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EXPLAINING AND FORECASTING INTERANNUAL VARIABILITY IN 1 

THE FLOW OF THE NILE RIVER  2 

 3 

Abstract 4 

 5 

This study analyzes extensive data sets collected during the 20th century and define four modes of 6 

natural variability in the flow of Nile River, identifying a new significant potential for improving 7 

predictability of floods and droughts. Previous studies have identified a significant teleconnection 8 

between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) 9 

explains about 25% of the interannual variability in the Nile flow. Here, this study identifies a 10 

region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea 11 

Surface Temperature (SST) in the region (50oE-80oE and 25oS-35oS) explains 28% of the 12 

interannual variability in the flow of Nile river and when combined with ENSO index the explained 13 

variability of the flow of Nile river increases to 44%. In addition, during those years with 14 

anomalous SST conditions in both Oceans, this study estimates that indices of the SSTs in the 15 

Pacific and Indian Oceans can collectively explain up to 84% of the interannual variability in the 16 

flow of Nile. Building on these findings, this study uses classical Bayesian theorem to develop a 17 

new hybrid forecasting algorithm that predicts the Nile flow based on global models predictions 18 

of indices of the SST in the Eastern Pacific and Southern Indian Oceans.  19 

 20 

 21 
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1. Introduction 22 

The Nile basin covers an area of 2.9 x106 km2, which is approximately 10% of the African 23 

continent (Fig. 1). It has two main tributaries; the White Nile and the Blue Nile that originate from 24 

the equatorial lakes and Ethiopian highlands respectively. The Upper Blue Nile (UBN) basin is 25 

the main source of water for the Nile River. It contributes to approximately 60% of the annual flow 26 

of the Nile and 80% of the total Nile flow that occurs between July and October at Dongola 27 

(Conway and Hulme, 1993) (Fig. 2). The UBN basin extends over an area of 175 x103 km2 (7o N 28 

to 12o5' N and from 34o5' E to 40o E). The mean annual rainfall over this basin is 1200 mm/year 29 

(Conway and Hulme, 1993). Almost 60% of the annual rainfall over the UBN occurs during the 30 

summer between July and August, resulting in a largely predictable seasonal variability in the flow 31 

of the river.  32 

 33 

The prediction of inter-annual variability in the flow of the Nile is rather challenging. Many studies 34 

investigated the teleconnections between the Ethiopian rainfall and the global Sea Surface 35 

Temperature (SSTs) in order to find SSTs indices to use for Nile flow prediction (e.g. Eltahir, 36 

1996; Abtew et al., 2009; and Melesse et al., 2011). Eltahir (1996) showed that the SSTs anomalies 37 

over the tropical Eastern Pacific Ocean explains 25% of the inter-annual variability of Nile flow 38 

for the period 1872-1972. ElSanabary et al., 2014 showed that the dominant frequencies of the 39 

Ethiopian rainfall ranged between 2 and 8 years and that the scale averaged wavelet power of the 40 

SSTs over the Eastern Pacific and South Indian and Atlantic Oceans can explain significant 41 

fraction of the rainfall variability over Ethiopia using wavelet principal component analysis. These 42 

correlations between the Nile flow and SSTs indices were the basis for new forecast models that 43 

were proposed to predict the Nile flows. For example, Wang and Eltahir (1999) used a discriminant 44 
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prediction approach to estimate the probabilities that the Nile flow will fall into prescribed 45 

categories. Eldaw et al., (2003) and Gissila et al., (2004) used sea surface temperature (SST) over 46 

the Pacific, Indian and Atlantic Oceans as predictors within a multiple linear regression model to 47 

predict the Nile flow.  48 

 49 

The mechanisms behind these teleconnections between the rainfall over Ethiopia and the global 50 

SSTs were examined in several studies (e.g. Beltrando and Camperlin, 1993). However, a clear 51 

distinction must be made between rainfall over the UBN basin in Ethiopia and rainfall over East 52 

Africa, defined as the region along the coast, east of the Ethiopian highlands (Fig. 1). The UBN 53 

basin has one rainy season (May to September) during which more than 80% of the rainfall occurs, 54 

while along the East coast of Africa and depending on the location from the equator, the seasonal 55 

cycle of rainfall can have two rainy seasons (Black et al., 2003, Hastenrath et al., 2011). This 56 

pattern in the seasonal cycle of rainfall is related to the migration of the Inter-tropical Convergence 57 

