
Response to Referee 1: 

In this paper, a non-stationary approach is applied for the estimation of the probability of failure of 
infrastructures in two locations in the Upper Truckee River Basin (US). The approach uses climate 
scenarios as input to determine the expected (and range of) changes in precipitation and temperature. 
The results show that, based on the assumptions made, the probability of failure of infrastructures 
increases considerably with time, from now to the end of the century.  
 
The paper is well written and interesting. I like the fact that the evolution of probability of failure is 
investigated, instead of the change in return period. However I have the following concerns, which I 
believe should be addressed/discussed before publication in HESS: 
 
Response: We thank the reviewer for their thoughtful review. We have addressed all of the specific 
comments below.  
 
1) What is the novelty of the paper? Non-stationary models for flood hazard are not new and nor is the 

use of the probability of failure in climate change studies (i.e., the “design life level” of Rootz and 
Katz, 2013). 

 
Response: We appreciate the reviewers comment and would like to note that we are not claiming that 
this is a new method. Rather the purpose of this work is to demonstrate how this approach can be 
applied. In their both their 2013 and 2014 papers, Salas and Obeysekera comment that, although non-
stationary flood methods have been well documented there has been ‘insufficient’ attention paid in 
the water resources engineering literature. Our goal with this paper was to demonstrate the 
application of these methods for regional decision making.  We have modified the end of the 
introduction to make this point more clearly as follows: 
 

“To address this issue, Rootzén and Katz [2013] introduced the concept of design life level to 
calculate the risk of a given flood magnitude occurring over a specified time period. Salas and 
Obeysekera [2014] further demonstrated the relevance of this technique to hydrologic community 
using flood frequency examples. However, this methodology has yet to receive widespread 
attention within the hydrologic community. Here, we present a non-stationary flood frequency 
assessment for the Upper Truckee River Basin (UTRB) using contemporary downscaled climate 
projections and the non-stationary design life level technique introduced by Rootzén and Katz 
[2013] to quantify flood risk (Note that following the convention of Rootzén and Katz [2013] we 
use the term flood risk in the non-technical sense to refer to the probability of an extreme event 
occurring and not as a quantification of expected losses).  While the methodology used for this 
analysis is previously established, this paper provides the first end-to-end demonstration of non-
stationary GEV analysis coupled with contemporary downscaled climate projections (specifically, 
downscaled climate projections from the Coupled Model Intercomparison Project Phase-5 (CMIP-
5)), to quantify how the flood risk profiles may evolve in the Truckee river basin over the next 
century.  The intent of this work is 1) to investigate potential flood risk changes over time in the 
Truckee basin and 2) to demonstrate the applicability of non-stationary techniques in a regional 
flood analysis to make these tools more accessible to the hydrologic community.” (Revised 
Manuscript, Page 6, Lines 11-28) 

  
 



2) The results are conditioned to strong assumptions and there is no explicit uncertainty analysis in the 
paper (e.g., Steinschneider et al., 2012, provide a framework for that). Prediction bounds are plotted 
in the figures, but they just show the range of variability of climate model inputs once propagated 
through the hydrologic models (VIC + non-stationary GEV). In my opinion, it would have been more 
interesting to analyse if, based on the observations in the last decades, the use of non stationary 
flood-frequency models gives results significantly different from those obtained with stationary 
models. To do so, the uncertainty associated to the use of both approaches should be quantified: 
Fig. 6 could contain the stationary models results with confidence bounds + the non-stationary 
model results for the observation period with confidence bounds that account not only for the 
variability of the climate models, but also for the uncertainty in the estimation of (VIC+ non-
stationary GEV) model parameters. It would be very interesting to see how the two ranges of 
estimates differ. 

 
Response: We appreciate the reviewer’s suggestion and agree that our approach only encompasses 
uncertainty in the climate model inputs. Recent analysis by Elsner et al. (2014) did investigate 
uncertainties in historical forcings and their impact on VIC simulations. In response to this comment, 
we have added the following clarification to section 4.3 of the manuscript: 
 

“Here we use the interquartile range, as opposed to the 5th and 95th percentile, to focus on the 
central tendencies of each time period and not the variability between projections. Note that the 
ranges presented here express the variability between climate models. Uncertainty in the 
historical data sources used for calibration and in the parameters of the VIC model are not 
investigated directly here. For more detailed analysis on uncertainty in VIC simulations the reader 
is referred to Elsner et al. [2014].” (Revised Manuscript, Page 18, Lines 11-15) 

 
In response to this comment we also explored uncertainty in our results based on the historical 
variability of the GCM simulations. Based on this analysis we added uncertainty bounds to the 
parameter estimates in table three and added the following discussion to the manuscript: 
 

“To address uncertainty, models of the same form (i.e. non-stationary location and scale with 
precipitation and temperature as covariates) were also fit to the historical simulation period 
(1950-1999) using downscaled precipitation and temperature from all 234 climate projections. 
Because each climate projection seeks to reproduce historical behaviour over the historical 
period, the variability between projections in this time frame is a measure of uncertainty in 
model coefficients given the same physical system. This differs from the variability between 
climate projections in future periods (i.e. after 1999) which is a measure of uncertainty in 
future forcing conditions. Table 3 shows the interquartile range of model coefficients 
calculated from the 234 historical GCM simulations. 
 
Using these parameters the return period of the design flood at Reno (37,600cfs) was 
calculated for every set of model parameters using observed historical precipitation and 
temperature. The observed model estimates a return period of 45 years while the interquartile 
range (IQR) using the simulated model parameters (i.e., the model parameters estimated from 
each of the 234 historical GCMs) with observed precipitation and temperature varies from 28 
to 247 years. Note that the return period of 45-years estimated from observed meteorology is 
within the IQR of 28 to 247 years.  Although the IQR is large it should be kept in mind that 
some of the uncertainty in this range is a result of the downscaling methodology.  The monthly 
BCSD algorithm used for downscaling GCM climate only constrains the monthly precipitation 



and temperature statistics (total precipitation and mean monthly temperature) over the 
historical 1950-1999 period.  Furthermore, uncertainty is introduced when monthly total 
precipitation and mean temperature are translated to daily values.  Thus the estimated IQR 
implicitly captures downscaling uncertainties, in addition to explicitly representing parameter 
uncertainty. The need to consider uncertainties at each and every step of the process starting 
with, for example, downscaling methods (statistical, dynamical or some combination of 
statistical and dynamical methods) is a topic of ongoing research.” (Revised Manuscript, Page 
15 lines 7-31)   

 
3) The Authors use the wording “flood risk” to refer to the probability of failure. Even though in 

engineering books “risk” and “probability of failure” are used interchangeably, “flood risk” is widely 
accepted in the literature as product of hazard (probability of flooding) and consequences (see e.g. 
Plate, 2002, among many). Since this paper looks at hazard only, I would strongly suggest to change 
the wording in it (including the title). 

 
Response: We use the term ‘risk’ to be consistent with the design life literature we are citing (e.g. 
Salas and Obeysekara, 2014). However we acknowledge that the term risk can be used several ways. 
In response to this comment we have added the following clarifications to the manuscript: 

 
“The resulting exceedance probabilities are combined to calculate the probability of a flood of a 
given magnitude occurring over a specific time period (referred to as flood risk) using recent 
developments in design life risk methodologies.” (Revised Manuscript, Page 2, Lines 10-12) 
 
“Here, we present a non-stationary flood frequency assessment for the Upper Truckee River Basin 
(UTRB) using contemporary downscaled climate projections and the non-stationary design life 
level technique introduced by Rootzén and Katz [2013] to quantify flood risk (Note that following 
the convention of Rootzén and Katz [2013] we use the term flood risk to refer to the probability of 
an extreme event occurring and not as a quantification of expected losses).” (Revised Manuscript, 
Page 6, Lines 15-20) 
 
“This concept is easily extended to flood risk (here defined as the probability of a flood of a given 
magnitude occurring, not expected loses).” (Revised Manuscript, Page 13, Lines 30-31) 

 
4) The references in the paper are biased toward US, while relevant literature exists abroad. As a 

suggestion, since I am European, the Authors could refer to some of the many studies cited in Hall et 
al. (2013) about flood changes in Europe (and scenario approaches). 

 
Response: We thank the reviewer for pointing out this reference. We focused our introduction on 
studies in the Western US, as this is where our study area is. However, we acknowledge that there is 
also much to be learned from studies of other regions of the world. In response to this comment we 
have added the following reference to the introduction: 
 
 “Difficulty in diagnosing flood trends is not unique to the Western US; a literature review of 

historical flood studies across Europe also found spatial variability in flood trends [Hall et al., 
2014].” (Revised Manuscript, Page 4, Lines 9-11) 

 
Also, through Hall et al. we found Merz et al. [2012] which provides a useful discussion on the drivers 
of change. We also added the following later in the introduction: 



 
“Merz et al. [2012] note that attributing changes in flood hazard is complicated by the complex 
array of drivers that can include; land cover change and infrastructure development as well as 
natural climate variability and change.  Here we set aside the impacts of development and 
management practices and focus on the role of climate change.” (Revised Manuscript, Page 4, 
Lines 24-26) 

 
Specific comments: 
Page 5079, line 11: I do not agree with the wording “additional non-stationarity”. It does not make sense 
unless stationarity is defined (see e.g., Koutsoyiannis, 2006; Montanari and Koutsoyiannis 2012). Under 
my understanding, stationary models can cope with long-term climate oscillations (see e.g., 
Koutsoyiannis, 2011). 
 
Response: We agree with the reviewer that this sentence was unclear and have changed it to read: 
  

“Antropogenic climate change has the potential to amplify natural climatic variability 
throughout the interconnected climate and hydrologic systems” (Revised Manuscript, Page 13, 
Lines 13-15) 

  
 

Page 5083, line 7: being HESS international (and European) international unit system (e.g., km instead of 
miles) should be used. This comment applies to the all paper. 

 
Response: We have changed all units to SI.  

  
Page 5088, Eqs. (2) and (3): one line could be added to motivate why the shape parameter xi is 
considered stationary. 
 
Response: We have added the following clarification following equations 2 and 3: 
 

“In keeping with previous studies the shape parameter, which is the most difficult to estimate, 
is assumed constant [e.g. Obeysekara and Salas, 2014; Salas and Obeysekera, 2013; Towler et 
al., 2010].” (Revised Manuscript, Page 12, Lines 3-6) 
 

Page 5088, line 18: are the GEV distributions fitted to simulated streamflows only? The Authors should 
add a line here to motivate why the observed streamflows are not used here. I see that Fig. 2 and 3 
include observed flows and provide a kind of validation of the procedure. 
 
Response: Unfortunately we only have unregulated flow estimates for six flood events which would 
not be enough to fit the GEV distributions alone. We decided not to mix simulated and ‘observed’ flow 
datasets in order to be consistent. The unregulated flows are estimated by adjusting observed gauge 
flows for water resources management, i.e. water deliveries to meet agricultural water demands and 
reservoir storage changes.  There are fundamental differences in the underlying processes (and 
assumptions) to estimate unregulated flows from gauge data and to simulate flows using a hydrologic 
model.  Hence, it is not appropriate to combine flows from these two disparate sources.  In response to 
this comment we have added the following clarification to the text.  



“Although, there are some unregulated historical flow estimates, the available dataset only 
covers six storms. Therefore, to be consistent we fit our model only to the simulated flows.” 
(Revised Manuscript, Page 12-13, Lines 28 & 1-2) 

 
Page 5089, Section 3.2: the section discusses “flood hazard”, not “flood risk”. The same applies to the 
rest of the paper, specially to Section 4.3 and related figures (e.g., y-axis in Figs. 5-8 should not be “risk” 
but “probability”) 
 
Response: Please refer to the response to comment 3. We have decided to use the term ‘risk’ to be 
consistent with the terminology of the design life level we apply. However, to avoid confusion we have 
added clarification throughout the text. Also in response to this comment we have changed the 
captions of the figures in question. 
 
Additional References: 
Hall, J., et al. (2013) Understanding flood regime changes in Europe: a state of the art assessment, 

Hydrol. Earth Syst. Sci. Discuss., 10, 15525-15624, doi:10.5194/hessd-10-15525-2013. 
Koutsoyiannis, D. (2006), Nonstationarity versus scaling in hydrology, J. Hydrol., 324, 239-254. 
Koutsoyiannis, D. (2011), Hurst-Kolmogorov dynamics and uncertainty, J. Am. Water Resour. Assoc., 47, 

481-495. 
Montanari, A., and D. Koutsoyiannis (2012), A blueprint for process-based modeling of uncertain 

hydrological systems, Water Resour. Res., 48, W09555, doi:10.1029/2011WR011412. 
Plate, E.J. (2002) "Flood risk and flood management." Journal of Hydrology 267.1: 2-11. 
Steinschneider, S., A. Polebitski, C. Brown, and B. H. Letcher (2012), Toward a statistical framework to 

quantify the uncertainties of hydrologic response under climate change, Water Resour. Res., 48, 
W11525, doi:10.1029/2011WR011318. 

  



Response to Referee 2: 
In summary I found this an interesting paper and a useful contribution to the incorporation of non-
stationarity in water infrastructure planning. As noted in the comments below, I think a restructuring of 
the paper is needed to improve the contribution and make it more useful to water planners and 
managers. 
 
Response: We thank the reviewer for acknowledging the contribution of our work and we appreciate 
their careful review. We have provided detailed responses to every comment below.  
 
 Most importantly, the thrust of the paper should be the demonstration of a method – with essentially 
no calibration or quantitative validation of results for the Truckee river, this case study is not useful in 
itself. 
 
