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Abstract 13 

Understanding the variability of precipitation at small scales is fundamental in urban 14 

hydrology. Here we consider as case study Warsaw, Poland, characterized by a precipitation-15 

monitoring network of 25 gauges, and as instrument of investigation the microcanonical 16 

cascades.  17 

We address the following issues partially investigated in literature: 1) the calibration 18 

of microcanonical cascade generators in conditions of short time series (say, 2.5-5 yrs.); 2) the 19 

identification of the probability distribution of breakdown coefficients through ranking 20 

criteria; 3) the variability among the gauges of the monitoring network of the empirical 21 

distribution of breakdown coefficients. 22 

In particular, 1) we introduce an overlapping moving window algorithm to determine 23 

the histogram of breakdown coefficients, and compare it with the classic non-overlapping 24 

moving window algorithm; 2) we compare the 2N-B distribution, which is a mixed 25 

distribution composed by two Normal (N) and one Beta (B), with the classic Beta distribution 26 

to represent the breakdown coefficients using the Akaike information criterion; 3) we use the 27 

cluster analysis to identify patterns of breakdown coefficient histograms among gauges and 28 

timescales.  29 

The scarce representation of the breakdown coefficients at large timescales, due to the 30 

short period of observation (~2.5 yrs.), is solved through the overlapping moving window 31 

algorithm. BDC histograms are described by a 2N-B distribution. A clear evolution of this 32 

distribution is observed, in all gauges, from 2N-B at small timescales, to N-B at intermediate 33 

timescales, and to Beta distribution for large timescales.  34 

The performance of the microcanonical cascades is evaluated for the considered 35 

gauges. Synthetic time series are analyzed with respect to the intermittency and the variability 36 



3 

 

of intensity, and compared to observed series. BDC histograms, for each timescale, are 37 

compared among the 25 gauges in Warsaw, and with other gauges located in Poland and 38 

Germany. 39 

 40 

Key words: urban hydrology, precipitation time series, intermittency, microcanonical 41 

cascade, overlapping window, randomization, cluster analysis. 42 

1 Introduction 43 

Urban hydrology requires the access to very precise information about the 44 

precipitation variability over small spatial and temporal scales. Widespread use of surface 45 

runoff models coupled to urban drainage networks increases the common request for rainfall 46 

data inputs at high temporal and spatial resolutions. As it was already estimated a decade ago 47 

by Berne et al. (2004), the necessary resolution of rainfall data, as input of hydrological 48 

models, in Mediterranean regions, was about 5 min in time, and 3 km in space for urban 49 

catchments of ~1000 ha. For smaller urban catchments of ~100 ha, even higher resolutions of 50 

3 min and 2 km were required. Results obtained with the application of operational semi-51 

distributed urban hydrology models fully confirmed earlier observations on selected study 52 

cases from England and France (Gires et al. 2012, 2013). These authors strongly recommend 53 

the use of radar data in urban hydrology especially in context of real time control of urban 54 

drainage systems. In particular, they opted for X-band radars (whose resolution is 55 

hectometric), respect to the more common C-band radars, as affected by less uncertainty. 56 

Additionally, Gires et al. (2012) stated that small scale rainfall variability, under 1 km 57 

resolution, cannot be neglected, and should be accounted in probabilistic way in the real time 58 

management of urban drainage systems. As a matter of fact, the implementation of radar 59 
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techniques gained a rising popularity in major cities across the EU (for details refer to 60 

Appendix B, Thames Tunnel Needs Report, 2010). 61 

Despite the obvious benefits of radar instruments, radar data are not always available 62 

for practical applications. Thus, current versions of even most advanced computer rainfall-63 

runoff urban drainage models do not consider radar data as rainfall input. Therefore the only 64 

possibility of accounting spatial rainfall variability is to consider different point time series for 65 

each sub-catchment (Gires et al. 2012). The vast majority of engineering practical calculations 66 

and modeling of drainage systems is still associated with point rainfall time series, or their 67 

elaborations like intensity-duration-frequency (IDF) curves, or depth-duration-frequency 68 

(DDF) relations, or simplified design hyetographs. This explains the necessity of high 69 

temporal resolution of point rainfall measurements in urban catchments. It also has to be 70 

noticed that time series at high temporal resolution (1-10 minutes) and with a considerable 71 

record length (at least 20-30 years) are nowadays required especially from European 72 

perspective with respect to the probabilistic assessment of the urban drainage network 73 

functioning (Schmitt, 2000; European standard EN 752), or the probabilistic assessment of 74 

retention volumes at hydraulic overloaded stormwater systems (Arbeitsblatt DWA-A 117).  75 

The strategy of using local precipitation time series as basis of the probabilistic 76 

assessment of urban drainage systems has two important shortcomings. In case of local 77 

precipitation data shortage, this strategy fails completely. Whereas, in all other situations, 78 

when some local precipitation datasets are accessible, questions and doubts about the 79 

representativeness and reliability of data arise. First of all, the doubts regard the temporal 80 

representativeness of data: short datasets could not allow to describe (as showed by Willems 81 

2013) the multi-decadal oscillatory behavior of rainfall extremes in stormwater outflow 82 

modeling. Other doubts regard the spatial representativeness of data: rainfall time series are 83 

recorded only in a limited number of gauges installed in selected sub-catchments. This results 84 
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in assigning the same time series to a group of neighboring sub-catchments, or in critical but 85 

not rare cases, one time series for the whole urban drainage system, habitually collected by a 86 

gauge installed nearby the airport. Sometimes, in situation of local precipitation shortage, time 87 

series from other locations are allowed by technical guidelines (Schmitt, 2000) only if there is 88 

compatibility in terms of annual precipitation totals, and IDF values. 89 

Finally, since most of the modeling activity is oriented to predict the future behavior 90 

(e.g. in the next 50 yrs.) of drainage systems, the mere use of historical precipitation time 91 

series of the last 20-30 years could not be significant to represent the future scenarios. 92 

Alternatively, the generation of synthetic time series, from precipitation models, could 93 

represent probable precipitation scenarios to feed hydrodynamic urban drainage models and 94 

take into account the uncertainty associated to the discharge. However it should be pointed 95 

out, that the information content of historical precipitation records is not increased by 96 

precipitation models and synthetic data generation, which just provides an operational basis 97 

for the extraction of such information. 98 

Thus, there is a strong motivation for the development of local precipitation models at 99 

high temporal resolutions. Many of them are based on the idea of precipitation disaggregation 100 

in time. The disaggregation refers to a technique generating consistent rainfall time series at 101 

some desired fine time scale (e.g. 5 min resolution) starting from the precipitation at a coarser 102 

scale (e.g. daily resolution). At the same time, as it was stressed by Lombardo et al. (2012), 103 

the downscaling techniques aim at producing fine-scale rain time series with statistics 104 

consistent with those of observed data. A general overview of rainfall disaggregation methods 105 

is given by Koutsoyiannis (2003). Among an ensemble of known techniques, random cascade 106 

models, and especially microcanonical cascade models (MCMs) are quite often used. The 107 

popularity of the latter ones could be explained by their appealing towards engineering 108 

applications, the assumption of mass conservation (i.e. rainfall depth conservation) across 109 
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cascade levels, and straight rules for the extraction of cascade generators from local 110 

precipitation time series (Cârsteanu and Foufoula-Georgiou 1996). Olsson (1998), Menabde 111 

and Sivapalan (2000), Ahrens (2003), Paulson and Baxter (2007) provide contributions 112 

demonstrating the potentiality of MCMs in rainfall downscaling. Molnar and Burlando (2005) 113 

and Hingray and Ben Haha (2005) highlight the application of MCMs in urban hydrology. 114 

Hingray and Ben Haha (2005) applied a continuous hydrological simulation obtaining from 115 

synthetic rainfall series continuous discharge series used afterwards for the retention design. 116 

Recently, Licznar (2013) illustrated the possibility of substituting synthetic time series 117 

generated from MCMs to observed time series for the probabilistic design of stormwater 118 

retention facilities. 119 

Two decades of random cascade applications to precipitation disaggregation brought 120 

progresses in the construction of generators. Quite soon, the assumption of independence and 121 

identical distribution of the cascade weight generators, at all timescales, was questioned and 122 

found suitable only for limited, rather narrow, range of analyzed scales (Olsson 1998, Harris 123 

et al. 1998). As an alternative, Marshak et al. (1994), Menabde et al. (1997) and Harris et al. 124 

