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Abstract

Climate change impact assessments have become more and more popular in hydrol-
ogy since the middle 1980’s with a recent boost after the publication of the IPCC AR4
report. During hundreds of impact studies a quasi-standard methodology emerged,
which is mainly shaped by the growing public demand for predicting how water re-5

sources management or flood protection should change in the following decades. The
“standard” workflow relies on a model cascade from global circulation model (GCM)
predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is
present at each level and propagates through the model cascade. There is an emerging
consensus between many studies on the relative importance of the different uncertainty10

sources. The prevailing perception is that GCM uncertainty dominates hydrological im-
pact studies. Our hypothesis was that the relative importance of climatic and hydrologic
uncertainty is (among other factors) heavily influenced by the uncertainty assessment
method. To test this we carried out a climate change impact assessment and esti-
mated the relative importance of the uncertainty sources. The study was performed15

on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff
model. In the climatic part we applied the standard ensemble approach to quantify un-
certainty but in hydrology we used formal Bayesian uncertainty assessment with two
different likelihood functions. One was a time-series error model that was able to deal
with the complicated statistical properties of hydrological model residuals. The second20

was an approximate likelihood function for the flow quantiles. The results showed that
the expected climatic impact on flow quantiles was small compared to prediction un-
certainty. The source, structure and composition of uncertainty depended strongly on
the uncertainty assessment method. This demonstrated that one could arrive to rather
different conclusions about predictive uncertainty for the same hydrological model and25

calibration data when considering different objective functions for calibration.
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1 Introduction

Climate change impact assessments have become more and more popular in hydrol-
ogy since the middle 1980’s (Gleick, 1986, 1989; Arnell, 1992) with the recognition
that the global climate can be influenced by humankind and that the growing emission
of greenhouse gases into the atmosphere has already started a global warming. This5

topic received another boost when the public perception of climate change transformed
after the publication of the IPCC AR4 report (IPCC, 2007) and climate change became
a politically and economically accepted boundary condition for the future. From that
point onwards no responsible planning could omit the possible effects of an altered
climate on water availability, flood levels or other hydrological resources or threats.10

Hundreds of studies were carried out on almost every significant catchment of the
world (for a global summary see Kundzewicz et al., 2007; for a selection of more re-
cent studies refer to Todd et al., 2011). During this bloom of impact studies a quasi
standard methodology emerged (Blöschl and Montanari, 2010; Todd et al., 2011). The
procedure is mostly shaped by the growing public demand for predicting how water15

resources management or flood protection should change in the close future. Impact
studies need to accomplish an apparently impossible task: simulate future relevant hy-
drological events driven by local or extreme meteorological phenomena, which cannot
be described by present climatic models. The common procedure based on a prag-
matic approach contains the following steps (Blöschl and Montanari, 2010; Todd et al.,20

2011):
The future climate under a specific IPCC emission scenario is simulated with global

circulation models (GCMs), whose output preferably feeds into dynamical downscal-
ing: the GCM results serve as boundary conditions for a regional climate model (RCM)
running on a much finer spatial resolution. The output from the climate models is typi-25

cally corrected for the bias between the observed weather and the climate simulations
for the reference period. When the daily resolution of GCMs and RCMs is too coarse
compared to the requirements of the study, a frequent choice is to apply stochastic
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downscaling (frequently in the form of weather generators). Then a calibrated hydro-
logical model is run on the past and future meteorological data to analyse the impacts
of climate change on the hydrological indicators of interest.

The impact predictions are as uncertain as any forecast that tries to describe the
behaviour of an extremely complex system decades into the future. First of all, future5

climate predictions are uncertain due to the intrinsic uncertainty of their inputs: future
emission scenarios are represented by a handful of representative story-lines managed
by the IPCC, the translation of emissions and projected radiative forcing into actual
weather is done with by GCMs that exhibit obvious deficiencies in simulating phenom-
ena on finer resolution than continental scale (Xu, 1999; Blöschl and Montanari, 2010;10

Ehret et al., 2012) or according to some metrics do not work at all (Koutsoyiannis et al.,
2008; Koutsoyiannis, 2010). Consequently, the GCM-based descriptions of the future
climate are preferred to be called as “projections” instead of forecasts due to the im-
mense amount of uncertainty caused by the above described factors (IPCC, 1995).
Additionally, there is a non-quantified uncertainty that does not appear in ensembles15

of emission-scenario-GCM combinations (Jones, 2000). Like in any hierarchical model
system, uncertainty propagates from the climate predictions through the descendant
components to regional or local hydrological projections. Downscaling increases un-
certainty with the deficiencies of RCMs and/or the imperfect stochastic description of
the weather by a weather generator (Khan et al., 2006; Kay et al., 2009). Bias correc-20

tion adds a strong deterministic shift to the input data (Ehret et al., 2012). Finally the
predictive uncertainty of the hydrological model ends the cascade that leads to the total
uncertainty of the hydrological impact assessment.

The high uncertainty of the impact of climate change on stream flow is usually ad-
mitted, but less often quantified properly. Some studies publish the impacts without25

any quantification of their uncertainty (Arnell, 2003; Gosain et al., 2006; Thodsen,
2007). Others mostly follow the semi-qualitative description of uncertainty throughout
the entire model hierarchy by performing ensembles of simulations with different cli-
mate and hydrological model components and settings (Boorman and Sefton, 1997;
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Nijssen et al., 2001; Booij, 2005; Kingston and Taylor, 2010; Gosling et al., 2011;
Chen et al., 2011) or focus only on climatic uncertainty and neglect hydrological un-
certainty at all (Christensen et al., 2004; Maurer, 2007; Chiew et al., 2009) or even
take a single climatic projection and assess only the hydrological uncertainty (Steele-
Dunne et al., 2008). Despite the continuous development of quantitative uncertainty5

assessment methods such as formal Bayesian statistical approaches (Kuczera et al.,
2006; Kavetski et al., 2006; Honti et al., 2013) or the GLUE methodology (Beven and
Freer, 2001), these methods are relatively rarely preferred over taking a hydrological
model ensemble. There are a few examples of applying GLUE for the estimation of
hydrological predictive uncertainty in the context of climate change impact assessment10

(Cameron, 2006; Wilby, 2005; Wilby and Harris, 2006; Prudhomme and Davies, 2009a;
Zambrano-Bigiarini, 2010), but Bayesian uncertainty assessment methods are missing
(to our best knowledge).