Response: We agree with the reviewer that one of the primary purposes of this manuscript is to 
demonstrate non-stationary flood frequency analysis and to make these tools more accessible to the 
hydrologic community. However, we respectfully disagree with the assertion that this study is not 
useful in itself. While it is true that we are working in a data limited basin, we would argue that this is 
true of many if not most basins across the globe and it does not change the fact that water managers 
need to make decisions. Despite data limitations, we still made every effort to both calibrate and 
validate our model. As noted in the comments below we have expanded the manuscript to make these 
aspects of our work more quantitative and transparent. 
 
1) The title "Climate change and non-stationary flood risk for the Upper Truckee River Basin" does not 

reflect the contribution of the paper, which is really a demonstration of a methodology. This is 
noted in p. 5082, line 18: "This paper provides an end-to end demonstration of nonstationary GEV 
analysis coupled with contemporary down-scaled climate projections (specifically, downscaled 
climate projections from the Coupled Model Intercomparison Project Phase-5 (CMIP-5)), to quantify 
how the risk profile of existing infrastructure, designed on the basis of a specified flood event, 
evolves with time over its design life." As noted in my comments below, the Truckee seems to be 
more of a demonstration data set. This should not be interpreted as a paper providing significant 
planning information for managers of the Truckee system. 

 
Response: As noted above, we are of the opinion that this paper has two primary contributions. The 
intent of this work is to both demonstrate the method and provide site specific results for the Truckee 
basin. To make this point more clearly we have revised the sentence in question to read:  
 

“While the methodology used for this analysis is previously established, this paper provides 
the first end-to-end demonstration of non-stationary GEV analysis coupled with contemporary 
downscaled climate projections (specifically, downscaled climate projections from the Coupled 
Model Intercomparison Project Phase-5 (CMIP-5)), to quantify how the flood risk profiles may 
evolve in the Truckee river basin over the next century.  The intent of this work is 1) to 
investigate potential flood risk changes over time in the Truckee basin and 2) to demonstrate 
the applicability of non-stationary techniques in a regional flood analysis to make these tools 
more accessible to the hydrologic community.” (Revised Manuscript, Page 6, Lines 20-28) 

 
Also we would like to note that this study was commissioned by water managers and our results have 
been communicated directly with decision makers. While we acknowledge that there is limited data, 
we respectfully disagree that this work does not provide planning information. We hope the changes 



we have made in response to the Reviewer comments will help make this point more clearly.  Also to 
clarify this point we have added the following text to the introduction: 

“The flood analysis presented here is part of a larger study on climate change impacts in the 
Truckee River basin (Reclamation, 2010). This project is supported by local water managers 
and conducted by the Bureau of Reclamation through the Water Smart Basin Studies Program 
authorized under U.S. Public Law 111-11, Subtitle F (SECURE Water Act).” (Revised Manuscript, 
Page 6, Lines 26-30) 

 
2) p. 5084, line 15, it states "we simulate unregulated flows from 1950 to 1999 using the Variable 

Infiltration Capacity (VIC) model and validate results using the available unregulated flow 
estimates." There does not appear to have been any calibration done as part of this effort. Is the 
validation done on an uncalibrated model? Some basic hydrology validation statistics would be 
helpful (NS, RMSE, ...) is assessing the streamflow simulation. The qualitative interpretation like "in 
close agreement..." (p. 5092, l 9) and "in good agreement" (p. 5092, l 14 and l 19) needs to be 
quantitative. That would provide support for the claim "This demonstrates that the model behavior 
is a reasonable match to the natural system." 

 
Response: The VIC model we used for this analysis was developed and calibrated as part of the Bureau 
of Reclamation West Wide Risk assessment (Gangopadhyay et al., 2011). We agree with the reviewer 
that calibration was not adequately discussed in the original manuscript and we have added the 
following text to the revised version: 
 

“The VIC model used for this analysis was developed and calibrated as part of the Bureau of 
Reclamation’s West Wide Climate Risk Assessment (WWCRA). The WWCRA VIC model 
encompasses the western US. Streamflows were evaluated at 152 locations primarily from the 
USGS Hydroclimatic Data Network [Slack et al., 1993] and 43 additional locations of 
importance to Reclamations water management activities.  Among the evaluated locations 
are several in the Truckee basin including the Truckee River at Farad. For details on model 
calibration and development we refer the reader to Reclamation [2011] and Gangopadhyay et 
al. [2011]. While we do not discuss model calibration further here, in the subsequent sections 
we provide additional model verification for flood simulation in the UTRB.” (Revised 
Manuscript, Page 9, Lines 10-19) 
 

Also we added the following clarification to section 4.1: 
 

“A suite of models were fit to the logarithms of block (cool season, November-April) maxima 
flows (simulated by the calibrated VIC model)” (Revised Manuscript, Page 14, Lines 11-12) 
 

We agree with the reviewer that quantitative validation statistics would be ideal. However, given our 
small sample size (six floods) we do not have enough points to calculate metrics which would be 
statistically significant. We have added additional specifics throughout this section in the following 
places: 
 

• “generally good agreement” (p. 5091 l17) Replaced with “the maximum percent 
difference between the natural logarithm of simulated and observed flows is 12%.” 
(Revised Manuscript, Page 16, Lines 13-14) 

• “matches very closely” (p. 5091) added  “(percent difference in the natural logarithm 
of flows are 0.5% and 1.2% respectively)” (Revised Manuscript, Page 16, Lines 19-20) 



• "in close agreement..." (p. 5092, l 9) added “(the difference between the natural 
logarithm of simulated and observed flows is the smallest of any event at 0.5%)” 
(Revised Manuscript, Page 17, Lines 2-3) 

• "in good agreement" (p. 5092, l 14) replaced with “the VIC simulated flow falls within 
the interquartile range of the GEV model” (Revised Manuscript, Page 17, Lines 8-9) 

• "we note good agreement" (p. 5092, l 19) we rewrote this paragraph to read: 
“In general, Figures 3 and 4 show that the VIC simulated flows match closely with the 
observed floods (based on percent difference in the natural logarithm of flows) and 
that the interquartile range of the GEV distributions encompass the observed and 
simulated flows in most instances. Figure 3 does illustrate some of the complications in 
matching individual events, however based on analysis of the driving forces behind 
each individual event we are able to document the sources of these discrepancies. 
Based on this analysis we conclude that the model behaviour is a reasonable match 
with the natural system.” (Revised Manuscript, Page 17, Lines 20-26) 

• "This demonstrates that the model behavior is a reasonable match to the natural 
system."  See the revision above.  

 
3) p. 5085, line 20, 234 projections are analyzed, which lumps together extremely aggressive mitigation 

futures (like RCP 2.6) and more business as usual scenarios (RCP 8.5). It would seem that, for 
planning purposes, these should be separated. Only one pathway into the future will actually be 
experienced, and the variability among GCM projections should reflect that. It would make more 
sense to present each RCP separately, as this allows a consideration of the variation due to following 
different pathways from the variation in how the atmosphere might respond to the changed 
atmospheric conditions. These are very different sources of variability.  
 

Response: This is an interesting question and we agree with the reviewer that between the GCM 
projections there are multiple sources of uncertainty. In our original analysis we did compare results 
based on emissions scenarios. The figure below plots the risk of a 1 day flow exceeding the design 
flood of 37,600 cfs in 10 years for three time periods with results grouped by the emissions pathway.  
As you can see here in all cases the differences between emissions pathways are smaller than the 
changes over time. Based on this result we decided not to group our results by emissions pathways in 
the final paper. Still we agree that this is an important point and we discussed it on page 5096 lines 5-
11: 

“Although the figures are not shown here, results were also grouped by RCPs to analyze 
connections between greenhouse gas emission rates and changes in flood risk. We observed 
no clear trend in flood risk based on the different RCPs. This indicates that the variability 
between GCM model form and initial conditions likely overwhelms the influence of 
greenhouse gas emissions when comparing between scenarios. In other words, the variability 
between projections within any RCP scenario is larger than the difference between RCP 
scenarios.”  



 

 
Figure 1: Risk of 1 day flood exceeding 37,600 cfs in a ten year period grouped by emissions pathways.  

 
A second point is that this includes multiple contributions from some GCMs and single contributions 
from other GCMs. Plenty of research demonstrates that different runs of a single GCM are less 
independent than runs of different GCMs, and lumping them all together inappropriately weights 
models that happen to have submitted many runs as part of CMIP5. To demonstrate the method for 
this paper, there is no need to use 234 projections – a more carefully selected set of a dozen or two 
would seem to suffice, and also provide a better demonstration of appropriate use of climate model 
output. 

Response: While we understand the reviewers point, we would like to note that there has been much 
scientific debate on this topic in recent years. As of yet, there is no consensus on the “best practice” for 
selecting climate projections and likely there may not be one given the fundamental non-linear 
dynamics of the earth system.  The IPCC presents every GCM scenario as equally likely and there is 
significant debate about whether it is appropriate to select projections based on historical simulation 
skill because this approach is based on the assumption that historical simulation skill is correlated to 
realistic simulation of sensitivity to increased greenhouse gasses.  As noted in the West Wide Climate 
Risk Assessment (Reclamation, 2011): 

“To date, there is still limited evidence to support such a philosophical bridge (Reichler and 
Kim 2008; Santer et al. 2009; Pierce et al. 2009). It also has been shown that when such skill 
assessments are based on many climate metrics (e.g., Tebaldi et al. 2005; Mote and Salathé 
2010), the clarity of “better”  versus  “worse” climate models is less obvious than when the 
assessment is based on few metrics (Brekke et al. 2008; Reichler and Kim 2008; Gleckler et al. 
2008). Even when the historical skill assessment results have been used to rank and cull 
climate models, thereby conditioning the assessments of future climate uncertainty (Brekke 
et al. 2008) or detection and attribution of causes for trends in historical atmospheric 
water vapor over large spatial scales (Santer et al. 2009), the effect of model culling on 



assessments has been minor. These latter results suggest that other factors, beyond 
historical skill, are driving impact assessments from projected climate conditions within an 
ensemble, including emissions pathway and a GCM’s ―natural variability.” 

Therefore, we decided to use all 234 projections because we do not have a rational way to “carefully 
select” a smaller subset of projections.  Again, there is presently no one objective way to subset 
projections. 
 
4) Section 2.3, last paragraph, it is mentioned that the Bureau of Reclamation has developed an archive 

of downscaled data, but then the downscaling is described as if it were done again for this effort. 
Were the projections obtained from a published archive? If so, state that, provide an appropriate 
citation and acknowledgement (I see on the BoR site there is a standard citation and 
acknowledgement). 

 
Response: The BCSD CMIP-5 projections are currently available on the BoR archive. However, at the 
time of this analysis the complete set of BCSD projections was not developed yet and so we extended 
the CMIP-5 analysis for our domain as part of this project. Still, we agree with the reviewer that it 
would be helpful to point readers to the most recent references for this data source. Therefore we 
have added the following clarification to the revised manuscript: 
 

“For this analysis we extended the existing hydrology archive to cover the UTRB domain for all 234 
BCSD CMIP-5 climate projections following the steps detailed below. A subset of the CMIP-5 
hydrology projections is publically accessible through the "Downscaled CMIP3 and CMIP5 Climate 
and Hydrology Projections" archive at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. 
Additional documentation on the archive and the methodology is provided in Reclamation [2014]” 
(Revised Manuscript, Page 10, Lines 6-11) 

 
 
5) p. 5092, the lack of qualitative model validation appears again here, such as "the VIC simulated and 

observed floods are in close agreement and the discrepancy with the GEV model is explained by the 
flood timing described above." What constitutes ’close agreement’ and at what point would they be 
considered not in agreement? And the discrepancy is not explained by the timing, but is apparently 
consistent with it, which is much weaker. Later instances in this section show things like "the GEV 
model is in good agreement with the VIC simulated flow", and ultimately "This demonstrates that 
the model behavior is a reasonable match to the natural system." These general observations are 
not helpful in determining significant correspondence of modeled and simulated values. 

 
Response: We appreciate the comment and have made changes throughout section 4.2. to make our 
analysis more precise (please refer to the changes listed in comment 2). Also, in response to this 
comment we have replaced the phrase ‘is explained by’ with ‘is consistent with’.  We hope that the 
review will find our revised section 4.2 to be more clear.  
 
6) p. 5094, Figure 6 is presented, which is interesting. another way to cast this would be in a manner 

similar to that of Mailhot and Duchesne (J. Wat. Res. Plann. Mgmt., 2010, doi 
10.1061/_ASCE_WR.1943-5452.0000023) Figure 3, which aims to provide planners with a design 
return period for today that would be needed to provide protection at the level of a historic return 
period (in a stationary climate).  

 



Response: We thank the reviewer for pointing out this paper. We focused our analysis on the risk to 
existing infrastructure. Hence we present our results in terms of the probability of exceeding the flow 
rate that was used in previous design. However we agree that Mailhot and Duchesne provide an 
interesting approach for taking non-stationarity into account with new design. We have added a 
reference to their work in the beginning of the Introduction as follows: 
 

“This discrepancy has not gone unnoticed within the scientific community and there is a 
growing body of research investigating, (1) trends in observed floods [e.g. Franks, 2002; Vogel 
et al., 2011], (2) ways to incorporate non-stationarity into frequency distributions [e.g. Katz 
and Neveau, 2002; Raff et al., 2005] and (3) methodologies to interpret risk and approach 
design within a non-stationary framework [e.g. Mailhot and Duchesne, 2010; Rootzen and 
Katz, 2013; Salas and Obeysekara, 2014].” (Revised Manuscript, Page 3, Lines 3-8) 

 
  
 
Minor comments:  
SI units should be used throughout, not square miles, feet , etc.  
 
Response: We have changed all of the units to SI.  

 
p. 5088, line 16, is the 0.05 alpha? And what significance test is being referred to here? 