(1998) promoted the use of the so-called “bounded” random cascade, for which its weights 125 

distribution systematically evolves decreasing the weights variance with the reduction of 126 

timescale. In addition, Rupp et al. (2009) suggested, that microcanonical cascade weights 127 

should not be timescale-dependent only, but also intensity-dependent. The common practice 128 

of assuming the Beta distribution for MCM generators was questioned by Licznar (2011a,b), 129 

especially for sub-hourly timescales. Alternatively MCM generators were assumed Normal-130 

Beta (N-B) distributed with atom at 0.5, or 3N-B distributed, composed by three Normal and 131 

one Beta distribution. For sake of clarity, it should be stressed that Beta refers sole to the 132 

distribution of MCM generators, and has nothing in common with the beta  model, being the 133 
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simplest cascade model, often known as monofractal model (for details refer to Over and 134 

Gupta 1996). 135 

Molnar and Burlando (2008) explored the variability of MCM generators on a large 136 

dataset of 10-min time resolution, including 62 stations across Switzerland. These authors 137 

investigated seasonal and spatial variability in breakdown distributions to give indications 138 

concerning the parameters’ estimation of MCM in ungauged locations. To our knowledge, 139 

there are only studies considering the large-scale variability (i.e. among different urban areas) 140 

of MCM generators, and there is a lack of knowledge concerning the small-scale variability 141 

(i.e. within an urban area). 142 

It should be stressed that the fitting of cascade generators was relatively simple, but 143 

extremely data demanding. Observational precipitation time series of high resolution 144 

exceeding usually 20 years were unavoidable for cascade parameters fitting. This resulted in 145 

the prevailing practice of comparing the statistics of synthetic and observed time series. In the 146 

majority of studies, data originated from old type manual gauges were subject to obvious 147 

uncertainty related to the precision of measurements, as well as the resolution of records 148 

digitization. Simultaneously, the fitting of theoretical distributions to BDCs, in almost all 149 

cases, was not supported by statistical tests confirming the correctness of achieved results, or 150 

by the use of some information criteria to rank the theoretical distributions.  151 

Having in mind the above discussed needs of urban hydrology, the current state of 152 

MCMs, and being fully aware of the severe limitations of this rainfall disaggregation 153 

technique, the goals of our study were: 154 

1) Propose a methodology to calibrate microcanonical cascade generators in conditions 155 

of short time series; 156 

2) Identify the probability distribution of BDCs through the use of information criterion; 157 

3) Investigate the variability of empirical BDCs distributions among a group of gauges;  158 
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4) Address the following questions of interest in urban hydrology: “Is it sufficient to use 159 

a single time series for the probabilistic assessment of the entire urban drainage system? Is it 160 

sufficient to fit just one MCM for the analysis of the whole city area? Could we continue the 161 

practice of supplying urban rainfall-runoff models by time series recorded outside city center 162 

by gauges located at the airport or over rural areas?  163 

2 Data and Methodology 164 

2.1 Data 165 

We use data belonging to a precipitation network of 25 gauges distributed throughout 166 

517.24 km
2
 of Warsaw city in Poland (Fig. 1). The dataset is the same used by Rupp et al. 167 

(2012) and consists in a 1-minute precipitation (both liquid and solid) time series recorded by 168 

electronic weighing-type gauges. All stations, TRwS 200E of MPS system Ltd. (Fig.2), were 169 

installed and operated by the Municipal Water Supply and Sewerage Company (MWSSC) in 170 

Warsaw. Prior to the network installation, studies about the location of the stations have been 171 

done by the MWSSC to identify the best configuration, representative of the precipitation 172 

variability within the urban area (Oke, 2006). Finding good places for installation of gauges 173 

was possible due to the fact that the MWSSC in Warsaw operates a vast number of local 174 

water intakes, water and sewage pumping stations. All these installations due to sanitary 175 

standards have to occupy some terrain with green arrears around serving as buffers e.g. for 176 

odors spread. In addition, all facilities are fenced and guarded for safety reasons. Thereby all 177 

instruments were placed on grass, and their neighborhood met at least requirements of class 2 178 

or 3, as recommended by WMO-No. 8. In the majority of gauges (i.e., R1, R3, R5, R7, R8, 179 

R10, R12, R17, R18 and R19) it was possible to install them on flat, horizontal surface, 180 

surrounded by an open area, meeting even requirements for class 1 instruments. In addition, 181 
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gauge R15 was installed in perfect conditions on the ground at the Warsaw Fryderyk Chopin 182 

Airport. 183 

Since the installation of the precipitation network in Warsaw was mainly motivated by 184 

the real time control of the drainage system, all gauges (Fig. 1) were connected to a single 185 

data acquisition system. The accuracy of gauge measurements, as claimed by manufacturer is 186 

0.1%, and the data resolution is 0.001 mm for depth and 1 minute for time. As it was already 187 

mentioned by Rupp et al. (2012), field tests, conducted prior to the operational use of the 188 

precipitation network, have shown good agreement between simulated and recorded totals, 189 

and have revealed a dampening/broadening of the input signal, evident over the range of a 190 

few minutes. The last phenomenon - known as “step response error”- was studied in detail in 191 

laboratory conditions for different gauge types by Lanza et al. (2005). These found that the 192 

step error of TRwS gauge is quite small in comparison to other gauges, and equal to 3 minutes 193 

in laboratory conditions. Our short 15-min field test (as displayed on Fig. 2) suggested a 194 

dampening of gauge-recorded signal for the first 3-min initial phase of generated hyetograph 195 

and its slightly longer 5-min broadening at the final phase of hyetograph. Detailed discussion 196 

of the origins of gauge “step response” errors is beyond the scope of this manuscript, and in 197 

fact is hard to be realized, since it is introduced by gauge inner microprocessor algorithm of 198 

data processing. This algorithm is know-how of the gauge manufacturer, and is not reported 199 

in the technical documentation. In general, it could be only stated that in weighing type 200 

electronic gauges, the weight of deposed precipitation is sampled by some electronic (often 201 

piezometric) sensor with some high temporal resolution at presumably kHz rate. Afterwards 202 

all samples are averaged over longer time windows, unknown to the user. This process is 203 

repeated for overlapping time windows, and the difference of the rainfall total of adjacent 204 

windows is calculated to obtain the temporal rainfall rate reported as instrument output at its 205 

recording time resolution. In addition, rainfall rates are always rounded regardless of the 206 
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magnitude of real precipitation (resulting in additional rounding errors discussed afterwards). 207 

This procedure allows for satisfying smoothing of electronic sensor signal fluctuation due to 208 

wind effects and temperature changes. It allows for the introduction of some additional filters 209 

cutting sudden signal jumps due to foreign objects deposition inside open orifice of the gauge 210 

inner tank (e.g. falling leaves or acts of vandalism by throwing small stones or garbage).  211 

As a matter of fact in view of our personal experiences, and test results of WMO 212 

(Lanza et al. 2005), it could be stated that reliable precipitation recording at single minute 213 

scale by commercially available gauges is still the goal to be achieved, and not a current 214 

reality. Having this in mind, as well as timescales of previous microcanonical cascade studies 215 

concerning urban hydrology, realized on time series recorded by old-type gauges, we decided 216 

to work with the aggregated precipitation time series at 5-minute resolution. The technique 217 

used to aggregate original 1-min data into 5-min time series is discussed afterwards; here we 218 

only mention that this operation was opposite to the rainfall total differentiation for adjacent 219 

time windows operated by the gauge microprocessor. 220 

Despite the limited timespan of available data, covering the period from the 38th week 221 

of year 2008 up to the 49th week of year 2010, we believe that the Warsaw precipitation 222 

network might support good probing ground for the variability study in the microcanonical 223 

cascade parameters over small-scale urban areas. In fact, the Warsaw precipitation-monitoring 224 

network belongs to the biggest European urban gauge networks. Its size could be compared 225 

only with similar networks of 25 gauges in Vienna (414.87 km²), or 24 gauges spread 226 

throughout Marseille (240.62 km²) and Barcelona (100.4 km²) (see Appendix B, Thames 227 