Zone (ITCZ) across the equator. Camberlin, 1995 showed that the rainfall over East Africa, 58 

including the UBN basin, is strongly coupled with the dynamics of the Indian monsoon. During 59 

strong Indian monsoon seasons, the sea level pressure over India decreases significantly, which 60 

enhances the pressure gradient between East Africa and India. As a result, westerly winds increase 61 

over Eastern Africa and enhance transport moisture from the Congo basin to Ethiopia, Uganda and 62 

western Kenya. Giro et al., 2010 also showed that the warming over the Pacific Ocean, during El 63 

Niño events, reduces these westerly winds, which reduce the rainfall over East Africa. In addition, 64 

the monsoon circulation is weaker during El Niño events due to modulation of the walker 65 

circulation and enhanced subsidence over the Western Pacific and South Asia, thus the rainfall 66 

over Ethiopia decreases (Ju and Slingo, 1995; Kawamura, 1998; Shukla and Wallace, 1983; Soman 67 
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and Slingo, 1997). The reduced Nile flows during El Niño events were also attributed to the 68 

enhanced tropical-scale subsidence that suppresses rainfall, as a consequence of the increased 69 

upwelling over the Eastern Pacific Ocean (Amarasekera et al., 1996).  70 

 71 

The physical mechanism of the teleconnection between the Nile flow and SSTs of North and 72 

Middle Indian Ocean and ENSO is described in another paper by the authors (Siam et al., 2014). 73 

Nile flow is strongly modulated by ENSO through ocean currents. During El Niño events, the 74 

warm water travels from the Pacific to the Indian Ocean through the “Indonesian through flow” 75 

and advection by the Indian Equatorial Current (Tomczak and Godfrey, 1995). As a result, SSTs 76 

in North and Middle Indian Ocean warm-up following the warming of Tropical Eastern Pacific, 77 

and forces a Gill type circulation anomaly with enhanced westerly winds over Western Indian 78 

Ocean (Yang et al., 2007). The latter enhances the low-level divergence of air and moisture away 79 

from the Upper Blue Nile resulting in a reduction of rainfall over the basin. On the other hand, the 80 

warming over the South Indian Ocean, generates a cyclonic flow in the boundary layer, which 81 

reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, 82 

favoring a reduction in rainfall and river flows. The tele-connections between the Pacific Ocean 83 

and the Nile basin and between the Indian Ocean and the Nile basin are reflected in different modes 84 

of observed natural variability in the flow of Nile River, with important implications for the 85 

predictability of floods and droughts. 86 

 87 

The objectives of the study are (i) to investigate the strength of the teleconnection between the 88 

Indian Ocean and the Nile basin and its role in explaining observed natural modes of variability in 89 

the flow of the Nile river, and (ii) to develop a new hybrid forecasting algorithm that can be used 90 
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to predict the Nile flow based on indices of the SST in the Eastern Pacific and Southern Indian 91 

Oceans.  92 

 93 

2. Data  94 

In this study we use observed SSTs over the Indian and Pacific oceans from the monthly global 95 

(HadISST V1.1) dataset on a 1 degree latitude-longitude grid from 1900 to 2000 (Rayner et al. 96 

2003). The monthly flows at Dongola from 1900 to 1984 were extracted from the Global River 97 

Discharge Database (RivDIS v1.1) (Vörösmarty et al., 1998) and from 1984 to 2000 through 98 

personal connection. The average monthly anomalies from September to November of the SSTs 99 

averaged over the Eastern Pacific Ocean (6oN-2oN, 170oW-90oW; 2oN-6oS, 180oW-90oW; and 100 

6oS-10oS, 150oW-110oW) are used as an index of ENSO. This area has shown the highest 101 

correlation with the Nile flows and it is almost covering the same area as Niño 3 and 3.4 indices 102 

(Trenberth, 1997).  103 

 104 

3. Relation between the variability in the flow of Nile river, ENSO and the Indian Ocean SST 105 

Based on extensive correlation analysis of the Nile river flow at Dongola and the observed SST in 106 

the Indian Ocean, this study identifies a region over the Southern Indian Ocean (50oE-80oE and 107 