Despite the diversity in the uncertainty assessment methodology applied in the con-
text of hydrological climate change assessment, there is an emerging consensus be-15

tween many studies on the relative importance of the different uncertainty sources.
The prevailing perception is that GCM uncertainty dominates hydrological impact stud-
ies (Wilby and Harris, 2006; Graham et al., 2007; Prudhomme and Davies, 2009b;
Kay et al., 2009; Kingston and Taylor, 2010; Arnell, 2011; Hughes et al., 2011; Gosling
et al., 2011). There are only few studies, which found that the predictive uncertainty of20

hydrological models can be in the same range or even larger than climatic uncertainty.
This special finding was typically coupled to unusual circumstances: poor hydrologic
model performance already in the calibration period (Ludwig et al., 2009), application
of an extremely error-tolerant equifinality criterium (Zambrano-Bigiarini, 2010) or very
different spatial scales treated together during the hydrological modelling (Abbaspour25

et al., 2009).
However, the universal dominance of climatic uncertainty can be challenged if we

consider that the most popular formal and informal likelihood calculation methods
(RMSE in GLUE, i.i.d. white noise in formal Bayesian calibration) tend to underestimate
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hydrological predictive uncertainty due invalid statistical assumptions about the resid-
uals (Schoups and Vrugt, 2010; Reichert and Schuwirth, 2012). Our hypothesis is that
the relative importance of climatic and hydrologic uncertainty does not only depend on
the hydrological and climate models and the application site, but are also conditional
on the uncertainty assessment method.5

Our objective is to test the above hypothesis with a climate change impact assess-
ment including statistically sound estimates on the relative importance of the uncer-
tainty sources. The study is performed on 2 small catchments in the Swiss Plateau
with a lumped conceptual rainfall runoff model (CRRM). In the climatic part we apply
the standard ensemble approach to quantify uncertainty but in hydrology we use formal10

Bayesian uncertainty assessment method with two different likelihood functions. One is
a time-series error model that is able to deal with the complicated statistical properties
of hydrological model residuals. The second is an approximate likelihood function di-
rectly for the flow quantiles. The use of this quantile approach roots in two observations:
first, climate change impact assessment is mostly interested in magnitudes of flow of a15

given return periods. The exact timing and hence the time-series is not in the focus –
the objective functions are statistics on the predicted time-series. The second reason
for the quantile approach is the fact that uncertainty of these estimates when derived
from the time-series are not straightforward to quantify properly in a statistical sense.
Directed targeting the objective function of interest may therefore offer advantages that20

shall be explored in this article.

2 Methods

2.1 Study sites and discharge data

Our test catchments are the Mönchaltofer Aa (46 km2) and the Gürbe (137 km2), both
lying on the Swiss Plateau on the Northern side of the Alps (Fig. 1). The dominant25

landuse types are intensive agriculture followed by forests in both sites (57 and 15 %
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in the Mönchaltorfer Aa, 51 and 21 % in the Gürbe; swisstopo, 2008). Topography is
rather different, the altitude difference between the uppermost point and the outflow is
moderate for the Mönchaltofer Aa (440–850 m a.s.l.), while highest point in the south-
ern mountainous headwater catchment of the Gürbe is 1650 m above the river’s mouth
near Belp (500–2150 m a.s.l.). Soil texture in the Mönchaltorfer Aa catchment is pre-5

dominantly loamy (BLW, 2008) with cambisols on hillsides and gleysols on flat areas
(Wittmer et al., 2010) as major soil types. The lowland area of the Gürbe has similar
characteristics, while the alpine part is dominated by coarser, sandy soil material (BLW,
2008).

Discharge is monitored only at a single point along the Mönchaltorfer Aa, close to the10

outlet (Mönchaltorf) by the Office for Waste, Water, Energy and Air Quality of Kanton
Zürich with 10 min frequency (AWEL, 2010). The Gürbe possesses 2 regular discharge
gauges in the main channel operated by the Office of Waste and Water of Kanton Bern
(AWA, 2010). One is slightly upstream from the river outlet (Belp), while the other is
located about halfway to the headwaters (Burgistein).15

2.2 Climatic input data

2.2.1 Observed climatic data

Regular high-resolution meteorological measurements were only available at one off-
catchment location for each test catchment. The automatic measurement station of
MeteoSchweiz at Wädenswil (10 km SW from Mönchaltorf) was used to drive the model20

of the Mönchaltorfer Aa, while the station at Bern Zollikofen (10 km N/NE from Belp)
was the input for the lower subcatchments of the Gürbe. Additional daily rainfall data
from the nearby Blumenstein gauge were used for the uppermost subcatchment of the
Gürbe due the significant altitude and climatic difference compared to the lower parts
(1300 vs. 700 m a.s.l. average elevation, 1260 vs. 1140 mm yr−1 in average precipita-25

tion).
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Daily potential evapotranspiration was calculated from radiation and temperature
with the simple Hargreaves–Samani method (Hargreaves and Samani, 1982), which
was calibrated to match reference crop evapotranspiration given by the full FAO
Penman–Monteith equation (Allen et al., 1998).

2.2.2 Stochastic weather generation5

The EARWIG/UKCP09 statistical weather generator (Kilsby et al., 2007) was trained
on the 1981–2010 weather series from Wädenswil and Bern-Zollikofen. This weather
generator relies on the Neyman-Scott rectangular pulses (NSRP) model (Rodriguez-
Iturbe et al., 1987; Cowpertwait et al., 1996) for the generation of hourly precipitation
and simple autoregressive models for the daily values of other weather variables. The10

NSRP model was trained by optimising the formal statistical properties of the model
to match those of the observed data following the procedure described in Fatichi et al.
(2011a, b). The autoregressive coefficients were calibrated conditionally on the season
(determined by half-monthly periods) and the transitions between wet (W ) and dry (D)
days. There were altogether 4+1 transition types: WW, WD, DW, DD (Kilsby et al.,15

2007) and additionally the DDD type for lasting droughts, which was introduced in the
latest version of UKCP09 (Jones et al., 2011).

The difference in weather between the alpine and lowland parts of the Gürbe catch-
ment should have been reflected in the generated weather data too, but the application
of a spatial weather generation method like the STNSRP model (Burton et al., 2008) or20

the NSAR model (Burton et al., 2010) was impossible due to the lack of high-frequency
observations for the Blumenstein gauge. To overcome this problem we generated the
alpine precipitation conditionally on the lowland weather with a black box model (Ap-
pendix A).
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2.2.3 Future climatic data

Climate change was represented by 10 GCM-RCM model chains from the ENSEM-
BLES project database (http://www.ensembles-eu.org) featuring 4 GCMs (including
HadCM3 with 2 different sensitivities) and 8 RCMs, all ran transiently on the IPCC A1B
emission scenario (Table 6). Despite the transient data, we chose to have two distinct5

stationary climates, one for the present and 1 for the future for a better statistical repre-
sentation of climatic variability. The reference period was 1981–2010, while the forecast
period was a 30-yr period centred around 2050 (2035–2064). The relatively close fore-
cast time horizon meant that it was sufficient to take a single emission scenario as a
representative for all, because the temperature effects of different emission scenarios10

are still quite similar in this period.
Direct RCM output was not usable for hydrological modeling because both test catch-

ments are situated in the prealpine precipitation gradient zone, which is poorly captured
with the coarse spatial resolution of RCMs. This caused that differences between an-
nual precipitation sums from raw RCM data and observations were always significant,15

for some model chains reaching even 200 %. According to the common practice, we
applied bias correction to the statistics of precipitation and air temperature. The result-
ing factors of change were introduced to the weather generator following the procedure
outlined in Kilsby et al. (2007).