Tunnel Needs Report, 2010). 228 

We compare the results of our study with those related to other Polish and German 229 

gauges. We limit our comparison to results previously published by Licznar et al. (2011a,b) 230 

for four gauges in Germany (gauges A, B, C and D - representing local climates of different 231 
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parts of western Germany) and for one gauge in Wroclaw, Poland, and unpublished yet results 232 

by Górski (2013) for rain-gauge in Kielce, Poland (Fig. 3). Our choice is motivated by the 233 

similarity of the used methodology, and the investigated range of timescales, as well as by the 234 

indispensable accessibility to precise recordings of the breakdown coefficient histograms. 235 

Finally, to investigate the existence of possible statistical bias induced by the 236 

calculation of BDCs on short precipitation records, we use additional data recorded by an old-237 

type pluviograph gauge installed previously at the current location of gauge R7 on the ground 238 

of Lindley’s Filters station. This pluviograph gauge was operated only in summer months 239 

from the May 1st to October 31st. Data were in the form of 15-min rainfall time series read 240 

off the original paper strips with the resolution of 0.1 mm for depth covering a period of 25-241 

year from 1983 to 2007. 242 

2.2 Microcanonical cascade models 243 

We use microcanonical cascade models (MCMs) as in Licznar et al. (2011a,b). We 244 

consider the disaggregation of precipitation totals from 1280-min (quasi daily) into 5-min 245 

times series, assuming the branching number b equal to 2, and constructing cascades 246 

assembled from only 9 levels (n=8, …, 1, 0) corresponding to timescales =2
n
 from =256 to 247 

=1 (Fig. 4). Precipitation depth time series generated by such cascades are the products of 248 

the original precipitation total R0 at timescale =256 multiplied by the sequence of weights at 249 

the descending cascade levels: 250 

,     (1) 251 

where j=1, 2, …2
k
-1, 2

k
 marks the position in the time series at the k

th
 cascade step. The 252 

sequence of randomly generated weights Wf(i,j),i is steered at the following i
th

 cascade step by 253 

the function f(i,j), which rounds up j/2
k-i

 to the closest integer. The weights in the 254 





k

i
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1
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microcanonical cascades are forced to sum to one, so their pairs are always equal to W and 1-255 

W respectively, where W is a two-sided truncated random variable from 0 to 1. The 256 

microcanonical assumption conserves the mass (precipitation depth in our case) at each 257 

branch, and eliminates the risk of cascade degeneration. From engineering perspective, this 258 

means that the downscaling process could be seen as opposite to precipitation summation 259 

realized by Hellman gauges, recording daily totals only, and a pragmatic solution for the 260 

generation of synthetic precipitation time series at 5-minute resolution. 261 

In our study we do not focus our attention on the disaggregation capabilities of 262 

microcanonical cascades, already discussed in numerous papers. We concentrate on the small-263 

scale variability of their generators W among gauges constituting the urban precipitation 264 

network. The obvious attractive of MCMs arises from the possibility of extracting the 265 

distribution of W from data on the base of breakdown coefficients studies (Cârsteanu and 266 

Foufoula-Georgiou 1996). By definition, BDCs are generally calculated using non-267 

overlapping adjacent pairs of precipitation time series:  268 

  j=1,3,5,…,N -1;  (2) 269 

where Rj,  is the precipitation amount for the time interval of length  at position j in the time 270 

series, and N is the length of time series at timescale . The calculation of BDCs with respect 271 

to Eq.(2) for Warsaw gauges is conducted only for nonzero pairs of Rj and Rj+1. Calculations 272 

are executed at aggregated intervals of length 2
norg, where org is the original time step equal 273 

to 5 min and n is a cascade level, increasing from 0 to 8, with increasing cascade timescales  274 

from 1 to 256 (Fig. 4). Simultaneously, for all analyzed timescales, BDC couples equal to 0 / 275 

1, or 1 / 0 (when only one between Rj and Rj+1 is zero) are separated from resulting datasets 276 
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and their occurrence probabilities, respectively p0(LEFT) and p0(RIGHT) are used to estimate 277 

intermittency probability p0: 278 

000 )()()0)1(0)(Pr( pRIGHTpLEFTpjBDCorjBDC nn    .   (3) 279 

The probability p0 is used within a MCM generator to take into account the intermittency, so 280 

characteristic of precipitation, forcing some portion of random weights W to be equal to 0. 281 

The preliminary results have revealed an over-representation of BDC values equal to 282 

1/2 or 1/3, 2/5, 1/4 (and 2/3, 3/5, 3/4 respectively), especially for small timescales, i.e. =1 283 

and =2. Fig. 5 (left panel) shows an example of BDC histogram for timescale =1, with 284 

evident artificial spikes. Similar phenomenon was already reported by Rupp et al. (2009), and 285 

Licznar et al. (2011b), and explained as the result of instrument or recording precision of 286 

precipitation gauges. The magnitude of observed rounding errors for Warsaw gauges is 287 

however smaller than in case of German gauges (Licznar et al., 2011b), because the 288 

precipitation depths were recorded with better resolution of 0.001 mm still however resulted 289 

in irregularity of BDCs distribution, induced by sharp peaks at discrete BDC values, and 290 

hindered the identification of the theoretical distribution. In order to correct the rounding 291 

errors, a randomization procedure originally proposed by Licznar et al. (2011b) was applied. 292 

This type of procedure, also known as jittering, is fundamental in the analysis of data 293 

characterized by the presence of ties, De Michele et al. (2013). Thus, the original 1-min time 294 

series were slightly modified by adding to the precipitation depths, exceeding zero, some 295 

random corrections. Random correction values were sampled from the Uniform distribution in 296 

the range [-0.0005, 0.0005] mm, resulting in visible BDCs histogram smoothing (Fig. 5 right 297 

panel). Note, that the Uniform distribution is used for the randomization of the rounding 298 

errors, because, in absence of information, it is the most intuitive distribution requiring less 299 

assumption, for more details please see Licznar et al. (2011b). 300 
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Irregularities in BDC histograms were observed for timescales >8. These are due to 301 

the decreasing sample size, calculated on limited timespan of accessible data, slightly 302 

exceeding 2 years. This issue was rather irrelevant in former studies (Molnar and Burlando 303 

2005, 2008, Licznar et al. 2011a,b) realized on data series 10 or even 20 times longer. To 304 

solve this issue, we applied the overlapping moving window algorithm as an alternative to the 305 

classical non-overlapping moving window algorithm for the calculation of BDCs values. 306 

Figure 6 shows the differences between the two algorithms for =1. Switching from non-307 

overlapping to overlapping moving window algorithm leads to increase the number of time 308 

segments for the calculation of BDCs values. For time series of n data, and a time window of 309 

size mn, the number of non-overlapping windows is  mn / , where the symbol    represents 310 

the integer part, while the number of overlapping windows is: (n-m+1). For large n>>m, the 311 

overlapping moving window algorithm leads to almost m times the number of time segments 312 

available in the overlapping moving window algorithm. It should be underlined that the real 313 

strength of the overlapping moving window algorithm in analyzing distributions of BDCs 314 

values could be observed for the largest timescales. The reason is that for small timescales, 315 

most of time segments is characterized by zero precipitation, and thus not involved in the 316 

calculation of BDCs, whereas for larger timescales, time segments are becoming larger and 317 

rarely characterized by zero precipitation. This phenomenon arises from the fractal properties 318 

of rainfall time series, and similar conclusions result from the “box-counting” analysis. 319 

It is clear that the overlapping moving window algorithm is especially desired for 320 

limited observational datasets. However, its implementation for short time series may be 321 

characterized by a poor representativeness of BDCs distributions, due to multi-decadal 322 

oscillations of precipitation totals and extremes (Willems 2013). To investigate the magnitude 323 

of the oscillations in the BDCs distributions, we use historical time series from former old-324 
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type gauge R7, covering a 25-year period, from 1983 to 2007 at 15-min resolution. For each 325 

year, there are available only 6 months of data from May to October.  For this dataset, we 326 

make the calculations of BDCs in 7 time periods. First, we calculate BDCs for the following 327 

