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Abstract 13 

Understanding the variability of precipitation at small scales is fundamental in urban 14 

hydrology. Here we consider as case study Warsaw, Poland, characterized by a precipitation-15 

monitoring network of 25 gauges, and as instrument of investigation the microcanonical 16 

cascades.  17 

We address the following issues partially investigated in literature: 1) the calibration 18 

of microcanonical cascade generators in conditions of short time series (say, 2.5-5 yrs.); 2) the 19 

identification of the probability distribution of breakdown coefficients through ranking 20 

criteria; 3) the variability among the gauges of the monitoring network of the empirical 21 

distribution of breakdown coefficients. 22 

In particular, 1) we introduce an overlapping moving window algorithm to determine 23 

the histogram of breakdown coefficients, and compare it with the classic non-overlapping 24 

moving window algorithm; 2) we compare the 2N-B distribution, which is a mixed 25 

distribution composed by two Normal (N) and one Beta (B), with the classic Beta distribution 26 

to represent the breakdown coefficients using the Akaike information criterion; 3) we use the 27 

cluster analysis to identify patterns of breakdown coefficient histograms among gauges and 28 

timescales.  29 

The scarce representation of the breakdown coefficients at large timescales, due to the 30 

short period of observation (~2.5 yrs.), is solved through the overlapping moving window 31 

algorithm. BDC histograms are described by a 2N-B distribution. A clear evolution of this 32 

distribution is observed, in all gauges, from 2N-B at small timescales, to N-B at intermediate 33 

timescales, and to Beta distribution for large timescales.  34 

The performance of the microcanonical cascades is evaluated for the considered 35 

gauges. Synthetic time series are analyzed with respect to the intermittency and the variability 36 
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of intensity, and compared to observed series. BDC histograms, for each timescale, are 37 

compared among the 25 gauges in Warsaw, and with other gauges located in Poland and 38 

Germany. 39 

 40 

Key words: urban hydrology, precipitation time series, intermittency, microcanonical 41 

cascade, overlapping window, randomization, cluster analysis. 42 

1 Introduction 43 

Urban hydrology demands the access to very precise information about the 44 

precipitation variability over small spatial and temporal scales. Widespread use of surface 45 

runoff models coupled to urban drainage networks increases the common request for rainfall 46 

data inputs at high temporal and spatial resolutions. As it was already estimated a decade ago 47 

by Berne et al. (2004), the necessary resolution of rainfall data, as input of hydrological 48 

models, in Mediterranean regions, was about 5 min in time, and 3 km in space for urban 49 

catchments of ~1000 ha. For smaller urban catchments of ~100 ha, even higher resolutions of 50 

3 min and 2 km were required. Results obtained with the application of operational semi-51 

distributed urban hydrology models fully confirmed earlier observations on selected study 52 

cases from England and France (Gires et al. 2012, 2013). These authors strongly recommend 53 

the use of radar data in urban hydrology especially in context of real time control of urban 54 

drainage systems. In particular, they opted for X-band radars (whose resolution is 55 

hectometric), respect to the more common C-band radars, as affected by less uncertainty. 56 

Additionally, Gires et al. (2012) stated that small scale rainfall variability, under 1 km 57 

resolution, cannot be neglected, and should be accounted in probabilistic way in the real time 58 

management of urban drainage systems. As a matter of fact, the implementation of radar 59 
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techniques gained a rising popularity in major cities across the EU (for details refer to 60 

Appendix B, Thames Tunnel Needs Report, 2010). 61 

Despite the obvious benefits of radar instruments, radar data are not always available 62 

for practical applications. Thus, current versions of even most advanced computer rainfall-63 

runoff urban drainage models do not consider radar data as rainfall input. Therefore the only 64 

possibility of accounting spatial rainfall variability is to consider different point time series for 65 

each sub-catchment (Gires et al. 2012). The vast majority of engineering practical calculations 66 

and modeling of drainage systems is still associated with point rainfall time series, or their 67 

elaborations like intensity-duration-frequency (IDF) curves, or depth-duration-frequency 68 

(DDF) relations, or simplified design hyetographs. This explains the necessity of high 69 

temporal resolution of point rainfall measurements in urban catchments. It also has to be 70 

noticed that time series at high temporal resolution (1-10 minutes) and with a considerable 71 

record length (at least 20-30 years) are nowadays required especially from European 72 

perspective with respect to the probabilistic assessment of the urban drainage network 73 

functioning (Schmitt, 2000; European standard EN 752), or the probabilistic assessment of 74 

retention volumes at hydraulic overloaded stormwater systems (Arbeitsblatt DWA-A 117).  75 

The strategy of using local precipitation time series as basis of the probabilistic 76 

assessment of urban drainage systems has two important shortcomings. In case of local 77 

precipitation data shortage, this strategy fails completely. Whereas, in all other situations, 78 

when some local precipitation datasets are accessible, questions and doubts about the 79 

representativeness and reliability of data arise. First of all, the doubts regard the temporal 80 

representativeness of data: short datasets could not allow to describe (as showed by Willems 81 

2013) the multidecadal oscillatory behavior of rainfall extremes in stormwater outflow 82 

modeling. Other doubts regard the spatial representativeness of data: rainfall time series are 83 

recorded only in a limited number of gauges installed in selected sub-catchments. This results 84 
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in assigning the same time series to a group of neighboring sub-catchments, or in critical but 85 

not rare cases, one time series for the whole urban drainage system, habitually collected by a 86 

gauge installed nearby the airport. Sometimes, in situation of local precipitation shortage, time 87 

series from other locations are allowed by technical guidelines (Schmitt, 2000) only if there is 88 

compatibility in terms of annual precipitation totals, and IDF values. 89 

Finally, since most of the modeling activity is oriented to predict the future behavior 90 

(e.g. in the next 50 yrs.) of drainage systems, the mere use of historical precipitation time 91 

series of the last 20-30 years could not be significant to represent the future scenarios. 92 

Alternatively, the generation of synthetic time series, from precipitation models, could 93 

represent probable precipitation scenarios to feed hydrodynamic urban drainage models and 94 

take into account the uncertainty associated to the discharge.  95 

Thus, there is a strong motivation for the development of local precipitation models at 96 

high temporal resolutions. Many of them are based on the idea of precipitation disaggregation 97 

in time. The disaggregation refers to a technique generating consistent rainfall time series at 98 

some desired fine time scale (e.g. 5 min resolution) starting from the precipitation at a coarser 99 

scale (e.g. daily resolution). At the same time, as it was stressed by Lombardo et al. (2012), 100 

the downscaling techniques aim at producing fine-scale rain time series with statistics 101 

consistent with those of observed data. A general overview of rainfall disaggregation methods 102 

is given by Koutsoyiannis (2003). Among an ensemble of known techniques, random cascade 103 

models, and especially microcanonical cascade models (MCMs) are quite often used. The 104 

popularity of the latter ones could be explained by their appealing towards engineering 105 

applications, the assumption of mass conservation (i.e. rainfall depth conservation) across 106 

cascade levels, and straight rules for the extraction of cascade generators from local 107 

precipitation time series (Cârsteanu and Foufoula-Georgiou 1996). Olsson (1998), Menabde 108 

and Sivapalan (2000), Ahrens (2003), Paulson and Baxter (2007) provide contributions 109 
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demonstrating the potentiality of MCMs in rainfall downscaling. Molnar and Burlando (2005) 110 

and Hingray and Ben Haha (2005) highlight the application of MCMs in urban hydrology. 111 

Hingray and Ben Haha (2005) applied a continuous hydrological simulation obtaining from 112 

synthetic rainfall series continuous discharge series used afterwards for the retention design. 113 