2.3 Hydrological model20

We used a modified version of the logSPM model (Kuczera et al., 2006; Honti et al.,
2013). LogSPM belongs to the saturated path family of conceptual rainfall-runoff mod-
els, where the heart of the model is a non-linear function describing the saturated
proportion of the catchment area as the function of the mean soil moisture content
(Kavetski et al., 2003). Water is routed in the soil storage as either runoff, subsurface25

flow or recharge, proportionally to the saturated area.
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The parameterisation of the saturation function relies on the catchment-scale analo-
gies of characteristic soil moisture contents:

fsat (hs) =
1

1 + exp
(

4 hFS+hFC−2hs
hFS−hFC

) − 1

1 + exp
(

4 hFS+hFC
hFS−hFC

) , (1)

where hs is the average soil moisture content of the catchment, hFS and hFC are
the catchment-scale storage level equivalents of full saturation and field capacity with5

98 and 2 % of the catchment area saturated, respectively. Evapotranspiration from the
soil moisture storage is controlled in a similar manner to fsat:

fet (hs) =
1

1 + exp
(

8 3hWP+hFC−hs
3hWP+hFC

) − 1
1 + exp(8)

, (2)

where hWP is the catchment-scale moisture level equivalent of the wilting point (the
actual evapotranspiration is only 5 % of the potential). The groundwater and stream10

storages are simple linear reservoirs (Table 1). To simulate hydrology under different
topographic or landcover conditions, this basic conceptual model was combined with a
snow module based on the degree-day method (Martinec and Rango, 1981), a canopy
module based on the interception model of Vrugt et al. (2003) and a simple non-leaking
threshold storage for paved areas (Table 1, Fig. 2).15

2.3.1 Spatial discretisation

The test catchments were spatially discretised using the HRU concept based on lan-
duse and soil similarity. The subcatchments of discharge gauging stations were split
into “forest”, “grassland” (including true grasslands, treeless agricultural areas, non-
paved urban zones) and “paved” classes, each represented by a single HRU. Each20

HRU was assigned a separate soil and canopy unit. Similar HRUs shared a common
parameter set. Soil types were assumed to be exclusively from the loamy category on
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the entire Mönchaltorfer Aa catchment (Frey et al., 2011), while the Gürbe was divided
into a lower and upper zone with loamy and sandy soil types, respectively. In the end
there were 3 HRUs in the Mönchaltorfer Aa due to the 3 distinct landuse types and the
lack of a topographic division, while for the Gürbe the separate treatment of the upper
and lower zones above the Burgistein gauge and the additional lowland subcatchment5

between Burgistein and Belp forced the application of 9 HRUs in total.

2.3.2 Parameter priors

Due to the lack of previous conceptual modelling studies in the test catchments we col-
lected prior knowledge about the parameters of the hydrological model by a literature
review. Thanks to the reuse of simple and well-known modelling blocks for the snow,10

canopy and paved module we found several relevant parameter estimates (Tables 2
and 3). The prior values for the dripping rate from the canopy storage (kdrip) were so
high compared to the daily resolution of the computation, that this parameter was fixed
to 400 [d−1] and excluded from the calibration (Table 2). Priors for the characteristic
average soil moisture contents were derived from the water retention curves of the15

dominant soil types with the van Genuchten model (van Genuchten, 1980) and the de-
fault parameters from the ROSETTA program (Schaap et al., 2001) and the assumption
of a 1 m thick active surface layer (Table 4). Priors for the conceptual catchment param-
eters (krge, kbf, kq, etc.) were formulated with subjective estimation on their acceptable
domain (Table 4).20

2.3.3 Hydrological indicators

To facilitate the comparison of observed and predicted hydrological conditions, we rely
on a small set of aggregated discharge statistics (namely flow quantiles) similarly to
some previous studies (Arnell, 1992; Gosling et al., 2011). We use the 95, 50 and 5 %
exceedance quantiles (Q95, Q50 and Q5, respectively) at the discharge gauge sites to25

represent low, medium and high flow. The selection of these less extreme occurrence
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probabilities for the assessment ensures that the outcome does not depend heavily on
truly extreme events. This is important for two technical reasons: first, the occurrence
of extreme precipitation events and consequently extreme floods may be influenced
more by internal climatic variability than by climate change itself (Fatichi et al., 2013).
However, we describe this only to a very limited extent by taking 30 yr of data from5

each model chain, which is inappropriate to represent rare events. Second, extremes
are generally poorly simulated by models of both climate and hydrology, so going for
extreme flow indicators would further increase predictive uncertainty.

2.4 Impact and uncertainty assessment

The total uncertainty of our hydrological predictions was assessed with a hybrid ap-10

proach. Similarly to the majority of climate impact studies we also assumed that the
10 GCM-RCM chains properly represent the uncertainty of the modelled future climate.
However, contrary to others (Boorman and Sefton, 1997; Booij, 2005; Gosling et al.,
2011) we did not apply the same approach to the hydrological side by representing the
existing hydrological uncertainty with a set of different model structures or settings: we15

used a single conceptual model for hydrology with 3 versions of 2 Bayesian uncertainty
assessment techniques.

2.4.1 Discharge time-series approach (TS)

The first variant for the hydrological uncertainty analysis relied on the predictive un-
certainty of future discharge series. We considered an additive frequentist observation20

error together with a similarly additive Bayesian bias process that was designed to
represent the effects of both model structural deficiencies and input uncertainty (Honti
et al., 2013). The predicted future “true” discharge arose from the output of the deter-
ministic CRRM plus the stochastic bias process reflecting epistemic uncertainty (Honti
et al., 2013).25
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A sample of the posterior parameter distribution was generated with Markov Chain
Monte Carlo sampling (for details see Honti et al., 2013). The posterior sample was
used to produce model predictions of discharge and then the selected flow quantiles
for each stage of the impact assessment workflow (Fig. 3, stage 0 being the observed
discharge):5

1. Based on observed weather data (1981–2010).

2. Based on generated weather data that reflect the reference climate (1981–2010).

3. Based on generated weather data that reflect a stationary future (2035–2064)
climate projection by a selected GCM-RCM model chain.

Since all GCM-RCM model chains refer to the same future climate that realises un-10

der the IPCC A1B emission scenario, the predictions from the different model chains
together represent the future climate. We did not differentiate between individual model
chains based on their skill or performance as for example Gleckler et al. (2008) did, so
the future climate in our assessment was represented with a model chain ensemble
with uniform weights. Accordingly, the corresponding flow indices could be mixed to-15

gether to get a sample of the future.
The uncertainty of weather generation and the stochastic downscaling of the future

climate was assessed only implicitly. We assumed that the lengths of the baseline and
prediction periods (30 yr both) are enough to produce a statistically well defined sample
of the target flow indicators, so we used one realisation of the generated weather for20

the reference period and one for each model chain prediction. This is a reasonable
assumption if we consider the probability of more extreme events than the selected
flow quantiles: the expected number of days with flow outside the [Q95, Q5] interval is
1095 in a 30 yr period.
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2.4.2 Discharge quantile approach (K)

Besides deriving the target flow indicators from the predicted time-series we also ap-
plied a direct approach. We kept the same CRRM, but performed the calibration and
produced the parameter posterior sample based on the approximate likelihood of the
quantiles themselves. Under some mild statistical assumptions the likelihood of the5

quantiles can be approximated by independent normal distributions. The details of the
approximate quantile likelihood function are described in Appendix B.

