

1 **TECHNICAL NOTE:**2 **Higher-order statistical moments and a procedure that detects potentially anomalous years**
3 **as two alternative methods describing alterations in continuous environmental data**

4

5 Running head: long-term changes in environmental data

6

7 Ivan Arismendi^{1*}, Sherri L. Johnson² & Jason B. Dunham³

8

9

10

11

12

13

14

15

16

17 ¹Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331, USA.18 ²US Forest Service, Pacific Northwest Research Station, Corvallis, Oregon 97331, USA.19 ³US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon

20 97331, USA.

21

22 *Corresponding author: Ivan.Arismendi@oregonstate.edu; Phone: (1) 541-750-7443; Fax: (1)
23 541-758-7760;

24 **Abstract**

25 Statistics of central tendency and dispersion may not capture relevant or desired characteristics
26 of the distribution of continuous phenomena and thus, they may not adequately describe
27 temporal patterns of change. Here, we present two methodological approaches that can help to
28 identify temporal changes in environmental regimes. First, we use higher-order statistical
29 moments (skewness and kurtosis) to examine potential changes of empirical distributions at
30 decadal extents. Second, we adapt a statistical procedure combining a non-metric
31 multidimensional scaling technique and higher density region plots to detect potentially
32 anomalous years. We illustrate the use of these approaches by examining long-term stream
33 temperature data from minimally and highly human-influenced streams. In particular, we
34 contrast predictions about thermal regime responses to changing climates and human-related
35 water uses. Using these methods, we effectively diagnose years with unusual thermal variability
36 and patterns in variability through time, as well as spatial variability linked to regional and local
37 factors that influence stream temperature. Our findings highlight the complexity of responses of
38 thermal regimes of streams and reveal their differential vulnerability to climate warming and
39 human-related water uses. The two approaches presented here can be applied with a variety of
40 other continuous phenomena to address historical changes, extreme events, and their associated
41 ecological responses.

42

43 **Keywords:** frequency analyses, probability distributions, kurtosis, skew, global warming, stream
44 ecosystems, hydrology, thermal regimes

45

46 INTRODUCTION

47 Environmental fluctuation is a fundamental feature that shapes ecological and evolutionary
48 processes. Although empirical distributions of environmental data can be characterized in terms
49 of the central tendency (or location), dispersion, and shape, most traditional statistical
50 approaches are based on detecting changes in location and dispersion, and tend to oversimplify
51 assumptions about temporal variation and shape. This issue is particularly troublesome for
52 understanding the stationarity of temporally continuous phenomena and thus, the detection of
53 potential shifts in distributional properties beyond the location and dispersion. For instance,
54 descriptors of location, such as mean, median or mode, may not be the most informative when
55 extreme hydrological events are of primary attention (e.g., Chebana et al., 2012). In many
56 regions, the future climate is expected to be characterized by increasing the frequency of extreme
57 events (e.g., Jentsch et al., 2007; IPCC 2012). Hence, the detection of changes in the shape of
58 empirical distributions could be more informative than only using traditional descriptors of
59 central tendency and dispersion (e.g., Shen et al., 2011; Donat & Alexander, 2012). More
60 importantly, factors associated with changes in the shape of empirical distributions may have
61 greater effects on species and ecosystems than do simple changes in location and dispersion
62 (e.g., Colwell, 1974; Gaines & Denny, 1993; Thompson et al., 2013; Vasseur et al., 2014).

63 Here, we explore two approaches that identify and visualize temporal alterations in
64 continuous environmental variables using thermal regimes of streams as an illustrative example.
65 First, applying frequency analysis, we examine patterns of variability and long-term shifts in the
66 shape of the empirical distribution of stream temperature using higher-order statistical moments
67 (skewness and kurtosis) by season across decades. Second, we combine non-metric
68 multidimensional scale ordination technique (N-MDS) and highest density regions (HDR) plots

69 to detect potentially anomalous years. To exemplify the utility of these approaches, we employ
70 them to evaluate predictions about long-term responses of thermal regimes of streams to
71 changing terrestrial climates and other human-related water uses (Fig. 1). Our main goal is to
72 identify temporal changes of environmental regimes not captured by lower-order statistical
73 moments. This is particularly relevant in streams because (1) global environmental change may
74 affect water quality beyond the traditional lower-order statistical moments (e.g., Brock &
75 Carpenter, 2012), and (2) ecosystems and organisms have been shown to be sensitive to such
76 changes (e.g., Thompson et al., 2013; Vasseur et al., 2014).