Recently, Licznar (2013) illustrated the possibility of substituting synthetic time series 114 

generated from MCMs to observed time series for the probabilistic design of stormwater 115 

retention facilities. 116 

Two decades of random cascade applications to precipitation disaggregation brought 117 

progresses in the construction of generators. Quite soon, the assumption of independence and 118 

identical distribution of the cascade weight generators, at all timescales, was questioned and 119 

found suitable only for limited, rather narrow, range of analyzed scales (Olsson 1998, Harris 120 

et al. 1998). As an alternative, Marshak et al. (1994), Menabde et al. (1997) and Harris et al. 121 

(1998) promoted the use of the so-called “bounded” random cascade, for which its weights 122 

distribution systematically evolves decreasing the weights variance with the reduction of 123 

timescale. In addition, Rupp et al. (2009) suggested, that microcanonical cascade weights 124 

should not be timescale-dependent only, but also intensity-dependent. The common practice 125 

of assuming the Beta distribution for MCM generators was questioned by Licznar (2011a,b), 126 

especially for sub-hourly timescales. Alternatively MCM generators were assumed Normal-127 

Beta (N-B) distributed with atom at 0.5, or 3N-B distributed, composed by three Normal and 128 

one Beta distribution. For sake of clarity, it should be stressed that Beta refers sole to the 129 

distribution of MCM generators, and has nothing in common with the beta  model, being the 130 

simplest cascade model, often known as monofractal model (for details refer to Over and 131 

Gupta 1996). 132 

Molnar and Burlando (2008) explored the variability of MCM generators on a large 133 

dataset of 10-min time resolution, including 62 stations across Switzerland. These authors 134 
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investigated seasonal and spatial variability in breakdown distributions to give indications 135 

concerning the parameters’ estimation of MCM in ungauged locations. To our knowledge, 136 

this is the only study considering the large-scale variability of MCM generators, and there is a 137 

lack of knowledge concerning the small-scale variability. 138 

It should be stressed that the fitting of cascade generators was relatively simple, but 139 

extremely data demanding. Observational precipitation time series of high resolution 140 

exceeding usually 20 years were unavoidable for cascade parameters fitting. This resulted in 141 

the prevailing practice of comparing the statistics of synthetic and observed time series. In the 142 

majority of studies, data originated from old type manual gauges were subject to obvious 143 

uncertainty related to the precision of measurements, as well as the resolution of records 144 

digitization. Simultaneously, the fitting of theoretical distributions to BDCs, in almost all 145 

cases, was not supported by statistical tests confirming the correctness of achieved results, or 146 

by the use of some information criteria to rank the theoretical distributions.  147 

Having in mind the above discussed needs of urban hydrology, the current state of 148 

MCMs, and being fully aware of the severe limitations of this rainfall disaggregation 149 

technique, the goals of our study were: 150 

1) Propose a methodology to calibrate microcanonical cascade generators in conditions 151 

of short time series; 152 

2) Identify the probability distribution of BDCs through the use of information criterion; 153 

3) Investigate the variability of empirical BDCs distributions among a group of gauges;  154 

4) Address the following questions of interest in urban hydrology: “Is it acceptable to use 155 

a single time series for the probabilistic assessment of the entire urban drainage system? Is it 156 

sufficient to fit just one MCM for the analysis of the whole city area? Could we continue the 157 

practice of supplying urban rainfall-runoff models by time series recorded outside city center 158 

by gauges located at the airport or over rural areas?  159 
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2 Data and Methodology 160 

2.1 Data 161 

We use data belonging to a precipitation network of 25 gauges distributed throughout 162 

517.24 km
2
 of Warsaw city in Poland (Fig. 1). The dataset is the same used by Rupp et al. 163 

(2012) and consists in a 1-minute precipitation (both liquid and solid) time series recorded by 164 

electronic weighing-type gauges. All stations, TRwS 200E of MPS system Ltd. (Fig.2), were 165 

installed and operated by the Municipal Water Supply and Sewerage Company (MWSSC) in 166 

Warsaw. Prior to the network installation, studies about the location of the stations have been 167 

done by the MWSSC to identify the best configuration, representative of the precipitation 168 

variability within the urban area (Oke, 2006). All instruments were placed on grass, and their 169 

neighborhood met at least requirements of class 2 or 3, as recommended by WMO-No. 8. In 170 

the majority of gauges (i.e., R1, R3, R5, R7, R8, R10, R12, R17, R18 and R19) it was 171 

possible to install them on flat, horizontal surface, surrounded by an open area, meeting even 172 

requirements for class 1 instruments. In addition, gauge R15 was installed in perfect 173 

conditions on the ground at the Warsaw Fryderyk Chopin Airport. 174 

Since the installation of the precipitation network in Warsaw was mainly motivated by 175 

the real time control of the drainage system, all gauges (Fig. 1) were connected to a single 176 

data acquisition system. The accuracy of gauge measurements, as claimed by manufacturer is 177 

0.1%, and the data resolution is 0.001 mm for depth and 1 minute for time. As it was already 178 

mentioned by Rupp et al. (2012), field tests, conducted prior to the operational use of the 179 

precipitation network, have shown good agreement between simulated and recorded totals, 180 

and have revealed a dampening/broadening of the input signal, evident over the range of a 181 

few minutes. The last phenomenon, known as “step response error”, was studied in detail in 182 

laboratory conditions for different gauge types by Lanza et al. (2005). These found that the 183 
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step error of TRwS gauge is quite small in comparison to other gauges, and equal to 3 minutes 184 

in laboratory conditions. Our field test (as displayed on Fig. 2) suggested a dampening of 185 

gauge-recorded signal for the first 3-min initial phase of generated hyetograph and its slightly 186 

longer 5-min broadening at the final phase of hyetograph. Detailed discussion of the origins of 187 

gauge “step response” errors is beyond the scope of this manuscript, and in fact is hard to be 188 

realized, since it is introduced by gauge inner microprocessor algorithm of data processing. 189 

This algorithm is know-how of the gauge manufacturer, and is not reported in the technical 190 

documentation. In general, it could be only stated that in weighing type electronic gauges, the 191 

weight of deposed precipitation is sampled by some electronic (often piezometric) sensor with 192 

some high temporal resolution at presumably kHz rate. Afterwards all samples are averaged 193 

over longer time windows, unknown to the user. This process is repeated for overlapping time 194 

windows, and the difference of the rainfall total of adjacent windows is calculated to obtain 195 

the temporal rainfall rate reported as instrument output at its recording time resolution. In 196 

addition, rainfall rates are always rounded regardless of the magnitude of real precipitation 197 

(resulting in additional rounding errors discussed afterwards). This procedure allows for 198 

satisfying smoothing of electronic sensor signal fluctuation due to wind effects and 199 

temperature changes. It allows for the introduction of some additional filters cutting sudden 200 

signal jumps due to foreign objects deposition inside open orifice of the gauge inner tank (e.g. 201 

falling leaves or acts of vandalism by throwing small stones or garbage).  202 

As a matter of fact in view of our personal experiences, and test results of WMO 203 

(Lanza et al. 2005), it could be stated that reliable precipitation recording at single minute 204 

scale by commercially available gauges is still the goal to be achieved, and not a current 205 

reality. Having this in mind, as well as timescales of previous microcanonical cascade studies 206 

concerning urban hydrology, realized on time series recorded by old-type gauges, we decided 207 

to work with the aggregated precipitation time series at 5-minute resolution. The technique 208 
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used to aggregate original 1-min data into 5-min time series is discussed afterwards; here we 209 

only mention that this operation was opposite to the rainfall total differentiation for adjacent 210 

time windows operated by the gauge microprocessor. 211 

Despite the limited timespan of available data, covering the period from the 38th week 212 

of year 2008 up to the 49th week of year 2010, we believe that the Warsaw precipitation 213 

network might support good probing ground for the variability study in the microcanonical 214 

cascade parameters over small-scale urban areas. In fact, the Warsaw precipitation-monitoring 215 

network belongs to the biggest European urban gauge networks. Its size could be compared 216 

only with similar networks of 25 gauges in Vienna (414.87 km²), or 24 gauges spread 217 

throughout Marseille (240.62 km²) and Barcelona (100.4 km²) (see Appendix B, Thames 218 