5-year periods: 1983-1987, 1988-1992, 1993-1997, 1998-2002 and 2003-2007 using the 328 

overlapping moving window algorithm. We consider this temporal size (5 years  6 months = 329 

30 months) because comparable to the one available for electronic gauges. Afterwards, we 330 

repeat the same calculation with a 25-year long size using both non-overlapping and 331 

overlapping moving window algorithms. As we work here with a coarser resolution (15-min 332 

instead of 5-min of electronic gauges), we decide to perform the analysis with a smaller 333 

hierarchy of sub-daily timescales ’ from 1 to 32 and breakdown times from 15-30 min up to 334 

480-960 min. For all calculations we perform the randomization of nonzero values. Since 335 

their reading precision was set to 0.1 mm, we introduce a random correction belonging to the 336 

Uniform distribution in the range [-0.05, 0.05] mm. 337 

To compare BDC histograms, obtained for all analyzed timescales  and ’, with 338 

theoretical functions, a probability distribution assembling 2 truncated (with truncation points 339 

at 0 and 1) Normal distributions (Robert, 1995), and 1 Beta symmetrical distribution was 340 

implemented. This distribution, indicated as 2N-B distribution, has the following density 341 

function: 342 
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where p1 and p2 were weights characterizing the contribution of the individual distributions 344 

within the 2N-B distribution, 1 and 2 were the scale parameters of truncated Normal 345 

distributions, and B(a) was the symmetrical Beta function, parameterized by a. 346 
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The fitting of 2N-B distribution parameters was performed numerically by means of 347 

maximum likelihood estimation. It is very likely, that the use of the model given in Eq.(4), 348 

governed by 5 parameters, could suffer of an over-parameterization, in comparison to the 349 

most commonly used Beta symmetrical distribution with only 1 parameter. Note that the 350 

application of goodness-of-fit tests (namely Kolmogorov-Smirnov test or 
2
 test) at 1% or 5% 351 

levels of significance gave negative result as for Beta as for 2N-B distribution. This because 352 

the large sample size of empirical BDCs has led to the rejection of the hypothesis, even in the 353 

case of very small differences between observed and theoretical distributions, as pointed out 354 

also in Licznar et al. (2011a). Here, we use the Akaike information criterion AIC, as a 355 

measure of the relative quality between 2N-B and Beta models for given sets of empirical 356 

BDCs. AIC is the maximized value of the log-likelihood function (LL) penalized by the 357 

number of model parameters k: 358 

AIC=2k-2LL        (5) 359 

The preferred distribution is the one with the minimum value of AIC. 360 

 361 

2.3 Cluster analysis 362 

To our knowledge, until now, the variability of MCM generators among a group of 363 

gauges was investigated comparing the value of the parameter of Beta distribution (Molnar 364 

and Burlando 2008). Here, we preferred to compare directly the empirical distribution of 365 

BDCs instead of the parameters of the theoretical distribution, possibly biased by fitting 366 

errors. We have encountered the same problems found in the implementation of statistical 367 

tests due to the large sample size. For this, we have used the cluster analysis to compare the 368 

shape of BDC histograms among the stations of the monitoring network in Warsaw, and with 369 

other Polish and German gauges. 370 
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In particular a hierarchical clustering is used. This is a data-mining tool, applied to 371 

segment data into relatively homogeneous subgroups, or clusters, where the similarity of the 372 

records within the cluster is maximized (Larose, 2005). Prior the application of the cluster 373 

analysis, for each timescale and each site, the BDC histogram is sampled in 100 points, 374 

selected at equal distance one from the following one. These 100 values are the components 375 

of a vector representing the empirical BDC distribution. Note that a basic requirement of 376 

cluster analysis is the comparison of records of equal length. As, all BDCs distributions are 377 

left and right truncated, in the interval (0,1), sampling their histograms with a resolution of 378 

0.01 produces vectors, which describe well the shape of histograms. The clustering of these 379 

vectors (searching similar sites) is operated using the Euclidean distance. It is computed as: 380 

,     (6) 381 

where xi and yi with i=1,…,100, represent respectively the i-th component of X and Y vectors.  382 

The Euclidean distance is a measure of similarity, not having, in general, a physical 383 

interpretation. Initially, in hierarchical clustering analysis, each vector is considered to be a 384 

tiny cluster of its own. Then, in following steps, the two closest clusters are aggregated into a 385 

new combined cluster. By replication of this operation, the number of clusters is reduced by 386 

one at each step and eventually, sites are combined into a single huge cluster. During the 387 

agglomerative process, the distance between clusters is determined based on single-linkage 388 

criterion. In this case, the distance between two clusters A and B is defined as the minimum 389 

distance between any element in cluster A and any element in cluster B. With respect to this 390 

single-linkage is often termed the nearest-neighbor approach, and tends to form long, slender 391 

clusters, clearly indicating similarities among clustered elements. As a final result of 392 

agglomerative clustering a treelike cluster structure (named dendrogram) is created.  393 

 
i
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Dendrograms show similarities, as well as dissimilarities, of BDC distributions among 394 

the considered sites and they are prepared separately for all analyzed timescales. In addition, 395 

the cluster analysis is also applied to the intermittency parameter, comparing in this case, 396 

vectors of 8 components, each of these being the p0 value for the 8 timescales 397 

=1,2,4,8,16,32,64,128. 398 

 399 

 400 

3 Results and Discussion 401 

Results are presented relatively to gauge R7, for brevity. This station has been selected 402 

because of its localization in the strict city center, its installation in perfect meteorological 403 

conditions on the ground, and the existence of former historical rainfall records. Results for 404 

the other gauges are qualitatively similar to those shown for R7.  405 

 406 

3.1. Empirical BDCs distributions 407 

BDCs histograms are calculated using the non-overlapping moving window algorithm, 408 

and plotted in Fig. 7 for gauge R7 and a sequence of analyzed breakdown times. It is clearly 409 

visible that despite the randomization procedure removes pronounced peaks of histograms at 410 

certain specific BDC values, like 0.5 or 1/3, 2/5, 1/4 and 2/3, 3/5, 3/4 respectively (Fig. 5), the 411 

plots especially for timescales exceeding =8 remain still irregular, reducing the possibility of 412 

identifying the proper theoretical distribution. Visible irregularities of BDC histograms 413 

increase with increasing timescales, which is an obvious effect of decreasing datasets and thus 414 

decreasing populations of calculated BDC values not allowing to produce histograms of fine 415 

bins resolution. Similarly, Fig. 8 reports the distributions of BDC calculated through the 416 
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overlapping moving window algorithm. The comparison between Fig.7 and Fig.8 shows how 417 

the change of algorithm from non-overlapping to overlapping moving window has brought to 418 

evident smoothing of BDC histograms especially for larger timescales, but occurring also at 419 

small timescales. Note that the smoothness of BDC histograms in Fig. 8 is comparable with 420 

the quality of BDC histograms showed by Licznar et al. (2011b) for German gauges, derived 421 

using non-overlapping moving window algorithm for much longer precipitation time series 422 

ranging from 27 to 46 years of continuous records. The introduction of the overlapping 423 

moving window algorithm allowed for the fitting of MCM parameters in the case of Warsaw 424 

gauges with the availability of extremely short time series (say 2 years long). The overall 425 

acceptance of overlapping moving window algorithm implementation, also for short rainfall 426 

time series is discussed in paragraph 3.3. 427 

 428 

3.2. Theoretical BDCs distributions and their evolution along timescales 429 

In Fig. 8, we report also the fitted theoretical distributions (2N-B distribution in solid 430 

red curves, and Beta distribution in blue dashed lines) for each timescale considered. The 431 

visual comparison clearly indicates a better fit of 2N-B (or N-B in some cases) distribution for 432 

timescales smaller than =64. In Fig.8, it is possible to see how the distribution with the best 433 

fit changes from a Beta distribution (B) at =128, to a joined double Normal-Beta distribution 434 