 
Response: Yes the threshold is referring to the alpha. For the significance test we are using a chi-
squared distribution. These points have been clarified in the revised manuscript as follows: 
 

“For this analysis the best model is selected using pairwise comparisons of NLLH scores 
following the methods of Salas and Obeysekera [2014] and others. Models are compared 
using the deviance statistic (D) which is equal to twice the difference in NLLH scores. Deviance 
statistics are then tested for significance based on a chi-squared distribution with the degrees 
of freedom set equal to the difference in the number of parameters (K) between models.  P-
values less than 0.05 indicate a statistically significant (alpha of 0.05) improvement in model 
performance.” (Revised Manuscript, Page 12, Lines 19-25) 
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Response to John England: 
 
Major Comments 
This paper is an interesting case study using non-stationary concepts to illustrate a changing flood risk 
profile. The authors suggest that the paper “provides the first end to- end analysis using non-stationary 
GEV methods coupled with contemporary downscaled climate projections to demonstrate how the risk 
profile of existing infrastructure evolves with time over its design life.” 
 
In my opinion, this topic is very interesting, and certainly timely and relevant to HESS. Given ongoing 
activities within the United States to revise flood frequency guidelines (England and Cohn, 2008; 
HFAWG, 2013; England et al., 2013) this paper could potentially serve as a reference or example 
methodology to estimate flood frequency and flood risk in a non-stationary environment dominated by 
future trends in climate (precipitation and temperature), at least within the U.S. It is a very nice example 
of illustrating time-varying distribution parameters, relevant for flood frequency applications. 
 
Response: We thank the reviewer for acknowledging the contribution of our work. We appreciate his 
assessment and hope that this paper can serve as a real world example of non-stationary flood 
techniques for others to follow.   
 
However, in my opinion, there are some technical issues with the methodology and application, as 
presented in this paper, that need further investigation and/or simply explanation, prior to publication 
in HESS. 
 
Response: We appreciate the thoughtful suggestions and have addressed every comment below. 
 
1. Functional form of flood non-stationarity (equations 2 and 3), covariates and nonstationary 
parameter selection. 
 
One key issue in non-stationary flood frequency analysis is the identification of the functional form of 
non-stationary behavior. For example, Salas and Obeysekera (2013) highlight three situations: increasing 
floods; decreasing sea levels; and shifting floods. Other examples are in Olsen et al. (1998) and Stedinger 
and Griffis (2011). 
 
With all the information behind Table 2 on covariates (page 5105), and presumed functional form 
(equations 2 and 3), the authors need to clearly demonstrate the evolution of aggregated winter 
monthly precipitation and monthly average temperature trends with time. Are trends in location and 
scale needed? Are there any shifts in these time series? Why are these linear models adequate? 
 
Response: We do not observe statistically significant trends in precipitation or temperature over the 
historical period of the study. However, there are changes in both variables looking into the future.  
Salas and Obeysekara (2013) and Stedinger and Graffis (2011) both develop model parameters that 
depend explicitly on time and therefore they must both derive a trend from historical data and make 
assumptions about how this trend will continue into the future. In our approach, we vary the location 
and scale parameters only as a function of the covariates precipitation and temperature and not 
explicitly as a function of time. In other words, a temporal trend will only be introduced if there is a 
trend in the relevant climate variables. Thus even though we didn’t observe a strong temperature 
trend in the historical period of record, we can still capture the impact of future trends as long as we 
have adequately characterized the connection between temperature and flooding. Given this 



approach, it is not important to demonstrate historical trends in variables but rather connections 
between our covariates and flooding. To address this point we’ve plotted precipitation and log flow 
within the flood months at Farad. As shown here, there is a positive connection between flooding and 
precipitation. However it should also be noted that the connections we are investigating in our model 
go beyond simple correlation because we use precipitation as a covariate for both the location and 
scale of the distribution.  
 
We agree with the reviewer that this this is an important distinction to make clear and therefore we 
have added the following text the revised manuscript. 
 

“Some previous studies [e.g. Salas and Obeysekera, 2013; Stedinger and Griffis, 2011] 
developed non-stationary location and scale parameters that are explicitly dependent on time. 
This approach requires first, the derivation of temporal flooding trends and second, the 
projection of this trend into the future. Here we derive location and scale parameters based on 
time varying meteorological variables (i.e. temperature and precipitation). With the approach 
used here, temporal trends in flooding are introduced as a function of temporal variability in 
precipitation and temperature but no explicit trend is specified apriori.”  (Revised Manuscript, 
Page 12, Lines 7-13) 

 

Describe model performance between nonstationary location, and nonstationary location and scale. Do 
model diagnostics clearly show that the scale parameter needs to be included (adding 3 more 
coefficients), or would a simpler model be sufficient just based on location (e.g., Towler et al., 2010)? 



Figure 2 isn’t compelling to distinguish between competing models, or discriminate between tail 
behavior at the 2 sites. 
 
Response: Table two compares model performance for models with nonstationary location, 
nonstationary scale and both. As discussed on page 5088 lines 10-17 we compare model performance 
using the Akaike Information Criterion which weighs model complexity against the goodness of fit. As 
shown in table two the models with non-stationary location and scale perform significantly better 
than the non-stationary location models even when the added complexity is taken into account.  
 
To make this point more clearly we have modified Table 2 to report AIC scores as well as deviance 
statistics and the number of model parameters. Also, we have expanded to the discussion of metrics 
as follows: 

 “Here nllh is the negative log likelihood estimated for a model fitted with K parameters.  In 
this formulation, higher ranked models have lower AIC scores. For this analysis the best model 
is selected using pairwise comparisons of NLLH scores following the methods of Salas and 
Obeysekera [2014] and others. Models are compared using the deviance statistic (D) which is 
equal to twice the difference in NLLH scores. Deviance statistics are then tested for significance 
tests based on a chi-squared distribution with the degrees of freedom set equal to the 
difference in the number of parameters (K) between models.  P-values less than 0.05 indicate a 
statistically significant (alpha of 0.05) improvement in model performance.” (Revised 
Manuscript, Page 12, Lines 18-25) 

 
Supplemental material could be used here to build your case for the functional form and the choice to 
use two time-varying parameters. You could also show the simple plots of precipitation and 
temperature evolution over time, for historical and future periods. This would help partly explain the 
non-overlapping risks, depending on period (Figure 5). You could also show cdfs from the 2 sites, 
enhancing and further explaining the discrepancies on the shape parameters between these two nested 
watershed sites. 
 
Response: As noted above our method does not rely on the demonstration of historical trends. 
However we thank the reviewer for their comment and we agree that this point was not made clearly 
in the original manuscript. In response to the questions posed here we have expanded the text (as 
detailed above) with respect to the model form for the covariates as well as the model selection.  
 
2. Discussion on quantiles of interest, record length used in analysis, and risk  
 
The authors need to clearly articulate what they mean by infrastructure (levees? Flood protection?), 
quantiles of interest (Q50? Q100?), and how their key measure is risk (of failure, in the binomial sense).  
 
Response: We appreciate the suggestion and have added the following clarifications to the text: 
 
Page 5- The first instance of the term ‘infrastructure’ in the manuscript now reads: 

“Historically, most infrastructure that is vulnerable to flooding (e.g. dams, levees, sewers and 
bridges) has been designed to withstand flooding of specified return period (e.g. the 100 year 
flood)” (Revised Manuscript, Page 6, Lines 3-5) 

Also we have modified the reference in the abstract to infrastructure to read: 
“This paper provides the first end-to-end analysis using non-stationary GEV methods coupled 
with contemporary downscaled climate projections to demonstrate the evolution of flood risk 



profile over typical design life periods of existing infrastructure that is vulnerable to flooding 
(e.g. dams, levees, bridges, and sewers).” (Revised Manuscript, Page 2, Lines 12-16) 

 
We do not see the term “quantiles of interest” in the manuscript.  As discussed on page 5093 lines 1-5, 
we focus our analysis on the historically derived ‘design flood’ of 37,600 cfs.  
 
We have further clarified our use of the term risk in the abstract and within the main text as follows: 

“The resulting exceedance probabilities are combined to calculate the probability of a flood of 
a given magnitude occurring over a specific time period (referred to as flood risk) using recent 
developments in design life risk methodologies.” (Revised Manuscript, Page 2, Lines 10-12) 
 
“Note that following the convention of Rootzén and Katz [2013] we use the term flood risk in 
the non-technical sense to refer to the probability of an extreme event occurring and not as a 
quantification of expected losses.” (Revised Manuscript, Page 6, Lines 18-20) 
 
“This concept is easily extended to flood risk (here defined as the probability of a flood of a 
given magnitude occurring, not expected loses).” (Revised Manuscript, Page 13, Lines 30-31) 

 
  
How does the record length chosen (50 year windows) affect the quantile estimates, particularly the 
precision of the shape parameters at these two sites, for the flows of interest (37600 cfs)? 
 
Response: We decided to use a 50 year window because this is the maximum time span we could use 
based on the length of our historical record. While we didn’t quantify the impacts of using a shorter 
window, we understand that working with the longest record available provides us with the most 
points to fit our model with. Using shorter window will only add to sampling variability and hence add 
additional uncertainty to the estimated model parameters. 
 
 Could you better explain (page 5088), that using block maxima (6 per year), your main output is risk 
(and changes) for a particular flow level (Fig 5), rather than a “traditional” annual flood frequency curve? 
Some minor adjustments would be needed to estimate annual one-day maximum flood probabilities. 
You could cite (for example) Towler et al. (2010, p. 3). 
 
Response: As detailed on page 5089 lines 14-20 The reason why we can’t make the traditional  annual 
flood frequency curves is because our flood frequency changes over time and therefore the probability 
of a flood occurring depends both on the length of time considered and the period of interest.  For this 
reason we adopted the design life methodology. The reviewer is correct in pointing out that the use of 
block maxima does impact the probabilities that are estimated. However, we have taken this into 
account in our calculations. To make this point more clearly we have added the following text to page 
11 of the revised manuscript: 
 

“However, as noted by Towler et al. [2010], when multiple values are used per year the 
calculated probabilities must be adjusted appropriately to derive annual values.” (Revised 
Manuscript, Page 13, Lines 6-8) 

 
3. Uncertainty estimates for quantiles 
 



Uncertainty estimates are required (NRC, 2000; USACE, 2011) to evaluate flood risk and alternatives in a 
stationary environment. In a non-stationarity framework, there are existing tools (Gilleland and Katz, 
2011; Obeysekera and Salas, 2014) to estimate uncertainty. The authors need to address or add a 
discussion of uncertainty of the estimates provided. Would confidence intervals for the future period(s) 
overlap the stationary model estimates? 
 
Response:  For this analysis we have focused on uncertainty with respect to future climate as opposed 
to model parameter uncertainty. In response to the comments of other reviewers we have added 
discussion of uncertainty with respect to the VIC model on page 17 of the revised manuscript. In 
response to this comment we reviewed Gilleland and Katz (2011) as well as Obeysekera and Salas 
(2014). While Gilleland and Katz (2011) do not provide any specific details on uncertainty estimation 
Obeysekera and Salas (2014) outline several approaches. However as noted on p.1439 of Obeysekera 
and Salas (2014), the methods they discuss are designed to assess uncertainty in flow quantiles not the 
uncertainty in return periods, which is what our analysis is. We acknowledge that there are methods 
for handling parameter uncertainty, however following the approach of Towler et al. (2010) we are 
focusing our analysis on shifts in the distributions as a function of climate change. Still, we agree that 
this is an important topic and have added uncertainty bounds to our parameter estimations along 
with the following discussion: 
 

“To address uncertainty, models of the same form (i.e. non-stationary location and scale with 
precipitation and temperature as covariates) were also fit to the historical simulation period 
(1950-1999) using downscaled precipitation and temperature from all 234 climate projections. 
Because each climate projection seeks to reproduce historical behaviour over the historical 
period, the variability between projections in this time frame is a measure of uncertainty in 
model coefficients given the same physical system. This differs from the variability between 
climate projections in future periods (i.e. after 1999) which is a measure of uncertainty in 
future forcing conditions. Table 3 shows the interquartile range of model coefficients 
calculated from the 234 historical GCM simulations. 
 
Using these parameters the return period of the design flood at Reno (37,600cfs) was 
calculated for every set of model parameters using observed historical precipitation and 
temperature. The observed model estimates a return period of 45 years while the interquartile 
range (IQR) using the simulated model parameters (i.e., the model parameters estimated from 
each of the 234 historical GCMs) with observed precipitation and temperature varies from 28 
to 247 years. Note that the return period of 45-years estimated from observed meteorology is 
within the IQR of 28 to 247 years.  Although the IQR is large it should be kept in mind that 
some of the uncertainty in this range is a result of the downscaling methodology.  The monthly 
BCSD algorithm used for downscaling GCM climate only constrains the monthly precipitation 
and temperature statistics (total precipitation and mean monthly temperature) over the 
historical 1950-1999 period.  Furthermore, uncertainty is introduced when monthly total 
precipitation and mean temperature are translated to daily values.  Thus the estimated IQR 
implicitly captures downscaling uncertainties, in addition to explicitly representing parameter 
uncertainty. The need to consider uncertainties at each and every step of the process starting 
with, for example, downscaling methods (statistical, dynamical or some combination of 
statistical and dynamical methods) is a topic of ongoing research.” (Revised Manuscript, Page 
15 lines 7-31)   

  
4. Use of the term “Data”, consideration and use of additional data relevant for floods 



and flood frequency 
 
The authors need to add some caveats in Sections 2.2. and 2.3 on the use of the term “data” that 
include VIC unregulated flow simulations and CMIP-5 downscaled projections. In both situations these 
are model results, not data. I suggest a simple title change of each section to “Streamflow data and 
models” and “Climate data and models”. 
 