Calibration without time-series fitting has already been quite common in hydrology.
For example, Montanari and Toth (2007) used the spectral properties of the flow time-
series as a measure of fit. Blazkova and Beven (2009) used certain flow quantiles10

among several other aggregated measures as acceptability criteria for their GLUE-
based approach. Westerberg et al. (2011) performed model calibration based on fitting
the flow-duration curves with a triangular informal likelihood function. In our case we
used a formal statistical approach to the essentially same problem as Westerberg et al.
(2011) addressed: using aggregated flow-statistics for reference offers interesting pos-15

sibilities. Flow quantiles are independent of time. This means that timing errors, like
slightly early or delayed flood peaks does not influence the model performance signifi-
cantly.

We utilized this property in the estimation of climate change impacts. In the first
variant (K1) of the quantile approach we went through the same workflow stages as20

described for the time-series approach. However, in the 2nd variant (K2) we merged
stages 1–2 because we used the observed discharge data and the generated weather
for the present together for calibration and the sampling of the parameter posterior
(Fig. 3).

2.5 Comparison of different uncertainty effects25

The relative importance of uncertainty entering different stages of the impact assess-
ment and the effect of climate change itself was compared with a simple approach. The
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change in the flow index distribution between the observed uncertainty of the flow quan-
tiles and stage 1 corresponds to the effect of hydrologic modeling in TS and K1 and to
the composite effect of hydrological modelling and weather generation in K2. Similarly,
transition between stages 1 and 2 reflects the effect of using generated weather data
instead of the observations in K1 and the effect of the internal variability of weather5

generation in K2.
In theory, the flow quantiles in stages 0–2 should not differ as these all represent the

same present hydrology. Accordingly, any change in the distribution of flow quantiles
during the transition between these stages can be attributed to existing hydrological
and meteorological uncertainty. In contrast, the change in the distribution of flow quan-10

tiles between stage 2 and the joint predictions of the future by the 10 model chains
should reflect the impact and uncertainty of climate change.

3 Results

We present the results for the different uncertainty assessment approaches by study
site.15

3.1 Mönchaltorfer Aa

3.1.1 Time-series approach

In accordance with our expectations, the CRRM performed well in simulating the ob-
served discharge data with TS. The maximum likelihood solution had a Nash-Sutcliffe
index (NS) of 0.8. Despite this good model performance, the selected flow quantiles20

(Q95, Q50 and Q5) showed significant uncertainty already in stages 1 and 2 with-
out the effects of climate change (Fig. 4). Although these stages both should have
corresponded to the observed reference meteorological and hydrological conditions,
the simulated flow quantiles were biased in each stage and their variability was sig-
nificantly larger than that of the observations (Fig. 5). Stage 1 introduced a relative25
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offset between −5 to −10 % for each quantile, while the 95 % uncertainty interval width
was between 10 and 20 % of the observed flow indices. Weather generation (stage 2)
caused a significant positive offset, which over-compensated for the underestimation
in stage 1.

Since stages 1 and 2 did not produce flow quantiles identical to the observations,5

the operational definition of the climate change impact matters. Just comparing the
observed quantiles with results from stage 3 would yield an increase for all three
flow indices. However, quantifying the climate change effect as the difference between
stages 2 and 3 shows that Q95 was predicted to increase slightly in the future, while
Q50 and Q5 were likely to decrease. One had to notice that the expected climate10

change impact was always much smaller than the offsets caused by the previous
stages. The procedure of analysing the difference between stages 2 and 3 essentially
meant that we applied a bias-correction for the quantile offsets caused by the present
uncertainty.

The variability of future flow indices was high for each of them (Table 7), compared15

to the expected climate change impact (Fig. 6). However, the source of this variability
differed by flow index: for Q95 it was the modeling uncertainty (stage 1), while for
Q50 and Q5 it was the future climate (stage 3) which contributed most to the final
uncertainty.

3.1.2 Quantile approach20

To our surprise, the calibration to quantiles with observed weather data (K1) also re-
sulted in good agreement between the simulated and the observed flow time-series
(NS=0.75) although timing had not been considered in the calibration process. When
calibrating with the generated weather series (K2), this performance decreased to
NS=0.65 but could still be considered as satisfactory. These good fits demonstrated25

that the temporal dynamics of discharge were clearly determined by precipitation, so
one could predict discharge peaks quite well even without looking at the time-series
during the calibration of CRRM parameters.
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Flow quantiles could be calibrated well to the observed discharge in each version
(K1,2); quantile offsets were between 1–6 %. In K1, the quantiles still showed signifi-
cant offsets upon calibration with the generated weather series (stage 2; Fig. 7). The
weather generation again caused a positive bias in two flow quantiles (Q50, Q5). This
could be completely avoided in K2. This meant that K2 resulted in different CRRM pa-5

rameters to correct for any bias between the original stages 1 and 2 resulting from the
interaction between uncertainty of the hydrological model and the weather generator.

Flow quantile variability was dominated by the future climate uncertainty in both
versions (variance in stage 3 was much higher than in the previous stage(s)). In K1
weather generation was the most important source of bias (Fig. 7), while this was al-10

most completely eliminated in K2 (Fig. 8).
The expected impact of climate change seemed to be a consistent decrease in all

flow quantiles (Table 7). The decrease was between −1 and −8 % in both versions.
Variability was again large compared to the expected change.

3.2 Gürbe15

3.2.1 Time-series approach

The performance of the CRRM was different in the Gürbe sites. In Belp, model per-
formance was almost as good as in Mönchaltorf. However, the upper subcatchment
above Burgistein had diverse problems. The complexity of alpine hydrology could not
be completely captured by the simple CRRM despite the dedicated parameter set for20

the uppermost model unit. This caused a huge negative bias for Q95 at Burgistein,
already in stage 1. Q50 was nicely reproduced, but Q5 was underestimated again.
Although the most complex weather generation procedure was applied for the Gürbe
catchment, stage 2 dominated the quantile offsets. For variability the picture was dif-
ferent, the major source was the future weather uncertainty at both sites and for all25

quantiles.
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The expected impact of climate change was a larger and a subtle decrease for Q95
and Q50, respectively, while Q5 was predicted to increase by 4–5 % at both gauging
stations (Table 7). The relative uncertainty of these predictions varied between 2–4 % of
the observed flow quantiles, which surprisingly suggests a stronger confidence despite
the inferior CRRM performance (Table 7).5

