link between 

different runoff production areas in one figure, which could be clearer and easier to 

follow. 
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Reply from authors 

We agree with this comment and we have worked further on the model structure to make 

it clearer, and the clarifications have been provided in the revised version of the 

manuscript (shown by track changes on page 6, line numbers 150-161). The link between 

different runoff production areas (Figure 2 and Figure 3 in the discussion paper) have 

been combined into one figure in the revised manuscript (Fig.2). 

Comment 

3. Please show the slope map, classification map obtained by topography criteria, and the 

soil map, from which we can easily see the heterogeneity among different catchments. 

 

Reply from authors 

We agree with this comment and we have included the slope and soil maps in the revised 

version of the manuscript.  The slope map is shown on page 39, Fig.4 and the soil map on 

page 40, Fig.5 and Fig.6 in the revised manuscript. 

 

Comment 

4. In Section 6.3, for the transferability test, I think the authors should do more discussion 

to clarify why this modelling approach can get good transferability. The authors could 

refer our newly published paper (Gao et al., 2014) about the application of the FLEX-

Topo modelling approach in the Heihe river basin in China, in which paper the model 

performance comparison and transferability with several benchmark models are test. 

 

Reply from authors 

We agree with Hongkai Gao suggestions to do more discussions to clarify why this 

modelling approach can get good transferability. We also thank Hongkai Gao for his 

recommendation to the valuable reference (Gao et al., 2014). We have included the 

additional discussions in the revised version of the paper (shown by track changes on 

pages 24 and 25, line numbers 704-716). 

 

Minor comments: 

Comment 
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1. Perhaps I have missed something, do the different hydrological components have 

isolated groundwater or they share the same groundwater reservoir? 

 

Reply from authors 

They share the same groundwater reservoir since it looks quit inconsistent to separate the 

groundwater system in these relatively small catchments and we preferred all the three 

slope based classified sub-catchments to share the same groundwater reservoir. For this 

clarifications are added in the revised manuscript (shown by track changes on pages 11 

and 12, line numbers 304-328). 

Comment 

2. Equation 12. Why the saturated hydraulic conductivity of deep soil layer (Ks,e) is 

not a free parameter in Table 2? How did the authors determine the Ks,e? 

 

Reply from authors 

It can be a free parameter. But the authors’ interest is to reduce the number of parameters 

in the model formulation and use more knowledge available from observation and data as 

much as possible to reduce the equaifinality and increase chance of model transferability. 

In this perspective, we preferred to estimate the saturated hydraulic conductivity of deep 

soil layer (Ks,e) by identifying the likely aquifer formation of the study area (colluvial 

mantle  on top of the igneous rock) and using ranges of conductivities given by 

Domenico and Schwartz (1990) for the different aquifers. 

Comment 

3. Equation 23 and 24. Where is i in these equations? 

 

Reply from authors 

We thank Hongkai Gao for this remark. Equations 22, 23 and 24 are updated to show i in 

the equations in the revised version of the manuscript (shown on page16, Equations (22, 

23 and 24).  

Comment 

4. Table 1. Is ‘flat’ more suitable than ‘level’? 
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Reply from authors 

We think that the two words are synonymous. 

 

Comment 

5. Table 1. Are field capacity and porosity parameters or input data? If they are input 

data, how did you get these information in catchment scales? Please clarify this point. 

 

Reply from authors 

Field capacity and porosity are input data. As we tried to explain in Section 4.2 in the 

manuscript, page 13 in the revised manuscript, the porosity and field capacity of the soils 

were derived from the soil texture based on the work of McWorter and Sunada (1977). 

We determined the dominant soil textures of the study catchments (Table 1) from soil 

map of the Abay River Basin integrated master plan study BCEOM (1998a). Average 

values of the porosity and field capacity of the soils were considered at catchment scale 

from the ranges of values recommended by McWorter and Sunada (1977) based on the 

relevant soil texture in each catchment category classified based on slope. 

Comment 

6. Table 2. Why lambda is a parameter? To my point view, you can determine the 

proportion of impermeable surface by soil map. Is it possible? 

 

Reply from authors 

We agree with Hongkai Gao’s idea of the possibility of determining the proportion of 

impermeable surface from the soil map. However, currently the available soil map of the 

study areas is not with such details. The available soil maps (Fig.5 and Fig.6 in the 

revised manuscript on page 40) do not differentiate the impermeable portions of the 

catchments, making difficult to know the impermeable surfaces from such maps. So, we 

have to represent it through a model parameter lambda. 
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Abstract 

Understanding runoff processes in a basin is of paramount importance for the effective 

planning and management of water resources, in particular in data scarce regions of the 

Upper Blue Nile. Hydrological models representing the underlying hydrological 

processes can predict river discharges from ungauged catchments and allow for an 

understanding of the rainfall-runoff processes in those catchments. In this paper, such a 5 

conceptual process-based hydrological model is developed and applied to the upper 

Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile basin, the 

Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the 

basin. Topography is considered as a proxy for the variability of most of the catchment 

characteristics. We divided the catchments into different runoff production areas using 10 

topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in 

the Upper Blue Nile basin) were considered separately in the conceptual model. Based on 

model results, it can be inferred that about 65% of the runoff appears in the form of 

interflow in the Gumara study catchment, and baseflow constitutes the larger proportion 

of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller 15 

fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel 

Abay) and most of this direct runoff is generated through infiltration excess runoff 

mechanism from the impermeable rocks or hard soil pans. The study reveals that the 

hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff 

mailto:MeketeDessie.Wossenie@UGent.be


2 

 

as saturated excess flow prevails from the flat slope areas. Overall, the model study 20 

suggests that identifying the catchments into different runoff production areas based on 

topography and including the impermeable rocky areas separately in the modeling 

process mimics well the rainfall-runoff process in the Upper Blue Nile basin and brings a 

useful result for operational management of water resources in this data scarce region. 

 Key words: interflow, direct runoff, baseflow, rainfall-runoff, Blue Nile 25 

 

1   Introduction 
 

The Upper Blue Nile basin, the largest tributary of the Nile River, covers a drainage area 

of 176 000 km2 and contributes more than 50 percent of the long term river flow of the 30 

Main Nile (Conway, 2000). The basin (Fig.1a) drains the central and south-western 

highlands of Ethiopia. The Ethiopian government is pursuing plans and programs to use 

the water resource potential of the basin for hydropower and irrigation in an effort to 

substantially reduce poverty and increase agricultural production. The Grand Ethiopian 

Renaissance Dam near the Ethiopian–Sudan border is currently under construction and 35 

several other water resource development projects are underway in its sub-basins.  

 

    Owing to such rapidly developing water resource projects in the basin, there is an 

increasing need for the management of the available water resources in order to boost 

agricultural production and to meet the demand for electrical power. Sustainable planning 40 

and development of the resources depend largely on the understanding of the interplay 

between the hydrological processes and the availability of adequate data on river 

discharges in the basin. However, the available hydrological data are limited (for 

example, presently about 42% of the Lake Tana sub-basin, source of the Blue Nile, is 

gauged by the Ministry of Water Resources of Ethiopia). Furthermore, research efforts 45 

performed so far in the Upper Blue Nile basin with respect to the basin characteristics, 

hydrology and climatic conditions are scanty and fragmented (Johnson and Curtis, 1994; 

Conway, 1997; Mishra and Hata, 2006; Antar et al., 2006). Hydrological models that 

allow for a description of the hydrology of the region play an important role in predicting 

river discharges from ungauged catchments, and understanding the rainfall-runoff 50 

processes in the catchments to enhance hydrological and water resources analysis. As 
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such, a number of models have been developed and applied to study the water balance, 

soil erosion, climate and environmental changes in the Blue Nile basin (e.g. Johnson and 

Curtis, 1994; Conway, 1997; Mishra and Hata, 2006; Kebede et al., 2006; Kim and 

Kaluarachchi, 2008; Collick et al., 2009; Steenhuis et al., 2009; Tekleab et al., 2011 55 

Tilahun et al., 2013). 

