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Abstract

Statistics of central tendency and dispersion may not capture relevant or desired characteristics
of the distribution of continuous phenomena and thus, they may not adequately describe
temporal patterns of change. Here, we present two methodological approaches that can help to
identify temporal changes in environmental regimes. First, we use higher-order statistical
moments (skewness and kurtosis) to examine potential changes of empirical distributions at
decadal extents. Second, we adapt a statistical procedure combining a non-metric
multidimensional scaling technique and higher density region plots to detect potentially
anomalous years. We illustrate the use of these approaches by examining long-term stream
temperature data from minimally and highly human-influenced streams. In particular, we
contrast predictions about thermal regime responses to changing climates and human-related
water uses. Using these methods, we effectively diagnose years with unusual thermal variability
and patterns in variability through time, as well as spatial variability linked to regional and local
factors that influence stream temperature. Our findings highlight the complexity of responses of
thermal regimes of streams and reveal their differential vulnerability to climate warming and
human-related water uses. The two approaches presented here can be applied with a variety of
other continuous phenomena to address historical changes, extreme events, and their associated

ecological responses.

Keywords: frequency analyses, probability distributions, kurtosis, skew, global warming, stream

ecosystems, hydrology, thermal regimes



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

INTRODUCTION
Environmental fluctuation is a fundamental feature that shapes ecological and evolutionary
processes. Although empirical distributions of environmental data can be characterized in terms
of the central tendency (or location), dispersion, and shape, most traditional statistical
approaches are based on detecting changes in location and dispersion, and tend to oversimplify
assumptions about temporal variation and shape. This issue is particularly troublesome for
understanding the stationarity of temporally continuous phenomena and thus, the detection of
potential shifts in distributional properties beyond the location and dispersion. For instance,
descriptors of location, such as mean, median or mode, may not be the most informative when
extreme hydrological events are of primary attention (e.g., Chebana et al., 2012). In many
regions, the future climate is expected to be characterized by increasing the frequency of extreme
events (e.g., Jentsch et al., 2007; IPCC 2012). Hence, the detection of changes in the shape of
empirical distributions could be more informative than only using traditional descriptors of
central tendency and dispersion (e.g., Shen et al., 2011; Donat & Alexander, 2012). More
importantly, factors associated with changes in the shape of empirical distributions may have
greater effects on species and ecosystems than do simple changes in location and dispersion
(e.g., Colwell, 1974; Gaines & Denny, 1993; Thompson et al., 2013; Vasseur et al., 2014).
Here, we explore two approaches that identify and visualize temporal alterations in
continuous environmental variables using thermal regimes of streams as an illustrative example.
First, applying frequency analysis, we examine patterns of variability and long-term shifts in the
shape of the empirical distribution of stream temperature using higher-order statistical moments
(skewness and kurtosis) by season across decades. Second, we combine non-metric

multidimensional scale ordination technique (N-MDS) and highest density regions (HDR) plots
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to detect potentially anomalous years. To exemplify the utility of these approaches, we employ
them to evaluate predictions about long-term responses of thermal regimes of streams to
changing terrestrial climates and other human-related water uses (Fig. 1). Our main goal is to
identify temporal changes of environmental regimes not captured by lower-order statistical
moments. This is particularly relevant in streams because (1) global environmental change may
affect water quality beyond the traditional lower-order statistical moments (e.g., Brock &
Carpenter, 2012), and (2) ecosystems and organisms have been shown to be sensitive to such

changes (e.g., Thompson et al., 2013; Vasseur et al., 2014).

Thermal regime of streams as an illustrative example

Temperature is a fundamental driver of ecosystem processes in freshwaters (Shelford, 1931; Fry,
1947; Magnuson et al., 1979; Vannote & Sweeney, 1980). Short-term (daily/weekly/monthly)
descriptors of mean and maximum temperatures during summertime are frequently used for
characterizations of thermal habitat availability and quality (McCullough et al., 2009),
definitions of regulatory thresholds (Groom et al., 2011), and predictions about possible
influences of climate change on streams (Mohseni et al., 2003; Mantua et al., 2010; Arismendi et
al., 2013a,b). These simple descriptors can serve as useful first approximations, but do not
capture the full range of thermal conditions that the aquatic biota experience at daily, seasonal, or
annual intervals (see Poole & Berman, 2001; Webb et al., 2008). Both human impacts and
climate change have been shown to affect thermal regimes of streams at a variety of temporal
scales (e.g., Steel & Lange, 2007; Arismendi et al., 2012; 2013a,b). For example, recent climate
warming could lead to different responses of streams that may not be well described using