3.2.2 Quantile approach

With the K1 approach, the observed flow quantiles were almost perfectly matched for
the Belp data, while Q50 and Q5 were overestimated by about 20 % in Burgistein.
Weather generation (stage 2) meant a negative offset for each quantile at both gaug-
ing stations. The expected impact of climate change was quite similar to those from10

TS, Q95 and Q50 should decrease by 3 to 14 %, Q5 should increase by 2–5 % (Ta-
ble 7). In contrast to TS, the variability of flow quantiles was much higher for Burgistein
(Table 7). The poor performance of the CRRM for the alpine subcatchment resulted in
high predictive uncertainty (29–82 % standard deviation relative to the observed quan-
tities) for the flow quantiles already at stage 1. This was propagated through the entire15

workflow, which finally rendered the predictions for this site extremely unreliable (Ta-
ble 7). As a result, future weather uncertainty could be considered to be responsible
for most of the variability at Belp, but the offsets at Belp and the total uncertainty at
Burgistein were dominated by the already existing uncertainty sources (meteorological
and hydrological uncertainty, weather generation uncertainty).20

In contrast to the Mönchaltorfer Aa case, the results for the Gürbe catchment with
K2 yielded somewhat different climate change impacts compared to K1. Bias removal
for stage 2 worked well again (Fig. 9), but the sign of expected change shifted for Q5
in both sites.

The performance difference between Belp and Burgistein and the variable relative25

importance of uncertainty components was seemingly contradicting with the fact that
Burgistein covered a significant upstream subcatchment of the Belp gauge. Thus the
two sites should have reflected comparable characteristics. The explanation for this
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behaviour rooted in the different ability of the CRRM to simulate the observed flow
time-series or quantiles. The inferior performance at Burgistein meant that already the
uncertainty at stage 1 was much higher than for the Belp site. This elevated uncertainty
was then propagated through the remaining stages of the workflow.

3.3 Comparison of uncertainty assessment approaches5

The expected hydrological impacts of climate change were similar but not identical with
the three uncertainty assessment approaches. The uncertainty of predicted change
was always high compared to the mean predicted change, so few percent differences
can be regarded as negligible. At the same time, the final uncertainty of the results and
the accumulation of uncertainty at the separate workflow stages differed by between10

the approaches. The closest point to a full consensus between the uncertainty assess-
ment approaches was at the single gauging site of the Mönchaltorfer Aa catchment,
where the final uncertainty intervals were almost as similar as the expected impacts
(Table 7). In the Gürbe catchment, where the performance of the CRRM was worse,
the Belp site had less similar uncertainty intervals, but the standard deviations of the15

results were at least in the same order of magnitude. In Burgistein TS seemed to un-
derestimate the variability of the climate change impact compared to K1 and K2. The
poor performance of the CRRM suggests that the Burgistein predictions should have
weaker confidence, yet this was only reflected in the results of the quantile approach,
but not in TS (Table 7).20

4 Discussion

4.1 Climate change assessment based on quantiles of time-series

Although climate change effects on hydrology are generally assessed by some aggre-
gate statistics, the most common approach is to use a hydrological model calibrated
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to time-series of observed discharge for this purpose instead of calibrating models di-
rectly to the aggregated quantities of interest (e.g. flow quantiles). At first glance, this
distinction seems unnecessary: if a model describes time-series of discharge properly,
it is also expected to be a good descriptor of the derived flow quantiles. While this argu-
ment holds for a perfect model with no error whatsoever, the situation is more complex5

if one considers the predictive errors that are always present. The results shown before
illustrated that point very clearly.

An additive stochastic time-series error – regardless whether it is an independent
noise or an autoregressive process – automatically increases the variance of the
CRRM model output, to which it is added to. Consequently, the simulated flow quantiles10

will spread outwards (Fig. 10), low flow quantiles will become lower, high flow quantiles
will become higher. This has a profound effect in a time-series approach: if we account
for the increasing non-observational uncertainty with an autoregressive bias term, it is
guaranteed that the predictive flow quantiles will be more extreme there than in the
calibration phase. This means that extreme events seem to be more likely due to our15

weaker knowledge about the future (compared to the past) without any change in the
climate or hydrology.

However, while the increase in variance and the corresponding effect on the flow
quantiles sounds obvious, it is more difficult to recognise the effect in the study out-
come. Quantiles get biased due to the error addition, but at the same time their vari-20

ance does not increase so much that their uncertainty interval would still encompass
the original value. As a result the analyst must face some strongly biased but seemingly
confident estimations on altered flow quantiles purely because of existing uncertainty.

The inevitability of biased quantiles in TS suggests that based on the change in
flow quantiles alone one cannot unambiguously distinguish between the true impacts25

of climate change and uncertainty propagation in this approach – unless predictive
uncertainty was negligible.
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4.2 Interpretation of uncertain flow quantiles in K1 and K2

Quantile approaches could circumvent these inherent problems of the TS procedure.
The elimination of the significant quantile bias of the additive time-series error models
is a true improvement over TS. Furthermore, K2 corrects for the bias introduced by
weather generation too. Boorman and Sefton (1997) list studies that used flow quan-5

tiles to derive the impact of climate change. Q95 was often used to describe low flow
(Arnell, 1992; Wilby et al., 1994; Arnell and Reynard, 1996). Q5 was later also used
to characterize flood levels (Gosling et al., 2011). We followed along these lines by
implementing the two quantile approaches K1 and K2.

However, the use of a quantile approach also comes at some costs. The approximate10

likelihood applied in K1 and K2 does not explicitly make any assumptions about the
sources and properties of uncertainty, so in this regard it is fundamentally different from
the error model applied in TS. The use and definition of quantile uncertainty implies
several limitations on the interpretation of results:

– Even if we used the same CRRM as for TS, in K1 and K2 the flow time-series are15

only intermediate products necessary to calculate the flow quantiles. Due to the
possibly huge timing errors they cannot be used to derive any additional indicators
that involve timing (for example the distribution of the length of baseflow periods).
The quantile calculation procedure can be considered as an additional abstraction
layer between the CRRM and the likelihood calculation, which renders the entire20

CRRM and its parameters somewhat more empirical.

– In K1 and K2 we do not know what mechanisms stand behind the uncertainty
of flow quantiles. In contrast to this, TS defined observation, structural and input-
related uncertainty and the posterior parameters of the error model could be used
to specify the relative importance of these sources.25

– With the simple definition of quantile uncertainty we assume that the uncertainty
generation mechanisms are the same for the calibration and the predictive period.
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This conflicts with our intention to calculate the quantiles of the true discharge for
the prediction period without the observation error of the past. Nevertheless, the
(random) observation uncertainty of (non-extreme) flow quantiles is very low for
long discharge time-series so this theoretical limitation usually would not cause
any practical problem.5

Considering these pros and cons the different versions of the quantile approach
provide a more empirical but viable alternative for uncertainty assessment in cases
when flow quantiles are the only targets of the modelling exercise.