   The Soil and Water Assessment Tool (SWAT) and the Hydrologiska Byråns 

Vattenbalansavdelning Integrated Hydrological Modelling System (HBV-IHMS) models 

have been applied in the basin (Setegn et al., 2008; Wale et al., 2009, Uhlenbrook et al., 

2010). The SWAT model is based on the Soil Conservation Service (SCS) runoff curve 60 

number approach, where the parameter values are obtained empirically from plot data in 

the United States with a temperate climate. Liu et al. (2008) studied the rainfall–runoff 

relationships for the three Soil Conservation Research Project (SCRP) watersheds (Hurni, 

1984) in the Ethiopian highlands and showed the limitations of using such models, 

developed in temperate climates, in monsoonal Ethiopia. Adjusted runoff curve numbers 65 

for steep slopes with natural vegetation in north Ethiopia were reported by 

Descheemaeker et al. (2008). 

    Using a simple runoff-rainfall relation to estimate inflows to the Lake Tana from 

ungauged catchments, Kebede et al. (2006) computed the water balance of Lake Tana. 

However, hills and floodplains were not differentiated in their simplified runoff-rainfall 70 

relations. Mishra et al. (2004) and Conway (1997) developed grid-based water balance 

models for the Blue Nile basin, using a monthly time step, to study the spatial variability 

of flow parameters and the sensitivity of runoff to  climate changes. In both models, the 

role of topography was not incorporated, and in the model of Conway (1997) soil 

characteristics are assumed spatially invariant. Very few of the models discussed above 75 

attempted to identify the catchments into different hydrological regimes based on the 

relevant landscape characteristics to study the runoff mechanisms and the hydrological 

processes in the basin. Landscape characteristics can lead into conceptual structures and 

relationships or the conceptual hydrological models can benefit from them (Beven, 

2001). Istanbulluoglu and Bras (2005) considered topography as a template for various 80 

landscape processes that include hydrologic, ecologic, and biologic phenomena. This is 

more appealing to the Ethiopian highlands, in particular to the Upper Blue Nile basin, as 
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farming and farm drainage methodologies, soil and water conservation works, soil 

properties, vegetation, drainage patterns and density, and even rainfall are much linked to 

topography in the Ethiopian highlands. Therefore, it remains necessary to investigate the 85 

hydrological processes in the Blue Nile basin taking topography as a proxy for the 

variability of most of the catchment characteristics. The objective of this paper is to study 

runoff mechanisms in the Upper Blue Nile basin using topography as the dominant 

landscape component and classify a catchment (as steep, medium and flat slope areas) 

into different runoff production areas. The study tries to identify the dominant rainfall-90 

runoff mechanism on the hillslopes (steep and medium slop areas) and the valley bottoms 

(flat areas). A considerable portion of the mountainous areas in the Upper Blue Nile basin 

consists of impermeable rocks and hard soil pans leading to a different runoff processes. 

This paper further investigates the contribution of such landscapes in the rainfall-runoff 

process by including a class for these impermeable rock and hard soil surfaces in the 95 

conceptual hydrological model. This approach is not so far tested in the Upper Blue Nile 

basin. However, similar methodologies to the conceptual hydrological model 

development are discussed by Savenije (2010). Furthermore, it is necessary to obtain 

better quality river discharge data in the basin. In this paper, we will face all these 

challenges. The conceptual hydrological model for the rainfall-runoff studies of the basin 100 

is calibrated using good quality discharge data obtained from recently established 

measurement stations. These outcomes positively add to the existing knowledge and 

contribute to the development of water resources plans and decision making in the basin. 

 

2   Description of study catchments 105 

 

The study catchments (Fig. 1b), where the model developed is applied, are located in the 

Lake Tana basin, the source of the Blue Nile River. The Lake Tana basin, located in the 

north-western Ethiopian highlands, with a catchment area of 15077 km2 (including the 

lake area), consists predominantly of the Gilgel Abay, Gumara, Rib and Megech Rivers. 110 

About 93% of the annual inflow to Lake Tana is believed to come from these rivers 

(Kebede et al., 2006), and better understanding of the hydrology of these rivers plays a 

crucial role for an efficient management of the lake and its basin. Two of the sub-
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catchments (Gumara and Gilgel Abay) were selected for this study, in order to represent 

the hilly and mountainous lands of the southern and eastern parts of the sub-basin as the 115 

bulk of it is located here (figure 1), and to optimally use the available data. For both sub-

catchments, large parts of their territory are intensively cultivated. The lower floodplains 

in these catchments with their buffering capacity are not considered by this study, but 

were discussed by Dessie et al. (2014). 

    The Gilgel Abay catchment (Fig. 1) covers an area of 1659 km2 at the gauging station 120 

near Picolo, with elevations ranging between 1800 and 3524 m a.s.l. Soils are 

characterized by clay, clay loam and silt loam textures, each texture sharing similar 

proportions of the catchment area (Bitew and Gebremichael, 2011). The majority of the 

catchment is a basalt plateau with gentle slopes, while the southern part has a rugged 

topography.  125 

    The Gumara catchment covers part of the eastern side of the Lake Tana basin. At its 

upper and middle portion, it has mountainous, highly rugged and dissected topography 

with steep slopes. The lower part is a valley floor with flat to gentle slopes. Elevation in 

the catchment varies from 1780 to 3700 m a.s.l. At the upper gauging station (Fig. 1), the 

catchment area is 1236 km2. Two independent studies found very homogeneous textures 130 

of the soils in this catchment. BCEOM (1998a) described it as dominantly clay with 

sandy clay soil at some places in the catchment, while soil data collected by Miserez 

(2013) show that texture is clay and clay loam. In the hilly catchments, clay soils are 

essentially Nitisols which do not present cracking properties as opposed to lowland 

Vertisols (Miserez, 2013). 135 

    Based on rainfall data from the Dangila and Bahir Dar stations, observed in the period 

2000 to 2011, mean annual rainfall is ca. 1500 mm, with more than 80% of the annual 

rainfall concentrated from June to September. Geologically, the catchments consist of 

Tertiary and Quaternary igneous rocks, as well as Quaternary sediments. The rivers in the 

hilly areas are generally bedrock rivers, whereas in the floodplain the rivers meander and 140 

sometimes braid (Poppe et al., 2013).   

 

 ***Fig. 1 approximately here***   

 

 145 
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3   Model development 

 

The model developed is based on a simple water balance approach and the studies by 

Jothityangkoon et al. (2001), Krasnostein and Oldham (2004) and Fenicia et al. (2008). 

The setup of this model is shown in Fig. 2. In this modeling approach, the catchment is 150 

first split into soil surface and impermeable surface (these are areas with little or no soil 

cover and bedrock outcropping in the catchment as well as soils with well-developed 

tillage pans). The runoff from the presumed impermeable areas is modeled as infiltration 

excess (Hortonian flow) runoff and is represented as Qse2. The other component of the 

catchment, recognized as the soil surface, is further divided into three using topographic 155 

criteria (slope), considering topography as a proxy for the variability of most of the 

catchment characteristics. Here, two reservoirs are introduced (the soil reservoir and the 

groundwater reservoir). The slow reacting reservoir (or the groundwater reservoir) is set 

to be common to all of the three slope based divisions of  the catchment as it looks quit 

inconsistent to separate the groundwater system in the catchment. The catchment buckets 160 

(reservoirs) and the conceptual runoff processes are depicted in Fig.2 (b) and (c).  

However, the model is modified to reflect the actual catchment conditions of the study 

areas, such that an additional component that accounts for surface runoff production from 

impermeable surfaces (with little or no soil cover) in the catchments is included. 

Topography is considered as a proxy for the variability of most of the catchment 165 

characteristics. We divided the catchments into different runoff production areas using 

topographic criteria. Moreover, the percolation to the groundwater table and the hydraulic 

conductivity for the interflow are modelled differently and the formation of saturated 

areas at the bottom of slopes as a result of interflow from steep hills in the catchments is 

considered. 170 

    Jothityangkoon et al. (2001) conceptualized the upper soil layer (further referred to as 

the soil reservoir) as a ‘leaky bucket’. By adding a groundwater reservoir (Krasnostein 

and Oldham, 2004), the conceptual model for modelling the runoff discharge at the 

catchment outlet was developed. The setup of this model is shown in Fig. 2. 