average or maximum temperature values (Arismendi et al., 2012). Daily minimum stream
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temperatures in winter have warmed faster than daily maximum values during summer
(Arismendi et al., 2013a; for air temperatures see Donat & Alexander, 2012). In human modified
streams, seasonal shifts in stream temperatures and earlier warmer temperatures have been
recorded following removal of riparian vegetation (Johnson & Jones, 2000). Simple threshold
descriptors of central tendency (location) and dispersion cannot characterize these shifts.

Using higher-order statistical moments, we examine the question of whether the warming
climate has led shifts in the distribution of stream temperatures (Fig. 1a, b) or if all stream
temperatures have warmed similarly and moved without any change in distribution or shape. In
addition, we compare these potential shifts in the distribution of stream temperature between
streams with unregulated and human-regulated streamflows. Using a technique that combines a
non-metric multidimensional scaling procedure and higher density region plots, we address the
question of whether potentially anomalous years are synoptically detected across streams types
(regulated and unregulated) and examine if those potentially anomalous years represent the
influence of regional climate or alternatively highlight the importance of local factors. Previous
studies have shown that detecting changes in thermal regimes of streams is complex and the use
of only traditional statistical approaches may oversimplify characterization of a variety of

responses of ecological relevance (Arismendi et al., 2013a,b).

MATERIAL AND METHODS

Study sites and time series

We selected long-term gage stations (US Geological Survey and US Forest Service) that
monitored year-round daily stream temperature in Oregon, California, and Idaho (n = 10; Table

1). The sites were chosen based on (1) availability of continuous daily records for at least 31
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years (January 1% 1979 to December 31% 2009) and (2) complete information for time series of
daily minimum (min), mean (mean), and maximum (max) stream temperature for at least 93% of
the period of record. Half of the sites (n = 5) were located in unregulated streams (sites 1-5) and
the other half were in regulated streams (sites 6-10). Regulated streams were those with
reservoirs constructed before 1978, whereas unregulated streams had no reservoirs upstream
during the entire time period of the study (1979-2009). Time series were carefully inspected and
the percentage of daily missing records of each time series was less than 7% (Table 1). To ensure
enough observations to adequately represent the tails of the respective distributions at a seasonal
scale for analyses of higher-order statistical moments (i.e., winter: December-February; spring:
March-May; summer: June-August; fall: September-November), we grouped and compared daily
stream temperature data at each site among the three decades 1980-1989, 1990-1999, and 2000-
2009. For the procedure that detects potentially anomalous years only (see below), we

interpolated missing data following Arismendi et al. (2013a).

Higher-order statistical moments
To visualize and use a similar scale of stream temperatures across sites, we standardized time

series of daily temperature values using a Z-transformation as follows:

where ST; was the standardized temperature at day i, Ti was the actual temperature value at day i
(°C), u was the mean and o was the standard deviation of the respective time series considering

the entire time period.



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Although common estimators of skewness and kurtosis are unbiased only for normal
distributions, these moments can be useful to describe changes in the shape of the distribution of
environmental variables over long-term periods (see Shen et al., 2011; Donat & Alexander,
2012). Skewness addresses the question of whether or not a certain variable is symmetrically
distributed around its mean value. With respect to temperature, positive skewness of the
distribution (or skewed right) indicates colder conditions are more common (Fig. 1a) whereas
negative skewness (skewed left) represents increasing prevalence of warmer conditions (Fig. 1b).
Therefore, increases in the skewness over time could occur with increases in warm conditions,
decreases in cold conditions, or both.