4.3 General aspects of impact assessment procedures

The climate change impact assessments procedure as used in this work relies on a10

complex procedure consisting of different steps as it is common in this field (Blöschl
and Montanari, 2010; Todd et al., 2011). The current status of our prediction models
does not allow for making hydrological predictions in a simple like feeding GCM output
directly into a calibration-free hydrological model (Ehret et al., 2012). Today’s climate
models are unable to simulate the present and thus the future hydrologic drivers without15

a significant bias (Xu, 1999) and conceptual rainfall-runoff models usually need a site-
specific calibration (Blöschl and Montanari, 2010). All these required steps introduce
uncertainty in the overall assessment procedure. In this article, we have tried to directly
address some of these sources of uncertainty by either quantifying them explicitly in
the TS or by avoiding some of them by directly calibrating the reference state model to20

the quantities of interest (i.e. flow statistics instead of time-series).
Despite this explicit treatment of sources of uncertainty one has to consider there

remain several decisive pragmatic assumptions that could not be avoided:

– with the bias correction of GCM or RCM outputs we assume that the bias of the
climatic model will stay invariant regardless the climatic change;25

– the involvement of downscaling methods assumes that despite the inability of
present climatic models to simulate small-scale and dynamic features of the
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weather we trust that the relationships between local-scale phenomena and re-
gional aggregated weather patterns will be the same in the future;

– the application of calibrated rainfall-runoff models relies on the temporal and cli-
matic invariance of hydrologic model parameters, including their covariance struc-
ture.5

Each of these assumptions have been refuted at least once based on scientific rea-
soning or evidence. Bias correction of climate model outputs ruins the physical con-
sistency of climate models and can introduce arbitrary but significant changes into the
meteorological forcing (Ehret et al., 2012). Downscaling is usually used to produce
localised and often high resolution precipitation series that ought to drive the rainfall10

runoff models, but it can be simply considered as a rather speculative extrapolation that
relies on the present extreme statistics and the biased, large-scale precipitation output
of GCMs or RCMs (Blöschl and Montanari, 2010). Despite their definition, rainfall-runoff
model parameters tend to vary in the very same catchment with time (Reichert and
Mieleitner, 2009), season (Yang et al., 2007), climate (Merz et al., 2011) or just the15

internal state of the catchment (Romanowicz et al., 2006).
These problems together make the standard climate impact assessment error-prone

and increase the uncertainty of results beyond what we have presented above. How-
ever, these errors typically result in a biased prediction instead of higher predictive
variability, and thus are difficult to identify. Some of these pitfalls can be avoided by20

carrying out a step-by-step procedure as presented above (bias introduced by hydro-
logical models and weather generation), but some major uncertainty sources will still
remain outside the scope of hydrological impact assessment studies (bias of GCMs
and RCMs).
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5 Conclusions

Our study revealed that the naïve comparison of today’s observed flow quantiles to
modelled flow quantiles under climate change with calibration to historic discharge
time-series may lead to erroneous conclusions about the effects of climate change.
The uncertainties that go with the different steps of the assessment procedure cause5

a divergence of the flow quantiles and may also introduce bias that is independent on
any climate change effects. Hence, it is crucially important to make sure that effects on
flow quantiles in a climate change assessment are actually due to the predicted change
in climate and not caused by uncertainties related to other aspects of the assessment
procedure including the structural uncertainty of the hydrological model itself. Interest-10

ingly, this important source of quantile bias was rarely mentioned in similar studies.
When only considering the effects of climate change by i.e. directly calibrating to flow

quantiles with simulated weather data or by only considering the changes in the last
step of the TS approach, our results delivered typical findings with regard to climate
change impacts. The average impact signal was found to be very weak compared to15

the total uncertainty of future discharge predictions in both of our test catchments for all
flow indices. A change of few percents was typically coupled with up to a few 10%s of
uncertainty, so for most sites and flow indices we could not even be sure about the sign
of change. Irrespective of uncertainty assessment method and flow quantile, results
suggest that in the future flow conditions may develop into quite different directions.20

The results presented here showed that calibrating a CRRM to different quantities
of interest (e.g. time-series of discharge versus flow quantiles) may result in slightly
different parameterizations. Although a CRRM may predict reasonable discharge se-
ries even when only calibrated to flow quantiles where all timing information is lost, the
differences in parameterization may induce relevant biases on the non-calibrated quan-25

tities. In a sense, this procedure degraded the hydrological model to a semi-empirical
albeit rather complex mathematical function. There was no guarantee that the simu-
lated discharge time-series or the model parameters had any connection with the true
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physical quantities they originally referred to. This also demonstrated that one could
arrive to rather different conclusions about the source, structure and composition of
predictive uncertainty for the same hydrological model and calibration data when con-
sidering different objective functions for calibration.

On one hand this means that we can only make conditional statements about these5

internal details of uncertainty. On the other hand the robustness of total predictive un-
certainty for the Mönchaltorf and Belp sites (where the hydrological model performance
was good) indicates that the suitability of different uncertainty assessment procedures
for different purposes (TS for timing-sensitive applications, K2 for flow quantiles) can
be the major selection criterium between uncertainty assessment methods.10

Appendix A

Conditional precipitation model

The task was to produce daily precipitation sums for the alpine subcatchment of the
Gürbe based on the high frequency generated weather for the lowland part. We deter-
mined the joint probabilities of having wet/dry day in Blumenstein based on the weather15

in Belp. The analysis revealed that the elevated annual precipitation amount in the
alpine zone comes with more wet days too (Table 5). The conditional prediction routine
assumed that these probabilities are influenced mostly by the topographical differences
and will remain constant regardless of the future climatic changes. During prediction
we first decided about the wetness status of the alpine subcatchment considering the20

wetness status of the lowland and the given conditional probability.
For days which were wet in both parts of the catchment we applied a standard back-

propagation neural network (R package neuralnet) with 5 nodes in each of its 2 hidden
layers to predict the daily alpine precipitation from the daily values of precipitation,
mean air temperature, mean global radiation, mean vapour pressure and mean wind25

speed of Belp. The residuals between the predicted and observed precipitation sums at
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Blumenstein had 0 mean and were closely normally distributed after a Box-Cox power
transform with λ=0.5. So the final prediction method for homogeneously wet days was
the application of the black-box model and the addition of a back-transformed normal
noise term.

For days which were dry in the lowland but wet in the mountains we have drawn5

from a Γ distribution, which was parameterized based on the historical precipitation
data from such days. The choice of the Γ distribution was motivated by the fact that
this distribution type was used for drawing precipitation intensities in the Neyman–
Scott rectangular pulses model which generated the rainfall for the UKCP09 weather
generator.10

Appendix B

An approximate likelihood function for flow quantiles

B1 Calculating the approximate likelihood

We denote set of observed flow quantiles with qo, with the individual items indexed as
qo
i . The modelled flow quantiles (q(θ)) depend on the model parameters (θ) and are15

extracted from the modelled flow time-series. F (y |θ) is the distribution of the modelled
discharge given the model parameters θ, and f (y |θ) is the corresponding probability
density function.