 175 

***Fig. 2 approximately here*** 
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    In figure 2, Q1 [mm/day] is the sum of direct runoff and interflow in the soil reservoir,  

Q2 [mm/day] is the baseflow from the groundwater reservoir, QSe2 is the direct runoff 

from impermeable surface of the catchment and the sum of Q1 , and Q2 and QSe2 forms 

the total river discharge, Q [mm/day], at the outlet of  a catchment.  180 

    The water storage at any time t within the soil reservoir, S (t) in mm, is determined by 

the precipitation ( P , in mm/day), evapotranspiration (Ea, in mm/day), and other 

catchment controlled outputs (cfr. Fig. 2 2c(i-iii)and 3a). When the storage depth exceeds 

the field storage capacity (Sf, in mm), precipitation is assumed to be partly transformed 

into subsurface runoff, to represent inter- or subsurface flow (Qss, in mm/day), and partly 185 

into deep percolation or recharge (R, in mm/day) to the groundwater (Fig. 2cii3b). When 

the soil reservoir fills completely, and the inflows exceed the outflows, surface runoff 

(Qse1, in mm/day) is generated.  

 

***Fig. 3 approximately here*** 190 

 

Quantitatively, the depth of water stored in the soil, S (t), evolves over time using the 

water balance: 

ss se1( ) ( ) (P )aS t S t t E Q Q R t                                           (1) 

where P  is the precipitation [mm/day], aE  is the actual evapotranspiration [mm/day], 195 

( )S t t is the previous time step storage [mm], ssQ  is the interflow or subsurface runoff 

[mm/day], se1Q  is the direct or overland flow from the soil reservoir [mm/day], R  is deep 

percolation or recharge to the substrata and groundwater [mm/day], and t  is the time 

step equal to one day.  

    Different studies show that some part of the interflow water from the steep hills 200 

appears at the hill bottoms during wet periods in the form of increased moisture content 

or overland flow (Frankenberger et al., 1999; Bayabil et al., 2010; Mehta et al., 2002; 

Tilahun et al., 2013). These findings reveal that the hill bottoms receive additional inputs 

to the soil reservoir from the steep upper parts of the hills besides the rainfall. In this 

modelling approach, it is assumed that steep hills first recharge the medium slope 205 

sections, and consequently the medium slope surfaces recharge the flat regions (valley 

bottoms). The magnitude of the recharge ( rQ , in mm/d) is modelled as: 
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 = αr ssQ Q                                                                                                    (2) 

where α  (-) is interflow partitioning parameter and ssQ  is as defined above. Equation (1) 

is, therefore, modified for the medium slope and flat surfaces as 210 

 r ss se1( ) ( ) (P )aS t S t t Q E Q Q R t                                              (3) 

 

3.1   Actual evapotranspiration  

 

During wet periods, when the depth of available water exceeds the maximum available 215 

soil storage capacity (Sb, in mm), the actual evapotranspiration is equal to the potential 

evapotranspiration ( pE , in mm/day). When ( )S t is lower than Sb, aE  is assumed to 

decrease linearly with moisture content as follows (Steenhuis and van der Molen, 1986): 

( )
( )a p

b

S t
E E

S
                                                                                  (4) 

bS D                                                                                             (5) 220 

where D  is the soil depth [mm] and   is the soil porosity (-). 

 

 3.2   Subsurface runoff 

 

Subsurface runoff, ssQ [mm/day], occurs only when the storage depth exceeds the field 225 

storage capacity ( fS , in mm). It is calculated as the difference between the storage and 

the field storage capacity, divided by the response time ( rT ) of the catchment with 

respect to subsurface flow (Jothityangkoon et al., 2001): 

f

( )
,  when S(t) S

 0,    when S(t) S

f
ss f

r

ss

S t S
Q

T

Q


 

 

                                                        (6) 

The field storage capacity of the soil reservoir, fS [mm], is calculated by 230 

f cS F D                                                                                              (7) 

where cF  (-) is the field capacity of the soil (dimensionless).  
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    The catchment response time is the time taken by the excess water in the soil to be 

released from the soil and drained out from the catchment. This response time depends on 

the properties of the soil and the topography of the system, and the subsurface flow 235 

velocity ( bV , in mm/day) can be expressed as 

b
r

L
V

T
                                                                                                (8) 

where L is the average slope length of the catchment [mm]. From Darcy’s law in 

saturated soils, bV  is also given as 

  b sV K i                                                                                             (9) 240 

Where sK  is the saturated hydraulic conductivity of the soil [mm/day] and i is the 

hydraulic gradient, which is approximated by the average slope gradient (G ) of the 

catchment. 

    Brookes et al. (2004) analyzed the variability of saturated hydraulic conductivity with 

depth, and they found large sK  values near the surface or root zone layer and the 245 

transmissivity that decreases exponentially with depth. Accordingly, a variation is made 

between the upper soil layer (that affects interflow) and deep soil layer (percolation to 

groundwater) hydraulic conductivities. The permeability ( K , in mm/day) of the upper 

soil layer for the interflow under different soil water conditions is modelled as: 

(t)

, (1 )

S

S
b

s uK K e



                                                                             (10)  250 

where   is a dimensionless parameter, and ,s uK  [mm/day] is the saturated hydraulic 

conductivity of the upper soil layer, both of which are to be calibrated. 

The response time ( rT ) in Equation (6) is, hence, approximated from Equations (8), (9) 

and (10) as 

 r

L
T

GK
                                                                                             (11)                                                255 

Where L and K  are as defined in Equations (8) and (10) and G is average slope gradient 

of the catchment. 

    The deep percolation or recharge to groundwater ( R , in mm/day) under varying soil 

water content conditions is modelled as: 
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( )

, (1 )

S t

S
b

s eR K e



                                                                          (12) 260 

Where γ  a dimensionless parameter, and ,s eK  [mm/day] is the saturated hydraulic 

conductivity of the deep soil layer, which is to be estimated from the aquifer properties of 

the catchments. This equation is identical to Equation (10) such that in both cases it is 

assumed that conductivities vary exponentially under varying soil water content 

conditions but with different magnitudes. 265 

 

3.3   Saturated excess runoff 

 

Saturated excess runoff or surface runoff ( 1seQ , in mm/day) is calculated as the depth of 

water that exceeds the total water storage in the soil reservoir at each time step 270 

(Jothityangkoon et al., 2001; Krasnostein and Oldham, 2004). 

 
b

1 b

1 b

( )
 , when (t)> 

0   , when (t)

se

se

S t S
Q S S

t

Q S S






 

                                                         (13) 

 

3.4   Surface runoff from the impermeable areas 

 275 

Field visits on the Upper Blue Nile basin (including the study catchments) revealed the 

existence of exposed surfaces that cause strong runoff response. These are areas with 

little or no soil cover and bedrock outcropping in some parts of the catchment as well as 

soils with well-developed tillage pans (Melesse Temesgen et al., 2012a, 2012b) (Fig. 3). 

Hence, runoff from these almost impermeable areas is modeled as infiltration excess 280 

(Hortonian flow) runoff with a very small amount of retention before runoff occurs 

(Steenhuis et al., 2009). The surface runoff from these areas ( 2seQ  , in mm/day) is 

calculated as 

2 p p

2 p

 , when  > 

0  , when    

se

se

Q P E P E

Q P E

 
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                                                                    (14) 



11 

 

Where P and pE  [mm/day] are as defined above. The impermeable portion of the 285 

catchment area ( rA , in km2) is modelled from the total catchment area ( tA , in km2) as   

r tA A                                                                                                     (15) 

where   is the fraction of impermeable surface within the catchment. 