Kurtosis describes the structure of the distribution between the center and the tails
representing the dispersion around its ‘shoulders’. In other words, as the probability mass
decreases around its shoulders it may increase in either the center, or the tails, or both resulting
in a rise in the peakedness, the tailweight, or both and thus, the dispersion of the distribution
around its shoulders increases. The reference standard is zero, a normal distribution with excess
kurtosis equal to kurtosis minus three (mesokurtic). A sharp peak in a distribution that is more
extreme than a normal distribution (excess kurtosis exceeding zero) is represented by less
dispersion in the observations over the tails (leptokurtic). Distributions with higher kurtosis tend
to have "tails" that are more accentuated. Therefore, observations are spread more evenly
throughout the tails. A distribution with tails more flattened than the normal distribution (excess
kurtosis below zero) is described by higher frequencies spread across the tails (platykurtic). With
respect to temperature, a leptokurtic distribution may indicate that average conditions are much
more frequent with a lower proportion of both extreme cold and warm values (Fig. 1a). A

platykurtic distribution represents a more evenly distributed distribution across all values with a
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higher proportion of both extreme cold and warm values (Fig. 1b). Therefore, increases in the
kurtosis over time would occur with decreases in extreme conditions, increases of average
conditions, or both.

Time series of environmental data are generally large datasets that often have missing values
and errors (see Table 1). Although the data we selected had no more than 7% missing values, we
accounted for potential bias inherent to incomplete time series or small samples sizes by using
sample skewness (adjusted Fisher-Pearson standardized moment coefficient) and sample excess
kurtosis (Joanes and Gill, 1998). The sample skewness and sample excess kurtosis are

dimensionless and were estimated as follows:

— n n (Ti—u ’
Skewness_(n_l)(n_z) ZH( - j

Kurtosis = ) s (Ti_#]4 -y
(n-)(n-2)(n-3) = o (n-=2)(n-3)

where n represented the number of records of the time series, T; was the temperature of the day i,
4 and o the mean and standard deviation of the time series.

To define the status of the skewness for the stream temperature distribution in a particular
season and decade, we followed Bulmer (1979) in defining three categories as follows: “highly
skewed” (if skewness was < -1 or > 1), “moderately skewed” (if skewness was between -1 and -
0.5 or between 0.5 and 1), and “symmetric” (if skewness was between -0.5 and 0.5). We used
similar procedures to define the status of excess kurtosis. We defined five categories that
included “negative kurtosis or platykurtic” (if kurtosis was < -1), “moderately platykurtic” (if

kurtosis was between -0.5 and -1), “positive kurtosis or leptokurtic” (if kurtosis was > 1),
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“moderately leptokurtic” (if kurtosis was between 0.5 and 1). Finally, if kurtosis was between -
0.5 and 0.5, we considered the distribution as “mesokurtic”.

There are some caveats inherent to time series analyses of environmental data that should be
considered. First, error terms for sequential time periods may be influenced by serial correlation
affecting the independence of data. For hypothesis testing, when serial correlation occurs, the
goodness of fit is inflated and the estimated standard error is smaller than the true standard error.
Serial correlation often occurs on short-term scales (hourly, daily, weekly) in analyses of
environmental water quality (Helsel & Hirsch, 1992). In this study, we reduced the potential for
serial correlation by using higher-order statistical moments aggregated over longer time periods
that allowed for a contrast among decades. Second, it is important to note that temporal changes
in skewness and kurtosis could be influenced by several factors. Because skewness and kurtosis
are ratios based on lower-order moments, their temporal changes may be the result of changes in
only the lower-order moments, changes in the higher-order moments or both. Thus, we
recommend the use of higher-moment ratios in conjunction to the lower-order moments of

central tendency and dispersion.

Statistical procedure to detect potentially anomalous years

We considered an entire year as one finite-dimensional observation (365 days of daily minimum
stream temperature; see study sites and time series section above). Using a non-metric
multidimensional scaling (N-MDS) unconstrained ordination technique (Kruskal, 1964), we
compared the similarity among years of the Euclidean distance of standardized temperatures for
each day within a year across all years. The N-MDS analysis places each year in multivariate

space in the most parsimonious arrangement (relative to each other) with no a priori hypotheses.
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Based on an iterative optimization procedure, we minimized a measure of disagreement or stress
between their distances in 2-D using 999 random starts following the original MDSCAL
algorithm (Kruskal, 1964; Clarke, 1993; Clarke & Gorley, 2006). The algorithm started with a
random 2-D ordination of the years and it regressed the inter-year 2-D distances to the actual
multidimensional distances (365-D). The distance between the jth and the kth year of the random
2-D ordination is denoted as djk whereas the corresponding multidimensional distance is denoted
as Djk. The algorithm performed a non-parametric rank order regression using all the jth and the
kth pairs of values. The goodness of fit of the regression was estimated using the Kruskal’s stress

as follows:

- 2
. div —d.