We assume that the quantiles are subject to an additive error E so that

qo = q(θ) + E . (B1)20

If we consider samples from a distribution E is approximately normally distributed
with 0 mean and a variance depending on α and f (y |θ) (Sect. 10.10 in Stuart and Ord,
1994):
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σ2
α =

1
n
α (1 − α)

1

f (qα(θ))2
(B2)

where n is the sample size of y . The error of this variance estimator is O( 1
n ).

This theorem applies to independent samples, σ2
α is underestimated for an autocor-

related sample. To make the theorem applicable for the quantile likelihood calculation
of discharge series we make the following additional assumptions:5

1. The correlation length of y is orders of magnitudes shorter than the length of the
observation period (few days vs. many years), so q(θ) can be regarded as a set
of quantiles from an independent sample.

2. We replace n with n∗ that refers to an effective sample size with 1≤n∗ ≤n. The
new parameter characterizes the quality of fit to the observations. If n=n∗ then the10

uncertainty of the modelled flow quantiles equals to the sampling uncertainty, so
the uncertainty added by the model is negligible. If n∗�n then E is dominated by
model-related uncertainty. The inverse of n∗ can be considered as an uncertainty
scaling parameter.

The resulting likelihood function is then15

p
(
qo
α |θ

)
= N

[
µ = qα(θ), σ2

α =
1
n∗ α (1 − α)

1

f (qα(θ))2

]
. (B3)

We calculate f (qα(θ)) from y with a kernel density estimator. The kernel distribution
is normal, the standard deviation of the kernel is set to

σk = 0.79n−0.2 (q0.25(y |θ) − q0.75(y |θ)
)

. (B4)
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B2 Sampling from the predictive distribution

A predictive realization of the flow quantiles can be computed in two steps. First one
needs to calculate q(θ) with the deterministic rainfall-runoff model based on the model
parameters and the input series for the prediction period. In the second step we need
to draw a realization from the uncertainty distribution. To do this we need to calcu-5

late the probability density function for the modelled flow. Then we draw the predicted
observation quantiles with Eq. (B3).
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Table 1. Process Matrix of the CRRM∗

Process Symbol Rate Affected storage

hsnow hc hs hgw hp hq

snowfall Psnow

{
P if T < Tcrit
0 otherwise

}
+

snowmelt Pmelt

{
kmelt (T − Tmelt) if T > Tmelt

0 otherwise

}
– + +

rainfall Prain

{
P if T ≥ Tcrit
0 otherwise

}
+ +

throughfall Pthrough

(
1 − kcapt

)
(Pmelt + Prain) – +

canopy evapotr. Ec kceEpot

{
hc

hc,sat
if hc ≤ hc,sat

1 otherwise

}
–

dripping Pdrip kdrip

{
hc − hc,sat if hc ≥ hc,sat

0 otherwise

}
– +

ground evapotr. E Epot fet –
sat. excess runoff Qr fsat

(
Pdrip + Pthrough

)
– +

groundwater rech. Qrge krge fsatq
max
seep – +

subsurface flow Qssf

(
1 − krge

)
fsatq

max
seep – +

baseflow Qbf kbfhgw – +

paved evapor. Ep kp,eEpot
hp

hp +hp,e
–

paved runoff Qp

{
kp,r

(
hp − hp,sat

)
if hp ≥ hp,sat

0 otherwise

}
– +

stream discharge Qq kq hq –

∗ All storages are in [mm] while processes are in [mm d−1]. fsat and fet are defined in Eqs. (1) and (2), respectively.
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Table 2. Prior distributions of snow, canopy and paved area parameters.

Parameter Description Reference Applied distributiona

[Unit] Valuesb

Tcrit Critical temperature for snowfall N(1, 0.5)
[◦C] +1.0–+1.6 Kokkonen et al. (2006)

Tmelt Threshold temperature for snowmelt N(0, 1)
[◦C] −1.8–+0.6 Kokkonen et al. (2006)

0 (without calibration) Martinec and Rango (1981)

kmelt Temperature-specific snowmelt rate constant LN(3, 1.2)
[ mm
◦ Cd ] 1.5–4.0 (Sweden) Bergström (1990)

1.2–6.0 (Finnland) Kokkonen et al. (2006)

kcapt Precipitation capturing efficiency of fully developed canopy B(0.7, 0.15)
[−] 0.72–0.94 (Douglas fir) Vrugt et al. (2003)

0.68–0.74 (Scots pine) Gash (1979)
0.44–0.71 (dense Spruce forest) Alavil et al. (2001)

ke,c Evaporation multiplier of canopy LN(1, 0.1) grass
[−] 0.69–1.26 (Douglas fir) Vrugt et al. (2003) LN(0.8, 0.1) forest

kdrip Dripping rate from canopy storage δ(400)
[d−1] 120–880 (Douglas fir) Vrugt et al. (2003)

hc,sat Storage in fully wetted canopy LN(1.2, 0.2) forest
[mm] 1.01–1.13 (black pine) Rutter et al. (1971) LN(1.0, 0.2) grass

0.8±0.08 (Scots pine) Gash (1979)
2.7±1.3 (European crops) Breuer et al. (2003)
1.4±0.9 (European grasses) Breuer et al. (2003)
1.5±1.2 (European coniferous trees) Breuer et al. (2003)
1.0±0.9 (European deciduous trees) Breuer et al. (2003)
1.8–2.6 (Douglas fir) Vrugt et al. (2003)
2.0 (dense Spruce forest) Alavil et al. (2001)
1.7–2.3 (forest floor debris) Putuhena and Cordery (1996)

kLAImin
Relative winter leaf area index

[−] 5–15 % (grassland) estimation B(0.1, 0.05) grass
10–30 % (forest) estimation B(0.2, 0.1) forest

a Values are represented by range (min–max) or mean±standard deviation. b Distribution types: N(µ, σ): normal,
LN(µ, σ): lognormal, B(µ, σ): beta, δ(µ): Dirac-delta. µ and σ are the mean and the standard deviation of the
distributions, respectively.
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Table 3. Prior distributions of paved area parameters.

Parameter Description Reference Applied distributiona

[Unit] Valuesb

hp,sat Paved area storage LN(1, 0.3)
[mm] 0.1–1.1 Falk and Niemczynowicz (1979)

0.1–1.5 Kidd (1978)
1.5 Heaney et al. (1976)
0.4–0.7 Arnell (1982)

kp,r Paved area runoff rate LN(20, 1)
[d−1] 18–22 estimation

a Values are represented by range (min–max). b Distribution types: LN(µ, σ): lognormal. µ and σ are the
mean and the standard deviation of the distribution, respectively.
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Table 4. Prior distributions of catchment and stream parameters.