 

***Fig. 3 approximately here*** 290 

 

3.5   Groundwater reservoir and baseflow 

 

The introduction of a deep groundwater storage (Fig. 2b) helps to improve low flow 

predictions. This baseflow reservoir is assumed to act as a non-linear reservoir 295 

(Wittenberg, 1999) and its outflow, Q2 [mm/day], and storage, gS [mm], are related as 

1
( )

2

k
g tS

Q
t




                                                                                             (16) 

where 1k  is a dimensionless model parameter. The water balance of the slow reacting 

reservoir (groundwater reservoir) is given by 

( ) ( ) 2(R )g t g t tS S Q t                                                                      (17) 300 

where ( )g tS  [mm] is the groundwater storage at the given time step, ( )g t tS  [mm] is the 

previous time step groundwater storage , R [mm/day] is the deep percolation, as given by  

Equation (12). 

In total the model has seven parameters: 

 (i) Parameters for the recharge (α1 and α2): In the three slope classification, α1 is to 305 

consider for the recharge from the steeply slope into the medium slope surface and α2 is 

for the recharge from the medium slope surface into the flat surface. There is no 

parameter for the steeply slope surface since there is no surface that recharges it. So, 

there are two parameters for the three slope classifications. 

(ii) Parameter for the impermeable surface of the catchment (λ)   310 

The catchment is divided into two surfaces (impermeable surface with no or little soil 

cover and the soil surface). The parameter λ is introduced to represent the fraction of 

impermeable surface within the total catchment and this part of the catchment is not 
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classified as steeply, medium slopes and flat surfaces since the classification of this part 

of the catchment into such classes is not important. So we have one parameter. 315 

(iii) The parameters β, γ, k1 and Ks,u   

These parameters β and γ are introduced to account variability of permeability and deep 

percolation of soil with soil water storage. k1 relates discharge and storage for the ground 

water and Ks,u is the saturated hydraulic conductivity in the upper soil layer.  We assumed 

that these parameters are less influenced by topography and each model parameter is 320 

assumed to be same for each slope classification of the catchment. Moreover, it is quit 

inconsistent to separate the groundwater system in the catchment. Therefore, all the three 

slope based classified sub-catchments share the same groundwater reservoir.  

In this modeling approach, stream-groundwater interactions are assumed to be minimal 

and the groundwater is assumed to recharge the streams from deep percolation of rainfall 325 

on the catchments that produces baseflow of the rivers/streams. The storage effect of the 

streams when considered on the basis of average daily flows of the streams is assumed to 

be negligible and hence streamflow routing was not considered for such smaller streams. 

 

 330 

3.6   Total river discharge 

 

The total river discharge ( tQ , in mm/day) at the outlet of the catchments is given by: 

1 2 2t ss se seQ Q Q Q Q                                                                               (18) 

 335 

  4   Data inputs 

 

The data needed for the model are classified into three types: topographical, soil, and 

hydrological data.  

 340 

4.1   Topographical data 

 

Steenhuis et al. (2009) found that overland flow in the Blue Nile basin is generated from 

saturated areas in the relatively flatter areas and from bedrock areas, while in the rest of 
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the catchment all the rainfall infiltrates and is lost subsequently as evaporation, interflow 345 

or baseflow. Topographical processes have been found to be the dominant factors in 

affecting runoff in the Blue Nile Basin (Bayabil et al., 2010). We used topography of 

catchments as the main criterion to divide the catchment into different runoff production 

surfaces. Based on slope criteria (FAO, 2006), each study catchment was divided into 

three sub-catchments as steep (slope gradient > 30%), hilly or medium (slope gradient 350 

between 8 and 30%) and flat (slope gradient < 8%) to consider spatial variability in 

catchment properties and runoff generation mechanisms (Fig.4).  

***Fig.4 approximately here*** 

The 30 m by 30 m resolution Global Digital Elevation Model (GDEM) was used to 

define the topography (downloaded from the ASTER website, 355 

http://earthexplorer.usgs.gov/). The GDEM (figure 1) was used to delineate and calculate 

the average slope gradient and average slope length of the catchments (topography-

related inputs to the model).  

 

4.2   Soil data 360 

 

The model requires data on depth, porosity and field capacity of the soils. Soil depth and 

soil types data (Fig.5 and Fig.6) were obtained from the Abay River Basin integrated 

master plan study BCEOM (1998a). 

***Fig.5 approximately here*** 365 

***Fig.6 approximately here*** 

 In this modeling philosophy, the soil depth is meant to represent the depth of water 

stored in the topmost layer (root zone) of the soil (Fig. 2 and 3). The porosity and field 

capacity of the soils were derived from the soil texture based on the work of McWorter 

and Sunada (1977). From this, we determined the soil textures of the study catchments 370 

(Table 1). The saturated hydraulic conductivity for the deep percolation (Equation 12) 

was estimated using ranges of conductivities given by Domenico and Schwartz (1990) for 

the saturated hydraulic conductivities of a deep soil layer (colluvial mantle on top of the 

igneous rock). A summary of the topographic, soil and saturated hydraulic conductivity 

data for the study catchments is provided in Table 1.  375 
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***Table 1 approximately here*** 

4.3   Weather data 

 

Daily precipitation is the key input meteorological data for the model. Other 

meteorological data like minimum and maximum air temperature, humidity, wind speed 380 

and duration of sunshine hours were also used to calculate the potential 

evapotranspiration, the other input variable to the model. All weather data were obtained 

from the Ethiopian National Meteorological Agency (NMA) for 13 stations located 

within and around the catchments (www.ethiomet.gov.et). The location map of the rain 

gauge stations used for this study are depicted in Fig.7. The data for most of the stations 385 

are consistent and continuous, particularly for the first class stations like Dangila, Adet 

and Debretabor. However, we encountered gaps in some stations like Sekela Station for 

some periods in the year. In such instances, only the rainfall data from the other stations 

were considered. Most of the rainfall stations in Gilgel Abay catchment are installed at 

the water divides and there is no station in the middle of the catchment. In this regard, the 390 

Gumara catchment has a higher density of rainfall stations.  The areal rainfall distribution 

over the catchments was calculated using the Thiessen Polygon method, and the potential 

evapotranspiration was calculated using the FAO Penman-Monteith method (Allen et al., 

1998). 

***Fig.7 approximately here*** 395 

 

4.4   River discharge 

 

Starting from July 2011 water level was measured at the Wanzaye station (11.788073°N, 

37.678266°E) on Gumara River and from December 2011 at the Picolo station 400 

(11.367088°N, 37.037497°E) on Gilgel Abay River. The water  level  measurements  

were  made  using Mini-Divers, automatic  water  level  recorders  (every  10  minutes), 

and manual readings from a staff gauge (three times a day, at 7 AM, 1 PM and 6 PM), 

following the procedures described by Amanuel et al. (2013). 

    Discharges were computed from the water levels using rating curves (Equations 19 and 405 

20) for each station. The rating curves (Fig.8) were calibrated based on detailed surveys 



15 

 

of the cross-sections of the rivers and measurements of flow velocity at different flow 

stages, using the following commonly used expression:  

 = bQ ah                             (19) 

where a  and b  are fitting parameters and Q [m3/s] and h [m] are discharge and water 410 

level respectively. The resulting rating curve equation for the Gumara catchment at the 

gauging station (Wanzaye Station) is: 

1.965 = 44.1Q h      (R2=0.997, n =12)                                                             (20) 

and for Gilgel Abay catchment at Picolo Station: 

2.105 = 70.39 Q h     (R2=0.985, n =14)                                                           (21) 415 

***Fig.8 approximately here*** 

    Compared to the discharge data that have been gathered in the past, the discharge data 

that are acquired for this study are of superior quality, since a high time resolution during 

the measurement has been used. This minimizes the risk of missed peaks, particularly 

during the night. Furthermore, frequent supervision was also made during the data 420 

collection campaign. Hence, these data were used for the model calibration. Discharge 

data collected before December 2011 were obtained for nearby stations from the 

Hydrology Department of the Ministry of Water Resources of Ethiopia, which has a long 

data record (since 1960) for these stations. However, the latter measurements were made 

using staff gauge readings twice a day, with many data gaps and discontinuities, 425 

particularly at the end of the observation window. The discharge data from 2000-2005 are 

relatively better and are used to validate the model. 