Stress = ZJZR( Ik 5 ]k)
2 2 A

where &jk represented the predicted distance from the fitted regression between djx and Djk. If
dik = c?jkfor all the distances, the stress is zero. The algorithm used a steepest descent numerical
optimization method to evaluate the stress of the proposed ordination and it stops when the stress
converges to a minimum. Clarke (1993) suggests the following benchmarks: stress <0.05 —
excellent ordination; stress <0.1 - good ordination; stress <0.2 acceptable ordination; stress >0.2
— poor ordination. The resulting coordinates 1 and 2 from the resulted optimized 2-D plot
provided a collective index of how unique a given year was (Fig. 1c,d). In N-MDS the order of
the axes was arbitrary and the coordinates represented no meaningful absolute scales for the axis.
Fundamental to this method was the relative distances between points; those with greater
proximity indicated a higher degree of similarity, whereas more dissimilar points were
positioned further apart. We performed the N-MDS analyses using the software Primer ver.

6.1.15 (Clarke, 1993; Clarke & Gorley, 2006).
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We created a bivariate high dimensional region (HDR) box-plot using the two coordinates of
each point (year) from the 2-D plot from the N-MDS ordination (Hyndman, 1996). The HDR
plot has been typically produced using the two main principal component scores from a
traditional principal component analysis (PCA) (Hyndman, 1996; Chebana et al., 2012).
However, in this study, we modified this procedure taking the advantage of the higher flexibility
and lack of assumptions of the N-MDS analysis (Everitt, 1978; Kenkel & Orloci, 1986) to
provide the two coordinates needed to create the HDR plot. In the HDR plot, there are regions
defined based on a probability coverage (e.g., 50%; 90%; or 95%) where all points (years) within
the probability coverage region have higher density estimates than any of the points outside the
region (Fig. 1c,d). The outer-region of the probability coverage region (Fig. 1c,d) is bounded by
points representing potentially anomalous years. We created the HDR plots using the package
‘hdrcde’ (Hyndman et al., 2012) in R ver. 2.15.1 (R Development Core Team, 2012).

Similarly to the higher-order statistical moments, there are some caveats that should be
considered when using the procedure that detect potentially anomalous years. First, it is
important to note that this procedure identified years outside a confidence region, in other words,
those years that fall in the tails of the distribution. Because the confidence region represented an
overall pattern extracted from the available data, it was constrained by the length of the time
series. Thus, potentially anomalous years located outside of the confidence region may not
necessarily represent true outliers. In addition, when the ordination is poor (stress > 0.2)
interpreting the regularity/irregularity of the geometry of the confidence region should be done
with caution. In our illustrative example, the regularity of the confidence region seen for

regulated streams (Fig. 1c), when contrasted to unregulated sites, could be interpreted as
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influence of the reservoir in dampening the inter-annual variability of downstream water

temperature.

RESULTS AND DISCUSSION

Empirical distributions of stream temperature were distinctive among seasons, and seasons were
relatively similar across sites (Fig. 2). Temperature distributions during winter had high overlap
with those during spring. Winter had the narrowest range and, as would be expected, the highest
frequency of observations occurring at colder standardized temperature categories (-1.3, -0.7).
The second highest proportion of observations occurred in different seasons for regulated and
unregulated sites; during spring in unregulated streams and during summer at four of the five
regulated sites. This shift of frequency could be due to warming and release of the warmer water
from the upstream reservoirs. Fall distributions showed broadest range, with a similar proportion
for a number temperature values.