77

78 **Thermal regime of streams as an illustrative example**

79 Temperature is a fundamental driver of ecosystem processes in freshwaters (Shelford, 1931; Fry,
80 1947; Magnuson et al., 1979; Vannote & Sweeney, 1980). Short-term (daily/weekly/monthly)
81 descriptors of mean and maximum temperatures during summertime are frequently used for
82 characterizations of thermal habitat availability and quality (McCullough et al., 2009),
83 definitions of regulatory thresholds (Groom et al., 2011), and predictions about possible
84 influences of climate change on streams (Mohseni et al., 2003; Mantua et al., 2010; Arismendi et
85 al., 2013a,b). These simple descriptors can serve as useful first approximations, but do not
86 capture the full range of thermal conditions that the aquatic biota experience at daily, seasonal, or
87 annual intervals (see Poole & Berman, 2001; Webb et al., 2008). Both human impacts and
88 climate change have been shown to affect thermal regimes of streams at a variety of temporal
89 scales (e.g., Steel & Lange, 2007; Arismendi et al., 2012; 2013a,b). For example, recent climate
90 warming could lead to different responses of streams that may not be well described using
91 average or maximum temperature values (Arismendi et al., 2012). Daily minimum stream

92 temperatures in winter have warmed faster than daily maximum values during summer
93 (Arismendi et al., 2013a; for air temperatures see Donat & Alexander, 2012). In human modified
94 streams, seasonal shifts in stream temperatures and earlier warmer temperatures have been
95 recorded following removal of riparian vegetation (Johnson & Jones, 2000). Simple threshold
96 descriptors of central tendency (location) and dispersion cannot characterize these shifts.

97 Using higher-order statistical moments, we examine the question of whether the warming
98 climate has led shifts in the distribution of stream temperatures (Fig. 1a, b) or if all stream
99 temperatures have warmed similarly and moved without any change in distribution or shape. In
100 addition, we compare these potential shifts in the distribution of stream temperature between
101 streams with unregulated and human-regulated streamflows. Using a technique that combines a
102 non-metric multidimensional scaling procedure and higher density region plots, we address the
103 question of whether potentially anomalous years are synoptically detected across streams types
104 (regulated and unregulated) and examine if those potentially anomalous years represent the
105 influence of regional climate or alternatively highlight the importance of local factors. Previous
106 studies have shown that detecting changes in thermal regimes of streams is complex and the use
107 of only traditional statistical approaches may oversimplify characterization of a variety of
108 responses of ecological relevance (Arismendi et al., 2013a,b).

109

110 MATERIAL AND METHODS

111 Study sites and time series

112 We selected long-term gage stations (US Geological Survey and US Forest Service) that
113 monitored year-round daily stream temperature in Oregon, California, and Idaho ($n = 10$; Table
114 1). The sites were chosen based on (1) availability of continuous daily records for at least 31

115 years (January 1st 1979 to December 31st 2009) and (2) complete information for time series of
116 daily minimum (min), mean (mean), and maximum (max) stream temperature for at least 93% of
117 the period of record. Half of the sites ($n = 5$) were located in unregulated streams (sites 1-5) and
118 the other half were in regulated streams (sites 6-10). Regulated streams were those with
119 reservoirs constructed before 1978, whereas unregulated streams had no reservoirs upstream
120 during the entire time period of the study (1979-2009). Time series were carefully inspected and
121 the percentage of daily missing records of each time series was less than 7% (Table 1). To ensure
122 enough observations to adequately represent the tails of the respective distributions at a seasonal
123 scale for analyses of higher-order statistical moments (i.e., winter: December-February; spring:
124 March-May; summer: June-August; fall: September-November), we grouped and compared daily
125 stream temperature data at each site among the three decades 1980-1989, 1990-1999, and 2000-
126 2009. For the procedure that detects potentially anomalous years only (see below), we
127 interpolated missing data following Arismendi et al. (2013a).