25oS-35oS) (see Figure 3) as the one with the highest correlation between SST and the Nile flow. 108 

This correlation is especially high for river flow (accumulated for July, August, September and 109 

October) and SST during the month of August. An earlier study by ElDaw et al. (2003) used SST 110 

indices over the Indian Ocean to predict the Nile flow, however, they focused on regions of the 111 
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Indian Ocean that are different from the region that we use in defining the South Indian Ocean 112 

(SIO) index. In other words the region of the SIO was not used by ElDaw et al. (2003). Table 2 113 

describes the regions of the Indian Ocean identified in both studies. 114 

 115 

This study emphasizes that the proposed forecasting methodology for the Nile flow is motivated 116 

by the physical mechanisms proposed by Siam et al. (2014) and described in Section 1. In contrast, 117 

the forecasting approach of some of the previous studies was based on purely statistical 118 

correlations found between the Nile flow and SSTs globally. 119 

 120 

Figure 4 shows the observed and simulated time series of the average July to October Nile flow at 121 

Dongola, which accounts for approximately 70% of the annual Nile flow. The Nile flow is 122 

predicted by three different linear regression models using either ENSO averaged from September 123 

to November (Figure 4a) or SIO August (Figure 4b) indices, or both (Figure 4c) as covariates. It 124 

is clear from this figure that the addition of the SIO index increase the explained variability of the 125 

Nile flow to 44%, compared to only 30% when ENSO index is used alone. This indicates that the 126 

SIO index can explain almost 14% of the variability of the Nile flow that is independent from 127 

ENSO. The North and middle of the Indian Ocean have also exhibited a high correlation between 128 

their SST and the Nile flow. However, the additional variability explained by the SST over the 129 

North and Middle Indian Ocean, when combined with the ENSO index, is negligible (not shown 130 

here). This is mainly because the SSTs over the North and Middle Indian Ocean are dependent on 131 

ENSO, while the SSTs over the South Indian Ocean (i.e. SIO index) is not, as described in Section 132 

1. 133 

 134 
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In further analysis, we define ±0.5oC as the threshold between non-neutral and neutral years on the 135 

Eastern Pacific Ocean based on ENSO index. This value is about two-thirds of one standard 136 

deviation of the anomalies of ENSO index. The same threshold has been used to identify non-137 

neutral and neutral years using El Niño 3.4 index, which is similar to our ENSO index (Trenberth, 138 

1997). This indicates that if the ENSO index anomaly is greater than 0.5oC or less than -0.5oC, it 139 

is considered as non-neutral condition, otherwise, it is considered as neutral condition. Similarly, 140 

±0.3oC value is used as a threshold between non-neutral and neutral years on the South Indian 141 

Ocean using the SIO index. This value is also about two-thirds of one standard deviation for the 142 

anomalies of the SSTs over this region. Thus, if both ENSO and SIO indices are used together, 143 

four different combinations can be defined based on these classifications. The first is when both 144 

ENSO and SIO indices are neutral (29 out of 100 events), the second is when both ENSO and SIO 145 

indices are non-neutral (19 out of 100 events), the third when SIO is non-neutral and ENSO is 146 

neutral (26 out of 100 events) and finally when SIO is neutral and ENSO is non-neutral (26 out of 147 

100 events). Each of these combinations is considerate as a mode of natural variability in the flow 148 

of Nile river. Then the Nile flow is calculated as a predictant using multiple linear regression with 149 

the (ENSO and SIO indices) of each mode as predictors.  150 

 151 

Four different modes are identified for describing the natural variability in the flow of Nile River 152 

and summarized in (Table 1). The ENSO and SIO indices do not explain a significant fraction of 153 

the interannual variability in the flow of river when they are both neutral (Fig. 5a). The variability 154 

of the Nile flow in such years can be regarded as a reflection of the chaotic interactions between 155 

the biosphere and atmosphere and within each of the two domains. For this mode, the predictability 156 

of the Nile flow is rather limited. The other two intermediate modes include non-neutral conditions 157 
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in the Eastern Pacific and neutral conditions in the Southern Indian Oceans or vice versa (Fig. 5b 158 

and 5c). For these two modes, a significant fraction (i.e. 31% and 43%) of the variance describing 159 

inter-annual variability in the flow is explained. Hence, these modes point to a significant potential 160 