Tunnel Needs Report, 2010). 219 

We compare the results of our study with those related to other Polish and German 220 

gauges. We limit our comparison to results previously published by Licznar et al. (2011a,b) 221 

for four gauges in Germany (gauges A, B, C and D - representing local climates of different 222 

parts of western Germany) and for one gauge in Wroclaw, Poland, and unpublished yet results 223 

by Górski (2013) for rain-gauge in Kielce, Poland (Fig. 3). Our choice is motivated by the 224 

similarity of the used methodology, and the investigated range of timescales, as well as by the 225 

indispensable accessibility to precise recordings of the breakdown coefficient histograms. 226 

Finally, to investigate the existence of possible statistical bias induced by the 227 

calculation of BDCs on short precipitation records, we use additional data recorded by an old-228 

type pluviograph gauge installed previously at the current location of gauge R7 on the ground 229 

of Lindley’s Filters station. This pluviograph gauge was operated only in summer months 230 

from the May 1st to October 31st. Data were in the form of 15-min rainfall time series read 231 

off the original paper strips with the resolution of 0.1 mm for depth covering a period of 25-232 

year from 1983 to 2007. 233 
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2.2 Microcanonical cascade models 234 

We use microcanonical cascade models (MCMs) as in Licznar et al. (2011a,b). We 235 

consider the disaggregation of precipitation totals from 1280-min (quasi daily) into 5-min 236 

times series, assuming the branching number b equal to 2, and constructing cascades 237 

assembled from only 9 levels (n=8, …, 1, 0) corresponding to timescales =2
n
 from =256 to 238 

=1 (Fig. 4). Precipitation depth time series generated by such cascades are the products of 239 

the original precipitation total R0 at timescale =256 multiplied by the sequence of weights at 240 

the descending cascade levels: 241 

,     (1) 242 

where j=1, 2, …2
k-1

, 2
k
 marks the position in the time series at the k

th
 cascade tier. The 243 

sequence of randomly generated weights Wf(i,j),i is steered at the following i
th

 cascade tier by 244 

the function f(i,j), which rounds up j/2
k-i

 to the closest integer. The weights in the 245 

microcanonical cascades are forced to sum to one, so their pairs are always equal to W and 1-246 

W respectively, where W is a two-sided truncated random variable from 0 to 1. The 247 

microcanonical assumption conserves the mass (precipitation depth in our case) at each 248 

branch, and eliminates the risk of cascade degeneration. From engineering perspective, this 249 

means that the downscaling process could be seen as opposite to precipitation summation 250 

realized by Hellman gauges, recording daily totals only, and a pragmatic solution for the 251 

generation of synthetic precipitation time series at 5-minute resolution. 252 

In our study we do not focus our attention on the disaggregation capabilities of 253 

microcanonical cascades, already discussed in numerous papers. We concentrate on the small-254 

scale variability of their generators W among gauges constituting the urban precipitation 255 

network. The obvious attractive of MCMs arises from the possibility of extracting the 256 

distribution of W from data on the base of breakdown coefficients studies (Cârsteanu and 257 





k

i

ijifkj WRR
1
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Foufoula-Georgiou 1996). By definition, BDCs are generally calculated using non-258 

overlapping adjacent pairs of precipitation time series:  259 

  j=1,3,5,…,N -1;  (2) 260 

where Rj,  is the precipitation amount for the time interval of length  at position j in the time 261 

series, and N is the length of time series at timescale . The calculation of BDCs with respect 262 

to Eq.(2) for Warsaw gauges is conducted only for nonzero pairs of Rj and Rj+1. Calculations 263 

are executed at aggregated intervals of length 2
norg, where org is the original time step equal 264 

to 5 min and n is a cascade level, increasing from 0 to 8, with increasing cascade timescales  265 

from 1 to 256 (Fig. 4). Simultaneously, for all analyzed timescales, BDC couples equal to 0 / 266 

1, or 1 / 0 (when only one between Rj and Rj+1 is zero) are separated from resulting datasets 267 

and their occurrence probabilities, respectively p0(LEFT) and p0(RIGHT) are used to estimate 268 

intermittency probability p0: 269 

000 )()()0)1(0)(Pr( pRIGHTpLEFTpjBDCorjBDC nn    .   (3) 270 

The probability p0 is used within a MCM generator to take into account the intermittency, so 271 

characteristic of precipitation, forcing some portion of random weights W to be equal to 0. 272 

The preliminary results have revealed an overrepresentation of BDC values equal to 273 

1/2 or 1/3, 2/5, 1/4 (and 2/3, 3/5, 3/4 respectively), especially for small timescales, i.e. =1 274 

and =2. Fig. 5 (left panel) shows an example of BDC histogram for timescale =1, with 275 

evident artificial spikes. Similar phenomenon was already reported by Rupp et al. (2009), and 276 

Licznar et al. (2011b), and explained as the result of instrument or recording precision of 277 

precipitation gauges. The magnitude of observed rounding errors for Warsaw gauges is 278 

however smaller than in case of German gauges (Licznar et al., 2011b), because the 279 
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precipitation depths were recorded with better resolution of 0.001 mm still however resulted 280 

in irregularity of BDCs distribution, induced by sharp peaks at discrete BDC values, and 281 

hindered the identification of the theoretical distribution. In order to correct the rounding 282 

errors, a randomization procedure originally proposed by Licznar et al. (2011b) was applied. 283 

This type of procedure, also known as jittering, is fundamental in the analysis of data 284 

characterized by the presence of ties, De Michele et al. (2013). Thus, the original 1-min time 285 

series were slightly modified by adding to the precipitation depths, exceeding zero, some 286 

random corrections. Random correction values were sampled from the Uniform distribution in 287 

the range [-0.0005, 0.0005] mm, resulting in visible BDCs histogram smoothing (Fig. 5 right 288 

panel). Note, that the Uniform distribution is used for the randomization of the rounding 289 

errors, because, in absence of information, it is the most intuitive distribution requiring less 290 

assumption, for more details please see Licznar et al. (2011b). 291 

Irregularities in BDC histograms were observed for timescales >8. These are due to 292 

the decreasing sample size, calculated on limited timespan of accessible data, slightly 293 

exceeding 2 years. This issue was rather irrelevant in former studies (Molnar and Burlando 294 

2005, 2008, Licznar et al. 2011a,b) realized on data series 10 or even 20 times longer. To 295 

solve this issue, we applied the overlapping moving window algorithm as an alternative to the 296 

classical non-overlapping moving window algorithm for the calculation of BDCs values. 297 

Figure 6 shows the differences between the two algorithms for =1. Switching from non-298 

overlapping to overlapping moving window algorithm leads to increase the number of time 299 

segments for the calculation of BDCs values. For time series of n data, and a time window of 300 

size mn, the number of non-overlapping windows is  mn / , where the symbol    represents 301 

the integer part, while the number of overlapping windows is: (n-m+1). For large n>>m, the 302 

overlapping moving window algorithm leads to almost m times the number of time segments 303 
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available in the overlapping moving window algorithm. It should be underlined that the real 304 

strength of the overlapping moving window algorithm in analyzing distributions of BDCs 305 

values could be observed for the largest timescales. The reason is that for small timescales, 306 

most of time segments is characterized by zero precipitation, and thus not involved in the 307 

calculation of BDCs, whereas for larger timescales, time segments are becoming larger and 308 

rarely characterized by zero precipitation. This phenomenon arises from the fractal properties 309 

of rainfall time series, and similar conclusions result from the “box-counting” analysis. 310 

It is clear that the overlapping moving window algorithm is especially desired for 311 

limited observational datasets. However, its implementation for short time series may be 312 

characterized by a poor representativeness of BDCs distributions, due to multidecadal 313 

oscillations of precipitation totals and extremes (Willems 2013). To investigate the magnitude 314 

of the oscillations in the BDCs distributions, we use historical time series from former old-315 

type gauge R7, covering a 25-year period, from 1983 to 2007 at 15-min resolution. For each 316 

year, there are available only 6 months of data from May to October.  For this dataset, we 317 

make the calculations of BDCs in 7 time periods. First, we calculate BDCs for the following 318 