128

129 ***Higher-order statistical moments***

130 To visualize and use a similar scale of stream temperatures across sites, we standardized time
131 series of daily temperature values using a Z-transformation as follows:

$$132 \quad ST_i = \frac{T_i - \mu}{\sigma}$$

133

134 where ST_i was the standardized temperature at day i , T_i was the actual temperature value at day i
135 ($^{\circ}\text{C}$), μ was the mean and σ was the standard deviation of the respective time series considering
136 the entire time period.

137 Although common estimators of skewness and kurtosis are unbiased only for normal
138 distributions, these moments can be useful to describe changes in the shape of the distribution of
139 environmental variables over long-term periods (see Shen et al., 2011; Donat & Alexander,
140 2012). Skewness addresses the question of whether or not a certain variable is symmetrically
141 distributed around its mean value. With respect to temperature, positive skewness of the
142 distribution (or skewed right) indicates colder conditions are more common (Fig. 1a) whereas
143 negative skewness (skewed left) represents increasing prevalence of warmer conditions (Fig. 1b).
144 Therefore, increases in the skewness over time could occur with increases in warm conditions,
145 decreases in cold conditions, or both.

146 Kurtosis describes the structure of the distribution between the center and the tails
147 representing the dispersion around its 'shoulders'. In other words, as the probability mass
148 decreases around its shoulders it may increase in either the center, or the tails, or both resulting
149 in a rise in the peakedness, the tailweight, or both and thus, the dispersion of the distribution
150 around its shoulders increases. The reference standard is zero, a normal distribution with excess
151 kurtosis equal to kurtosis minus three (mesokurtic). A sharp peak in a distribution that is more
152 extreme than a normal distribution (excess kurtosis exceeding zero) is represented by less
153 dispersion in the observations over the tails (leptokurtic). Distributions with higher kurtosis tend
154 to have "tails" that are more accentuated. Therefore, observations are spread more evenly
155 throughout the tails. A distribution with tails more flattened than the normal distribution (excess
156 kurtosis below zero) is described by higher frequencies spread across the tails (platykurtic). With
157 respect to temperature, a leptokurtic distribution may indicate that average conditions are much
158 more frequent with a lower proportion of both extreme cold and warm values (Fig. 1a). A
159 platykurtic distribution represents a more evenly distributed distribution across all values with a

160 higher proportion of both extreme cold and warm values (Fig. 1b). Therefore, increases in the
 161 kurtosis over time would occur with decreases in extreme conditions, increases of average
 162 conditions, or both.

163 Time series of environmental data are generally large datasets that often have missing values
 164 and errors (see Table 1). Although the data we selected had no more than 7% missing values, we
 165 accounted for potential bias inherent to incomplete time series or small samples sizes by using
 166 sample skewness (adjusted Fisher-Pearson standardized moment coefficient) and sample excess
 167 kurtosis (Joanes and Gill, 1998). The sample skewness and sample excess kurtosis are
 168 dimensionless and were estimated as follows:

$$169 \quad Skewness = \frac{n}{(n-1)(n-2)} \sum_{i=1}^n \left(\frac{T_i - \mu}{\sigma} \right)^3$$

$$171 \quad Kurtosis = \left[\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^n \left(\frac{T_i - \mu}{\sigma} \right)^4 \right] - \frac{3(n-1)^2}{(n-2)(n-3)}$$

173

174 where n represented the number of records of the time series, T_i was the temperature of the day i ,
 175 μ and σ the mean and standard deviation of the time series.