Changes in the shape of empirical distributions among seasons over decades were not
immediately evident. However, the values of skewness or types of kurtosis captured these
decadal changes in cases when lower-order statistical moments (average and standard deviation)
did not show marked differences (e.g., sitel during fall and spring in Fig. 3; Table 2 and 3; see
also differences among decades at sitel during summer in Supplement). The utility of combining
skewness and kurtosis to detect changes in distributional shapes over time can be illustrated
using site3 during winter and spring (Tables 2 and 3; Supplement). At this site, there was a shift
across decades from symmetric towards a negatively skewed distribution in winter and from
symmetric towards positively skewed in spring (Table 2), as well as from mesokurtic towards a

leptokurtic distribution in both winter and spring (Table 3). Overall, in most unregulated sites,
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kurtosis type differed among decades s during winter and summer (Table 3; Supplement). Winter
and summer frequently had negatively skewed distributions whereas spring generally had
positively skewed distributions or those with little change across decades, except for site3 (Table
2; Supplement).

Decadal changes in both skewness and kurtosis during winter and summer at unregulated
sites suggest that the probability mass moved from its shoulders into warmer values at its center,
but maintained the tail-weight of the extreme cold temperature values (Fig. 3; Tables 2 and 3;
Supplement). However, in spring the probability mass diminished around its shoulders, likely
due to decreases in the frequency of extreme cold temperature values. Hence, higher-order
statistical moments may help in describing the complexity of temporal changes in stream
temperature among seasons and highlight how shifts may occur at different portions of the
distribution (e.g., extreme cold, average, or warm conditions) or among streams.

In regulated sites, we observed shifts toward colder temperatures (e.g., site6 and site9 during
summer and fall in Fig. 3; Supplement) suggesting local influences of water regulation may
dominate the impacts from warming climate. This is illustrated by the mixed patterns of
skewness and kurtosis due to climate and water regulation, especially during spring, winter, and
summer (Tables 2 and 3; Fig. 3; Supplement). In particular, in spring, patterns of skewness in
regulated sites were similar to unregulated sites, whereas patterns of kurtosis were in opposite
directions (more platykurtic in regulated sites). This can be explained by the water discharged
from reservoirs in spring that could be a mix of the cool inflows to the reservoir, the deep, colder
water stored in the reservoir over the winter, and the accelerated warming of the exposed surface
of the reservoir. Patterns of skewness and kurtosis seen in regulated sites also highlight the

influences of site-dependent water management coupled with climatic influences. This is
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exemplified by the skewness of site7 and site8 compared to site9 and site10 in fall, winter, and
spring (Table 2) and the high variability of the value of skewness among sites in summer.

Increased understanding of the shape of empirical distributions by season or by year will help
researchers and resource managers evaluate potential impacts of shifting environmental regimes
on organisms and processes across a range of disturbance types. Empirical distributions are a
simple, but comprehensive way to examine high frequency measurements that include the full
range of values. Higher-order statistical moments provide useful information to characterize and
compare environmental regimes and can show which seasons are most responsive to
disturbances. The use of higher-order moments could help improve predictive models of climate
change impacts in streams by incorporating full environmental regimes into scenarios rather than
only using descriptors of central tendency and dispersion from summertime.

The technique for detection of potentially anomalous years used here was able to incorporate
all daily data to provide a simple but comprehensive comparison of environmental regimes
among years. We were able to characterize whole year responses and identify where regional
climatic or hydrologic trends dominated versus where local influences distinctively influenced
stream temperature. For example, Year 1992 was identified as potentially anomalous at three
unregulated sites (or four at 90% CI) and at two regulated sites (or four at 90% CI), and
identified that across the region, the majority of stream temperatures were being influenced.
Stream temperatures in Years 1987 and 2008 were less synchronous across the region, but
regulated and unregulated sites located in the same watershed (site2, site7, and site8 in Table 1;
Figs. 4 and 5; Supplement) shared similar potentially anomalous years. We also observed site
specific anomalous years, suggesting that more local conditions of watersheds influenced stream

temperature (e.g., Arismendi et al., 2012). Indeed, sites located close to one another (site3 and
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sited in Table 1; Fig. 4; Supplement) did not necessarily share all potentially anomalous years,
suggesting that local drivers were more influential than regional climate forces during those
years. Hence, the procedure for detection of potentially anomalous years used here may be useful
to evaluate and contrast the vulnerability of streams to regional or local climate changes by
characterizing years with anomalous conditions.