5-year periods: 1983-1987, 1988-1992, 1993-1997, 1998-2002 and 2003-2007 using the 319 

overlapping moving window algorithm. We consider this temporal size (5 years  6 months = 320 

30 months) because comparable to the one available for electronic gauges. Afterwards, we 321 

repeat the same calculation with a 25-year long size using both non-overlapping and 322 

overlapping moving window algorithms. As we work here with a coarser resolution (15-min 323 

instead of 5-min of electronic gauges), we decide to perform the analysis with a smaller 324 

hierarchy of subdaily timescales ’ from 1 to 32 and breakdown times from 15-30 min up to 325 

480-960 min. For all calculations we perform the randomization of nonzero values. Since 326 

their reading precision was set to 0.1 mm, we introduce a random correction belonging to the 327 

Uniform distribution in the range [-0.05, 0.05] mm. 328 
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To compare BDC histograms, obtained for all analyzed timescales  and ’, with 329 

theoretical functions, a probability distribution assembling 2 truncated (with truncation points 330 

at 0 and 1) Normal distributions (Robert, 1995), and 1 Beta symmetrical distribution was 331 

implemented. This distribution, indicated as 2N-B distribution, has the following density 332 

function: 333 
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where p1 and p2 were weights characterizing the contribution of the individual distributions 335 

within the 2N-B distribution, 1 and 2 were the scale parameters of truncated Normal 336 

distributions, and B(a) was the symmetrical Beta function, parameterized by a. 337 

The fitting of 2N-B distribution parameters was performed numerically by means of 338 

maximum likelihood estimation. It is very likely, that the use of the model given in Eq.(4), 339 

governed by 5 parameters, could suffer of an over-parameterization, in comparison to the 340 

most commonly used Beta symmetrical distribution with only 1 parameter. Note that the 341 

application of goodness-of-fit tests (namely Kolmogorov-Smirnov test or 
2
 test) at 1% or 5% 342 

levels of significance gave negative result as for Beta as for 2N-B distribution. This because 343 

the large sample size of empirical BDCs has led to the rejection of the hypothesis, even in the 344 

case of very small differences between observed and theoretical distributions, as pointed out 345 

also in Licznar et al. (2011a). Here, we use the Akaike information criterion AIC, as a 346 

measure of the relative quality between 2N-B and Beta models for given sets of empirical 347 

BDCs. AIC is the maximized value of the log-likelihood function (LL) penalized by the 348 

number of model parameters k: 349 

AIC=2k-2LL        (5) 350 

The preferred distribution is the one with the minimum value of AIC. 351 
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 352 

2.3 Cluster analysis 353 

To our knowledge, until now, the variability of MCM generators among a group of 354 

gauges was investigated comparing the value of the parameter of Beta distribution (Molnar 355 

and Burlando 2008). Here, we preferred to compare directly the empirical distribution of 356 

BDCs instead of the parameters of the theoretical distribution, possibly biased by fitting 357 

errors. We have encountered the same problems found in the implementation of statistical 358 

tests due to the large sample size. For this, we have used the cluster analysis technique to 359 

compare the shape of BDC histograms among the stations of the monitoring network in 360 

Warsaw, and with other Polish and German gauges. 361 

In particular a hierarchical clustering is used. This is a data-mining tool, applied to 362 

segment data into relatively homogeneous subgroups, or clusters, where the similarity of the 363 

records within the cluster is maximized (Larose, 2005). Prior the application of the clustering 364 

technique, for each timescale and each site, the BDC histogram is sampled in 100 points, 365 

selected at equal distance one from the following one. These 100 values are the components 366 

of a vector representing the empirical BDC distribution. Note that a basic requirement of 367 

cluster analysis is the comparison of records of equal length. As, all BDCs distributions are 368 

left and right truncated, in the interval (0,1), sampling their histograms with a resolution of 369 

0.01 produces vectors, which describe well the shape of histograms. The clustering of these 370 

vectors (searching similar sites) is operated using the Euclidean distance. It is computed as: 371 

,     (6) 372 

where xi and yi with i=1,…,100, represent respectively the i-th component of X and Y vectors.  373 

 
i

iiEuclidean yxYXd 2)(),(
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The Euclidean distance is a measure of similarity, not having, in general, a physical 374 

interpretation. Initially, in hierarchical clustering analysis, each vector is considered to be a 375 

tiny cluster of its own. Then, in following steps, the two closest clusters are aggregated into a 376 

new combined cluster. By replication of this operation, the number of clusters is reduced by 377 

one at each step and eventually, sites are combined into a single huge cluster. During the 378 

agglomerative process, the distance between clusters is determined based on single-linkage 379 

criterion. In this case, the distance between two clusters A and B is defined as the minimum 380 

distance between any element in cluster A and any element in cluster B. With respect to this 381 

single-linkage is often termed the nearest-neighbor approach, and tends to form long, slender 382 

clusters, clearly indicating similarities among clustered elements. As a final result of 383 

agglomerative clustering a treelike cluster structure (named dendrogram) is created.  384 

Dendrograms show similarities, as well as dissimilarities, of BDC distributions among 385 

the considered sites and they are prepared separately for all analyzed timescales. In addition, 386 

the cluster analysis is also applied to the intermittency parameter, comparing in this case, 387 

vectors of 8 components, each of these being the p0 value for the 8 timescales 388 

=1,2,4,8,16,32,64,128. 389 

 390 

 391 

3 Results and Discussion 392 

Results are presented relatively to gauge R7, for brevity. This station has been selected 393 

because of its localization in the strict city center, its installation in perfect meteorological 394 

conditions on the ground, and the existence of former historical rainfall records. Results for 395 

the other gauges are qualitatively similar to those shown for R7.  396 

 397 
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3.1. Empirical BDCs distributions 398 

 399 

BDCs histograms are calculated using the non-overlapping moving window algorithm, 400 

and plotted in Fig. 7 for gauge R7 and a sequence of analyzed breakdown times. It is clearly 401 

visible that despite the randomization procedure removes pronounced peaks of histograms at 402 

certain specific BDC values, like 0.5 or 1/3, 2/5, 1/4 and 2/3, 3/5, 3/4 respectively (Fig. 5), the 403 

plots especially for timescales exceeding =8 remain still irregular, reducing the possibility of 404 

identifying the proper theoretical distribution. Visible irregularities of BDC histograms 405 

increase with increasing timescales, which is an obvious effect of decreasing datasets and thus 406 

decreasing populations of calculated BDC values not allowing to produce histograms of fine 407 

bins resolution. Similarly, Fig. 8 reports the distributions of BDC calculated through the 408 

overlapping moving window algorithm. The comparison between Fig.7 and Fig.8 shows how 409 

the change of algorithm from non-overlapping to overlapping moving window has brought to 410 

evident smoothing of BDC histograms especially for larger timescales, but occurring also at 411 

small timescales. Note that the smoothness of BDC histograms in Fig. 8 is comparable with 412 

the quality of BDC histograms showed by Licznar et al. (2011b) for German gauges, derived 413 

using non-overlapping moving window algorithm for much longer precipitation time series 414 

ranging from 27 to 46 years of continuous records. The introduction of the overlapping 415 

moving window algorithm allowed for the fitting of MCM parameters in the case of Warsaw 416 

gauges with the availability of extremely short time series (say 2 years long). The overall 417 

acceptance of overlapping moving window algorithm implementation, also for short rainfall 418 

time series is discussed in paragraph 3.3. 419 

 420 

 421 
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3.2. Theoretical BDCs distributions and their evolution along timescales 422 