Response: We appreciate the suggestion and agree with the reviewer that our current terminology 
could be confusing. We have changed the title of section 2.2 to “Streamflow data and simulations” 
and 2.3 to “Climate data and models”. In addition we have gone through the manuscript and revised 
any sentences that referred to model results as data.  
 
Why were not other streamflow data sources considered, particularly for calibration of VIC soil moisture 
parameters? There are monthly unregulated streamflow estimates available in the Truckee River Basin 
(Rieker and Cowan, 2005) that may be useful. How would one extend the historical period, with 
evidence of several very large floods, for the period prior to 1950? There are at least 3 large floods prior 
to 1950 that are equal to or exceed those used in the analysis.  
 
Response: We made every effort to obtain additional unregulated flow data for the study area. In the 
end we limited our analysis to the documented unregulated flow values we found. We appreciate the 
suggestion of an additional dataset and will consider this data if we do additional analysis in the 
future.  Our historical period is limited by the meteorological dataset we used. In order to extend our 
analysis we would need a longer historical forcing dataset.  Furthermore, we need to be consistent 
with the historical period as this has implications in the way future climate projections were 
developed. 
 
On streamflow, please explain how VIC was calibrated (or not) and how parameter estimates were 
made for the historic period (Section 2.2). Why are these stationary streamflow model parameters 
representative of future periods? Validation is mentioned (page 5084, line 17), but only in reference to 
six one-day flows (Figure 3). Were these six events used in any way for model calibration? 
 
Response: The model calibration was completed as part of the larger West Wide Climate Risk 
Assessment project (Reclamation, 2011). We have added a paragraph summarizing this and provided 
the appropriate references for calibration as follows: 

“The VIC model used for this analysis was developed and calibrated as part of the Bureau of 
Reclamation’s West Wide Climate Risk Assessment (WWCRA). The WWCRA VIC model 
encompasses the western US.  Streamflows were evaluated at 152 locations from the USGS 
Hydrocliamtic Data Network [Slack et al., 1993] and 43 additional locations of importance to 
Reclamations water management activities.  Among the evaluated locations are several in the 
Truckee basin including the Truckee River at Farad. For details on model calibration and 
development we refer the reader to Reclamation [2011] and Gangopadhyay [2011]. While we 
do not discuss model calibration further here, in the subsequent sections we provide additional 
model verification for flood simulation in the UTRB.” (Revised Manuscript, Page 9, Lines 10-19) 

 
We have validated our GEV model using the six observed flood events that we have unregulated flow 
values for as well as the time series of simulated flows from the Calibrated VIC model.  



 
As discussed in our response to comment 1, our approach does not require any assumptions about 
current and future trends. Rather the model parameters that we derive relate flood occurrence to 
meteorological variables. Therefore, we assume only that the physical mechanism between 
precipitation and temperature and flooding will remain the same in the future. This approach is well 
documented in the other studies that we cite.  
 
Some Specific Comments 
page 5078, line 14: Clarify that existing infrastructure – might be appropriate for floodplain 
management activities. 
Response: We have modified the sentence in question to read: 
 

“This paper provides the first end-to-end analysis using non-stationary GEV methods coupled 
with contemporary downscaled climate projections to demonstrate the evolution of flood risk 
profile over typical design life periods of existing infrastructure that is vulnerable to flooding 
(e.g. dams, levees bridges and sewers)” (Revised Manuscript, Page 2, Lines 12-16) 

 
page 5079, lines 28-29. Notably missing in the citations to US flood trends is Hirsch 
(2011). 
Response: Thank you for the suggestion. We have added the following reference to Hirsh in the 
paragraph subsequent to the one you reference.  
 

“Hirsch [2011] noted both increasing and decreasing trends in annual flood magnitudes in 
different regions of the US” (Revised Manuscript, Page 4, Lines 6-7) 

 
page 5082, lines 21-22. May want to expand this crucial definition of risk. 
Response: We have added the following definition to this section: 
 

“Note that following the convention of Rootzén and Katz [2013] we use the term flood risk to 
refer to the probability of an extreme event occurring and not as a quantification of expected 
losses.” (Revised Manuscript, Page 6, Lines 18-20) 

 
page 5083, lines 20-22. This statement is erroneous. Snowmelt flood peaks from April to July are nearly 
always within the channel; peaks are not substantially reduced by upstream storage as reservoirs are 
usually full. Forecasting plays little to no role in reducing flood peaks using reservoir storage. Peaks and 
max daily flows in these months are much, much smaller than winter floods. 
 
Response: While the reviewer is correct that the reservoirs are usually full at this time of the year, our 
understanding from water managers in the basin is that snowmelt floods are still managed by 
reservoirs because predictions allow managers to evacuate storage space in advance.  
 
page 5084, line 17. You mention validation; can you describe calibration here? 
 
Response: Please refer to comment 4 above. We have added text to describe model calibration.  
 
page 5085, lines 15-16. Can you demonstrate that cumulative monthly precipitation in winter months is 
adequate, rather than pairing individual monthly precipitation and flow estimates? 
 



Response: We did not experiment with total winter precipitation because we wanted to use multiple 
flood values per year. If we used just one precipitation value per year then we would have less basis 
for simulating multiple floods. We appreciate the suggestion though and freely acknowledge that 
there are many potential predictors that could be experimented with. However, for this assessment 
we chose to stick with published approaches.  
 
page 5089, line 22-23. Highlight a bit more here what the “risk of flood” means. Can you also clarify here 
(Table 1) how you obtain an annual “p” (in year x) from the GEV for use in these binomial risk models, or 
that annual probabilities are not needed? 
Response: We have appreciate the suggestion and have added the following definition: 
 

“This concept is easily extended to flood risk (here defined as the probability of a flood of a 
given magnitude occurring, not expected loses).” (Revised Manuscript, Page 13, Lines 30-31) 
 

We have adjusted all of our analysis to account for the fact that we have 6 values per year not 1. In 
response to comment 4 we added the following clarification: 
 

“However, as noted by Towler et al. [2010], when multiple values are used per year the 
calculated probabilities must be adjusted appropriately to derive annual values.” (Revised 
Manuscript, Page 13, Lines 6-8) 

 
 
page 5090, discussion on Table 2. Here is where more explanation and justification is needed on the use 
of time-varying location and scale. 
 
Response: Please refer to the response to general comment 1.  
  



page 5090, line 24. Recommend using supplemental material to show cdfs of these distributions. The 
pdfs do not adequately show the right-hand tail to demonstrate what you are saying here. 
 
Response: We have provided the corresponding cdfs below. While this is of course a matter of 
personal preference, we do not feel that the cdfs provide any improvements in displaying the right-
hand tails.  Because the cdf is a monotonically increasing function, all of the curves converge to 1 on 
the right-hand tail.  
 

 
 
page 5091, line 1. Did you fix the shape parameter in any way across future months? Why would it vary 
in time? 
Response: Yes the shape parameter remains fixed. To clarify this point we have modified the sentence 
in question to read: 

“ Using the coefficients determined above, the location and scale and shape parameters are 
calculated for every climate projection (i.e. 234) and flood season month (i.e. November to 
April 1950 to 2099) based on the downscaled precipitation and temperature values detailed in 
Section 2 (Note that the scale parameter remains fixed).” (Revised Manuscript, Page 15, Lines 
2-5) 

 
page 5091, Section 4.2. The term “ungaged” is in error throughout this paragraph. These flows are 
“unregulated”. Gages exist at both locations. You could have compared the USACE unregulated flows 
with those from the gage, and examined the differences. 
Response: The reviewer is correct. We have replaced all instances of “ungagged” with “unregulated” 
in this section and throughout the manuscript. While we appreciate the suggestion the purpose of this 
analysis is not to understand the adjustments that were made to generate the unregulated flow 



estimates. These adjustments account mainly for the reservoir operations and diversions within the 
basin. We refer the reader to the USACE documentation for these details.   
 
page 5092, lines 10-15. Citations are needed to support these numbers. Can you explain the 
precipitaiton gradient from upstream to downstream, and where the snow resides in this basin? It may 
help explain the differences in shape parameters at Farad (relatively fatter tail) and Reno, and why these 
distributions are bounded. 
Response: We have added a citation to the sentence in question. Also, we appreciate the suggestion 
and have added the following discussion to the basin description in section 2.1: 
 

“Most of the available water supply is generated upstream of the Farad Gauge [USACE, 
2013a].  The Reno gauge is located downstream of Farad in the heart of Reno and is a good 
reference point for analyzing urban flooding. The intervening area between the Farad and 
Reno gauges is small, roughly 350 square kilometers and there are only two small tributaries 
that enter the main stem between Farad (Reno Dog Creek and Hunter Creek).” (Revised 
Manuscript, Page 7, Lines 15-20) 

 
page 5093, lines 15-16. Clarify here the uncertainty of the GEV model parameters and quantile 
estimates for the stationary case (as well as other cases) is not included. How might its inclusion change 
the perception shown in Figure 5? 
Response: Please refer to major comment 3 above.  
 
page 5094, line 10. Clarify that you use MLEs to estimate the LP3 parameters (same as GEV), so that the 
differences you mention truly are the models, and not mixed with parameter estimation. Moments and 
MLEs of the LP3 can sometimes give very different results for the shape parameter. 
Response: Following the methodology outlined in Bulletin 17B we fit the LP3 distribution using L-
moments. However, the reviewer is correct that this does introduce additional uncertainty because the 
stationary GEV model was fit using MLEs. We have decided to maintain the current LP3 fit because 
this is an accurate representation of standard practice. In response to this comment though, we have 
modified the text as follows to make this point more clearly: 

“Also, the risk calculated using a stationary GEV model and a stationary LP3 model (i.e. the 
distribution prescribed by Bulletin 17B and fit using the L-moments methodology [IACWD, 
1982]) fit to the historical flow data are plotted for reference (blue and red dashed lines 
respectively).  Comparing between these three approaches (non-stationary GEV, stationary 
GEV and stationary LP3) provides information on the sensitivity of results to model approach 
and non-stationary parameters.  For instance, both stationary models are fit to the same 
historical simulated flows (one using MLE and the other using L-moments) so differences 
between the stationary lines reflect the impact of model choice and fitting approach on 
estimated risk.  Conversely the stationary GEV model (blue line) and the historical non-
stationary models (grey boxplot) have the same model form and cover the same time period; 
the only difference is the addition of covariates to estimate model parameters.  Thus 
differences between these two show the effect of model parameter changes from the non-
stationary approach.”  (Revised Manuscript, Page 18 Line 28- Page 19 Line 8)  

 
 Fig 3. Correct caption to read “unregulated” not “ungaged”. 
Response: This has been corrected.  
 



 If you had used the shape parameter from Farad, or some weighted combination of Farad and Reno, 
how much would the tails of these GEV distributions widen? 
Response: This is an interesting question that we didn’t explicitly consider. We have not seen any 
research that looks at spatial combinations of GEV distributions but this could be an interesting topic 
for future research. 
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Abstract 1 

Future flood frequency for the Upper Truckee River Basin (UTRB) is assessed using non-2 

stationary extreme value models and design life risk methodology.  Historical floods are 3 

simulated at two UTRB gauge locations, Farad and Reno using the Variable Infiltration 4 

Capacity (VIC) model and non-stationary Generalized Extreme Value (GEV) models. The 5 

non-stationary GEV models are fit to the cool season (November-April) monthly maximum 6 

flows using historical monthly precipitation totals and average temperature. Future cool 7 

season flood distributions are subsequently calculated using downscaled projections of 8 

precipitation and temperature from the Coupled Model Intercomparison Project Phase-5 9 

(CMIP-5) archive.  The resulting exceedance probabilities are combined into a single risk 10 

metricto calculate the probability of a flood of a given magnitude occurring over a specific 11 

time period (referred to as flood risk)  using recent developments in design life risk 12 

methodologies.  This paper provides the first end-to-end analysis using non-stationary GEV 13 

methods coupled with contemporary downscaled climate projections to demonstrate how 14 

thethe evolution of flood risk profile of existing infrastructure evolves with time over its 15 

typical design life periods of existing infrastructure that is vulnerable to flooding (e.g. dams, 16 

levees, bridges, and sewers). Results show that flood risk increases significantly over the 17 

analysis period (from 1950 through 2099). This highlights the potential to underestimate flood 18 

risk using traditional methodologies that don’t account for time varying risk. Although model 19 

parameters, for the non-stationary method are sensitive to small changes in input parameters, 20 

analysis shows that the changes in risk over time are robust. Overall, flood risk at both 21 

locations (Farad and Reno) is projected to increase 10-20% between the historical 22 

period1950-1999 and the future period 2000-2050 and 30-50% between the same historical 23 

period and 2050-2099. 24 

25 
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1 Introduction 1 

 “Stationarity is Dead” [Milly et al., 2008], yet the standard practice for flood frequency 2 

analysis is predicated on this very assumption. This discrepancy has not gone unnoticed 3 

within the scientific community and there is a growing body of research investigating, (1) 4 

trends in observed floods [e.g. Franks, 2002; Vogel et al., 2011], (2) ways to incorporate non-5 

stationarity into frequency distributions [e.g. Katz and Neveau, 2002; Raff et al., 2005] and 6 

(3) methodologies to interpret risk and approach design within a non-stationary framework 7 

[e.g. Mailhot and Duchesne, 2010; Rootzen and Katz, 2013; Salas and Obeysekara, 2014].  8 