The technique that detects potentially anomalous years identified years with differences in
either magnitude or timing of events (Figs. 4 and 5) and mapped these differences within the
ordination plot. For example, year 1992 and 1987 were potentially anomalous likely due to
magnitude of warming throughout year. At other sites, such as site3, site4 and site5 (Fig. 4), the
potentially anomalous years were most likely due to increased temperatures in seasons other than
summertime, and not related to higher summertime temperatures. Years 1992 and 2008 plotted at
the opposite extremes of the ordination plot for sitel, site2 and site7 (Figs. 4 and 5); see also
Years 1982-1983 and 1986-1987 for site3. These years contained warm and cold conditions,
respectively, and likely influenced the shape of the confidence region (Figs. 4 and 5;
Supplement). Interestingly, we observed that the confidence region for unregulated sites (Fig. 4)
appeared to be more irregularly shaped than regulated sites (Fig. 5), which suggests that stream
regulation may tightly cluster and homogenize temperature values across years (e.g., Fig. 1c, d).
Further attention on the interpretation of the geometry of confidence region may be useful to
contrast purely climatic from human influences on streams.

There are some considerations when detecting potential changes in continuous environmental
phenomena that are inherent to time series analysis including the length, timing, and quality of
the time series as well as the type of the driver that is investigated as responsible for such

change. Often, the detection of shifts in time series of environmental data is affected by the



342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

16

amount of censored data that limits the length and timing of the time series (e.g., Arismendi et al.
2012). There are uncertainties regarding the importance of regional drivers and the
representativeness of sites (e.g., complex mountain terrain) and periods of record (e.g., ENSO,
and PDO climatic oscillations). Lastly, the type of climatic influences may affect the magnitude
and duration of the responses resulting in short-term abrupt shifts (e.g., extreme climatic events),
persistent long-term shifts (e.g., climate change), or a more complex combination of them (e.g.,

regime shifts - Brock & Carpenter, 2012).

SUMMARY AND CONCLUSIONS

Here we show the utility of using higher-order statistical moments and a procedure that detects
potentially anomalous years as complementary approaches to identify temporal changes in
environmental regimes and evaluate whether these changes are consistent across years and sites.
Stream ecosystems are exposed to multiple climatic and non-climatic forces which may
differentially affect their hydrological regimes (e.g., temperature and streamflow). In particular,
we show that potential timing and magnitude of responses of stream temperature to recent
climate warming and other human-related impacts may vary among seasons, years, and across
sites. Statistics of central tendency and dispersion may or may not distinguish between thermal
regimes or characterize changes to thermal regimes, which could be relevant to understanding
their ecological and management implications. In addition, when only single metrics are used to
describe environmental regimes, they have to be selected carefully. Often selection means
simplification resulting in the compression or loss of information (e.g., Arismendi et al., 2013a).

By examining the whole empirical distribution and multiple moments, we can provide a better
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characterization of shifts over time or following disturbances than simple thresholds or
descriptors.

In conclusion, our two approaches complement traditional summary statistics by helping to
characterize continuous environmental regimes across seasons and years, which we illustrate
using stream temperatures in unregulated and regulated sites as an example. Although we did not
include a broad range of stream types, they were sufficiently different to demonstrate the utility
of the two approaches. These two approaches are transferable to many types of continuous
environmental variables and regions and suitable for examining seasonal and annual responses as
well as climate or human-related influences (e.g., for streamflow see Chebana et al., 2012; for air
temperature see Shen et al., 2011). These analyses will be useful to characterize the strength of
the resilience of regimes and to identify how regimes of continuous phenomena have changed in

the past and may respond in the future.
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Table 1. Location and characteristics of unregulated (n = 5) and regulated (n = 5) streams at the gaging sites. Percent of daily gaps in

Start of watershed % of daily
Lat Long elevation
River water gage ID ID area gaps
N w (m)
regulation (km?)
Fir Creek, OR unregulated 14138870  sitel 4548 122.02 439 14.1 2.8%
SF Bull Run River, OR unregulated 14139800  site2 4545 122.11 302 39.9 2.0%
McRae Creek, OR unregulated TSMCRA  site3 44.26  122.17 840 5.9 3.5%
Lookout Creek, OR unregulated TSLOOK  sited 44.23 12212 998 4.9 2.6%
Elk Creek, OR unregulated 14338000  site5 42.68 122.74 455 334.1 5.2%
Clearwater River, 1D 1971 13341050  site6 46.50 116.39 283 20,658 4.0%
Bull Run River near Multnomah Falls, OR 19152 14138850  site7 4550 12201 329 124.1 5.3%
NF Bull Run River, OR 1958 14138900  site8 45.49 122.04 323 21.6 2.6%
Rogue River near McLeod, OR 1977 14337600  site9 42.66 122.71 454 2,429 3.7%
Martis Creek near Truckee, CA 1971 10339400 sitel0  39.33 120.12 1747 103.4 6.5%