 423 

In Fig. 8, we report also the fitted theoretical distributions (2N-B distribution in solid 424 

red curves, and Beta distribution in blue dashed lines) for each timescale considered. The 425 

visual comparison clearly indicates a better fit of 2N-B (or N-B in some cases) distribution for 426 

timescales smaller than =64. In Fig.8, it is possible to see how the distribution with the best 427 

fit changes from a Beta distribution (B) at =128, to a joined double Normal-Beta distribution 428 

(2N-B) for the smallest value of , through a joined Normal-Beta distributions (N-B). This is 429 

in agreement with previous studies by Licznar et al. (2011a,b). This observation is supported 430 

by higher values of log-likelihood for 2N-B distribution (or the simplified N-B) in comparison 431 

to the Beta distribution (Tab. 1). These differences are in the range of thousands, and even 432 

after accounting for the number of model parameters, the AIC for 2N-B (or the simplified N-433 

B) distributions are much smaller (or equal) the one of Beta distributions, confirming the 434 

visual result given in Fig. 8. Based on this, we prefer the 2N-B distribution respect to the Beta 435 

distribution, except for the case =128. Analyzing the data reported in Tab. 1, it is worth to 436 

notice the systematic increase of sample size n increasing the timescale.  437 

From the practical point of view a rapid increase in the number of BDCs, equal or 438 

close to 0.5, decreasing the timescale should be expected, as a symptom of enclosing a limit 439 

of the precipitation temporal variability in a point by accessible instruments. The precipitation 440 

averaging over some small area of orifice and time intervals is inevitable for gauges, thus for 441 

small timescales most of small scale precipitation variability remains undetected and 442 

smoothed leading to an over-representation of constant precipitation time intervals. From the 443 

theoretical point of view, it should be noticed that bounded cascades allow the multiplicative 444 

weights (or precisely their distributions) to depend on the cascade level and converge to unity 445 
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as the cascade proceeds. As a consequence, the simulated random process becomes smoother 446 

on smaller timescales (Lombardo et al. 2012), which in general mimics the dynamics of 447 

precipitation collected by gauges. In other words, as it was postulated by Marshak et al. 448 

(1994), Menabde et al. (1997) and Harris et al. (1998) the variance of weights reduces with 449 

every descending cascade level. As a simple extension of this rule, the increasing frequency 450 

of weights at the central part of their distribution plots has to be observed. The increase in the 451 

number of BDCs equal or close to 0.5 with decreasing timescale is well illustrated by 452 

empirical histograms at well-known pioneering contributions to MCM applications for 453 

rainfall time series disaggregation, published by Olsson (1998), Menabde and Sivapalan 454 

(2000) and Güntner et al. (2001). Quite recently, this behavior was also proved to be rainfall 455 

intensity dependent by Rupp et al. (2009). 456 

For each analyzed timescale, we have estimated the parameters of 2N-B probability 457 

distribution (or its simplifications N-B and B): p1, p2, a, 1 and 2. Table 2 gives the values 458 

for gauge R7 with their 95% confidence limits. A good visual fit of empirical BDC 459 

distributions in Fig. 8 corresponds to quite narrow 95% confidence limits of the fitted 460 

parameters (mostly invisible on Fig. 9 plots). The 95% confidence limits are not exceeding 461 

few percent of the estimated values, with the sole exception of parameter p1 for =4, where 462 

the differences range up to 27%. Additionally, the scale parameters of Normal distributions, 463 

1 and 2, appear to be constant among analyzed timescales, not only for gauge R7, but also 464 

for the other Warsaw gauges. 465 

The variability of p1, p2, a with  is presented in Fig. 9 for gauge R7. A systematical 466 

decrease of p1 down to 0 increasing the timescale is observed, denoting a decreasing 467 

importance of the first Normal within the 2N-B distribution. An opposite systematical 468 

increase of p2 up to 1 increasing the timescale is observed, denoting a decreasing importance 469 
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of the second Normal within the 2N-B distribution. The evolution of the Beta parameter a 470 

shows a fast reduction with below 1 values noticed for the smallest scales, yielding the change 471 

of Beta distribution shape from convex to concave. At larger timescales, the reduction of a is 472 

hardly visible with the sole exception of =128. Figure 9 shows the variability of 473 

intermittency parameters p0 with timescale . For all of them, the values of p0(LEFT) match 474 

the values of p0(RIGHT), which is in good agreement of previous studies of Molnar and 475 

Burlando (2005) and Licznar et al. (2011a, 2011b). Systematical increase of p0 with  is 476 

observed with the sole exception of some small drop at =128.  477 

 478 

3.3. Performance of the overlapping moving window algorithm 479 

 480 

The performance of the overlapping moving window algorithm was investigated in 481 

detail at gauge R7, where a 25-year long time series at 15-min resolution was available. We 482 

calculate the parameters of 2N-B distribution for the hierarchy of subdaily timescales ’ 483 

relatively to the following 5-year periods: 1983-1987, 1988-1992, 1993-1997, 1998-2002 and 484 

2003-2007 (indicated in the next with the roman numbers I,II,..,V respectively) and the whole 485 

25-year dataset (indicated in the next with case A) using the overlapping moving window 486 

algorithm. In addition, we calculate the parameters of 2N-B distribution also using the 487 

classical non-overlapping moving window algorithm over the whole 25-year dataset 488 

(indicated in the next as case B). The results are shown in Fig.s 11-13.  489 

In general, the selected probability distribution was a Beta for the largest timescales 490 

(’=16, 32), a N-B for ’=2,4,8, and a 2N-B distribution for ’=1 (with the only exception of 491 

the period IV). The above listed timescales ’ are not compatible with timescales , however 492 
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transposing them on a coherent time axis leads to the conclusion that characteristic transitions 493 

from Beta to N-B and 2N-B distributions occurred at approximately the same time ranges. 494 

The estimated parameters 1 and 2 appeared to be constant among analyzed timescales, and 495 

equal to 0.0646 and 0.1363 respectively. These values were very close to those reported in 496 

Tab. 2. Fig. 11 shows the estimates of p1, for ’=1, with a variability in the range 0 -- 0.058 497 

for the 5-year periods I-V. At the same time, the 95% confidence limits of p1 overlap partially 498 

one on the other, and with values estimated for cases A and B. Confidence limits for periods 499 

I-V are rather wide and are reduced of 50% only for cases A and B. Note that here we work 500 

with 15-min time series, and not 1-min time series as before.  501 

A better agreement was observed for larger timescales, as illustrated in Fig.s 12 and 502 

13, with visibly narrow 95% confidence limits, but still partial overlapped one on the other. 503 

For smaller timescales, larger oscillations of p2 parameter could be observed over the periods 504 

I-V, but due to wider 95% confidence limits, they overlap one on the other and with those 505 

relative to cases A and B. The only exception is found for the period III at timescale ’=1. 506 

For parameter a and ’=1, 95% confidence limits for all calculations overlap with the 507 

only exception of period V, having slightly lower values. For ’=2 and ’=4, mutual overlay 508 

of 95% confidence limits was noticed. Passing to ’=8 and ’=16, the overlapping among all 509 

pairs of periods from I to V was not always present, but present with 95% confidence limits 510 

drawn for case B. For ’=32, 95% confidence limits for periods I-V and case A were 511 

extremely narrow.  512 

Results reported above suggest good repeatability of BDCs distributions calculated 513 

during all periods, which finds its graphical confirmation in Fig. 14, with the only exception 514 

of period II and timescale ’=1. Probably this could be explained by the poor performance of 515 

newly proposed overlapping moving window algorithm applied to low time resolution of the 516 
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original time series. Reported results undoubtedly should be verified on other much longer 517 

time series of better resolution like for example the 10-min time series collected at Uccle, 518 