    The 2012 discharge data for Dirma catchment (outlet at 12.427194°N, 37.326209°E), 

collected in the same way as those of Gilgel Abay and Gumara, were used to assess the 

transferability of the model parameters. 430 

 

  5   Calibration and validation 

 

The model calibration and validation were performed at a daily time step, and the 

hydrological datasets of 2012 and 2011-2012 were used to calibrate the Gilgel Abay and 435 

Gumara catchments, respectively. Discharge data of 2000-2005 were used for validation. 
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There are 7 calibration parameters in this model (Table 2), and the calibration was 

performed using the Particle Swarm Optimization (PSO) algorithm. PSO is a population 

based stochastic optimization technique inspired by social behavior of bird flocking or 

fish schooling (Kennedy and Eberhart, 1995). The advantages of PSO are that the 440 

algorithm is easy to implement and that it is less susceptible to getting trapped in local 

minima (Scheerlinck et al., 2009). We carried out 50 iterations and 50 repetitions, in total 

2500 runs for each catchment to search for the optimal value of the model parameters 

(Table 2) and 30 particles were used in the PSO. The criterion in the search for the 

optimal value was to minimize the root mean squared error ( RMSE ) as the objective 445 

function, given by: 

2
obs,i isim,

1
( )

n

i
Q Q

RMSE
n


 

                                                                  (22) 

where obsQ  is observed discharge [mm/day], simQ  is simulated or modelled discharge  

[mm/day], and n is the number of data points.  The parameter values corresponding to the 

minimum RMSE  were considered as optimum. From the optimal model parameters, the 450 

performance of the model was also evaluated using (i) the Nash-Sutcliffe Efficiency 

( NSE ) according to Nash and Sutcliffe (1970), and (ii) the coefficient of determination 

(R2). 
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where obsQ  [mm/day] and simQ [mm/day] are the mean observed and simulated 

discharges, respectively. 

Percent bias (PBIAS) is used as an additional model performance indicator. It measures 

the average tendency of the simulated data to be larger or smaller than the observations 
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(Gupta et al., 1999). The optimal value of PBIAS is 0.0, with lower values indicating 460 

better model simulation (positive values indicate overestimation, whereas negative values 

indicate model underestimation bias). 
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***Table 2 approximately here*** 

The impacts of model parameters on the output of the model when their values are 465 

different from the calibrated optimal values were evaluated with respect to the Root 

Mean Squared Error for Gumara catchment. The sensitivity analysis was made by 

randomly selecting parameter values in the region of the optimal values obtained from 

PSO and calculating NSE  for each selected value. The applicability of the model to other 

ungauged catchments outside the study catchments in the Lake Tana basin was also 470 

tested using direct parameter transferability. 

 

6. Soil and Water Assessment Tool (SWAT) and (FlexB) models as benchmarks for 

comparison with this paper model 

 475 

The two models are used as benchmark models to assess the performance of the model of 

this paper (hereafter named as Wase -Tana model, in favor of the project name that 

funded this study), which tries to use all available information and considers topography 

as a good proxy for the variability of most of the catchment characteristics in the Upper 

Nile basin. 480 

 

6.1 SWAT Model 

 

SWAT is a basin‐scale and continuous‐time model, used to simulate the quality and 

quantity of surface and ground water and predict the environmental impact of land use, 485 

land management practices, and climate change (Arnold et al., 1998). The hydrological 

model is based on the water balance equation 

0
1
( )

t

t i i i i i
i

SW SW R Q ET P QR

                                                    (26) 
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Where: tSW is the soil water content at time t, 0SW is the initial soil water content, t is the 

time step in days and iR , iQ , iET , iP  and iQR  respectively are the daily amounts of 490 

precipitation, runoff, evapotranspiration, percolation and return flow. All units are in mm. 

In SWAT, a watershed is divided into homogenous hydrologic response units (HRUs) 

based on elevation, soil, management and land use, whereby a distributed parameter such 

as hydraulic conductivity is potentially defined for each HRU. Hence, an analyst 

confronts with the difficult task of collecting or estimating a large number of input 495 

parameters, which are usually not available for regions like the Upper Blue Nile basin. 

Details of the model can be accessed at the SWAT website (http://swatmodel.tamu.edu). 

Automatic calibration and validation of the model was made using SWAT-CUP. It is an 

interface that has been developed for SWAT automatic calibration and model uncertainty 

analysis (Abbaspour et al., 2007). Coefficient of determination (R2) and Nash-Sutcliffe 500 

Efficiency (NSE) were used as objective functions during the calibration process of the 

search for the optimal value. 

 

6.2 FlexB   Model  

 505 

This model is a lumped conceptual type and it is characterized by three reservoirs as 

described by Fenicia et al. (2008): the unsaturated soil reservoir (UR), the fast reacting 

reservoir (FR) and the slow reacting reservoir (SR). The model has eight parameters: a 

shape parameter for runoff generation β [-], the maximum UR storage Sfc [mm], the 

runoff partitioning coefficient D [-], the maximum percolation rate Pmax [mm/h], the 510 

threshold for potential evaporation Lp [-], the lag times of the transfer functions Nlag [h], 

and the timescales of FR and SR: Kf [h] and Ks [h]. Details of the model and the various 

equations of the model can be referred to Fenicia et al. (2008). 

Calibration of this model was made using the particle Swarm Optimization (PSO) 

technique, following similar procedures of the Wase –Tana model calibration algorithm. 515 

The same objective function, root mean squared error (RMSE), is also used in the search 

for the optimal value. 

 

 

http://swatmodel.tamu.edu/
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76   Results and discussion 520 

 

76.1   The daily hydrograph and model performance indicators  

 

a) Wase –Tana model performance 

Figures 95 and 106 show a comparison of the modeled with the observed discharge data 525 

for the two study catchments and for both the calibration and validation periods. 

 

***Fig. 95 approximately here*** 

    Despite the possible spatial variability of some input data (average soil and rainfall 

data are considered) and the simplicity of the model, discharge is reasonably well 530 

simulated during both the calibration and validation periods. This can be seen from the 

visual inspection of the hydrographs and from the model performance indicators (Table 

3). 

 

***Fig. 106 approximately here*** 535 

***Table 3 approximately here*** 

    The Nash-Sutcliffe efficiency of the model is high for both catchments. In the 

calibration period, NSE  equals 0.86 for Gumara catchment and 0.84 for Gilgel Abay 

catchment, while they are 0.78 and 0.7, respectively, during the validation period. Figures 

95 and 106 also show that the model simulates well the overall behavior of the observed 540 

streamflow hydrographs. However, an overestimation of the large flood peaks for the 

Gilgel Abay catchment is found for the validation period. In the calibration period for this 

catchment, the model errors tend to increase during wetting up periods almost for all the 

models. Initially, the soils are relatively dry and most of the rainfall during the beginning 

of the rainy season is not effective to produce runoff in the model as the soil reservoir has 545 

to be filled first to generate the faster component of the runoff. Besides model 

uncertainties, the rainfall data quality can also affect the model performance, mainly in 

the case of the Gilgel Abay catchment. The R2 values for the time series of daily 

streamflow between simulated and observed values were 0.80 to 0.86 for the Gumara 

catchment, and from 0.79 to 0.85 for the Gilgel Abay catchment, for the validation and 550 
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calibration periods, respectively. Generally, the modelled discharges appear to be less 

variable over time than the observations, as shown by the standard deviations in Table 3. 

This is likely due to the fact that data used in the model are averaged over the year, while 

observed river discharges are highly seasonal. We used average daily rainfall data, 

average soil data (e.g. porosity, field capacity, and soil depth), average catchment 555 

characteristics data (e.g. slope, slope length) to mention some for the model inputs. 

Hence, this averaged condition may be one source of error such that the model may not 

exactly mimic extremes like peak discharges. 

 

b) Performance in comparison with the benchmark models  560 

 

For the calibration period, almost all the three models performed pretty well (Table3). 