4Regulation at times
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Table 2. Magnitude and direction of the value of skewness in probability distributions of daily minimum stream temperature by

season and decade at unregulated (sites 1-5) and regulated (sites 6-10) streams. Symmetric distributions are not shown. m =

moderately skewed; h = highly skewed; (-) = negatively skewed; (+) = positively skewed (see Supplement for more details).

season/time period

site type  site ID fall winter Spring summer

80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09
—~ sitel m- m() m() mE) mE)  m)
g site2 m- m() mE)  mE) mE) m) m(-)
g site3 m() mE+)  h() m()
g» site4 h(+) m(+) h(+) m(-) m(-) m(-)
S site5 m#*)  h(+x) mE) m) m(-)  m(-)
_ site6 m(+) m(+)
% site7 m(-) m(+ m(+)  m+) m(-)
g sies me)  me) m(+) m(+) h(-)
S siteg mE)  mE)  mE)  mE)  me) m()
g site10 m(+) h(-) m(-)
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481  Table 3. Types of kurtosis of probability distributions of daily minimum stream temperature by season and decade at unregulated and

482  regulated sites. <>« = platykurtic; <» = moderately platykurtic; § § = leptokurtic, and { = moderately leptokurtic. Mesokurtic

483  distributions are not shown (see Supplement for more details).

season/time period

site type  site fall winter Spring summer
80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09
sitel PN 0 0 0 11
& site2 — 0 11 PN 0
)
2 site3 > > > 17 ) >
3
S sites o 11 11 1
c
>
site5 - - o < 0 7 17 )
site6 > — PN o 1
§ site7 > > )
© .
5 site8 0 - 7 7 - 7 )
s
D site9 — ) — — — — —
[<D]
sitel0 oo oo > — 17 > — — 17 ) )

484
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FIGURE LEGENDS

Fig. 1. Conceptual diagram showing hypothesized shifts of distribution of water temperatures at both seasonal (upper panels) and
annual (lower panels) scales in regulated (left panels) and unregulated (right panels) streams. In the upper panels examples of changes
in skewness and kurtosis are shown for temperature distributions affected by stream regulation and a warming climate in a given
season. For instance, in regulated streams the influence of the reservoir may reduce both extreme cold and warm temperatures
confounding the effect from the climate (a) whereas less cold temperatures and an overall shift toward warming values may occur in
unregulated streams (b). In the lower panels, we illustrate the use of N-MDS and HDR plots for detecting potentially anomalous years
in regulated and unregulated streams (the shaded area represent a given coverage probability). Points located in the outer or the
confidence region represent potentially anomalous years. For instance, in regulated streams individual years are more clustered due to
the reservoir may homogenize temperatures across years whereas (c) whereas in unregulated streams individual years are less

clustered due to more heterogeneous responses to the warming climate (b).

Fig. 2. Density plots of standardized temperatures (1979-2009) by season (winter — blue line; spring — green line; summer — red line;

fall — black line) in unregulated (left panel) and regulated (right panel) streams using time series of daily minimum.
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Fig. 3. Examples of (a) density plots of standardized temperatures by decade (period 80-89 dashed line; period 90-99 gray line; period
00-09 solid color line) and season using time series of daily minimum in an unregulated (sitel) and a regulated (site6) stream. In the
lower panel (b) central tendency statistics (average + SD) for each decade and season (winter — blue; spring — green; summer — red;

fall — black) are also included. See results for all sites in the Supplement.

Fig. 4. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in unregulated streams using
annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols
outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the

coverage probability were italicized. See results for all sites in the Supplement.

Fig. 5. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in regulated streams using
annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols
outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the

coverage probability were italicized. See results for all sites in the Supplement.
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