Both the frequency and intensity of extreme events are particularly susceptible to change 9 

because small shifts in the center of a distribution can potentially have much larger impacts 10 

on the tails [Meehl et al., 2000]. Regardless of climate change, naturally occurring long-term 11 

climate oscillations, such as ENSO, have been linked to low frequency variability in flood 12 

frequency [e.g. Cayan et al., 1999; Jain and Lall, 2001]. Anthropogenic climate change has 13 

the potential to amplify natural climatic variability throughout the this variability by 14 

introducing additional non-stationarity to interconnected climate and hydrologic systems.   15 

Already trends in many hydrologic variables have been observed across the Western United  16 

states (as well as around the world). For example, clear increases in temperature have been 17 

measured across the west [e.g. Cayan et al., 2001; Dettinger and Cayan, 1995].  Precipitation 18 

trends are more variable. Regonda et al. [2005] found increased total winter precipitation (rain 19 

and snow) from 1950 to 1999 in many sites across the western United States, although 20 

springtime snow water equivalent (SWE) was shown to decline over the same period. 21 

Similarly, Mote et al. [2005] analyzed snowpack trends in western North America, and 22 

reported widespread declines in springtime SWE in much of the North American West over 23 

the period 1925–2000, especially since the middle of the 20th century.  They attribute this 24 

decline predominantly to climatic factors such as El Niño–Southern Oscillation (ENSO), 25 

Pacific Decadal Oscillation (PDO), and positive trends in regional temperature.  Easterling et 26 

al. [2000] summarized previous studies on precipitation trends. They note that trends vary 27 

from region to region, but in general, increases in precipitation have occurred 28 

disproportionately in the extremes. Several subsequent studies have observed increasing 29 

trends in extreme precipitation events, although the changes are relatively small [Gutowski et 30 

al., 2008; Kunkel, 2003; Madsen and Figdor, 2007]. 31 
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Similarly, researchResearch has also demonstrated increasing trends in flood frequency in 1 

some regions.  Walter and Vogel [2010] and Vogel et al. [2011] observed increasing flood 2 

magnitudes across the United States using stream gauge records, and Franks [2002] showed 3 

statistically significant increases in flood frequency since the 1940s.  Still, non-stationary 4 

flood behaviour flooding trends havehas been historically difficult to quantify and there has 5 

been some debate on the significance of flood frequency trends. For example, Hirsch [2011] 6 

noted both increasing and decreasing trends in annual flood magnitudes in different regions of 7 

the US. Also, Douglas et al. [2000] found that if one takes into account spatial correlation, 8 

many previous findings of flood trends are not statistically significant. Difficulty in 9 

diagnosing flood trends is not unique to the Western US;  a literature review of historical 10 

flood studies across Europe also found spatial variability in flood trends [Hall et al., 2014]. 11 

Even when significant trends are found, the complexity of flooding mechanisms that depend 12 

on many variables and can vary regionally and seasonally makes it difficult to attribute trends  13 

to specific causes.  Illustrating the importance of seasonality, Small et al. [2006] showed that 14 

if a high precipitation event occurs in the fall, as opposed to the spring, it will contribute to 15 

baseflow rather than inducing flooding.  Also, urbanization can drastically increase the 16 

impervious area of a basin, thus amplifying floods by decreasing infiltration and speeding 17 

runoff. The largest flood magnitude increases observed by both Walter and Vogel [2010] and 18 

Vogel et al. [2011] were in basins with urban development. The influence of development 19 

trends on flood behavior can be difficult to separate from other variables. For example, 20 

Villarini et al. [2009] could not conclusively tie reduced stationarity (i.e. changes in mean 21 

and/or variance) in peak discharge records to climate change because of variability in the 22 

other factors that influence runoff.  23 

Merz et al. [2012] note that attributing changes in flood hazard is complicated by the complex 24 

array of drivers that can include; land cover change and infrastructure development as well as 25 

natural climate variability and change.  Here we Ssetting aside the impacts of development 26 

and management practices and focus on the role of climate change. , However, even with this 27 

simplification, future extremes can still be influenced by a number of interrelated variables 28 

such as changes in temperature, precipitation efficiency, and vertical wind velocity [Mullet et 29 

al., 2011; O'Gorman and Schneider, 2009]. Analyzing global circulation model (GCM) 30 

outputs Pierce et al. [2012] found total changes in precipitation to be small relative to the 31 

existing variability but noted larger seasonal changes in storm intensity and frequency.  32 
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Despite uncertainty, many studies agree that warming will increase the potential for intense 1 

rainfall [Allan, 2011; Gutowski et al., 2008; Pall et al., 2011; Sun et al., 2007]. Furthermore, 2 

Min et al. [2011] found that some GCM simulations may underestimate extreme precipitation 3 

events in the northern hemisphere. Indicating that projections of extreme precipitation based 4 

on GCM outputs may be conservative.   5 

Studies have also predicted increases in flood frequency and magnitude with a warmer 6 

climate especially in snowmelt dominated basins [e.g. Das et al., 2011].  As with historical 7 

flooding trends, translating forecasted climate variables to flood frequency is a complex 8 

process and several methodologies have been used.  Downscaled GCM climate forcings can 9 

be used to drive hydrologic models and simulate future floods directly [e.g. Das et al., 2011; 10 

Vogel et al., 2011; Raff et al., 2009].  With this approach traditional stationary flood 11 

frequency distributions can be fit to the simulated floods to calculated return periods of 12 

interest [e.g. Raff et al., 2009; Vogel et al., 2011].  This allows for return periods and flood 13 

magnitudes that change over time, as with the flood magnification and recurrence reduction 14 

factors calculated by Walter and Vogel [2010] and Vogel et al. [2011]. However, these 15 

approaches still assume flood mechanisms are stationary over the time period that the 16 

distribution is fit to.   17 

This limitation can be overcome using non-stationary generalized extreme value (GEV) 18 

distributions where the model parameters like mean (i.e. location) and spread (i.e. scale) are 19 

allowed to vary as a function of time [e.g. Gilroy and McCuen, 2012] or with relevant 20 

covariates [e.g. Griffis and Stedinger, 2007; Richard W Katz et al., 2002; Towler et al., 2010]. 21 

This approach has been gaining popularity for flood frequency estimation. Using this 22 

technique it is not necessary to simulate future floods directly by forcing a hydrologic model 23 

with projected hydroclimate fields (e.g. precipitation and temperature). The parameters of the 24 

GEV model, like mean and spread change with time (i.e. non-stationary) based on a linear 25 

combination of covariates like precipitation and temperature. Historical relationships between 26 

extreme events and hydroclimate fields are used to identify the weighting of covariates. These 27 

weights are then used to estimate parameters for future time periods using precipitation and 28 

temperature outputs from hydroclimate projections. For example, Gilroy and McCuen [2012] 29 

used non-stationary GEV models of flood frequency that incorporated a linear trend in the 30 

location parameter.  Similarly, Griffis and Stedinger [2007] and Towler et al. [2010] used 31 

climate variables as covariates for the distribution parameters.    32 
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While, non-stationary flood forecasting methods provide flexibility to analyze flood 1 

variability, they are also incongruent with many of the traditional risk metrics used in water 2 

resources planning.  Historically, most flood infrastructure that is vulnerable to flooding (e.g. 3 

dams, levees, sewers and bridges) has been designed to withstand flooding of specified return 4 

period (e.g. the 100 year flood). However, these calculations rely on a flood distribution 5 

which is assumed to remain stationary with time, and hence the return period design metric is 6 

also assumed to be stationary.  When non-stationary methods are used, the underlying flood 7 

distributions, and associated return periods, vary with time. Thus, under a non-stationary 8 

climate, the notion of static return period flood event (e.g., 100-year flood, 200-year flood, 9 

etc.) is no longer a valid concept. 10 

To address this issue, Rootzén and Katz [2013] introduced the concept of design life level to 11 

calculate the risk of a given flood magnitude occurring over a specified time period. Salas and 12 

Obeysekera [2014] further demonstrated the relevance of this technique to hydrologic 13 

community using flood frequency examples. However, this methodology still has yet to 14 

receive widespread attention within the hydrologic community. Here, we present a non-15 

stationary flood frequency assessment for the Upper Truckee River Basin (UTRB) using 16 

contemporary downscaled climate projections and the non-stationary design life level 17 

technique introduced by Rootzén and Katz [2013] to quantify flood risk.   (Note that 18 

following the convention of Rootzén and Katz [2013] we use the term flood risk to refer to 19 

the probability of an extreme event occurring and not as a quantification of expected losses).  20 

While the methodology used for this analysis is previously established, Tthis paper provides 21 

an the first end-to-end demonstration of non-stationary GEV analysis coupled with 22 

contemporary downscaled climate projections (specifically, downscaled climate projections 23 

from the Coupled Model Intercomparison Project Phase-5 (CMIP-5)), to quantify how the 24 

risk profile of existing infrastructure, designed on the basis of a specified flood event,flood 25 

risk profiles may evolve in the Truckee river basin over the next century.  The flood analysis 26 

presented here is part of a larger study on climate change impacts in the Truckee River basin 27 

(Reclamation, 2010). This project is supported by local water managers and conducted by the 28 

Bureau of Reclamation through the Water Smart Basin Studies Program authorized under 29 

U.S. Public Law 111-11, Subtitle F (SECURE Water Act).  The intent of this work is 1) to 30 

investigate potential flood risk changes over time in the Truckee basin and 2) to demonstrate 31 

the applicability of non-stationary techniques in a regional flood analysis to make these tools 32 

more accessible to the hydrologic community. s with time over its design life. 33 
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The paper is organized as follows.  Section 2 provides background on the study area along 1 

with data sets and models used.  The methodologies of using non-stationary spatial GEV 2 

analysis in conjunction with climate projections and time evolving risk assessment are 3 

described in section 3.  Results and discussions of findings are given in section 4.  Summary 4 

and conclusions from the analysis are presented in section 5. 5 

 6 

2 Background 7 

This section provides background on the study area (2.1), streamflow data and simulations 8 

and validation (2.2) and climate data and models (2.3).  9 

2.1 Upper Truckee River Basin 10 

The Truckee River originates in northern Sierra Nevada Mountains in California (above Lake 11 

Tahoe) and flows northeast to Nevada where it ends in the Pyramid Lake (Figure 1).  The 12 

total basin area is roughly 3,060 7,900 square miles kilometres, however the area upstream of 13 

Reno (1,0672,763 square mileskilometres) provides the majority of the basin’s precipitation 14 

through snowpack.  The focus of this analysis is on the Farad and Reno gauge locations 15 

shown in Figure 1, henceforth referred to as Farad and Reno.  The Farad gauge is located 16 

roughly one mile1.5 kilometers downstream of the Farad hydropower plant and provides a 17 

cumulative measure of all of the upper basin tributaries [Stokes, 2002]. Most of the available 18 

water supply is generated upstream of the Farad Gauge [USACE, 2013a].   The Reno gauge is 19 

located downstream of Farad in the heart of Reno and is a good reference point for analyzing 20 

urban flooding. The intervening area between the Farad and Reno gauges is small, roughly 21 

350 square kilometers and there are only two small tributaries that enter the main stem 22 

between Farad (Reno Dog Creek and Hunter Creek). 23 

 Flooding in the upper Truckee generally takes one of three forms. Some of the most 24 

severe floods have resulted from heavy rain events covering most of the basin and lasting one 25 

to six days.  These storms generally occur from November to April and may be linked to 26 

Atmospheric Rivers [Ralph and Dettinger, 2012].  Snowmelt floods are also common from 27 

April to July. Although, snowmelt floods transmit large volumes of water for longer 28 

durations, they generally don’t cause damage because they are well predicted and can be 29 

regulated with upstream reservoirs. Finally, in late summer (July – August) local cloudbursts 30 
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can generate high intensity precipitation over small areas.  These storms can cause local 1 

damage to tributaries but generally don’t have a large impact on the main stem of the Truckee. 2 

 In the twentieth century, nine major floods have been recorded on the Truckee River, 3 

all of which occurred from November to April [USACE, 2013b]. The flood of record 4 

occurred in January of 1997 and was caused by warm rain falling on a large snowpack 5 

(~180% of normal) and melting nearly all of the snowpack below 7,000 feet [USACE, 6 

2013b]. The floods of 1950, 1955 and 1963 were some of the most damaging due to the 7 

development of Reno along the river during this time period [USACE, 2013b]. Subsequent 8 

flood damages have been, at least partially, mitigated by the implementation of flood 9 

infrastructure starting in the 1960s.  10 

2.2. Streamflow data and simulationsdata 11 

 Streamflow has been measured at both the Farad and Reno USGS gauges. However, 12 

gauge flows are not readily applicable to flood frequency analysis due to the presence and 13 

development of water supply and flood control structures upstream.  For example, upstream 14 

of Reno there are four dams with flood control capabilities (i.e.  Martis Creek Dam, Prosser 15 

Creek Dam, Stampede Dam and Boca Dam) in addition to Tahoe, Donner and Independence 16 

Lakes which provide incidental flood regulation.  Unregulated flow estimates were developed 17 

by the US Army Corps of Engineers (USACE) but are only available for historical flood 18 

periods [USACE, 2013b]. Therefore, we simulate unregulated flows from 1950 to 1999 using 19 

the Variable Infiltration Capacity (VIC) model and validate results using the available 20 

unregulated flow estimates.    21 

A brief summary of the VIC model is provided here, and for additional technical 22 

specifications the reader is referred to Liang et al. [1994], Liang et al. [1996] and Nijssen et 23 

al. [1997].  VIC is a gridded hydrologic model designed to simulate macro scale (spatial 24 

resolution in greater than 1mile) water balances using parameterized sub-grid infiltration and 25 

vegetation processes.  In the VIC model, surface water infiltrates to the subsurface based on 26 

conductivity, and soil moisture is distributed vertically through three model layers extending 27 

up to about 2 meters below the land surface.  At the surface, potential evapotranspiration 28 