However, an appreciable decrease in model performance has been noticed for the 

validation period in Gilgel Abay catchment for the benchmark models. SWAT is a 

physically-based complex model, requiring extensive input data which is a challenge for 565 

data scare regions like the Upper Blue Nile basin. The model simulations can only be as 

accurate as the input data. This suggests that the coarser data input used for the model in 

the study catchments might have affected significantly the calibration and consequently 

the validation simulations. On the other hand, the likely reason for a decreased 

performance of the FlexB model for the Gilgel Abay catchment is the oversimplification 570 

of the catchment heterogeneity, since it is a lumped one and the impact is more when the 

catchment gets bigger (Gilgel Abay catchment is bigger than Gumara catchment).  

  A look at the flow duration curves (Fig.11 and Fig.12) indicates the higher uncertainty 

of the two benchmark models (mainly SWAT model) with respect to low flow 

predictions. 575 

***Fig.11 approximately here*** 

***Fig.12 approximately here*** 

 In relative terms, Wase-Tana model offers more flexibility in adapting the model to the 

catchments based on the validation simulation performances. This can be attributed to the 

consideration of topography driven landscape heterogeneity analysis and catchment 580 

information extraction for the model, which strengthens the hypothesis that topography 

driven model structure and use of all available information on hydrology based on 
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topography is a good choice for the Upper Blue Nile basin. From a comparison of four 

model structures on the Upper Heihe in China, Gao et al. (2014) also confirmed that 

topography-driven model reflects the catchment heterogeneity in a more realistic way. 585 

                                                                                                                                                                                                                                                                                                                                                     

76.2   The hydrograph components and hydrological response of the catchments 

 

This hydrological model (Wase-Tana model) is based on the generation of direct runoff 

from saturated and impermeable (degraded surfaces and rock outcrops with little or no 590 

soil cover) areas, interflow from the soil storage in the root zone layer and baseflow from 

the deeper layer as groundwater storage. The understanding of the relative importance of 

these processes on the hydrological response of each catchment is still unknown. The 

mean annual surface runoff (Qse, sum of 1seQ and 2seQ ), interflow or subsurface flow 

(Qss) and baseflow (Q2) components of the total daily hydrograph computed by the model 595 

for the calibration and validation periods are given in Table 4. 

 

***Table 4 approximately here*** 

    The total mean annual runoff generated by the model is in line with the observations 

for both catchments in the calibration period (Table 4), while an appreciable difference is 600 

noticed in the values for the Gilgel Abay catchment in the validation period. One of the 

problems in accurate modelling of the discharge is that precipitation measurements do not 

cover well the catchments. This is particularly the case for the Gilgel Abay catchment, 

where the rainfall stations are poorly distributed as most of the meteorological stations lie 

near the water divides. The calibration results are better, since the data from the recently 605 

established precipitation stations (e.g. Durbetie) could be used.  There are also doubts on 

the representativeness of the discharge data used for the validation of the model, because 

the water level measurements were made manually and twice daily (in the morning and 

late afternoon), leading to the possibility of  missing flash floods at other moments of the 

day as the stream discharge is very variable. This can be clearly seen from the mean 610 

annual observed flows during the calibration and validation periods for Gilgel Abay. The 

mean annual observed flow in the validation period was found to be much smaller than 

the corresponding flow during the calibration period (Table 4). The closer total mean 
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annual runoff values and the better model performance indicators for the Gumara 

catchment during the calibration period suggest that the model can perform satisfactorily 615 

with better input discharge and precipitation data. 

From PBIAS results (Table 3), FlexB model has showed overestimated bias and SWAT 

model behaved the opposite for both catchments during the calibration period. 

    Despite the variations in mean annual runoff generated by the Wase-Tana model, the 

partitioning of the total runoff into the different components (Table 4) in each period is 620 

almost identical for each catchment, as expected. About 65% of the runoff appears in the 

form of interflow for the Gumara catchment, and baseflow takes the larger proportion for 

Gilgel Abay catchment (44 - 48%). Uhlenbrook et al. (2010) obtained the baseflow to be 

about 32% from similar model study results for Gilgel Abay catchment. Vogel and Kroll 

(1992) have showed that baseflow is a function of catchment area, and geomorphological, 625 

geological and hydrogeological parameters of the catchment have a linear incidence on 

the discharges. The difference between the baseflow of the two catchments is high, 

despite their comparable catchment sizes, suggesting rather the different structure, 

functioning and hydrodynamic properties of the two catchments. Hence, the model 

results reveal that the groundwater in the Gilgel Abay catchment receives more recharge 630 

and makes a greater contribution to the river flow. This is in line with Kebede (2013) and 

Poppe et al. (2013), who show that the largest part of the Gilgel Abay catchment consists 

of pumice stones and fractured quaternary basalts with a high infiltration capacity and 

hydraulic properties, which clarifies the large groundwater potential. In line with this, 

several big springs exist in the catchment, including one that is used as a source of water 635 

supply for Bahir Dar town (Fig.13). 

***Fig.13 approximately here*** 

    The other interesting result is that direct runoff is the smallest fraction of the total 

runoff for both catchments (18-19% for Gumara and 20% for Gilgel Abay) and almost all 

peak flow incidences are associated with direct runoff. More than 90% of this direct 640 

runoff is found to be from the relatively impermeable (degraded areas, plough pans or 

rock outcrops with little or no soil cover) surfaces. The calibrated result shows that this 

type of runoff production area covers 15% of the Gumara and 17% of the Gilgel Abay 

catchments, respectively. In a similar study, Steenhuis et al. (2009) mention that the rock 
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outcrops occupy 20% of the total catchment area in the Abay (Blue Nile) catchment at 645 

the Ethiopia–Sudan border upstream of the Rosaries Dam, which is very similar to the 

result of Gilgel Abay catchment in this study. 

     The remaining direct runoff is generated from the flat slopes of the catchments as 

saturated excess runoff, probably near the valley bottoms. The hillslopes (medium and 

steep slope source areas in this paper) generated almost no direct runoff as saturated 650 

excess flow. Similar results were obtained by different researchers in the Blue Nile Basin, 

who identified hillslopes as main recharge areas (Steenhuis et al., 2009, Collick et al., 

2009, Tilahun et al., 2013). Our results contribute to the debate on the relative importance 

of saturated excess runoff versus infiltration excess runoff (Hortonian overland flow) 

mechanisms in the Upper Blue Nile Basin, showing that the rainfall-runoff processes are 655 

better represented by the soil reservoir methodology. Yet, further research is necessary 

that involves rainfall intensity and event-based analysis of hydrographs. 

  

76.3 Transferability of model parameters to other ungauged catchments and 

sensitivity 660 

 

The sensitivity analysis was performed on model parameters for Gumara catchment with 

respect to the Root Mean Squared Error. 

***Fig. 147 approximately here*** 

***Fig. 15 approximately here*** 665 

The parameters β, α1 and γ show poor sensitivity for a wide range of values with respect 

to the local sensitivity analysis. The local sensitivity analysis shows the sensitivity of a 

variable to the changes in a parameter if all other parameters are kept constant at some 

value (optimal value in this case). An increase in the value of β beyond 1.4 showed 

almost no sensitivity, while the model efficiency decreased slightly after an increase in 670 

the value of γ from the optimum.  This means that there is little confidence in the model’s 

correspondence with these parameters and they can be reduced without appreciable 

impact on the model (Fenicia et al., 2008). k1, ,s uK  and λ are very sensitive parameters 

in this model and the model performance drops abruptly if the parameters exceed beyond 

some threshold value (Fig.14 7). 675 
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The global sensitivity analysis (Fig.15), however, shows interactions among all the input 

parameters of the model. Although global sensitivity analysis reveals details of the model 

behavior in a more general sense through random parameter sampling and that the 

parameters are all sensitive, the local sensitivity analysis indicates that moderate 

variations of the parameter values for some parameters can still drastically change the 680 

model performance. 