Parameter Description Reference Applied distributiona

[Unit] Valuesb

hFS Catchment-scale equivalent of full saturation (fsat =98 %) LN(430, 20) for loamy soils
[mm] 387–440 for clay-loam/loam/sandy loam Schaap et al. (2001)c LN(382, 3) for sandy soils

390–430 for clay-loam/loam/sandy loam Carsel and Parrish (1988)c

375–390 for sand/loamy sand Schaap et al. (2001)c

440–490 for silt/silt-loam/silt-clay-loam Schaap et al. (2001)c

hFC Catchment-scale equivalent of field capacity (fsat =2 %) LN(220, 25) for loamy soils
[mm] 168–255 for clay-loam/loam/sandy loam Schaap et al. (2001)c LN(75, 9) for sandy soils

85–270 for clay-loam/loam/sandy loam Carsel and Parrish (1988)c

55–105 for sand/loamy sand Schaap et al. (2001)c

280–305 for silt/silt-loam/silt-clay-loam Schaap et al. (2001)c

hWP Catchment-scale equivalent of wilting point (E is 5 % of Epot) LN(90, 10) for loamy soils
[mm] 60–150 for clay-loam/loam/sandy loam Schaap et al. (2001)c LN(52.5, 1) for sandy soils

65–150 for clay-loam/loam/sandy loam Carsel and Parrish (1988)c

52–53 for sand/loamy sand Schaap et al. (2001)c

70–120 for silt/silt-loam/silt-clay-loam Schaap et al. (2001)c

krge Proportion of groundwater recharge from seepage B(0.7, 0.1)
[−] 40–90 % estimation

qmax
seep Maximal seepage rate LN(100, 50)[mm
d

]
50–200 estimation

kbf Baseflow constant LN(0.0005, 0.0005)
[d−1] 10−5–10−3 estimationd

kq Stream constant LN(10, 5)
[d−1] 3–30 estimation

a Values are represented by range (min–max). b Distribution types: LN(µ, σ): lognormal, B(µ, σ): beta. µ and σ are
the mean and the standard deviation of the distribution, respectively. c Full saturation (FS), field capacity (FC) or
wilting point (WP) moisture content of homogenous soils of the given type with 1 m thickness. d Groundwater
residence time is estimated to be between 180 days and about 30 yr.
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Table 5. Probability of wet (W ) and dry (D) days in the upper and lower parts of the Gürbe
catchment.

PBelp =W PBelp =D

PBlumenstein =W 43.2 % 14.5 %
PBlumenstein =D 4.2 % 38.0 %
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Table 6. ENSEMBLES model chains included in this study.

Institution Code GCM RCM

CNRM cnrm Arpege Aladin
DMI dmi ECHAM5 HIRHAM
ETHZ ethz HadCM3Q0a CLM
ICTP ictp ECHAM5 RegCM
KNMI knmi ECHAM5 RACMO
MetOffice-HC hadley HadCM3Q0a HadRM3Q0
MPI mpi ECHAM5 REMO
SMHI smhi_bcm BCM RCA

smhi_echam ECHAM5 RCA
smhi_had HadCM3Q3b RCA

a Normal sensitivity, b low sensitivity
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Table 7. Relative changes in flow indices∗ due to climate change with different uncertainty
assessment approaches.

Flow index TS K1 K2 Sign consensus

Mönchaltorf

Q95 +2±9 −1±11 −7±12
Q50 −4±8 −7±10 −7±9 X
Q5 −4±11 −8±9 −8±9 X

Belp

Q95 −15±4 −14±6 −4±7 X
Q50 −1±4 −3±6 −4±5 X
Q5 +5±3 +5±5 −5±3

Burgistein

Q95 −15±4 −9±38 −4±45 X
Q50 −1±3 −3±29 −4±26 X
Q5 +4±2 +2±82 −4±80

∗ Changes are in [%] of the observed flow index± standard deviation.
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their locations in Switzerland.
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Fig. 1. The catchments and gauging sites (triangles) of this study and their locations in Switzer-
land.
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Fig. 2. Schematic structure of the extended LogSPM model.

545

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 501–553, 2014

Hydrological
predictive

uncertainty and
climate change

M. Honti et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Stage Climate Precipitation Discharge

0 observed observed observed

1 observed observed modelled

2 present generated modelled

3 future generated modelled

Stage Climate Precipitation Discharge

0 observed observed observed

1 present generated modelled

2 present generated modelled

3 future generated modelled

CC impact

Workflow stages for TS and K1

Workflow stages for K2

PR
ES
EN

T

WG

CRRM

FU
T

CC impact

another WG run

CRRM + WG

PR
ES
EN

T
FU

T

Fig. 3. Scheme of workflow stages for different uncertainty assessment approaches. White
stars indicate stages of calibration.

546

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 501–553, 2014

Hydrological
predictive

uncertainty and
climate change

M. Honti et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

TS @ Aa

0.1 0.2 0.5 1.0 2.0 5.0

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

Observed Q quantiles [m3 s−1]

Q
 q

ua
nt

ile
s 

[m
3  s

−1
]

observations
hydrological model
weather generator
GCM−RCM chain

Fig. 4. Modelled flow plotted against the observations in different workflow ’ stages (Mönchal-
torf, TS approach).

547

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 501–553, 2014

Hydrological
predictive

uncertainty and
climate change

M. Honti et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

W
G FUTURE

Q95

Q50

Q5 -4.0%

-4.3%

+2.0%

present uncertainty

future uncertainty

observations

GCM-RCM model chains

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

Q
 [m

3  s
−1

]

et
hz

cn
rm

kn
m

i

m
pi

dm
i

ic
tp

ha
dl

ey

sm
hi

_b
cm

sm
hi

_e
ch

am

sm
hi

_h
ad

pr
es

en
t

SL
S

BI
AS

● ●

●
●

● ●

●

●

●
●●

●

● ●
●

●

●
●

●

●
●

●●

●

●
●

●

●
● ●

●

●
●

●
●●

TS @ Aa

Fig. 5. Flow index predictions for Mönchaltorf with the TS approach. Predictions for the present
(left side) were made using generated precipitation (stage 2). SLS: simple least squares cal-
ibration (for reference), BIAS: the Bayesian error model of TS. The right panel shows future
predictions for the individual model chains. Future uncertainty is the joint prediction from all
10 model chains.

548

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/501/2014/hessd-11-501-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 501–553, 2014

Hydrological
predictive

uncertainty and
climate change

M. Honti et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Q [m3 s−1]

●

●

●

●

Q95

●

●

●

●

Q50

●

●

●

●

Q5

0.1 0.2 0.5 1.0 2.0 5.0

Stage 0

TS (Aa) v 3

Stage 1

Stage 2

Stage 3

St 0 St 1

St 2
St 3

St 0

St 1

St 2 St 3

St 0
St 1

St 2

St 3

R
el

at
iv

e 
ch

an
ge

 [−
]

●

●

●

●

Q95

●

●

●

●

Q50

●

●

●

●

Q5

−3
0%

0%
20

%
40

%

Fig. 6. Absolute (top panel) and relative (bottom panel) changes in flow indices during the
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Fig. 8. Absolute (top panel) and relative (bottom panel) changes in flow indices during the
workflow stages (Mönchaltorf, K2 approach).
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Fig. 9. Absolute (top panel) and relative (bottom panel) changes in flow indices during the
workflow stages (Gürbe at Belp, K2 approach).
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