for predictability of the flow. Finally, indices of ENSO and SIO can explain 84% of the interannual 161 

variability in the Nile flow when non-neutral conditions are observed for both the Eastern Pacific 162 

and Southern Indian Oceans (Fig. 5d). Therefore, the SIO index can be used to predict the flow 163 

together with the ENSO index, as collectively they can explain a significant fraction of the 164 

variability in the flow of Nile River. This result indicates that during years with anomalous SST 165 

conditions in both oceans, floods and droughts in the Nile River flow can be highly predictable, 166 

assuming accurate forecasts of those indices are available.  167 

 168 

4. A Hybrid Methodology for Long-range Prediction of the Nile flow 169 

A simple methodology is proposed to predict the Nile flow with a lead time of about a few months 170 

(~3-6 months). The forecast of global SST distribution based on dynamical models (e.g. NCEP 171 

coupled forecast system model version 2 (CFSv2), Saha et al., 2010; Saha et al., under review), 172 

can be used together with the algorithm developed in this section to relate the Nile flow to ENSO 173 

and SIO indices. The proposed method is shown in Figure 6 and can be described in two main 174 

steps: 175 

• Forecast of SST anomalies in the Indian Ocean and Eastern Pacific Ocean using dynamical 176 

models of the coupled global ocean atmosphere system. Such forecasts are routinely issued by 177 

centers such NCEP and ECMWF. 178 
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• Application of a forecast algorithm between the Nile flow (predictand) and forecasted SSTs 179 

in the Indian and Eastern Pacific Oceans (predictors) for the identified mode of variability. 180 

 181 

In this paper we focus on the second step of the proposed method: the development of the algorithm 182 

relating SSTs and the Nile flow. We develop the forecast algorithm using observed SSTs. We do 183 

not describe how this algorithm can be applied with forecasts of global SST distribution based on 184 

dynamical models as this step is beyond the scope of this paper.  However, we recognize that 185 

overall accuracy of this method in predicting interannual variability of the Nile flow is dependent 186 

on the skill of global coupled models in forecasting the global SSTs (See Appendix for information 187 

about forecasting models). Thus, the selection of the forecast model, which predicts the SSTs is 188 

an important step to ensure the accuracy of the prediction of the Nile flow. As global coupled 189 

ocean-atmosphere models improve in their skill of forecasting global SSTs in the Pacific and 190 

Indian Oceans, we expect that our ability to predict the interannual variability in the Nile flow will 191 

improve too. In addition, the accuracy in the prediction of the Nile flow at medium and short time 192 

scales (of weeks to one month) can be improved by adding other hydrological variables (e.g. 193 

rainfall and stream flow) over the basin, as demonstrated by (Wang and Eltahir, 1999) 194 

The proposed method can be described as hybrid since it combines dynamical forecasts of global 195 

SSTs, and statistical algorithms relating the Nile flow and the forecasted SSTs. The same method 196 

can also be described as hybrid since it combines information about SSTs from the Pacific and the 197 

Indian Oceans. 198 

Here, we apply a discriminant approach that specifies the categoric probabilities of the predictand 199 

(Nile flow) according to the categories that the predictors (i.e. ENSO and SIO indices) fall into. 200 



11 

 

The annual Nile flow is divided into “low”, “normal”, and “high” categories. The boundaries of 201 

these categories are defined so that the number of points in each category is about a third of the 202 

data points (Fig 7). On the other hand, the ENSO and SIO indices are divided into “cold”, “normal” 203 

and “warm” categories. (The words Normal and Neutral are used to describe the same 204 

conditions).The boundaries for the normal category are -0.5oC and 0.5oC for ENSO index and -205 

0.3oC and 0.3oC for SIO index (Fig. 7). Any condition below the lower limit is considered “cold” 206 

and higher than the upper limit is considered “warm” for both indices.  207 

The Bayesian theorem, described in many statistical books (e.g., Winkler 1972; West 1989), states 208 

that the probability of occurrence of a specified flow category (Qi) and given two conditions (A 209 

and B) can be expressed as 210 

�(��/ �, 	)  =
�(/��,�)�(��/�) 

�(/�)
       (1) 211 

Where �(��/ �) is the probability of event Qi given that event A has occurred, and �(��/ �, 	) is 212 

the probability of event Qi given that events A and B have occurred, and similarly for other shown 213 

probabilities.  In addition, if the events A and B are independent, we can rewrite Eq. (1) as 214 