    The model parameter transferability to other ungauged catchments in the basin has 

been tested by analyzing the variability among the calibrated parameters of the two 

catchments. Table 2 shows that the calibrated parameters are nearly identical for both 

catchments, except for γ and λ, which are related to deep percolation and impermeable 685 

fraction of the catchment, respectively. As described above, they affect the baseflow and 

direct runoff contributions to the total river flow. However, we showed that the 

contributions of these components to the total runoff are relatively small and γ is poorly 

sensitive to a wide range of values. Thus the influence of these parameters is expected to 

be minimal. This is verified by generating flows using the average of the calibrated 690 

parameters of the two catchments and analyzing the effect on the model performance 

indicators (Table 5). The model performance obtained using the average model parameter 

values is similar to the results found using the optimal model parameters (Table 3). To 

further verify the adaptability of the average calibrated model parameter values outside 

the study catchments and see the impacts of scale, we applied the average parameter 695 

values to another catchment (Dirma catchment in the northern part of the Lake Tana sub-

basin, Fig.1) with an area of 162.6 km2. Encouraging model efficiency could be obtained, 

with NSE  and R2 values of 0.58 and 0.6 respectively (Table 5). This is to be elaborated 

further in the future, involving more catchments and more years of data. 

 700 

***Table 5 approximately here*** 

In general, transferability results showed good performance of the daily runoff model in 

the two study catchments and an average performance in the test catchment (Dirma 

catchment). This can be explained by the fact that emphasis was made to incorporate 

more knowledge in the model structure to increase model realism. We based strongly on 705 

the soil storage characterization of the soil reservoir in the rainfall-runoff process and 
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representation of the maximum storage of the unsaturated reservoir at the catchment 

scale, which is closely linked to rooting depth and soil structure and strongly depends on 

the ecosystem. Transferability of the model has benefited from this in that we were able 

to derive most of the input data from the test catchments. The consideration of 710 

topography driven landscape heterogeneity analysis and catchment information extraction 

based on topography (slope) for the model is another reason for the better performance of 

the model transferability. The role of topography in controlling hydrological processes 

and its linkage to geology, soil characteristics, land cover, and climate through 

coevolution have been indicated in different studies (Sivapalan, 2009, Savenije, 2010, 715 

Gao, 2014). The results suggest the possibility of  directly using the average model 

parameter values for other ungauged catchments in the basin, even though further tests on 

such catchments is still recommended. However, we believe that this is a useful result for 

operational management of water resources in this data scarce region. 

 720 

87    Conclusion 

 

In this paper, a simple conceptual semi-distributed hydrological model was developed 

and applied to the Gumara and Gilgel Abay catchments in the Upper Blue Nile basin, 

Lake Tana sub-basin, to study the runoff processes in the basin. Good quality discharge 725 

data were collected through a field campaign using automatic water level recorders with 

high time resolution. We used the topography and soil texture data of the catchments as 

the dominant catchment characteristics in the rainfall-runoff process. In the model, a 

distinction is made between impermeable surfaces (degraded surface or exposed rock 

with little or no soil cover) and permeable (soil) surfaces, as different types of source 730 

areas for runoff production. The permeable surfaces were further divided into three 

subgroups using topographic criteria such as flat, medium, and steep slope areas. The 

rainfall-runoff processes were represented by two reservoirs (soil and groundwater 

reservoirs) and the water balance approach was used to conceptualize the different 

hydrological processes in each of the two reservoirs. Such a detailed form of modelling, 735 

using topography as a dominant landscape characteristics to classify a catchment into 
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different hydrological regimes, has not been applied yet in the Upper Blue Nile, Lake 

Tana sub-basin. 

    We demonstrated that the model performs well in simulating river discharges, 

irrespective of the many uncertainties. Model validation indicated that the Nash–Sutcliffe 740 

values for daily discharge were 0.78 and 0.7 for the Gumara and Gilgel Abay catchments, 

respectively.  

    We were able to partition the total runoff into a fast component (direct runoff and 

interflow) and a slow component (baseflow) and estimated the contributions of each 

component for the catchments. About 65% of the runoff appears in the form of interflow 745 

for the Gumara catchment, and baseflow is responsible for the larger proportion of the 

discharge for the Gilgel Abay catchment (44-48%). Direct runoff generates the lower 

fraction of runoff components in both catchments (18-19% for the Gumara and, 20% for 

the Gilgel Abay) and almost all peak flow incidences are associated with direct runoff. 

More than 90% of this direct runoff is found to be from the relatively impermeable 750 

(plough pan or rock outcrops with little or no soil cover) source areas. The hillslopes 

(medium and steep slope source areas) are recharge areas (sources of interflow and deep 

percolation) and generated almost no direct runoff as saturated excess flow. 

    The results of this study, with comparisons to two benchmark models, clearly 

demonstrate that topography is a key landscape component to consider when analyzing 755 

runoff processes in the Upper Blue Nile basin. Generally, runoff in the basin is generated 

both as infiltration and saturation excess runoff mechanisms. A considerable portion of 

the landscape in the Upper Blue Nile basin consists of impermeable rock outcrops and 

hard soil surfaces (15%-17% of the total catchment area as per the results of this study) 

and they are the sources of most of the direct runoff. This conceptual model, developed to 760 

study the runoff processes in the Upper Blue Nile basin, may help to predict river 

discharge for ungauged catchments for a better operation and management of water 

resources in the basin, owing to its simplicity and parsimonious nature with respect to 

parameterization. The runoff processes in the basin are also found to be affected much by 

the rainfall, as the performance of the model was better for those study catchments where 765 

coverage of rainfall stations was good. Hence a better spatial and temporal resolution of 



27 

 

rainfall data is required to further improve the model performance and to further enhance 

the understanding of the runoff processes in the basin.  
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Figure captions 

 

Fig. 1. The Upper Blue Nile basin and the Lake Tana sub-basin (a) and the study 

catchments and the gauging stations in the Lake Tana sub-basin georeferenced on 

the SRTM DEM (b) 950 

Fig. 2. The modeling approach showing (a) divisions of a catchment into different runoff 

production areas, (b) conceptual model configuration of the soil surface at an outlet 

of a catchment and (c) Inflows and outflows for the soil reservoir when the soil 

water storage capacity is (i) below field storage capacity, (ii) greater than field 

storage capacity and (iii) greater than the maximum soil water storage (after 955 

Krasnostein and Oldham, 2004). 

 Fig. 3. Typical surfaces with poor infiltration on hillslopes in the Gumara catchment: (a) 

shallow soil overlying bedrock, and (b) plough pan with typical plough marks. The 

occurrence of high runoff response on these surfaces is evidenced by the presence 

of rill erosion (Photos: Elise Monsieurs) 960 

Fig. 4. The three slope categories for the Gilgel Abay and Gumara catchments  

Fig. 5 Major soil types in the Lake Tana basin and the study catchments 

Fig.6. Soil depth in the Lake Tana basin and the study catchments  

Fig.7. Location map of rainfall stations for the study catchments 

Fig.8. Stage-Discharge relationship (Rating curves) for Gilgel Abay at Picolo  and 965 

Gumara at Wanzaye Stations 

Fig.9. Comparison of predicted and observed discharge and precipitation of the Gumara 

and the Gilgel Abay catchments for the calibration period 

Fig.10. Predicted and observed discharges and precipitation of the Gumara and the Gilgel 

Abay catchments for the validation period 970 

Fig.11. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay 

catchments for the calibration period 

Fig.12. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay 

catchments for the validation period 

Fig.13. One of the springs in Gilgel Abay catchment used as a water supply source for 975 

Bahir Dar town 
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Fig.14. Local model parameter sensitivity analysis for Gumara catchment. Parameters are 

explained in Table 2 

Fig.15. Global model parameter sensitivity analysis results for Gumara catchment. 