(2N-B) for the smallest value of , through a joined Normal-Beta distributions (N-B). This is 435 

in agreement with previous studies by Licznar et al. (2011a,b). This observation is supported 436 

by higher values of log-likelihood for 2N-B distribution (or the simplified N-B) in comparison 437 

to the Beta distribution (Tab. 1). These differences are in the range of thousands, and even 438 

after accounting for the number of model parameters, the AIC for 2N-B (or the simplified N-439 

B) distributions are much smaller (or equal) the one of Beta distributions, confirming the 440 
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visual result given in Fig. 8. Based on this, we prefer the 2N-B distribution respect to the Beta 441 

distribution, except for the case =128. Analyzing the data reported in Tab. 1, it is worth to 442 

notice the systematic increase of sample size n increasing the timescale.  443 

From the practical point of view a rapid increase in the number of BDCs, equal or 444 

close to 0.5, decreasing the timescale should be expected, as a symptom of enclosing a limit 445 

of the precipitation temporal variability in a point by accessible instruments. The precipitation 446 

averaging over some small area of orifice and time intervals is inevitable for gauges, thus for 447 

small timescales most of small scale precipitation variability remains undetected and 448 

smoothed leading to an over-representation of constant precipitation time intervals. From the 449 

theoretical point of view, it should be noticed that bounded cascades allow the multiplicative 450 

weights (or precisely their distributions) to depend on the cascade level and converge to unity 451 

as the cascade proceeds. As a consequence, the simulated random process becomes smoother 452 

on smaller timescales (Lombardo et al. 2012), which in general mimics the dynamics of 453 

precipitation collected by gauges. In other words as it was postulated by Marshak et al. 454 

(1994), Menabde et al. (1997) and Harris et al. (1998), the variance of weights reduces with 455 

every descending cascade level. As a simple extension of this rule, the increasing frequency 456 

of weights at the central part of their distribution plots has to be observed. The increase in the 457 

number of BDCs equal or close to 0.5 with decreasing timescale is well illustrated by 458 

empirical histograms at well-known pioneering contributions to MCM applications for 459 

rainfall time series disaggregation, published by Olsson (1998), Menabde and Sivapalan 460 

(2000) and Güntner et al. (2001). Quite recently, this behavior was also proved to be rainfall 461 

intensity dependent by Rupp et al. (2009). 462 

For each analyzed timescale, we have estimated the parameters of 2N-B probability 463 

distribution (or its simplifications N-B and B): p1, p2, a, 1 and 2. Table 2 gives the values 464 

for gauge R7 with their 95% confidence limits. A good visual fit of empirical BDC 465 
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distributions in Fig. 8 corresponds to quite narrow 95% confidence limits of the fitted 466 

parameters (mostly invisible on Fig. 9 plots). The 95% confidence limits are not exceeding 467 

few percent of the estimated values, with the sole exception of parameter p1 for =4, where 468 

the differences range up to 27%. Additionally, the scale parameters of Normal distributions, 469 

1 and 2, appear to be constant among analyzed timescales, not only for gauge R7, but also 470 

for the other Warsaw gauges. 471 

The variability of p1, p2, a with  is presented in Fig. 9 for gauge R7. A systematical 472 

decrease of p1 down to 0 increasing the timescale is observed, denoting a decreasing 473 

importance of the first Normal within the 2N-B distribution. An opposite systematical 474 

increase of p2 up to 1 increasing the timescale is observed, denoting a decreasing importance 475 

of the second Normal within the 2N-B distribution. The evolution of the Beta parameter a 476 

shows a fast reduction with below 1 values noticed for the smallest scales, yielding the change 477 

of Beta distribution shape from convex to concave. At larger timescales, the reduction of a is 478 

hardly visible with the sole exception of =128. Figure 10 shows the variability of 479 

intermittency parameters p0 with timescale . For all of them, the values of p0(LEFT) match 480 

the values of p0(RIGHT), which is in good agreement of previous studies of Molnar and 481 

Burlando (2005) and Licznar et al. (2011a, 2011b). This could be interpreted as the proof of 482 

fully random occurrence of intermittency in the precipitation time series. Systematical 483 

increase of p0 with  is observed with the sole exception of some small drop at =128. 484 

General increase of p0 with timescale is a natural outcome of fractal properties of the 485 

geometric support of rainfall occurrence. 486 

 487 

3.3. Performance of the overlapping moving window algorithm 488 
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The performance of the overlapping moving window algorithm was investigated in 489 

detail at gauge R7, where a 25-year long time series at 15-min resolution was available. We 490 

calculate the parameters of 2N-B distribution for the hierarchy of sub-daily timescales ’ 491 

relatively to the following 5-year periods: 1983-1987, 1988-1992, 1993-1997, 1998-2002 and 492 

2003-2007 (indicated in the next with the roman numbers I,II,..,V respectively) and the whole 493 

25-year dataset (indicated in the next with case A) using the overlapping moving window 494 

algorithm. In addition, we calculate the parameters of 2N-B distribution also using the 495 

classical non-overlapping moving window algorithm over the whole 25-year dataset 496 

(indicated in the next as case B). The results are shown in Figs. 11-13.  497 

In general, the selected probability distribution was a Beta for the largest timescales 498 

(’=16, 32), a N-B for ’=2,4,8, and a 2N-B distribution for ’=1 (with the only exception of 499 

the period IV). The above listed timescales ’ are not compatible with timescales , however 500 

transposing them on a coherent time axis leads to the conclusion that characteristic transitions 501 

from Beta to N-B and 2N-B distributions occurred at approximately the same time ranges. 502 

The estimated parameters 1 and 2 appeared to be constant among analyzed timescales, and 503 

equal to 0.0646 and 0.1363 respectively. These values were very close to those reported in 504 

Tab. 2. Fig. 11 shows the estimates of p1, for ’=1, with a variability in the range 0 -- 0.058 505 

for the 5-year periods I-V. At the same time, the 95% confidence limits of p1 overlap partially 506 

one on the other, and with values estimated for cases A and B. Confidence limits for periods 507 

I-V are rather wide and are reduced of 50% only for cases A and B. Note that here we work 508 

with 15-min time series, and not 1-min time series as before.  509 

A better agreement was observed for larger timescales, as illustrated in Figs. 12 and 510 

13, with visibly narrow 95% confidence limits, but still partial overlapped one on the other. 511 

For smaller timescales, larger oscillations of p2 parameter could be observed over the periods 512 
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I-V, but due to wider 95% confidence limits, they overlap one on the other and with those 513 

relative to cases A and B. The only exception is found for the period III at timescale ’=1. 514 

For parameter a and ’=1, 95% confidence limits for all calculations overlap with the 515 

only exception of period V, having slightly lower values. For ’=2 and ’=4, mutual overlay 516 

of 95% confidence limits was noticed. Passing to ’=8 and ’=16, the overlapping among all 517 

pairs of periods from I to V was not always present, but present with 95% confidence limits 518 

drawn for case B. For ’=32, 95% confidence limits for periods I-V and case A were 519 

extremely narrow.  520 

Results reported above suggest good repeatability of BDCs distributions calculated 521 

during all periods, which finds its graphical confirmation in Fig. 14, with the only exception 522 

of period II and timescale ’=1. Probably this could be explained by the poor performance of 523 

newly proposed overlapping moving window algorithm applied to low time resolution of the 524 

original time series. Our observations support the use of overlapping moving window 525 

algorithm for BDCs calculations in situations of short (about 2-year) precipitation time series 526 

access, while in previous microcanonical cascade studies (e.g. Molnar and Burlando 2005 and 527 