Belgium (Willems 2013). 519 

As additional check of the overall performance of the applied techniques (i.e., the 520 

randomization procedure, the overlapping moving window algorithm and the 2N-B 521 

probability distribution), we test the performance of microcanonical cascade in disaggregating 522 

the precipitation at the analyzed gauges. The MCM is used to generate 100 synthetic time 523 

series at 5-min resolution on the basis of the observed 1280-min precipitation totals (similarly 524 

to Molnar and Burlando 2005, Licznar et al. 2011a and b). To evaluate the goodness of 525 

disaggregation, we compare the probability of zero precipitation at synthetic and observed 526 

time series for all analyzed timescales. Moreover, we calculate the survival probability 527 

function of nonzero synthetic precipitation amounts and compare it to the survival probability 528 

function observed precipitation amounts. This analysis is limited to 5-min data, i.e. terminal 529 

results of the disaggregation, most suitable for urban hydrology application. Special interest 530 

on the 5-min synthetic time series was also focused by other researchers (see e.g., Molnar and 531 

Burlando 2005 and 2008, Licznar et al. 2011a and b). An example of 56.3 mm event 532 

disaggregation is plotted in Fig.15, for gauge R7. It should be stressed that the structure of the 533 

synthetic time series is composed by uncorrelated segments like the one presented in Fig.15. 534 

Thus, the synthetic time series is missing the correct autocorrelation structure of natural 535 

precipitation (for detail discussion see: Lombardo et al. 2012). The expected value of the zero 536 

precipitation probability, E(p0), for observed and generated series is given in Fig. 16, for 537 

gauge R7. The synthetic values of E(p0) are calculated as average over 100 MCM 538 

disaggregations. The differences in terms of E(p0) between observed and simulated are 539 

negligible (see Fig. 16). In addition, for comparison, we give also the synthetic values of E(p0) 540 

for gauges R15 and R25. 541 
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Fig. 17 shows the comparison between observed and simulated survival probability 542 

function of rainfall amount at 5-min, for gauge R7. In Fig. 17, for gauge R7, we report the 543 

empirical survival probability function for a synthetic series out of 100, and the averaged 544 

function using all the generated series. In addition, for comparison, we give also the averaged 545 

survival functions for gauges R15 and R25. At first glance, highest rainfall intensities drawn 546 

in Fig. 17 show strange behavior manifested by constant exceedance probability above a 547 

given precipitation threshold. This is especially pronounced for observed or synthetic series 548 

from a single MCM run. This is due to the very short rainfall time series used for the 549 

calculation of survival probability functions. According to multifractal theory, singularities in 550 

small dataset are very rare. Highest rainfall intensities as singularities are very rare in 2-year 551 

long series. The behavior of both the synthetic functions for gauge R7 in Fig. 17 is very 552 

similar, with the sole exception of the extended and smoothed tail of the averaged function 553 

plot. Both the synthetic functions are placed above the observed function. This displacement 554 

reveals over-prediction of 5-min precipitation depths, particularly at the range of intensities 555 

from 0.3 mm/5min to about 2.0 mm/5min. It should be noticed, that the magnitude of 556 

dissimilarities between synthetic and observed survival functions for gauge R7 did not exceed 557 

the ones reported in other works, see e.g., Molnar and Burlando (2005), Licznar et al. 558 

(2011a,b). In comparison, the magnitude of dissimilarities between observed survival 559 

probability for gauge R7 and synthetic (average) survival probability function for other 560 

gauges R15 and R25 was much more pronounced. 561 

3.4. Cluster analysis results and their interpretation 562 

 563 

Dendrograms summarizing the results of the cluster analysis for BDC histograms are 564 

produced for each timescale, and reported in Figs 18 and 19 only for =1 and =128, 565 
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respectively. Results for the first four timescales, i.e. = 1,2,4,8, are unsurprising and easy to 566 

be interpreted. All Warsaw gauges are grouped in a single cluster with similar shapes of BDC 567 

histograms. For all Warsaw gauges their interconnection on the dendrogram is placed at the 568 

level of binding distance equal to about 0.5. Only R25 seems to be characterized by slightly 569 

different pattern of BDC histogram. However, gauge R25 has a behavior, which is still much 570 

closer to other Warsaw gauges, rather than the behavior of the other cities considered. For 571 

example, at =1, gauge R25 is merged into Warsaw gauges cluster at an Euclidean distance 572 

equal to 0.81, whereas the same occurs for Kielce (the closest considered Polish city) gauge at 573 

the Euclidean distance equal to 1.07. For other timescales, = 2, 4, 8, gauge R25 merges the 574 

cluster of Warsaw gauges at quite similar Euclidean distances: 0.89, 0.83 and 0.81 575 

respectively.  576 

The dendrogram for =128 is given in Fig. 19, being representative of timescales 577 

=16,32,64,128. From Fig.19, it is possible to see the departure of gauge R15 from the cluster 578 

of other Warsaw gauges. The position of gauge R15 is isolated from other Warsaw gauges 579 

and its Euclidean distance from the closest one is large, and increases increasing the 580 

timescale; it is equal to 1.80, 3.19, 3.88, and 8.03 respectively for =16, 32, 64 and 128. 581 

Simultaneously, the Euclidean distance from the cluster of Warsaw gauges to the nearest 582 

neighbor does not exceed 0.90, 1.00, 1.40 and 1.89 respectively for =16, 32, 64 and 128.  583 

This last observation puts in evidence that in general the variability of BDC shapes, 584 

among Warsaw gauges, increases increasing the timescale. It may partly be explained by the 585 

already mentioned evolution of histogram shapes, and the replacement of 2N-B distribution 586 

by less centered N-B and finally B distribution characterized by a higher variance of BDC. In 587 

the specific case of gauge R15, its BDC histograms for the largest timescales are boldly 588 

concave (not shown for brevity) and their shapes are becoming similar to Beta symmetrical 589 
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distributions parameterized by very small values of a: 0.76, 0.64, 0.54, and 0.45 respectively 590 

for = 16,32, 64, and 128.  591 

As last step, we used the cluster analysis to investigate the variability among the 592 

gauges, in terms of the intermittency parameter p0 considered as a vector having as the 8 593 

components its values in correspondence of the considered timescales. Results are given in 594 

form of dendrogram in Fig. 20. With respect to p0, all Warsaw gauges form one single chain-595 

like cluster. Three gauges in the cluster, namely R14, R25 and R15, are characterized by the 596 

largest distances from the nearest neighbor with Euclidean distances equal to: 0.079, 0.064 597 

and 0.0614 respectively. The distance of gauges R15 and R25 from the other stations in 598 

cluster is similar to observations made for Fig.s 18 and 19. A possible, but not certain, 599 

explanation for gauge R14 could be its location close to gauge R15, in a weak-developed part 600 

of the city. 601 

Unfortunately, we do not have access to other meteorological data to compare our 602 

results with other local climate conditions. To our knowledge, studies about microclimate or 603 

local turbulence were not conducted for Warsaw. However in our opinion, the anomalous 604 

behavior of gauges R15 and R25 does not originate from random errors due to gauges 605 

installation. As it was mentioned before, all gauges were installed in very good conditions, 606 

and R15 was an airport gauge. A plausible explanation of the anomalous behavior of gauges 607 

R25 and R15 could be found in its location. Gauge R25 location is on south-east suburban 608 

area, in the close vicinity of forested area and Vistula river valley. This specific suburban area 609 

is also most frequently a place for the development of local convection processes (prof. S. 610 

Malinowski, personal communication, 2013). The anomalous behavior of gauge R15 seems to 611 

arise from its specific location on the ground of the Warsaw airport. In the neighborhood of 612 

the instrument there are no high buildings and trees and the ground is covered only by short 613 

cut grass. The local atmospheric turbulence conditions, additionally influenced by taking off 614 
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and landing aircrafts could have favored the different behavior of this station. In general, 615 

gauges R15 and R25 are the only instruments, installed outside the areas of urban fabric (Fig. 616 

1) in rather rural conditions of surrounding green areas. The suburban location of these gauges 617 

connected with direct green surrounding reduces, or even minimalizes to zero, urban heat 618 

island effects. Peng et al. (2011) investigated the surface urban heat island intensity across 619 