Parameters are explained in Table 2 980 

 
 

Tables 

 

 985 
Table 1. Input data on topography, soil and saturated hydraulic conductivities for the 

study catchments as classified into different hydrological regimes using topography 
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 1000 

 

Catchment 

 

Slope class 

 

Average 

slope 

(%) 

Coverage 

from the 

total area 

(%) 

Average 

Soil 

depth 

(m) 

 

Dominant 

soil texture 

 

Porosity 

 

Field 

capacity 

Saturated 

hydraulic 

conductivity

,s eK ( m/s) 

 

Gilgel 

Abay 

Level (  8%) 3.4 54 0.92 clay 0.46 0.36  

 

9.26x10-8 

Hilly 

(8% slope 30%  ) 

15.9 38 1.29 Clay to clay 

loam 

0.42 0.32 

Steeply (>30%)   41.4 8 1.49 Clay loam to 

Silty loam 

0.4 0.26 

 

Gumara 

Level (  8%) 4.0 24 1.5 clay 0.46 0.36  

1.16x10-8 Hilly 

(8% slope 30%  ) 

17.2 60 1.24 Loam , Silty 

clay 

0.42 0.26 

Steeply (>30%)   41.5 16 1.2 Sandy loam 0.25 0.1 
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Table 2. Model parameters, their ranges, and calibrated values found in 2500 iterations in 

the PSO calibration 

 

Parameter Explanation units Minimum Maximum 

calibrated 

values 
Average 

value of 

both 

catchments 
Gumara 

Gilgel 

Abay 

β 

parameter  to account variability 

of permeability of soil with soil 

water storage 

_ 1 3 2.445 2.314 2.380 

k1 
relates discharge and storage for 

the ground water 
_ 0.1 2 0.971 1.012 0.992 

,usK  
Saturated hydraulic conductivity 

in the upper soil layer 
m/s 0.001 0.1 0.016 0.05 0.033 

γ 

parameter  to account variability 

of deep percolation with soil 

water storage 

_ 0.5 2 1.409 0.9 1.155 

λ 

coefficient that represents part 

of catchment that is 

impermeable 

_ 0.05 0.5 0.149 0.173 0.161 

α1 
interflow partitioning coefficient 

for the steep slope surface 
_ 0.05 0.8 0.653 0.575 0.614 

α2 
interflow portioning coefficient 

for the medium slope surface 
_ 0.05 0.8 0.065 0.152 0.109 
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Table 3.  Statistical comparison and model performance of the modelled and observed 

river discharge (Q) for the two catchments 

 

  

Model performance indicators 

Mean Q 

[mm/day] 

Standard 

Deviation 

[mm/day] 

RMSE 1 

[mm/day] 
NSE2* R2 PBIAS3 

Observed 
data 

Gumara 

calibration (2011-2012) 2.31 3.79 ̶― ̶― ̶― ̶― 

validation (2000-2005) 2.3 3.75 ̶― ̶― ̶― ̶― 

Gilgel Abay 

 calibration (2012) 3.89 5.05 ̶― ̶― ̶― ̶― 

validation (2000-2005) 2.33 3.4 ̶― ̶― ̶― ̶― 

Wase -
Tana 

model 

Gumara 

calibration (2011-2012) 2.37 3.56 1.34 0.86 0.86 3.30 

validation (2000-2005) 1.95 3.05 1.37 0.78 0.8 -11.75 

Gilgel Abay 

 calibration (2012) 3.85 4.7 1.85 0.84 0.85 -21.61 

validation (2000-2005) 3.14 3.71 1.67 0.7 0.8 34.06 

SWAT 
model 

Gumara 

calibration (2011-2012) 1.91 3.33 1.55 0.77 0.78 -17.50 

validation (2000-2005) 1.62 3.11 1.63 0.72 0.75 -29.48 

Gilgel Abay 

 calibration (2012) 2.02 3.20 1.40 0.60 0.79 -44.01 

validation (2000-2005) 2.45 3.86 2.30 0.55 0.63 5.45 

FlexB 
model 

Gumara 

calibration (2011-2012) 2.43 3.64 1.54 0.82 0.82 5.30 

validation (2000-2005) 2.01 3.35 1.47 0.80 0.81 -12.67 

Gilgel Abay 

calibration (2012) 3.81 4.03 1.62 0.80 0.84 5.64 

validation (2000-2005) 4.13 4.33 2.15 0.50 0.75 77.67 

1. RMSE : Root Mean Squared Error as defined in Equation (22) 1030 

2*. NSE : Nash-Sutcliffe Efficiency as defined in Equation (23) 

3. PBIAS: Percentage Bias as defined in Equation (25) 
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 1040 

Table 4.  Model results on the hydrograph components of the catchments 

 

Runoff components unit 

For the calibration 

period 

For the validation 

period 

Gumara 

Gilgel 

Abay Gumara 

Gilgel 

Abay 

Total mean annual runoff 

predicted (Qpr) 
 mm/year 864 1405 713 1146 

Total mean annual runoff 

observed (Qob) 
 mm/year 843 1420 841 938 

Mean annual surface 

runoff (Qse) 

mm/year 161 280 129 234 

% from  the total Qpr 19 20 18 20 

Mean annual interflow  

(Qss) 

mm/year 574 508 458 369 

%  from the total Qpr 66 36 64 32 

Mean annual baseflow 

(Q2) 

mm/year 128 617 126 548 

% from  the total Qpr 15 44 18 48 

 

Table 5. Comparison of model performance between the optimal and average model 

parameters of the three catchments 1045 

 

catchment 

Model performance for the 

optimal model parameters 

Model performance for the average 

of the optimal model parameters of 

the two catchments 

RMSE 

[mm/day] NSE  R2 

RMSE 

[mm/day] NSE  R2 

Gumara 

Calibration 

period 
1.34 0.86 0.86 1.48 0.84 0.86 

Validation 

period 
1.37 0.78 0.80 1.82 0.76 0.77 

Gilgel 

Abay 

Calibration 

period 
1.85 0.84 0.85 1.98 0.83 0.84 

Validation 

period 
1.67 0.70 0.80 1.93 0.68 0.78 

Dirma 
For the 2012 

discharge  
- -      - 1.79 0.58 0.60 
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Figures 

 

 1060 

 

Fig. 1. The Upper Blue Nile basin and the Lake Tana sub-basin (a) and the study 

catchments and the gauging stations in the Lake Tana sub-basin georeferenced on the 

SRTM DEM (b) 

 1065 

Fig.2. The modeling approach showing (a) divisions of a catchment into different runoff 

production areas, (b) conceptual model configuration of the soil surface at an outlet of a 

catchment and (c) Inflows and outflows for the soil reservoir when the soil water storage 

capacity is (i) below field storage capacity, (ii) greater than field storage capacity and (iii) 

greater than the maximum soil water storage (after Krasnostein and Oldham, 2004). 1070 
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 Fig. 3. Typical surfaces with poor infiltration on hillslopes in the Gumara catchment: (a) 1075 

shallow soil overlying bedrock, and (b) plough pan with typical plough marks. The 

occurrence of high runoff response on these surfaces is evidenced by the presence of rill 

erosion (Photos: Elise Monsieurs) 

 

 1080 
Fig.4. The three slope categories for the Gilgel Abay and Gumara catchments 
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Fig.5. Major soil types in the Lake Tana basin and the study catchments  1085 

 

 

 

 

 1090 

 

 

Fig.6. Soil depth in the Lake Tana basin and the study catchments 
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Fig.7. Location map of rainfall stations for the study catchments 1095 

 

 

 

 

Fig.8. Stage-Discharge relationship (Rating curves) for Gilgel Abay at Picolo  and 1100 

Gumara at Wanzaye Stations 
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Fig. 95.   Comparison of predicted and observed discharge and precipitation of the Gumara and the Gilgel Abay catchments for the 1105 

calibration period 
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 1110 

Fig.10 6. Predicted and observed discharges and precipitation of the Gumara and the Gilgel Abay catchments for the validation period
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Fig. 11. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay 

catchments for the calibration period 1115 

 

 

Fig.12. Predicted and observed flow duration curves of the Gumara and the Gilgel Abay 

catchments for the validation period 
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 1120 
Fig.13.   One of the springs in Gilgel Abay catchment used as a water supply source for 

Bahir Dar town 

 

 
Fig. 147.  Local model parameter sensitivity analysis for Gumara catchment. Parameters 1125 

are explained in table 2. 
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Fig.15. Global model parameter sensitivity analysis results for Gumara catchment. 

Parameters are explained in table 2. 1130 
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