(PET) is simulated using the Penman Monteith PET model [Maidment et al., 1993]. Surface 29 

flows are determined in a two-step process. First, the water balance for each grid cell is 30 

calculated independently to determine surface runoff and baseflow, and subsequently runoff 31 
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from each cell is routed to river channels and outlets using a predefined routing network. Here 1 

we drive VIC with daily weather forcings including precipitation, maximum and minimum 2 

temperature and wind speed.  Additional climate variables such as short and long wave 3 

radiation, relative humidity and vapor pressure are calculated within the model.  The VIC 4 

model is well documented and has already been used in a number of hydrologic and climate 5 

change studies [e.g. Christensen and Lettenmaier, 2007; Christensen et al., 2004; 6 

Gangopadhyay et al., 2011; Maurer et al., 2007; Payne et al., 2004;  Reclamation, 2011; Van 7 

Rheenen et al., 2004]. Recently VIC has also been applied for real time flood estimation [Wu 8 

et al., in press].  9 

The VIC model used for this analysis was developed and calibrated as part of the Bureau of 10 

Reclamation’s (Reclamation) West Wide Climate Risk Assessment (WWCRA). The 11 

WWCRA VIC model encompasses the western US.  Streamflows were evaluated at 152 12 

locations primarily from the USGS Hydroclimatic Data Network [Slack et al., 1993] and 43 13 

additional locations of importance to Reclamations water management activities.  Among the 14 

evaluated locations are several in the Truckee basin including the Truckee River at Farad. For 15 

details on model calibration and development we refer the reader to Reclamation [2011] and 16 

Gangopadhyay et al. [2011]. While we do not discuss model calibration further here, in the 17 

subsequent sections Wwe provide additional model verification for flood simulation in the 18 

UTRB. in subsequent sections.  19 

2.3 Climate data and models 20 

As noted in the previous section, the VIC model requires daily climate inputs to drive water 21 

balance simulations.  We use the national 1/8° (roughly 7 miles) gridded dataset from Maurer 22 

et al. [2002] for historical (i.e. 1950-1999) climate observations. Additionally, monthly total 23 

precipitation and average temperature were aggregated for the upstream area of each gauge 24 

for every month of the flood season (i.e. November through April). These values are used as 25 

covariates for fitting non-stationary GEV models as discussed in Section 3. 26 

Future gridded precipitation and temperature values from 2000 to 2099 were generated from 27 

Global Circulation Model (GCM) outputs. We analyzed 234 projections generated by 37 28 

different climate models from the CMIP-5 (Coupled Model Intercomparison Project Phase 5) 29 

archive [Taylor et al., 2012]. Projections span four Representative Concentration Pathways 30 

(RCPs) for greenhouse gas emissions. Each GCM projection includes monthly gridded 31 
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precipitation and temperature from 1950 to 2099 at a coarse grid resolution ranging between 1 

~4065-160 250 mileskilometers.   2 

The Bureau of Reclamation in collaboration with other federal and non-federal partners has 3 

developed a monthly archive of downscaled CMIP-5 projections at the finer 1/8th degree 4 

resolution using the two-step BCSD (Bias Correction and Spatial Disaggregation) algorithm 5 

described in Wood et al. [2004].  For this analysis we extended the existing hydrology archive 6 

to cover the UTRB domain for all 234 BCSD CMIP-5 climate projections following the steps 7 

detailed below. A subset of the CMIP-5 hydrology projections is publically accessible 8 

through the "Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections" archive at 9 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. Additional documentation on the 10 

archive and the methodology is provided in Reclamation [2014]. 11 

The downscaled climate variables include monthly total precipitation, monthly maximum and 12 

minimum temperatures and monthly average temperature.  Before applying the BCSD 13 

algorithm all the 234 climate projections were first gridded from their respective native GCM 14 

scale to a common grid of 1° latitude by 1° longitude.  Similarly, the observed 1/8° degree 15 

gridded dataset [Maurer et al., 2002] was aggregated to the coarser 1° latitude by 1° longitude 16 

grid.  Next, for a given climate variable, GCM, and location (1° latitude by 1° longitude grid 17 

cell), the bias correction (BC) step uses quantile mapping between monthly CDFs 18 

(Cumulative Distribution Functions) of historical simulated and historical observed values to 19 

identify biases over a common climatological period – in this case, 1950-1999.  The projected 20 

future climate variables from the same GCM at the same location are then bias corrected 21 

using the identified bias.  The result of bias-correction is an adjusted GCM dataset (20th 22 

century and 21st century, linked together) that is statistically consistent with the observed data 23 

during the bias-correction overlap period (i.e., 1950-1999 in this application).  Note that the 24 

BC step happens at the coarse 1° latitude by 1° longitude grid.  Next, adjustment factors that 25 

are multiplicative (ratio of bias-corrected GCM to observed) for precipitation and an offset 26 

(bias-corrected GCM minus observed) for temperature are calculated for each of the 1° 27 

latitude by 1° longitude grid cell [Reclamation, 2013].  These adjustments are then spatially 28 

disaggregated (SD) to a 1/8° latitude by 1/8° longitude grid.  Finally, the adjustments are 29 

applied (multiplicative for precipitation; additive for temperature) to the finer resolution, 1/8° 30 

degree gridded observed precipitation and temperature fields [Maurer et al., 2002] to derive 31 

the 1/8° degree gridded BCSD climate projections.  32 
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 1 

3 Methodology 2 

This section describes the methodology used for flood frequency analysis in the UTRB.  3 

Discussion is divided into two sections. First, we describe the process of extreme value 4 

modeling using non-stationary GEV distributions (Section 3.1). Second, the methodology for 5 

design life level risk assessment is detailed (Section 3.2) 6 

3.1  Extreme value modelingmodelling 7 

Extreme values analysis (EVA) deals with the examination of the tail (i.e. extreme) values of 8 

a distribution (as opposed to standard approaches which are generally more concerned with 9 

the average system behaviour). EVA methods are standard practice for flood frequency 10 

analysis because they are designed to capture the behaviour of low frequency high impact 11 

events.  Furthermore, in climate change studies Katz [2010] points out that traditional 12 

approaches are not sufficient and extreme value statistics are needed. For this analysis, we use 13 

the Generalized Extreme Value (GEV), which is commonly applied to flood frequency 14 

analysis to model block maxima from streamflow time series [e.g. Katz et al., 2002; Towler et 15 

al., 2010]. The cumulative distribution function (CDF) for the GEV is as follows: 16 

 17 

                                                        18 

(1) 19 

Where z is the streamflow maxima value of interest and θ is the parameter set (μ, σ, ξ) used to 20 

specify the distribution such that the center is given by the location (μ), the spread by the 21 

scale(σ)  and the behavior of the upper tail by the shape (ξ). Based on the shape parameter, the 22 

GEV can take one of three forms: Gumbel, or light tailed, when ξ is zero; Fréchet, or heavy 23 

tailed, if ξ is positive; and Weibull, or bounded, when ξ is negative. Following the 24 

methodology of Towler et al. [2010], GEV parameters (μ, σ, ξ) are fitted using the Maximum 25 

Likelihood Estimation (MLE) technique. 26 

In traditional stationary flood frequency analysis, it is assumed that observations are 27 

independent and identically distributed (IID), and therefore model parameters (μ, σ, ξ) are 28 
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derived from the observed flood record and are assumed to remain constant across the period 1 

of record and into the future. Here, we introduce non-stationarity into the distribution by 2 

allowing location and scale parameters to change with relevant covariates. Such that: 3 

                                                                   (2) 4 

                                                                   (3) 5 

Where the β variables represent the coefficients, and the x variables are the covariates. In 6 

keeping with previous studies the shape parameter, which is the most difficult to estimate, is 7 

assumed constant [e.g. Obeysekara and Salas, 2014; Salas and Obeysekera, 2013; Towler et 8 

al., 2010].  9 

 Some previous studies [e.g. Salas and Obeysekera, 2013; Stedinger and Griffis, 2011] 10 

developed non-stationary location and scale parameters that are explicitly dependent on time. 11 

This approach requires first, the derivation of temporal flooding trends and second, the 12 

projection of this trend into the future. Here we derive location and scale parameters based on 13 

time varying meteorological variables (i.e. temperature and precipitation). With the approach 14 

used here, temporal trends in flooding are introduced as a function of temporal variability in 15 

precipitation and temperature but no explicit trend is specified apriori.   16 

To determine the optimal set of covariates for a non-stationary model, additional statistical 17 

methods must be employed. The Akaike Information Criterion [AIC;  Akaike, 1974], given in 18 

Equation 4, weighs the goodness of fit for a model with the level of complexity.  19 

                                                                                   (4) 20 

Here nllh is the negative log likelihood estimated for a model fitted with K parameters.  In 21 

this formulation, higher ranked models have lower AIC scores. For this analysis the best 22 

model is selected using pairwise comparisons of AIC NLLH scores following the methods of 23 

Salas and Obeysekera [2014] and others. Models are compared using the deviance statistic 24 

(D) which is equal to twice the difference in NLLH scores. and Deviance statistics are then 25 

tested for significance tests based on a chi-squared distribution with the degrees of freedom 26 

set equal to the difference in the number of parameters (K) between models.  P-values less 27 
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than 0.05 indicate a to ensure statistically significant (threshold alpha of 0.05) differences 1 

between scoresimprovement in model performance. 2 

Following the methodology described above, GEV distributions are fit to time series of 3 

maximum monthly historical (1950-1999) one day simulated stream flows (detailed in 4 

Section 2) for the cool season.  Although, there are some unregulated historical flow 5 

estimates, the available dataset only covers six storms. Therefore, to be consistent we fit our 6 

model only to the simulated flows.  The dataset includes maximum daily streamflows for each 7 

month in the cool season defined by the block of months November through April, as opposed 8 

to the more traditional single value per year. This technique was also used by Towler et al. 9 

[2010] who noted that expanding the dataset helps avoid the problems associated with using 10 

maximum likelihood estimate on small datasets. However, as noted by Towler et al. [2010], 11 

when multiple values are used per year the calculated probabilities must be adjusted 12 

appropriately to derive annual values.  Floods during the cool season generally last between 13 

one and four days. Here we focus on the one day flood peak, as opposed to multi-day flood 14 

volumes, because this is a representative metric for flood damage. Additionally, using the one 15 

day flood maximum focuses the analysis on flood magnitude rather than duration.  16 

 Two covariates were considered, monthly total precipitation (P) and mean temperature (T) 17 

averaged over the upstream area for each gauge.  As discussed in Section 2, precipitation is a 18 

relevant covariate because many of the floods in this season are rain on snow events or 19 

extreme rainfall events. Similarly, temperature drives snowmelt and is an important 20 

contributor to UTRB flood events (e.g., January 1997 event).  Both stationary and non-21 

stationary GEV models were evaluated using the extRemes package [Gilleland and Katz, 22 

2011] in the ‘R’ statistical computing environment.  23 

3.2  Time varying risk assessment 24 

Traditional flood planning relies on the concept of return periods, which are usually 25 

calculated as the inverse of annual exceedance probability for a given flood magnitude, 26 

assuming a stationary distribution. For example, the log-Pearson Type III (LP3) distribution 27 

described by the Interagency Advisory Committee on Water Data Bulletin 17B [IACWD, 28 

1982].  However, when non-stationary models are used, the distribution parameters, and 29 

hence the exceedance probabilities vary with time. Table 1 compares various flood 30 

probability calculations between stationary and non-stationary approaches [Salas and 31 
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Obeysekera, 2014].  As shown here, when the flood distribution is stationary, the return 1 

period for a given flood magnitude is constant and relies only on the exceedance probability 2 

(4a). However, if distribution parameters are non-stationary then the return period will vary 3 

based on the period of interest (4b).  This concept is easily extended to flood risk (here 4 

defined as the probability of a flood of a given magnitude occurring, not expected loses). In 5 

traditional analyses, the risk of a flood occurring in a given period depends only on the length 6 

of the period (5a), while in a non-stationary analysis risk depends on both the length of time 7 

considered and the time period itself (5b). This is the concept of design life level proposed by 8 

Rootzén and Katz [2013].  Here, we adopt the design life level risk framework given in (5b) 9 

and calculate the risk of flood for a range of future periods and design life lengths.  10 

 11 

4 Results and Discussion 12 

Results are grouped into three sections. First we present the development of the non-13 

stationary GEV models (4.1). Next the models are verified by comparing simulated results to 14 

observations (4.2). Finally we present future projections of flood frequency analysis (4.3).  15 

4.1 Extreme value model development 16 

A suite of models were fit to the logarithms of block (cool season, November-April) maxima 17 

flows (simulated by the calibrated VIC model) with different non-stationary parameter 18 

combinations. The model structures tested include stationary, non-stationary location, non-19 

stationary scale and non-stationary location and scale. For all model structures model fit was 20 

tested using one or both covariates (i.e. precipitation (in) and temperature (F)).  Models were 21 

also tested using the block maxima flows directly; however, performance was improved 22 

considerably with the logarithmic transformation.  Validation of the VIC simulated flows as 23 

well as the GEV models are presented in the following section.  24 

Table 2 summarizes negative log-likelihood (NLLH) and Akaike Information Criterion (AIC) 25 

scores scores for each model configuration. The deviance statistic (D)  and the p-values of for 26 

pairwise comparisons of AIC NLLH scores and the p-values calculated for each D based on a 27 

chi – squared distribution are also provided (Note that the bottom rows provides the number 28 

of parameters in each model and the model number that was used for the pairwise 29 

comparisons).  As shown here the models with non-stationary location and scale relying on 30 

both precipitation and temperature as covariates have the best (i.e. lowest) NLLH scores for 31 
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both stations, and are a statistically significant improvement over the other models listed in 1 