�(��/ �, 	)  =
�(/��)�(��/�) 

∑ �(/��)�
��� �(��/�)

      (2) 215 

The advantage of assuming independence between (A and B) and using Eq. (2), it simplifies the 216 

calculation of P(B/Qi, A) since we do not have to split the data into a relatively large number of 217 

categories, which reduces the error due to the limitation of the data size. The independence 218 

between ENSO and SIO indices is a reasonable assumption as the coefficient of determination 219 

between them is less than 6%. 220 

 221 
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In order to evaluate the predictions of the Nile flow, we use a forecasting index (FI) defined by 222 

Wang and Eltahir, (1999) as 223 

FP(j)= ∑ ��(�, �)�
��� ��(�, �)   (3) 224 

FI = 
�

�
∑ �� (�)�

���                  (4) 225 

Where FP(j) is the forecast probability in a certain year (j) and the FI is the average of the FP over 226 

a certain period, n. The prior probability Pr(i, j) is calculated using Eq.(2) for a certain year (j) and 227 

category (i=1, 2, 3) and the posterior probability Pp(i, j) is defined as [1,0,0] in low flow year, 228 

[0,1,0] in normal year, and [0,0,1] in a high flow year.  Hence, a larger FI indicates a higher 229 

accuracy of the forecast. The FI without any information about SST, should be about one third as 230 

we have classified flow data into three categories each with a similar number of the data points. 231 

The data is split into a calibration period (1900-1970) and a verification period (1970-2000). 232 

Tables 3 and 4 summarize the conditional probabilities of Nile flow given certain conditions of 233 

SIO or ENSO index. It is shown that during “warm” and “cold” conditions of SIO, the probabilities 234 

are significantly higher for “low” and “high” Nile flow, respectively. The same is true for the 235 

ENSO, as was described originally by Eltahir (1996). Table 5 shows the probabilities that are 236 

conditioned on both SIO and ENSO, calculated using Eq. (2). This table illustrates clearly how 237 

forecasts of the Nile flow can be improved by combining the two indices. For example, “warm” 238 

conditions in both oceans translate into 85% probability of “low” flow in the Nile, and insignificant 239 

probability of “high” flow. On the other hand, “cold” conditions in both oceans translate into 83% 240 

probability of “high” flow in the Nile, and insignificant probability of “low” flow. Depending on 241 

the accuracy of the dynamical forecast models of global SSTs, such forecast of the Nile flow can 242 

be issued with lead times of 6 months. At present, the Eastern Nile Regional technical Office 243 
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(ENTRO) issues operational forecasts of the Nile flow based on ENSO forecasts and the 244 

probability table described by Eltahir (1996) (similar to Table 4). We anticipate that use of Table 245 

5, would represent a significant improvement in these operational forecasts.  246 

The combined use of ENSO and the SIO indices significantly increased the FI to 0.5 (Figure 8a). 247 

Comparison of Figures 8b and 8c, illustrates that the SIO index alone has almost the same FI value 248 

as ENSO index. Recall that in absence of any information about global SSTs, the FI should have 249 

a value of one third.  The deviations of the FI using ENSO index alone (Figure 8b) or SIO index 250 

alone (Figure 8c) from one third are almost added together to create the deviation of the FI from 251 

the hybrid method from one third (Figure 8a). Hence, the new SIO index plays an independent role 252 

from ENSO in shaping the interannual variability in the flow of Nile River. Thus by using these 253 

two indices, we explain a significant fraction of the interannual variability in the flow of Nile 254 

River, and illustrate a significant potential for improving the Nile flow forecasts.  255 

5. Conclusions 256 

• In this paper, we document that the SSTs in the Eastern Pacific and Indian Oceans play a 257 

significant role in shaping the natural interannual variability in the flow of Nile River. 258 

Previous studies have identified a significant teleconnection between the Nile flow and the 259 

Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the 260 

interannual variability in the Nile flow. Here, this study identifies a region in the southern 261 

Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface 262 

Temperature (SST) in the region (50oE-80oE and 25oS-35oS) explains 28% of the 263 

interannual variability in the Nile flow.  264 

• In addition, four different modes of natural variability in the Nile flow are identified and it 265 

is shown that during non-neutral conditions in both the Pacific and Indian Oceans, the Nile 266 
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flow is highly predictable using global SST information. During those years with 267 

anomalous SST conditions in both Oceans, this study estimates that indices of the SSTs in 268 

the Pacific and Indian Oceans can collectively explain up to 84% of the interannual 269 

variability in the flow of Nile. The estimated relationships between the Nile flow and these 270 

indices allow for accurately predicting the Nile floods and droughts using observed or 271 

forecasted conditions of the SSTs in the two oceans. 272 

•  This study uses classical Bayesian theorem to develop a new hybrid forecasting algorithm 273 

that predicts the Nile flow based on indices of the SST in the Eastern Pacific and Southern 274 

Indian Oceans. “Warm” conditions in both oceans translate into 85% probability of “low” 275 

flow in the Nile, and insignificant probability of “high” flow. On the other hand, “cold” 276 

conditions in both oceans translate into 83% probability of “high” flow in the Nile, and 277 

insignificant probability of “low” flow. Applications of the proposed hybrid forecast 278 

method should improve predictions of the interannual variability in the Nile flow, adding 279 

a new a tool for better management of the water resources of the Nile basin.  280 

The proposed forecasting methodology is indeed dependent on the accuracy of the global SST 281 

forecasts from global dynamical models. The accuracy of these forecasts is likely to improve as 282 

the models are tested and developed further. However, in this paper we test the proposed 283 

forecasting algorithm using observed SSTs. Such test describes an upper limit of the skill of the 284 

proposed algorithm. The assessment of the same methodology using indices of SST forecasted by 285 

global dynamical models will be addressed in future work. 286 

 287 

 288 



15 

 

Tables 289 

Table 1: Summary of the coefficient of determination (R2) between the average Nile flow from July to 290 

October and different combination of indices of ENSO and SIO.  291 

Mode 

ENSO SIO 
ENSO, 

SIO 

Number of 

 events 

(Observed Variance of Nile flow) ENSO SIO 

Neutral Neutral 
0.04 

 

0.03 

 

0.08 

 

29 

(6.76) 

Neutral Non-Neutral 
0.05 

 

0.28+ 

 

0.31+ 

 

26 

(10.24) 

Non-

Neutral 
Neutral 

0.4+ 

 

0.02 

 

0.43+ 

 

26 

(5.8) 

Non-

Neutral 
Non-Neutral 

0.64+ 

 

0.6+ 

 

0.84+ 

 

19 

(12.3) 

Note: The values between brackets are for the observed variance of Nile flow of each mode in units of 292 

(MCM2/day2) 293 

SIO: South Indian Ocean SSTs index, ENSO: ENSO index.  294 

*Values that are significant at 5% significance level 295 

+ Values that are significant at 1% significance level 296 

 297 

 298 

 299 

 300 

 301 
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 302 

Table 2: Comparison between regions in the Indian Ocean used in ElDaw et al., 2003 and this 303 

study to predict the Nile flow. 304 

Region Location Study 

1  (35o-44 o S, 115 o -130 o E) 

ElDaw et al, 2003 
2  (0o-7 o S, 90 o -130 o E) 

3  (35o-44 o S, 20 o -60 o E) 

4  (10o-20 o S, 110 o -125 o E) 

5  (50oE-80oE and 25oS-35oS) This study 

 305 

Table 3: Conditional probability of the Nile flow given SIO conditions 306 

    Nile flow 

   High Normal Low 

S
IO

  

Warm 0 0.25 0.75 

Normal 0.23 0.39 0.39 

Cold 0.57 0.26 0.17 

 307 

 308 

 309 

 310 

 311 
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Table 4: Conditional probability of the Nile flow given ENSO conditions 312 

    Nile flow 

   High Normal Low 

E
N

S
O

 

Warm 0.15 0.31 0.54 

Normal 0.22 0.38 0.41 

Cold 0.68 0.32 0 

 313 

 314 

Table 5: Conditional probability of the Nile flow given SIO and ENSO conditions 315 