2008) longer (e.g. about 20-30 years) time series were indispensable. In addition, even in 528 

situations of longer precipitation time series access, BDCs calculations by means of proposed 529 

algorithm should be favored relative to old non-overlapping moving window technique, as the 530 

new algorithm leads to narrowed 95% confidence intervals of fitted BDCs distributions 531 

parameters.  532 

We do not claim here, that the moving window technique combined with MCMs 533 

solves the problem of local precipitation time series shortage. It is obvious that rainfall 534 

statistics derived from short periods may be biased against long-term statistics (e.g. due to 535 

climate oscillations). Until now to our best knowledge, there were no attempts made to assess 536 
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the possible bias of MCMs generators due to precipitation oscillations, driven by climate 537 

change. Hitherto contributions of MCMs generators were mostly based on relatively not too 538 

long precipitation series, presumably displaying only very weak if any oscillations and were 539 

always treated as single dataset.  540 

Possible bias of MCMs generators due to precipitation oscillations undoubtedly should 541 

be verified on other much longer time series of better resolution like for example the 10-min 542 

time series collected at Uccle, Belgium (Willems 2013). Simultaneously, only detailed 543 

analysis based on long and complete precipitation time series covering at least few decades 544 

could deliver us the answer to this question, if the climate change effect could be retrieved via 545 

the temporal evaluation of microcanonical cascade generators. From this perspective, the 546 

moving window technique could be of considerable usefulness in BDCs distributions fitting 547 

for periods corresponding to 11 yrs solar spot cycles. 548 

 549 

3.4. Performance of microcanonical cascade in disaggregation 550 

As additional check of the overall performance of the applied techniques (i.e., the 551 

randomization procedure, the overlapping moving window algorithm and the 2N-B 552 

probability distribution), we test the performance of microcanonical cascade in disaggregating 553 

the precipitation at the analyzed gauges. The MCM is used to generate 100 synthetic time 554 

series at 5-min resolution on the basis of the observed 1280-min precipitation totals (similarly 555 

to Molnar and Burlando 2005, Licznar et al. 2011a and b). To evaluate the goodness of 556 

disaggregation, we compare the probability of zero precipitation at synthetic and observed 557 

time series for all analyzed timescales. Moreover, we calculate the survival probability 558 

function of nonzero synthetic precipitation amounts and compare it to the survival probability 559 

function observed precipitation amounts. This analysis is limited to 5-min data, i.e. terminal 560 
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results of the disaggregation, most suitable for urban hydrology application. Special interest 561 

on the 5-min synthetic time series was also focused by other researchers (see e.g., Molnar and 562 

Burlando 2005 and 2008, Licznar et al. 2011a and b). An example of 56.3 mm event 563 

disaggregation is plotted in Fig.15, for gauge R7. It should be stressed that the structure of the 564 

synthetic time series is composed by uncorrelated segments like the one presented in Fig.15. 565 

Thus, the synthetic time series is missing the correct autocorrelation structure of natural 566 

precipitation (for detail discussion see: Lombardo et al. 2012). The expected value of the zero 567 

precipitation probability, E(p0), for observed and generated series is given in Fig. 16, for 568 

gauge R7. The synthetic values of E(p0) are calculated as average over 100 MCM 569 

disaggregations. The differences in terms of E(p0) between observed and simulated are 570 

negligible (see Fig. 16). In addition, for comparison, we give also the synthetic values of E(p0) 571 

for gauges R15 and R25. 572 

Fig. 17 shows the comparison between observed and simulated survival probability 573 

function of rainfall amount at 5-min, for gauge R7. In Fig. 17, for gauge R7, we report the 574 

empirical survival probability function for a synthetic series out of 100, and the averaged 575 

function using all the generated series. In addition, for comparison, we give also the averaged 576 

survival functions for gauges R15 and R25. At first glance, highest rainfall intensities drawn 577 

in Fig. 17 show strange behavior manifested by constant exceedance probability above a 578 

given precipitation threshold. This is especially pronounced for observed or synthetic series 579 

from a single MCM run. This is due to the very short rainfall time series used for the 580 

calculation of survival probability functions. According to multifractal theory, singularities in 581 

small dataset are very rare. Highest rainfall intensities as singularities are very rare in 2-year 582 

long series. The behavior of both the synthetic functions for gauge R7 in Fig. 17 is very 583 

similar, with the sole exception of the extended and smoothed tail of the averaged function 584 

plot. Both the synthetic functions are placed above the observed function. This displacement 585 
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reveals over-prediction of 5-min precipitation depths, particularly at the range of intensities 586 

from 0.3 mm/5min to about 2.0 mm/5min. It should be noticed, that the magnitude of 587 

dissimilarities between synthetic and observed survival functions for gauge R7 did not exceed 588 

the ones reported in other works, see e.g., Molnar and Burlando (2005), Licznar et al. 589 

(2011a,b). In comparison, the magnitude of dissimilarities between observed survival 590 

probability for gauge R7 and synthetic (average) survival probability function for other 591 

gauges R15 and R25 was much more pronounced. 592 

 593 

3.5. Cluster analysis results and their interpretation 594 

Dendrograms summarizing the results of the cluster analysis for BDC histograms are 595 

produced for each timescale, and reported in Figs 18 and 19 only for =1 and =128, 596 

respectively. Results for the first four timescales, i.e. = 1,2,4,8, are unsurprising and easy to 597 

be interpreted. All Warsaw gauges are grouped in a single cluster with similar shapes of BDC 598 

histograms. For all Warsaw gauges their interconnection on the dendrogram is placed at the 599 

level of binding distance equal to about 0.5. Only R25 seems to be characterized by slightly 600 

different pattern of BDC histogram. However, gauge R25 has a behavior, which is still much 601 

closer to other Warsaw gauges, rather than the behavior of the other cities considered. For 602 

example, at =1, gauge R25 is merged into Warsaw gauges cluster at an Euclidean distance 603 

equal to 0.81, whereas the same occurs for Kielce (the closest considered Polish city) gauge at 604 

the Euclidean distance equal to 1.07. For other timescales, = 2, 4, 8, gauge R25 merges the 605 

cluster of Warsaw gauges at quite similar Euclidean distances: 0.89, 0.83 and 0.81 606 

respectively.  607 
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The dendrogram for =128 is given in Fig. 19, being representative of timescales 608 

=16,32,64,128. From Fig.19, it is possible to see the departure of gauge R15 from the cluster 609 

of other Warsaw gauges. The position of gauge R15 is isolated from other Warsaw gauges 610 

and its Euclidean distance from the closest one is large, and increases with greater timescale; 611 

it is equal to 1.80, 3.19, 3.88, and 8.03 respectively for =16, 32, 64 and 128. Simultaneously, 612 

the Euclidean distance from the cluster of Warsaw gauges to the nearest neighbor does not 613 

exceed 0.90, 1.00, 1.40 and 1.89 respectively for =16, 32, 64 and 128.  614 

This last observation puts in evidence that in general the variability of BDC shapes, 615 

among Warsaw gauges, increases with greater timescale. It may partly be explained by the 616 

already mentioned evolution of histogram shapes, and the replacement of 2N-B distribution 617 

by less centered N-B and finally B distribution characterized by a higher variance of BDC. In 618 

the specific case of gauge R15, its BDC histograms for the largest timescales are boldly 619 

concave (not shown for brevity) and their shapes are becoming similar to Beta symmetrical 620 

distributions parameterized by very small values of a: 0.76, 0.64, 0.54, and 0.45 respectively 621 

for = 16,32, 64, and 128.  622 

As last step, we used the cluster analysis to investigate the variability among the 623 

gauges, in terms of the intermittency parameter p0 considered as a vector having as the 8 624 

components its values in correspondence of the considered timescales. Results are given in 625 

form of dendrogram in Fig. 20. With respect to p0, all Warsaw gauges form one single chain-626 

like cluster. Three gauges in the cluster, namely R14, R25 and R15, are characterized by the 627 

largest distances from the nearest neighbor with Euclidean distances equal to: 0.079, 0.064 628 

and 0.0614 respectively. The distance of gauges R15 and R25 from the other stations in 629 

cluster is similar to observations made for Figs. 18 and 19. A possible, but not certain, 630 



28 

 

explanation for gauge R14 could be its location close to gauge R15, in a weak-developed part 631 

of the city. 632 

Unfortunately, we do not have access to other meteorological data to compare our 633 

results with other local climate conditions. To our knowledge, studies about microclimate or 634 

local turbulence were not conducted for Warsaw. However in our opinion, the anomalous 635 

behavior of gauges R15 and R25 does not originate from random errors due to gauges 636 

installation. As it was mentioned before, all gauges were installed in very good conditions, 637 

and R15 was an airport gauge. A plausible explanation of the anomalous behavior of gauges 638 

R25 and R15 could be found in its location. Gauge R25 location is on south-east suburban 639 

area, in the close vicinity of forested area and Vistula river valley. This specific suburban area 640 

is also most frequently a place for the development of local convection processes (prof. S. 641 