Table 2.  Figure 2 plots, stationary and non-stationary location and scale models with 2 

histograms of observed flow for both gauges. Qualitatively, the stationary model fits well 3 

with the center of the distribution but overestimates the tails. The non-stationary models 4 

overestimate the median values but are a closer fit to the extreme values.  5 

The coefficients for equations 2 and 3 for the selected models are provided in Table 3.   Using 6 

the coefficients determined above, the location and scale and shapeparameters are calculated 7 

for every climate projection (i.e. 234) and flood season month (i.e. November to April 1950 to 8 

2099) based on the downscaled precipitation and temperature values detailed in Section 2 9 

(Note that the scale parameter remains fixed). Thus, for every future month there is a separate 10 

GEV curve for each of the 234 climate projections. 11 

To address uncertainty, models of the same form (i.e. non-stationary location and scale with 12 

precipitation and temperature as covariates) were also fit to the historical simulation period 13 

(1950-1999) using downscaled precipitation and temperature from all 234 climate projections. 14 

Because each climate projection seeks to reproduce historical behaviour over the historical 15 

period, the variability between projections in this time frame is a measure of uncertainty in 16 

model coefficients given the same physical system. This differs from the variability between 17 

climate projections in future periods (i.e. after 1999) which is a measure of uncertainty in 18 

future forcing conditions. Table 3 shows the interquartile range of model coefficients 19 

calculated from the 234 historical GCM simulations. 20 

Using these parameters the return period of the design flood at Reno (37,600cfs) was 21 

calculated for every set of model parameters using observed historical precipitation and 22 

temperature. The observed model estimates a return period of 45 years while the interquartile 23 

range (IQR) using the simulated model parameters (i.e., the model parameters estimated from 24 

each of the 234 historical GCMs) with observed precipitation and temperature varies from 28 25 

to 247 years. Note that the return period of 45-years estimated from observed meteorology is 26 

within the IQR of 28 to 247 years.  Although the IQR is large it should be kept in mind that 27 

some of the uncertainty in this range is a result of the downscaling methodology.  The 28 

monthly BCSD algorithm used for downscaling GCM climate only constrains the monthly 29 

precipitation and temperature statistics (total precipitation and mean monthly temperature) 30 

over the historical 1950-1999 period.  Furthermore, uncertainty is introduced when monthly 31 

total precipitation and mean temperature are translated to daily values.  Thus the estimated 32 
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IQR implicitly captures downscaling uncertainties, in addition to explicitly representing 1 

parameter uncertainty. The need to consider uncertainties at each and every step of the 2 

process starting with, for example, downscaling methods (statistical, dynamical or some 3 

combination of statistical and dynamical methods) is a topic of ongoing research. 4 

4.2 Hydrologic and GEV model validation 5 

Because we utilize modeled VIC flows for flood analysis there are two considerations for 6 

model validation. First, we compare VIC simulated one day flood events to the observed 7 

ungauged unregulated flow estimates (i.e. validating that our calibrated VIC model is 8 

accurately simulating flood flows). Second, we compare the GEV modeled floods to the VIC 9 

simulated flows and the observed flow estimates (i.e. validating that the GEV models we fit to 10 

the simulated data match both the observed flows and the VIC simulated flows).  11 

Although, ungauged unregulated flows are not available for the entire period of record, one-12 

day maximum ungauged unregulated flow estimates are available at Reno for six historical 13 

floods [USACE, 2013b]. Figure 3 plots the observed flow (blue triangle) with the one-day 14 

VIC flow that was simulated using historical observed forcings from Maurer et al. [2002] (red 15 

triangle), and a boxplot of the non-stationary GEV distribution for the same month generated 16 

using the same monthly historical precipitation and temperature [i.e. Maurer et al., 2002].  17 

Comparing first the one day maximum VIC simulated flow with the observed flow there is 18 

generally good agreement between the twothe maximum percent difference between the 19 

natural logarithm of simulated and observed flows is 12%. , although tThere does appears to 20 

be a slight positive bias in the VIC simulations (i.e. VIC simulated flows are greater than 21 

observed flood flows).  Still, the simulated flood values (red circles) generally fall within the 22 

interquartile range of the GEV distribution, except in the case of the February 2, 1963 flood 23 

and the January 2, 1997 flood.  24 

In these instances the VIC simulation matches very closely (percent difference in the natural 25 

logarithm of flows are 0.5% and 1.2% respectively) with the observed flow, however, the 26 

GEV model underestimates the events. This discrepancy is caused by the flood timing.  In 27 

both cases the flood occurs at the very beginning of the month. In the GEV framework the 28 

precipitation and temperature are used as covariates for the flow of the same month. However, 29 

for these storms flooding is linked to precipitation and temperature in the month of flooding 30 

and the preceding month. Therefore, the GEV model simulates the flood in the preceding 31 
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month and/or underestimates the flood magnitude if the precipitation is split between two 1 

months. While this is a limitation for matching individual historical events, primarily timing, 2 

it is not a major concern in future projections.  This is because, for the purposes of risk 3 

calculations, it really doesn’t matter in which month the GEV model simulates the flood event 4 

as long as it realistically captures flood magnitude behavior.  5 

Comparing the GEV model distribution to the other observed floods (blue triangles), the 6 

distribution encompasses the observed flood magnitude (within the 5th and 95th percentile) 7 

for all except for two of the floods (1955 and 1963). For 1963, the VIC simulated and 8 

observed floods are in close agreement (the difference between the natural logarithm of 9 

simulated and observed flows is the smallest of any event at 0.5%) and the discrepancy with 10 

the GEV model is explained byconsistent with the flood timing described above. The 1955 11 

flood resulted from 38 cm 15 inches of melted snow combined with 33 cm 13 inches oof 12 

rainfall over a three day period [O’Hara et al., 2007]. In the historical forcings used to drive 13 

the VIC model December 1955 has 75 cm 29.6 inches of precipitation which is the highest 14 

December precipitation value in the historical period. In this instance the VIC simulated flow 15 

falls within the interquartile range of the GEV model, is in good agreement with the VIC 16 

simulated flow but the high monthly precipitation results in an overestimate of the flood 17 

magnitude. Again, this is a limitation of using monthly forcings because the total December 18 

precipitation is used as a covariate and not a storm specific value though in many cases the 19 

storm specific values constitute the bulk of the monthly precipitation totals.  20 

Figure 4 is a time series plot of VIC historical simulated flow along with the median and 5th 21 

to 95th percentile flow of the GEV model. As would be expected from the model fit 22 

demonstrated in Figures 2 and 3, Figure 4 shows that the VIC simulated flows are generally 23 

close to the median GEV modeled flow and nearly always fall within the 5th to 95th 24 

percentile range. Although there are differences in the simulation of individual events 25 

discussed above, the median simulated flood magnitudes are only greater than the maximum 26 

observed flood in two instances. 27 

In general, Figures 3 and 4 show that wethe VIC simulated flows match closely with the 28 

observed floods (based on percent difference in the natural logarithm of flows) and that the 29 

interquartile range of the GEV distributions encompass the observed and simulated flows in 30 

most instances.  note good agreement between simulated and observed flood magnitudes even 31 

though Figure 3 does illustrates some of the complications in matching individual events, 32 
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however based on analysis of the driving forces behind each individual event we are able to 1 

document the sources of these discrepancies. Based on this analysis we conclude that the 2 

model behaviour is a reasonable match with the natural system.  3 

. Figure 4 is a time series plot of VIC historical simulated flow along with the median and 5th 4 

to 95th percentile flow of the GEV model. As would be expected from the model fit 5 

demonstrated in Figures 2 and 3, Figure 4 shows that the VIC simulated flows are generally 6 

close to the median GEV modeled flow and nearly always fall within the 5th to 95th 7 

percentile range. Although there are differences in the simulation of individual events 8 

discussed above, the median simulated flood magnitudes are only greater than the maximum 9 

observed flood in two instances. This demonstrates that the model behavior is a reasonable 10 

match to the natural system.  11 

4.3  Future flood risk 12 

Future flood risk is calculated using equation (5b) from Table 1. For the first part of this 13 

analysis we define ‘flood’ as one-day flow exceeding 1,065 cms (37,600 cfs). This is the 14 

maximum historical ungauged unregulated flow at Reno from the January 2, 1997 event and 15 

is considered to be the design flood for flood protection infrastructure design.  For each 16 

simulation month (1950-2099 November –April) exceedance probabilities are calculated for 17 

every climate projection (234 in total) using the selected non-stationary GEV models from 18 

Table 3 (fit to the historical observations) and the projected monthly precipitation and 19 

temperature. As detailed in the section 3.2, when exceedance probabilities are time dependent, 20 

the flood risk (refer to equation 5b, Table 1) is a function of both the length of the design life 21 

and the period of operation. Figure 5 plots the risk of flood versus project life for three time 22 

periods, 1950 to 1999, 2000 to 2049 and 2050 to 2099. In other words this is the risk of a 23 

flood exceeding 1,065 cms 37,600 cfs in the next n years if you are standing in 1950, 2000 or 24 

2050. The median and interquartile ranges show the distribution of the 234 climate 25 

projections simulated.  Here we use the interquartile range, as opposed to the 5th and 95th 26 

percentile, to focus on the central tendencies of each time period and not the variability 27 

between projections. Note that the ranges presented here express the variability between 28 

climate models. Uncertainty of the VIC model is not investigated directly here. For more 29 

detailed analysis on uncertainty in VIC simulations the reader is referred to Elsner et al. 30 

[2014].   31 
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For both Farad and Reno there is a clear positive shift in flood risk between the three time 1 

periods. In all cases the median risk for each subsequent time period falls outside the 2 

interquartile range of the preceding time period although the prediction spread for Reno is 3 

greater than Farad. It is important to note that the flood risk is actually higher at Farad than 4 

Reno in both the historical and future periods despite the fact that the observed flow 5 

distributions at the two stations are very similar (refer to Figure2).  This shift between Farad 6 

and Reno is caused by the differences in the shape parameters (refer to Table 3). Farad has a 7 

heavier tailed distribution and therefore flood risks are increased. The sensitivity of the model 8 

parameters (and the associated flood risk) to small differences in the flow and covariate 9 

distributions is further demonstrated by Figure 6.  10 

Figure 6 presents the project life risk from Figure 5 for three project life periods (10, 20 and 11 

30 years). Boxplots show the non-stationary model results for the 234 climate projections 12 

with the different time periods compared side by side. Also, the risk calculated using a 13 

stationary GEV model and a stationary LP3 model (i.e. the distribution prescribed by Bulletin 14 

17B fit using the L-moments [IACWD, 1982]) fit to the historical flow data are plotted for 15 

reference (blue and red dashed lines respectively).  Comparing between these three 16 

approaches (non-stationary GEV, stationary GEV and stationary LP3) provides information 17 

on the sensitivity of results to model choice approach and non-stationary parameters.  For 18 

instance, both stationary models are fit to the same historical simulated flows data (one using 19 

MLE and the other using L-moments) so differences between the stationary lines reflect the 20 

impact of model choice on and fitting approach on estimated risk.  Conversely the stationary 21 

GEV model (blue line) and the historical non-stationary models (grey boxplot) have the same 22 

model form and cover the same time period; the only difference is the addition of covariates 23 

to estimate model parameters.  Thus differences between these two show the effect of model 24 

parameter changes from the non-stationary approach.  Finally, variability between the 25 

boxplots for a given design period demonstrates the evolution of risk over time (i.e. the 26 

impact of climate trends on risk). The latter (i.e. changing risk over time), is the purpose of 27 

this analysis, however before assessing trends over time we must first discuss the impact of 28 

model choice and parameters on risk estimates.  29 

For both of the stationary methods, the risk increases with project life following equation (5a) 30 

from Table 1. The distinction between these lines and the non-stationary approaches is that, 31 

with the stationary approach, a single exceedance probability is calculated for the given flood 32 
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magnitude and this probability is assumed to remain constant throughout the design life. Also, 1 

for both stationary approaches the model is fit directly to the historical one day maximum 2 

flow distribution and no covariates are required (note that stationary models are not fit to the 3 

future time periods because this would require future simulated flows).   Comparing between 4 

the GEV (blue line) and the LP3 (red line) stationary models there is a 10-20% increase in 5 

risk between the two models. This difference is purely a function of model form and 6 

highlights the sensitivity of the risk calculations to model choice.  7 

Contrasting the difference between the stationary (blue line) and the non –stationary GEV for 8 

the historical time period (grey boxplot) illustrates the effect of adding non-stationary 9 

parameters to a given model form. Recall that in both cases the GEV model is fit to the 10 

historical simulated flows. However, for the stationary approach, model fitting results in a 11 

single set of parameters (location, scale and shape) whereas with the non-stationary approach 12 

we derive the shape parameter and a set of coefficients for linear models to determine the 13 

location and scale parameters based on precipitation and temperature values.  Thus, for the 14 

non-stationary approach, different location and scale parameters are calculated for every 15 

historical cool season month and GCM model (234).   16 

Overall, there is close agreement between the stationary (S) and average non-stationary (NS) 17 

location parameters (6.55 S vs. 6.64 NS at Farad and 6.63 S vs. 6.78 NS at Reno). However, 18 

for both gauges the scale parameter is lower with the non-stationary approach (1.30 S vs. 0.94 19 

NS at Farad and 1.28 S vs. 0.96 NS at Reno). At Reno the shape parameter is similar (-0.24 S 20 

vs. -0.27 NS), but at Farad the difference is somewhat larger (-0.24 S vs. -0.18 NS).  21 