SIO  

Nile 

flow 

ENSO  

Warm  Normal Cold 

S
IO

 W
a

rm
 High  0 0 0 

Normal 0.15 0.22 1 

Low 0.85 0.78 0 

S
IO

 N
o

rm
a

l High  0.1 0.14 0.57 

Normal 0.31 0.4 0.43 

Low 0.59 0.46 0 

S
IO

 C
o

ld
 

High  0.33 0.42 0.83 

Normal 0.29 0.33 0.17 

Low 0.37 0.25 0 

 316 

 317 

 318 
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Appendix 319 

Table 1: Summary of some available forecast models of the Sea Surface Temperature 320 

Model Type of 

Model 

Agency Domain Lead time 

up to 

(Months) 

Resolution 

    (km) 

Reference 

NCEP-CFS 

V2 

Dynamical  National 

Centers for 

Environmental 

Prediction 

(NCEP) 

Global 8  200  Saha et al., 

2010 

NASA-

GMAO 

Dynamical NASA Goddard 

Space Flight 

Center- Global 

Modeling and 

Assimilation 

Office 

Global 12 200 Bacmeister 

et al., 2000 

ECMWF- 

System 4 

Dynamical  European 

Centre for 

Medium-Range 

Weather 

Forecasts 

Global 4 70 Molteni et 

al., 2011 

UKMO-

GCM 

Dynamical  United Kingdom 

Met Office 

Global 6 150 Graham et 

al., 2005 

NOAA-CDC Statistical National 

Oceanic and 

Atmospheric 

Administration- 

Climate 

Diagnostic 

Center 

Global 12 -- Pneland et 

al., 1998 

CPC- 

Markov 

Statistical  National 

Centers for 

Environmental 

Prediction- 

Climate 

Prediction 

Center 

Nino 3 and 

Nino 3.4 

8 -- Xue et al., 

2000 

 321 
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Figures 457 

 458 

 459 

 460 

Figure 1: Topographic map of the Nile basin showing the outlet of the Upper Blue Nile basin (shaded in 461 

gray) at Roseiras. The White and Blue Nile join together at Khartoum the form the main branch of the Nile 462 

that flows directly to Dongola in the North. 463 
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 479 

Figure 2: Annual Nile flow (Top) and seasonal cycle (Bottom) of the flow at Dongola for the period from 480 

1900 to 2000. 481 
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 483 

 484 
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 487 

 488 

Figure 3: World map showing areas that cover the ENSO and North and South Indian Ocean SSTs indices. 489 

The Nino 3 and 3.4 are outlined in black and green respectively. The whole Nile basin is outlined in black. 490 
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 491 

 492 

Figure 4: Observed (Solid Blue lines) and simulated (Dashed Red lines) average Nile flows in Million 493 

Cubic Meter per day (MCM/day) from July to October at Dongola using: a) ENSO index, b) SIO index and 494 

c) ENSO and SIO indices as predictors for the period 1900 to 2000. The simulated flows are calculated 495 

based on the equations shown in each figure, in which the predictands are the average observed SSTs 496 

over the ENSO and SIO regions in degrees Celsius and the predictor is the average Nile flow from July to 497 

October in Million Cubic Meter per day (MCM/day).  498 
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 503 

Figure 5: A comparison between the observed and simulated Nile flow showing the different modes of 504 

variability for the period from 1900 to 2000: a) Neutral ENSO (29 events) and SIO, b) Neutral ENSO and 505 

Non-Neutral SSTs in SIO (26 events), c) Non-Neutral ENSO and Neutral SSTs in SIO (26 events) and finally, 506 

d) Non-Neutral ENSO and Non-Neutral SSTs in SIO (19 events). 507 
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 525 

 526 

Figure 6: Schematic of the hybrid methodology for predicting the Nile flow using the SSTs forecasts of 527 

the dynamical models and the proposed forecast algorithm. 528 
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 533 

Figure 7: Relations between the annual Nile flow and different indices for the period (1900-2000): a) 534 

ENSO, and b) SIO. The horizontal lines represent the boundaries for the “high”, “normal” and “low” 535 

categories of the annual flow. The vertical lines represent the boundaries for the “Warm”, “normal”, and 536 

“cold” conditions for ENSO and SIO indices. 537 
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 544 

Figure 8: Time series of the forecast probability using different indices: a) ENSO and SIO together, b) 545 

ENSO, and c) SIO. The period (1900-1970) is used for calculating the probabilities (shown in crosses) 546 

using Eq. (2) and (1970-2000) for validation (shown in stars). 547 
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