419 global big cities (including Warsaw city). These authors showed that the distribution of 620 

daytime surface urban heat island intensity correlates negatively across cities with the 621 

difference of vegetation fractional cover, and of vegetation activity, between urban and 622 

suburban areas. Kłysik and Fortuniak (1999) for the second big city of Poland, Łódz (about 623 

120km south-west) comparable to Warsaw flat topography, found the occurrence of the urban 624 

heat. According to statistics calculated over many years, in two stations one in center and one 625 

in airport, over 80% of nights were characterized by a surplus heat in town, amounting 2-4°C, 626 

and sporadically to 8°C and more. Once more for Łódź, Fortuniak et al. (2006) confronted the 627 

data from two automatic stations: one urban and one rural. They found the relative humidity 628 

to be lower in the town, sometimes by more than 40%, and water vapour pressure differences 629 

to be possibly either positive (up to 5 hPa) or negative (up to -4 hPa). Air temperature 630 

differences between the urban and rural station exceeded 8°C. It could be that similar 631 

processes occur in Warsaw and affect local precipitation dynamics, and gauges R7 and R15 632 

and R25. As consequence, statistics of synthetic time series vary visibly in Figs. 16 and 17. 633 

However, the significance of these differences should be studied in more details in the future.  634 

4 Conclusions 635 

Owning in mind the simplicity of microcanonical cascade generators retrieval from 636 

observational data, we proposed to use this technique for the local variability of very short 637 

precipitation time series within an urban monitoring network.  638 
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We considered a network of 25 gauges deployed in Warsaw city (Poland) over an area 639 

of 517.2 km
2
. An attempt was made to define the generators of a MCM applicable for 640 

producing 5-min time series, as requested by urban hydrologists, through the disaggregation 641 

of quasi-daily precipitation totals. We showed that smooth distributions of BDC are possible, 642 

for all analyzed timescales, even in case of limited length of time series, which in our case 643 

slightly exceeded 2 years only. This was made possible by the implementation of a 644 

randomization procedure and the use of an overlapping moving window algorithm for the 645 

calculation of BDCs.  646 

The correctness of the overlapping moving window algorithm is checked using 647 

additional 15-minute rainfall time series, 25-year long, at gauge R7. The algorithm is 648 

implemented for a hierarchy of subdaily timescales, and separate 5-year periods. The results 649 

of BDC calculations are compared to those obtained using all 25 years of data with both 650 

overlapping and non-overlapping moving window algorithms. Despite the coarse resolution of 651 

data, and winter time gaps in the series, the results show a good agreement of BDC 652 

distributions calculated over the different periods, suggesting the correctness of the 653 

overlapping moving window algorithm, at least in central Poland. 654 

To adequately describe the shapes of BDC histograms, we have implemented a special 655 

joined probability distribution, 2N-B, assembled from 2 Normal distributions and 1 Beta 656 

symmetrical distribution. A systematical evolution of BDC histograms from joined double 657 

Normal-Beta distributions (2N-B), through joined Normal-Beta distributions (N-B) up to Beta 658 

distributions (B) was observed increasing the timescale. To test the use of more complicated 659 

models alternative to the classical Beta distribution, we suggested the Akaike information 660 

criterion (AIC).  661 

To check all the applied techniques (i.e., the randomization procedure, the overlapping 662 

moving window scheme and the 2N-B distribution), MCMs were used to disaggregate 1280-663 
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min precipitation into 5-min time series. The quality of the generated series was checked 664 

comparing the statistical properties of these with the ones of observed series. In particular, we 665 

compared probabilities of zero precipitation and the survival probability functions of non-zero 666 

5-min precipitation amounts, for the considered timescales, with agreement comparable to 667 

previous studies made in Switzerland, Germany and Poland. 668 

As main part of this study, we have conducted an intercomparison of BDC histograms 669 

among the 25 Warsaw gauges, and considering as a term of reference also other 6 gauges 670 

located in Poland and Germany. The intercomparison was made, scale-by-scale, by means of 671 

cluster analysis. Resulting dendrograms for small timescales (i.e. =1,2,4,8) revealed rather 672 

small variability of BDC histograms among all Warsaw gauges in comparison to the 673 

variability exhibited with respect to the other external gauges. Only gauge R25 seems to be 674 

characterized by a slightly different pattern. It might originate from the specific gauge 675 

location on the city boundary, in the vicinity of forested areas and Vistula river valley.  676 

Dendrograms obtained for large timescales (i.e. =16, 32, 64, 128) also delivered a 677 

general picture of similarity among Warsaw gauges, with the very clear exception of gauge 678 

R15. To our best knowledge a possible explanation of this was its installation on the ground 679 

of the Warsaw airport, strongly man-modified and with local turbulence conditions. In 680 

addition, R25, R15, and R14 were also identified as gauges presenting slightly different 681 

behavior in terms of the intermittency parameter p0. 682 

As final remarks, we can affirm that MCMs combined with cluster analysis could be 683 

used as a tool for the assessment of the spatial variability of local precipitation patterns among 684 

a group of gauges. This framework could be effectively implemented even in case of very 685 

short observational series thanks to the proposed overlapping moving window algorithm. We 686 

believe that the use of this algorithm could increase the development and use of MCMs in 687 

urban hydrology. At the same time, we are fully aware of the inherent MCM limitations in the 688 
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quality of rainfall disaggregation and the necessity of additional verifications of the 689 

overlapping moving window algorithm for other gauges with longer and better quality 690 

observational time series. From current engineering needs in urban hydrology, it is enough to 691 

use only one fitted MCM for the precipitation time series disaggregation in Warsaw city. We 692 

suppose that this result could be valid even in larger urban areas, but the verification is 693 

necessary. We dissuade from the cascade generation fitted on precipitation time series 694 

collected at instruments located out of the city center in unrepresentative sites, like in our 695 

case, the ground of the airport. We question the practice of using gauges from airport for 696 

urban hydrology. We recommend further research to assess the influence of the local 697 

conditions on BDC histograms to find more clear explanations of anomalies. We also 698 

recognize the necessity of further tests on other cities and precipitation monitoring networks, 699 

especially in case of cities with complicated orography and presence of hydrological 700 

networks.  701 
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Tab. 1.  Values of p1, p2, a, 1 and 2 parameters at different timescales, for gauge R7. The values of parameters 846 
are reported in bold, whereas their 95% confidence limits are in italic. 847 
 848 

Breakdown 

times 
Timescale  p1 p2 a 1 2 

5-10 min. =1 

0.1541 0.3479 1.3350 0.0559 0.1341 

0.1474 0.3377 1.3097 0.0523 0.1300 

0.1608 0.3580 1.3604 0.0595 0.1383 

10-20 min. =2 

0.0706 0.4036 1.0632 0.0559 0.1341 

0.0644 0.3950 1.0474 0.0523 0.1300 

0.0768 0.4121 1.0789 0.0595 0.1383 

20-40 min. =4 

0.0212 0.5036 0.9437 0.0559 0.1341 

0.0155 0.4954 0.9325 0.0523 0.1300 

0.0270 0.5118 0.9548 0.0595 0.1383 

40-80 min. =8 

- 0.6175 0.9484 - 0.1341 

- 0.6091 0.9390 - 0.1300 

- 0.6259 0.9579 - 0.1383 

80-160 min. =16 

- 0.7548 0.9170 - 0.1341 

- 0.7494 0.9098 - 0.1300 

- 0.7601 0.9242 - 0.1383 

160-320 min. =32 

- 0.8873 0.8929 - 0.1341 

- 0.8827 0.8873 - 0.1300 

- 0.8919 0.8985 - 0.1383 

320-640 min. =64 

- 0.9797 0.8799 - 0.1341 

- 0.9758 0.8754 - 0.1300 

- 0.9835 0.8843 - 0.1383 

640-1280 min. =128 

- 1.0000 0.7783 - 0.1341 

- 0.9973 0.7754 - 0.1300 

- 1.0027 0.7813 - 0.1383 

  849 
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Tab. 2.  Values of the Akaike information criterion (AIC) for 2N-B distribution (model 1) -- or its simplifications 850 
N-B and B -- and Beta B distribution (model 2), and the hierarchy of analyzed timescales , at gauge R7. 851 
Calculations were based on estimates of the maximized value of the log-likelihood function (LL) known sample 852 
size (n) and number of model parameters (k). 853 
 854 