Differences in model parameters are reflected in the distance between the stationary GEV 22 

model (blue line) and the median historical non-stationary GEV boxplots (center of the grey 23 

boxplots) in Figure 6. For Reno the stationary line is closer to the historical boxplots. 24 

However, at Farad, the non-stationary boxplots are consistently higher than the stationary 25 

line. The larger differences between the stationary and non-stationary models for Farad result 26 

from changes in the shape parameter between the stationary and non-stationary model fits. 27 

This change demonstrates the sensitivity of model results to changes in model parameters.  28 

As with Figure 5, Figure 6 shows significant increases in risk moving into the future and 29 

subsequently larger differences between the stationary and non-stationary approach. By the 30 

second future period the differences between the stationary and non-stationary models can be 31 

as much as 50% or more. For both gauges difference in risk between the non-stationary and 32 
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stationary approaches grows over time, indicating greater potential to underestimate risk 1 

looking further into the future if non-stationary parameters are not adopted.  2 

Although the figures are not shown here, results were also grouped by RCPs  to analyze 3 

connections between greenhouse gas emission rates and changes in flood risk. We observed 4 

no clear trend in flood risk based on the different RCPs. This indicates that the variability 5 

between GCM model form and initial conditions likely overwhelms the influence of 6 

greenhouse gas emissions when comparing between scenarios. In other words, the variability 7 

between projections within any RCP scenario is larger than the difference between RCP 8 

scenarios. 9 

Given the sensitivity of projected risk to model parameters, an obvious question is whether 10 

increases in risk over time are similarly sensitive. For the 1,065 cms 37,600 cfs flood plotted 11 

in Figure 6, the increased risk with added project life (i.e. 20 years vs. 10 years) is greater 12 

with the non-stationary models than the stationary one at both stations. This is intuitive, given 13 

the increased flood risk with time demonstrated in Figure 5 for the non-stationary models. 14 

Although, Farad has higher risk overall, the relative increase in risk between time periods is 15 

similar between the two stations. For example, the median ten year flood risk increases by 16 

21% for Farad comparing between the first (1950-1999) and second (2000-2049) time periods 17 

compared to 29% for Reno.   18 

Next, analysis is expanded to a range of flood magnitudes. Figure 7 plots the flood risk over a 19 

ten year project life starting in 1950, 2000, and 2050 for flood values ranging from 283 to 20 

1,416 cms (10,000 to 50,000 cfs).  As would be expected the ten year flood risk decreases 21 

with increasing flood rate. The shapes of the curves are slightly different between Farad and 22 

Reno; flood risk decreases more sharply with increased flow at Reno than Farad. Again this 23 

behavior is a function of the shape of the distribution. Despite these differences, both gauges 24 

display clear shifts between time periods similar to Figure 5. Here again, the median risk for 25 

each subsequent period consistently falls outside the interquartile range of the preceding 26 

period.  27 

Changes in the median flood risk (i.e. differences between the solid lines on Figure 7) 28 

between each future period and the historical period are plotted in Figure 8 for both gauges.  29 

As would be expected based on the qualitative differences in Figure 7, the shape of the Farad 30 

and Reno difference curves are slightly different. However, the salient point for this analysis 31 

is that the increased risk between periods is generally within 10% between the two stations. 32 
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Overall the increased risk between the first future period (2000-2050) and the historical 1 

period (1950-1999) is between 10 and 20% for flows from 600 to 1,200 cms 20,000 to 40,000 2 

cfs.  Similarly, the increased risk from the historical period to the second future period (2050-3 

2099) is between 30 and 50%.  Differences for the highest and lowest flows are difficult to 4 

assess because the median is skewed by the upper and lower limits of risk (i.e. 0 and 100%).    5 

 6 

5 Summary and Conclusions 7 

The analysis presented is unique in its incorporation of non-stationary GEV analysis using 8 

CMIP 5 projections and the design life level risk assessment. We present our findings as a 9 

relevant case study and an example application of recent developments in non-stationary 10 

flood assessment.  Lacking sufficient ungauged unregulated flow data we simulate historical 11 

floods using the VIC model. Subsequently we use the simulated floods to fit non-stationary 12 

GEV models with downscaled monthly precipitation and temperature as covariates. Although 13 

there are some discrepancies between individual simulated and observed floods, we 14 

demonstrate that the VIC model adequately captures the range of flood magnitudes. 15 

Furthermore, we show that that the GEV modeled historical floods are in good agreement 16 

with both the VIC simulated floods and the published flood events [USACE, 2013b].   17 

Discrepancies between historical and simulated events often result from the monthly time step 18 

used for covariates. This can affect the ability to model floods that are generated by 19 

precipitation that occurs in two months. Also, because the climate variables are monthly 20 

aggregates, and not event based, large floods can be generated in months with high 21 

precipitation even if that precipitation does not occur in one concentrated event.   Despite 22 

these differences, comparison with historical floods demonstrated that the GEV model does a 23 

good job of encompassing historical flood magnitudes, even if some individual historical 24 

events are not matched exactly.  25 

Using the derived non-stationary GEV models, we generate flood distributions for 234 26 

CMIP5 climate projections from 1950 to 2099. For the historical one-day design flood 27 

magnitude of 37,600 cfs1,065 cms, results show significant increases in the frequency of high 28 

flow events in the future. From a water management standpoint this finding translates directly 29 

to increased flood risk.  For example, we calculate a 21% (29%) increase risk of a 37,600 30 

cfs1,065 cms flood over a 10 year design life for Farad (Reno) from the historical time period 31 

to the first future period, and similar increases from the first future period to the second. 32 
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Increased risk between time periods is also relatively consistent for longer design life periods 1 

and similar shifts in flood risk are noted across a range of flood magnitudes. For both stations 2 

the increased risk from the historical to the first future period is between 10 and 20% and 3 

from the historical to the second future period is between 30 and 50% for floods ranging from 4 

600 to 1,200 cms.20,000-40,000 cfs.   5 

The significant increases in flood risk through time indicate the importance of non-stationary 6 

flood frequency analysis for future infrastructure planning and the potential to underestimate 7 

risk when stationarity is assumed.  For both stations the difference between the stationary and 8 

no-stationary approach increases over time. By the second future period differences in risk 9 

calculations between the stationary and non-stationary models can be 50% or larger.  This 10 

finding is in keeping with a number of recent studies [e.g. Griffis and Stedinger, 2007; Katz et 11 

al., 2002; Towler et al., 2010] that have highlighted potential applications for non-stationary 12 

analysis of flood frequency.  13 

An important consideration for this approach is the sensitivity of results to model parameters.  14 

In all cases the flood risk is higher at Farad than Reno due to the heavier tailed distribution 15 

that was fit. Estimated model parameters differed by station despite the fact that the flow, 16 

precipitation and temperature distributions for both locations are very similar.  While these 17 

changes effected the overall risk projections the relative increase in risk over time remained 18 

consistent between stations. This indicates that the more robust metric from this analysis is 19 

the relative increase in flood risk and not the absolute values.  This finding is further 20 

supported by the fact that absolute flood risk estimates could be impacted by model bias. By 21 

focusing on differences in risk we specifically highlight the impact of non-stationarity on risk 22 

assessment, as opposed to parameter sensitivity.  Similarly, it is important to note that this 23 

analysis is based on natural flow estimates and does not include infrastructure development or 24 

operation.  As such results indicate the potential increase in the underlying natural flood risk 25 

and not the potential increase in flood damages. 26 

 27 

28 
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Table 1: Flood calculations using stationary and non-stationary distributions (adapted 1 

from Salas and Obeysekera [2014]) 2 

Eqn. 
# 

Description a. Stationary b. Non Stationary 

1 Exceedance probability 

(Probability of flood 1 
occurring in year x) 

  

2 Probability of the first flood 
occurring in year x 2  

 

  
3 Probability of a flood 

occurring before year x 3 

 
 

  
4 Return Period  

(Expected waiting time 
between flood occurrences 4,5 )  

 

  
5 Probability of a flood 

occurring before the design life 
n 

 
 

  
1 Flood is defined as a flow exceeding a predefined threshold 3 
2 f(x) = Probability density function of X 4 
3 F(x) = Cumulative distribution function of X 5 
4 X = Random variable denoting the waiting time for the first flood occurrence 6 
5 xmax = Time when px equals 1 7 
 8 

9 



 31 

 1 
Table 2: Negative log likelihood(NLLH) and Akaike information Criterion (NLLHAIC) 2 
scores for each model, as well as the deviance statistics (D) and p-values forof pairwise 3 
comparisons of different model configurations (P = precipitation only, T= temperature 4 
only P&T= both) and the p-values of each D score based on a chi-squared distribution.  5 
The number of parameters in each model and the models used for comparison are listed 6 
at the bottom of the table.  The selected model for each station is shaded in grey. 7 

P & T P T P & T P T P & T P T
1 2 3 4 5 6 7 8 9 10

NLLH 508.9 422.9 467.1 499.7 487.3 500.9 506.5 416.4 462.2 496.9
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
NLLH 505.4 418.4 462.5 496.0 484.4 497.6 503.1 408.8 457.4 493.2
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

1 1 1 1 1 1 2 3 4

Farad

Reno
Model # compared to for pval

Station Metric
Stationary

Non stationary ScaleNon stationary Location
Non stationary Location and 

Scale

 8 

P & T P T P & T P T P & T P T
1 2 3 4 5 6 7 8 9 10

NLLH 508.9 422.9 467.1 499.7 487.3 500.9 506.5 416.4 462.2 496.9
AIC 1023.7 855.9 942.3 1007.4 984.6 1009.8 1021.1 846.8 934.4 1003.8
D 171.8 83.4 18.3 43.1 15.9 4.7 13.0 9.9 5.7
p-value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
NLLH 505.4 418.4 462.5 496.0 484.4 497.6 503.1 408.8 457.4 493.2
AIC 1016.8 846.8 932.9 1000.0 978.8 1003.2 1016.1 831.7 924.8 996.5
D 174.0 85.9 18.8 42.0 15.6 4.7 19.1 10.1 5.5
p-value of D < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

3 5 4 4 5 4 4 7 5 5
1 1 1 1 1 1 2 3 4

Non stationary Location and 

Farad

Reno
# of model parameters

Model # compared to for pval

Station Metric
Stationary

Non stationary Location Non stationary Scale

 9 

10 
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 1 

Table 3:  Summary of derived model covariates for equations 2 and 3 based on historical 2 
observations (Historical Observed) and using historical simulated data from the 234 3 
CMIP 5 Projections (Historical Simulated Interquartile Range, IQR)..  4 

  Farad Reno 

β0μ 2.155 2.582 

β1μ 0.175 0.18 

β2μ 0.115 0.105 

β0σ 0.211 0.530 

β1σ -0.013 -0.018 

β2σ 0.027 0.017 

Shape (ξ) -0.178 -0.275 

 5 

  

Farad Reno 

Historical 
Observed  

Historical 
Simulated  IQR  

Historical 
Observed  

Historical 
Simulated IQR 

β0μ 2.155 1.738 4.794 2.582 2.135 4.827 
β1μ 0.175 0.053 0.148 0.180 0.066 0.152 
β2μ 0.115 0.046 0.138 0.105 0.046 0.124 
β0σ 0.211 0.517 1.673 0.530 0.569 1.748 
β1σ -0.013 -0.020 0.006 -0.018 -0.023 0.008 
β2σ 0.027 -0.012 0.022 0.017 -0.015 0.019 
Shape (ξ) -0.178 -0.389 -0.094 -0.275 -0.389 -0.070 

 6 
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 1 
Figure 1: Map of model domain including the Farad and Reno gauges and their drainage 2 
areas. 3 

 4 
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 2 

Figure 2: PDFs of fitted stationary (solid black) and non-stationary (dashed) GEV models 3 
compared to historical VIC simulated flow histogram. 4 

 5 



 35 

 1 

 2 

Figure 3: ‘Observed’ ungauged unregulated flow estimated from gauge records (blue 3 
triangle) compared with VIC simulated flow (red circles) and the simulated GEV 4 
distribution. Boxes span the 25th to 75th percentile of the GEV distribution for a given 5 
month and the whiskers extend to the 5th and 95th percentiles. 6 
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 2 

 3 

 4 

Figure 4: VIC simulated one- day flood maximums for November through April 1950 to 5 
1999 (red lines) compared with the historical GEV distributions (blue line is median and 6 
grey shading is the 5th to 95th percentile range) and the six observed flow rates. 7 

 8 
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 1 

 2 
Figure 5: Risk Probability of one day flood exceeding historical maximum of 37,600 cfs 3 
(risk) at Farad and Reno. Solid lines represent the median risk of the 234 climate 4 
projections and shading covers the interquartile range (i.e. 25th to 75th percentile).  5 

 6 
Figure 6: Boxplots of the risk probability of a one-day flood exceeding 37,600 cfs (risk) 7 
for three project life lengths (10, 20 and 30 years). Results are grouped by time period 8 
(1950-1999, 2000-2049 and 2050-2099). Blue dashed lines show the flood risk 9 
calculated from the stationary GEV model fit to the historical data.  10 
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 1 

 2 

Figure 7: Risk Probability of flood in a ten year project life (risk) vs. median one day 3 
flood rate (a) Farad and (b) Reno for three time periods 1950-1999 (blue), 2000-2049 4 
(red) and 2050-2099 (green). Solid lines represent the median of the 234 climate 5 
projections and shading covers the interquartile range (i.e. 25th to 75th percentile). 6 
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 1 

 2 

Figure 8: Increased probability of flood occurrence flood risk for a 10 year project life 3 
(risk) from the historical period (1950-1999) to each of the two future periods 2000-4 
2050 (black) and 2050-2099 (grey). Farad is plotted with a solid line and Reno is a 5 
dashed line.  6 

 7 
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