Malinowski, personal communication, 2013). The anomalous behavior of gauge R15 seems to 642 

arise from its specific location on the ground of the Warsaw airport. In the neighborhood of 643 

the instrument there are no high buildings and trees and the ground is covered only by short 644 

cut grass. The local atmospheric turbulence conditions, additionally influenced by taking off 645 

and landing aircrafts could have favored the different behavior of this station. In general, 646 

gauges R15 and R25 are the only instruments, installed outside the areas of urban fabric (Fig. 647 

1) in rather rural conditions of surrounding green areas. The suburban location of these gauges 648 

connected with direct green surrounding reduces, or even minimalizes to zero, urban heat 649 

island effects. Peng et al. (2011) investigated the surface urban heat island intensity across 650 

419 global big cities (including Warsaw city). These authors showed that the distribution of 651 

daytime surface urban heat island intensity correlates negatively across cities with the 652 

difference of vegetation fractional cover, and of vegetation activity, between urban and 653 

suburban areas. Kłysik and Fortuniak (1999) for the second big city of Poland, Łódz (about 654 

120km south-west) comparable to Warsaw flat topography, found the occurrence of the urban 655 
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heat. According to statistics calculated over many years, in two stations one in center and one 656 

in airport, over 80% of nights were characterized by a surplus heat in town, amounting 2-4°C, 657 

and sporadically to 8°C and more. Once more for Łódź, Fortuniak et al. (2006) confronted the 658 

data from two automatic stations: one urban and one rural. They found the relative humidity 659 

to be lower in the town, sometimes by more than 40%, and water vapour pressure differences 660 

to be possibly either positive (up to 5 hPa) or negative (up to -4 hPa). Air temperature 661 

differences between the urban and rural station exceeded 8°C. It could be that similar 662 

processes occur in Warsaw and affect local precipitation dynamics, and gauges R7 and R15 663 

and R25. As consequence, statistics of synthetic time series vary visibly in Figs. 16 and 17. 664 

However, the significance of these differences should be studied in more details in the future.  665 

4 Conclusions 666 

Owning in mind the simplicity of microcanonical cascade generators retrieval from 667 

observational data, we proposed to use this technique for the local variability of very short 668 

precipitation time series within an urban monitoring network.  669 

We considered a network of 25 gauges deployed in Warsaw city (Poland) over an area 670 

of 517.2 km
2
. An attempt was made to define the generators of a MCM applicable for 671 

producing 5-min time series, as requested by urban hydrologists, through the disaggregation 672 

of quasi-daily precipitation totals. We showed that smooth distributions of BDC are possible, 673 

for all analyzed timescales, even in case of limited length of time series, which in our case 674 

slightly exceeded 2 years only. This was made possible by the implementation of a 675 

randomization procedure and the use of an overlapping moving window algorithm for the 676 

calculation of BDCs.  677 

The correctness of the overlapping moving window algorithm is checked using 678 

additional 15-minute rainfall time series, 25-year long, at gauge R7. The algorithm is 679 
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implemented for a hierarchy of sub-daily timescales, and separate 5-year periods. The results 680 

of BDC calculations are compared to those obtained using all 25 years of data with both 681 

overlapping and non-overlapping moving window algorithms. Despite the coarse resolution of 682 

data, and winter time gaps in the series, the results show a good agreement of BDC 683 

distributions calculated over the different periods, suggesting the correctness of the 684 

overlapping moving window algorithm, at least in central Poland. 685 

To adequately describe the shapes of BDC histograms, we have implemented a special 686 

joined probability distribution, 2N-B, assembled from 2 Normal distributions and 1 Beta 687 

symmetrical distribution. A systematical evolution of BDC histograms from joined double 688 

Normal-Beta distributions (2N-B), through joined Normal-Beta distributions (N-B) up to Beta 689 

distributions (B) was observed increasing the timescale. To test the use of more complicated 690 

models alternative to the classical Beta distribution, we suggested the Akaike information 691 

criterion (AIC).  692 

To check all the applied techniques (i.e., the randomization procedure, the overlapping 693 

moving window scheme and the 2N-B distribution), MCMs were used to disaggregate 1280-694 

min precipitation into 5-min time series. The quality of the generated series was checked 695 

comparing the statistical properties of these with the ones of observed series. In particular, we 696 

compared probabilities of zero precipitation and the survival probability functions of non-zero 697 

5-min precipitation amounts, for the considered timescales, with agreement comparable to 698 

previous studies made in Switzerland, Germany and Poland. 699 

As main part of this study, we have conducted an intercomparison of BDC histograms 700 

among the 25 Warsaw gauges, and considering as a term of reference also other 6 gauges 701 

located in Poland and Germany. The intercomparison was made, scale-by-scale, by means of 702 

cluster analysis. Resulting dendrograms for small timescales (i.e. =1,2,4,8) revealed rather 703 

small variability of BDC histograms among all Warsaw gauges in comparison to the 704 
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variability exhibited with respect to the other external gauges. Only gauge R25 seems to be 705 

characterized by a slightly different pattern. It might originate from the specific gauge 706 

location on the city boundary, in the vicinity of forested areas and Vistula river valley.  707 

Dendrograms obtained for large timescales (i.e. =16, 32, 64, 128) also delivered a 708 

general picture of similarity among Warsaw gauges, with the very clear exception of gauge 709 

R15. To our best knowledge a possible explanation of this was its installation on the ground 710 

of the Warsaw airport, strongly man-modified and with local turbulence conditions. In 711 

addition, R25, R15, and R14 were also identified as gauges presenting slightly different 712 

behavior in terms of the intermittency parameter p0. 713 

As final remarks, we can affirm that MCMs combined with cluster analysis could be 714 

used as a tool for the assessment of the spatial variability of local precipitation patterns among 715 

a group of gauges. This framework could be effectively implemented even in case of very 716 

short observational series thanks to the proposed overlapping moving window algorithm. We 717 

believe that the use of this algorithm could increase the development and use of MCMs in 718 

urban hydrology. At the same time, we are fully aware of the inherent MCM limitations in the 719 

quality of rainfall disaggregation and the necessity of additional verifications of the 720 

overlapping moving window algorithm for other gauges with longer and better quality 721 

observational time series.  722 

Returning to questions of interest in urban hydrology addressed at the end of 723 

Introduction we can formulate following answers: 724 

1) Small precipitation variability within gauges located in city centered, as measured 725 

via microcanonical cascade generators, justifies the practice of a single time series 726 

for the probabilistic assessment of the entire urban drainage system. 727 

2) From current engineering needs in urban hydrology, it is enough to use only one 728 

fitted MCM for the precipitation time series disaggregation in Warsaw city. We 729 
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suppose that this result could be valid even in larger urban areas, but the 730 

verification is necessary. We dissuade from the cascade generation fitted on 731 

precipitation time series collected at instruments located out of the city center in 732 

unrepresentative sites, like in our case, the ground of the airport.  733 

3) We question the practice of using gauges from airport for urban hydrology.  734 

Finally, we recommend further research to assess the influence of the local conditions on 735 

BDC histograms to find more clear explanations of observed anomalies. We also recognize 736 

the necessity of further tests on other cities and precipitation monitoring networks, especially 737 

in case of cities with complicated orography and presence of hydrological networks.  738 
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Tab. 1.  Values of p1, p2, a, 1 and 2 parameters at different timescales, for gauge R7. The values of parameters 885 
are reported in bold, whereas their 95% confidence limits are in italic. 886 
 887 