 Model 1 Model 2  

Breakdown 

times 
Timescale  n Distr. k LL AIC(M1) Distr. k LL AIC(M2) 

=AIC(M2) – 

AIC(M1) 

5-10 min. =1 132940 2N-B 5 48480 -96950 B 1 36307 -72612 24338 

10-20 min. =2 136968 2N-B 5 32272 -64534 B 1 19798 -39593 24941 

20-40 min. =4 144778 2N-B 5 19071 -38132 B 1 8794 -17585 20547 

40-80 min. =8 159272 N-B 3 11119 -22232 B 1 4464 -8927 13305 

80-160 min. =16 185014 N-B 3 4591.9 -9178 B 1 925 -1848 7330 

160-320 min. =32 230716 N-B 3 1167.3 -2329 B 1 46 -91 2238 

320-640 min. =64 315360 N-B 3 1543.70 -3081 B 1 1491 -2979 102 

640-1280 min. =128 501092 B 1 12614.40 -25227 B 1 12614 -25227 0 

http://en.wikipedia.org/wiki/Likelihood_function
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 855 
Fig. 1.  Map of 25 gauges composing the precipitation-monitoring network in Warsaw. Administrative limits of Warsaw city and limits of forested areas were marked in 856 
black. The land use classification of was made through the Urban Atlas, which provides pan-European comparable land use and land cover data for large urban zones with 857 
more than 100.000 inhabitants (http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-metadata). The average density of network is 1 instrument over 20.7 km

2
. MPS 858 

weighing-type TRwS 200E gauges were accompanied with standard Hellman gauges for the routine control of daily precipitation totals.859 

http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-metadata


40 

 

 860 

 

 
 861 
Fig. 2.  Weighing-type TRwS 200E gauge during some tests (upper panel). Rainfall is simulated by means of 862 
precise medical pump. Sample of test results reporting simulated and recorded rainfall depths (lower panel). 863 
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 865 
 866 

 867 
Fig. 3.  Location of Polish and German precipitation gauges used during the comparison of Warsaw results with 868 
other studies. 869 
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 873 
Fig. 4.  Schematic diagram of developed microcanonical cascade model with branching number b=2. 874 
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 877 

 878 

  
 879 
Fig. 5.  Comparison of BDC histograms for gauge R7, and timescale =1, calculated according to the non-880 
overlapping moving window algorithm and using original (left panel), and randomized (right panel) non-zero 881 
precipitation data. Horizontal axes show BDC range, and vertical axes the respective frequency values. 882 
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 884 
 885 
Fig. 6.  Example showing differences between non-overlapping and overlapping moving window algorithms for 886 

the calculation of BDCs in case of 1-min precipitation time series and breakdown time 5-10 min. Note that  n   887 

means the integer part of n, where n is the total length of 1-min precipitation time series.  888 
  889 
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 890 
Fig. 7.  Histograms of BDC values for gauge R7 calculated according to the non-overlapping moving window 891 
algorithm and based on randomized precipitation time series. Horizontal axes show BDC range and vertical axes 892 
the respective frequency values. 893 
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Fig. 8.  Histograms of BDC values calculated according to overlapping moving window algorithm and based on 895 
randomized gauge R7 precipitation times series. Horizontal axes show BDC range and vertical axes the 896 
respective frequency values. The solid red curves represent the 2N-B probability density function, whereas the 897 
blue dashed curves the Beta probability density function. 898 
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900 

 901 
Fig. 9.  Value and 95% confidence intervals of parameters of p1, p2 and a with , for gauge R7. Horizontal axes 902 
are plotted at binary logarithm scale log2.  903 
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 905 
 906 
Fig. 10.  Variability of the intermittency parameter p0 with , for gauge R7. Horizontal axis is plotted at binary 907 
logarithm scale log2.  908 
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 909 

Fig. 11.  Value and 95% confidence intervals of parameter p1 at timescale ’=1, for gauge R7. Roman numbers 910 
I-V on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 1998-2002 911 
and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 1983-2007, and 912 
non-overlapping (A), overlapping (B) moving window algorithm. 913 
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Fig. 12.  Value and 95% confidence intervals of parameter p2 at timescales ’=1,2,4,8, for gauge R7. Roman 915 
numbers I-V on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 916 
1998-2002 and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 1983-917 
2007, and non-overlapping (A), overlapping (B) moving window algorithm. 918 
  919 

I II III IV V A B

0.5

0.6

0.7

0.8

0.9

1

1.1

=1

I II III IV V A B

0.5

0.6

0.7

0.8

0.9

1

1.1

=2

I II III IV V A B

0.5

0.6

0.7

0.8

0.9

1

1.1

=4

I II III IV V A B

0.5

0.6

0.7

0.8

0.9

1

1.1

=8



51 

 

  

  

  
Fig. 13.  Value and 95% confidence intervals of parameter a at timescales ’=1,2,4,8,16,32, for gauge R7. 920 
Roman numbers I-IV on horizontal axes indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-921 
1997, 1998-2002 and 2003-2007. Uppercase letters A and B indicate values calculated using all 25-year range 922 
1983-2007, and non-overlapping (A), overlapping (B) moving window algorithm. 923 
 924 
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Fig. 14.  Variability of fitted theoretical BDCs distributions histograms at timescales ’=1,2,4,8,16,32, for gauge 926 
R7. Roman numbers I-V in legend indicate respectively the 5-year ranges: 1983-1987, 1988-1992, 1993-1997, 927 
1998-2002 and 2003-2007. Uppercase letters A and B indicate results calculated using all 25-year range 1983-928 
2007, and non-overlapping (A), overlapping (B) moving window algorithm. In all plots, horizontal axes show 929 
BDC ranges and vertical axes the frequency values. 930 
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 934 
Fig. 15.  An example of precipitation disaggregation of a 56.3 mm event from 1280 min to 5 min, for gauge R7.  935 
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 936 
 937 

 938 
Fig. 16.  Comparison between observed for gauge R7 and synthetic series for gauges R7, R15 and R25 in terms 939 
of intermittency E(p0) for the considered timescales. The values for the generated data are calculated as average 940 
of 100 disaggregation runs. The variability between runs was negligible and so is not shown here. 941 
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 943 
 944 
Fig. 17.  The survival probability function of 5 min precipitation amounts for the observed time series (circles) 945 
and the synthetic time series (triangles) generated by the disaggregation of 1280 precipitation amounts, for gauge 946 
R7. The lines represent the average distributions calculated over the generation of 100 synthetic time series for 947 
gauge R7 and for comparison for gauges R15 and R25.  948 
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 953 
 954 
Fig. 18.  Dendrogram resulting from the cluster analysis of BDC histograms for =1. The vertical scale shows 955 
binding distance, whereas names of gauges are given on horizontal scale (K stands for Kielce gauge, and W 956 
stands for Wroclaw). 957 
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 959 
Fig. 19.  Dendrogram resulting from the cluster analysis of BDCs histograms for the timescale =128. The 960 
vertical scale shows binding distance, whereas names of gauges are given on horizontal scale (K stands for 961 
Kielce gauge, and W stands for Wroclaw). 962 
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 966 
Fig. 20.  Dendrogram resulting from the cluster analysis of the intermittency parameter p0. The vertical scale 967 
shows binding distance, whereas the name of gauges is given on horizontal scale (K stands for Kielce gauge, and 968 
W stands for Wroclaw). 969 