Breakdown 

times 
Timescale  p1 p2 a 1 2 

5-10 min. =1 

0.1541 0.3479 1.3350 0.0559 0.1341 

0.1474 0.3377 1.3097 0.0523 0.1300 

0.1608 0.3580 1.3604 0.0595 0.1383 

10-20 min. =2 

0.0706 0.4036 1.0632 0.0559 0.1341 

0.0644 0.3950 1.0474 0.0523 0.1300 

0.0768 0.4121 1.0789 0.0595 0.1383 

20-40 min. =4 

0.0212 0.5036 0.9437 0.0559 0.1341 

0.0155 0.4954 0.9325 0.0523 0.1300 

0.0270 0.5118 0.9548 0.0595 0.1383 

40-80 min. =8 

- 0.6175 0.9484 - 0.1341 

- 0.6091 0.9390 - 0.1300 

- 0.6259 0.9579 - 0.1383 

80-160 min. =16 

- 0.7548 0.9170 - 0.1341 

- 0.7494 0.9098 - 0.1300 

- 0.7601 0.9242 - 0.1383 

160-320 min. =32 

- 0.8873 0.8929 - 0.1341 

- 0.8827 0.8873 - 0.1300 

- 0.8919 0.8985 - 0.1383 

320-640 min. =64 

- 0.9797 0.8799 - 0.1341 

- 0.9758 0.8754 - 0.1300 

- 0.9835 0.8843 - 0.1383 

640-1280 min. =128 

- 1.0000 0.7783 - 0.1341 

- 0.9973 0.7754 - 0.1300 

- 1.0027 0.7813 - 0.1383 
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Tab. 2.  Values of the Akaike information criterion (AIC) for 2N-B distribution (model 1) -- or its simplifications 889 
N-B and B -- and Beta B distribution (model 2), and the hierarchy of analyzed timescales , at gauge R7. 890 
Calculations were based on estimates of the maximized value of the log-likelihood function (LL) known sample 891 
size (n) and number of model parameters (k). 892 
 893 

 Model 1 Model 2  

Breakdown 

times 
Timescale  n Distr. k LL AIC(M1) Distr. k LL AIC(M2) 

=AIC(M2) – 

AIC(M1) 

5-10 min. =1 132940 2N-B 5 48480 -96950 B 1 36307 -72612 24338 

10-20 min. =2 136968 2N-B 5 32272 -64534 B 1 19798 -39593 24941 

20-40 min. =4 144778 2N-B 5 19071 -38132 B 1 8794 -17585 20547 

40-80 min. =8 159272 N-B 3 11119 -22232 B 1 4464 -8927 13305 

80-160 min. =16 185014 N-B 3 4591.9 -9178 B 1 925 -1848 7330 

160-320 min. =32 230716 N-B 3 1167.3 -2329 B 1 46 -91 2238 

320-640 min. =64 315360 N-B 3 1543.70 -3081 B 1 1491 -2979 102 

640-1280 min. =128 501092 B 1 12614.40 -25227 B 1 12614 -25227 0 

http://en.wikipedia.org/wiki/Likelihood_function
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 894 
Fig. 1.  Map of 25 gauges composing the precipitation-monitoring network in Warsaw. Administrative limits of Warsaw city and limits of forested areas were marked in 895 
black. The land use classification of was made through the Urban Atlas, which provides pan-European comparable land use and land cover data for large urban zones with 896 
more than 100.000 inhabitants (http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-metadata). The average density of network is 1 instrument over 20.7 km

2
. MPS 897 

weighing-type TRwS 200E gauges were accompanied with standard Hellman gauges for the routine control of daily precipitation totals.898 

http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-metadata
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 899 

 

 
 900 
Fig. 2.  Weighing-type TRwS 200E gauge during some tests (upper panel). Rainfall is simulated by means of 901 
precise medical pump. Sample of test results reporting simulated and recorded rainfall depths (lower panel). 902 
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 904 
 905 

 906 
Fig. 3.  Location of Polish and German precipitation gauges used during the comparison of Warsaw results with 907 
other studies. 908 
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 912 
Fig. 4.  Schematic diagram of developed microcanonical cascade model with branching number b=2. 913 
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 916 

 917 

  
 918 
Fig. 5.  Comparison of BDC histograms for gauge R7, and timescale =1, calculated according to the non-919 
overlapping moving window algorithm and using original (left panel), and randomized (right panel) non-zero 920 
precipitation data. Horizontal axes show BDC range, and vertical axes the respective frequency values. 921 
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 923 
 924 
Fig. 6.  Example showing differences between non-overlapping and overlapping moving window algorithms for 925 

the calculation of BDCs in case of 1-min precipitation time series and breakdown time 5-10 min. Note that  n   926 

means the integer part of n, where n is the total length of 1-min precipitation time series.  927 
  928 
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 929 
Fig. 7.  Histograms of BDC values for gauge R7 calculated according to the non-overlapping moving window 930 
algorithm and based on randomized precipitation time series. Horizontal axes show BDC range and vertical axes 931 
the respective frequency values. 932 
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Fig. 8.  Histograms of BDC values calculated according to overlapping moving window algorithm and based on 934 
randomized gauge R7 precipitation times series. Horizontal axes show BDC range and vertical axes the 935 
respective frequency values. The solid red curves represent the 2N-B probability density function, whereas the 936 
blue dashed curves the Beta probability density function. 937 
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939 

 940 
Fig. 9.  Value and 95% confidence intervals of parameters of p1, p2 and a with , for gauge R7. Horizontal axes 941 
are plotted at binary logarithm scale log2.  942 
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 944 
 945 
Fig. 10.  Variability of the intermittency parameter p0 with , for gauge R7. Horizontal axis is plotted at binary 946 
logarithm scale log2.  947 
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 948 

Fig. 11.  Value and 95% confidence intervals of parameter p1 at timescale ’=1, for gauge R7. Roman numbers 949 
I-V on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 1998-2002 950 
and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 1983-2007, and 951 
non-overlapping (A), overlapping (B) moving window algorithm. 952 
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Fig. 12.  Value and 95% confidence intervals of parameter p2 at timescales ’=1,2,4,8, for gauge R7. Roman 954 
numbers I-V on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 955 
1998-2002 and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 1983-956 
2007, and non-overlapping (A), overlapping (B) moving window algorithm. 957 
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Fig. 13.  Value and 95% confidence intervals of parameter a at timescales ’=1,2,4,8,16,32, for gauge R7. 959 
Roman numbers I-IV on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-960 
1997, 1998-2002 and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 961 
1983-2007, and non-overlapping (A), overlapping (B) moving window algorithm. 962 
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Fig. 14.  Variability of fitted theoretical BDCs distributions histograms at timescales ’=1,2,4,8,16,32, for gauge 965 
R7. Roman numbers I-V in legend indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 966 
1998-2002 and 2003-2007. Uppercase letters A and B indicate results calculated using all 25-year range 1983-967 
2007, and non-overlapping (A), overlapping (B) moving window algorithm. In all plots, horizontal axes show 968 
BDC ranges and vertical axes the frequency values. 969 
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 973 
Fig. 15.  An example of precipitation disaggregation of a 56.3 mm event from 1280 min to 5 min, for gauge R7.  974 
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 975 
 976 

 977 
Fig. 16.  Comparison between observed for gauge R7 and synthetic series for gauges R7, R15 and R25 in terms 978 
of intermittency E(p0) for the considered timescales. The values for the generated data are calculated as average 979 
of 100 disaggregation runs. The variability between runs was negligible and so is not shown here. 980 
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 982 
 983 
Fig. 17.  The survival probability function of 5 min precipitation amounts for the observed time series (circles) 984 
and the synthetic time series (triangles) generated by the disaggregation of 1280 precipitation amounts, for gauge 985 
R7. The lines represent the average distributions calculated over the generation of 100 synthetic time series for 986 
gauge R7 and for comparison for gauges R15 and R25.  987 
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 991 

 992 
 993 
Fig. 18.  Dendrogram resulting from the cluster analysis of BDC histograms for =1. The vertical scale shows 994 
binding distance, whereas names of gauges are given on horizontal scale (K stands for Kielce gauge, and W 995 
stands for Wroclaw). 996 
  997 
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 998 
Fig. 19.  Dendrogram resulting from the cluster analysis of BDCs histograms for the timescale =128. The 999 
vertical scale shows binding distance, whereas names of gauges are given on horizontal scale (K stands for 1000 
Kielce gauge, and W stands for Wroclaw). 1001 
 1002 
  1003 
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 1005 
Fig. 20.  Dendrogram resulting from the cluster analysis of the intermittency parameter p0. The vertical scale 1006 
shows binding distance, whereas the name of gauges is given on horizontal scale (K stands for Kielce gauge, and 1007 
W stands for Wroclaw). 1008 