176 To define the status of the skewness for the stream temperature distribution in a particular
 177 season and decade, we followed Bulmer (1979) in defining three categories as follows: “highly
 178 skewed” (if skewness was < -1 or > 1), “moderately skewed” (if skewness was between -1 and -
 179 0.5 or between 0.5 and 1), and “symmetric” (if skewness was between -0.5 and 0.5). We used
 180 similar procedures to define the status of excess kurtosis. We defined five categories that
 181 included “negative kurtosis or platykurtic” (if kurtosis was < -1), “moderately platykurtic” (if
 182 kurtosis was between -0.5 and -1), “positive kurtosis or leptokurtic” (if kurtosis was > 1),

183 “moderately leptokurtic” (if kurtosis was between 0.5 and 1). Finally, if kurtosis was between -
184 0.5 and 0.5, we considered the distribution as “mesokurtic”.

185 There are some caveats inherent to time series analyses of environmental data that should be
186 considered. First, error terms for sequential time periods may be influenced by serial correlation
187 affecting the independence of data. For hypothesis testing, when serial correlation occurs, the
188 goodness of fit is inflated and the estimated standard error is smaller than the true standard error.
189 Serial correlation often occurs on short-term scales (hourly, daily, weekly) in analyses of
190 environmental water quality (Helsel & Hirsch, 1992). In this study, we reduced the potential for
191 serial correlation by using higher-order statistical moments aggregated over longer time periods
192 that allowed for a contrast among decades. Second, it is important to note that temporal changes
193 in skewness and kurtosis could be influenced by several factors. Because skewness and kurtosis
194 are ratios based on lower-order moments, their temporal changes may be the result of changes in
195 only the lower-order moments, changes in the higher-order moments or both. Thus, we
196 recommend the use of higher-moment ratios in conjunction to the lower-order moments of
197 central tendency and dispersion.

198

199 ***Statistical procedure to detect potentially anomalous years***

200 We considered an entire year as one finite-dimensional observation (365 days of daily minimum
201 stream temperature; see *study sites and time series* section above). Using a non-metric
202 multidimensional scaling (N-MDS) unconstrained ordination technique (Kruskal, 1964), we
203 compared the similarity among years of the Euclidean distance of standardized temperatures for
204 each day within a year across all years. The N-MDS analysis places each year in multivariate
205 space in the most parsimonious arrangement (relative to each other) with no a priori hypotheses.

206 Based on an iterative optimization procedure, we minimized a measure of disagreement or stress
 207 between their distances in 2-D using 999 random starts following the original MDSCAL
 208 algorithm (Kruskal, 1964; Clarke, 1993; Clarke & Gorley, 2006). The algorithm started with a
 209 random 2-D ordination of the years and it regressed the inter-year 2-D distances to the actual
 210 multidimensional distances (365-D). The distance between the j th and the k th year of the random
 211 2-D ordination is denoted as d_{jk} whereas the corresponding multidimensional distance is denoted
 212 as D_{jk} . The algorithm performed a non-parametric rank order regression using all the j th and the
 213 k th pairs of values. The goodness of fit of the regression was estimated using the Kruskal's stress
 214 as follows:

$$215 \quad Stress = \sqrt{\frac{\sum_j \sum_k (d_{jk} - \hat{d}_{jk})^2}{\sum_j \sum_k d_{jk}^2}}$$

216 where \hat{d}_{jk} represented the predicted distance from the fitted regression between d_{jk} and D_{jk} . If
 217 $d_{jk} = \hat{d}_{jk}$ for all the distances, the stress is zero. The algorithm used a steepest descent numerical
 218 optimization method to evaluate the stress of the proposed ordination and it stops when the stress
 219 converges to a minimum. Clarke (1993) suggests the following benchmarks: stress <0.05 –
 220 excellent ordination; stress <0.1 - good ordination; stress <0.2 acceptable ordination; stress >0.2
 221 – poor ordination. The resulting coordinates 1 and 2 from the resulted optimized 2-D plot
 222 provided a collective index of how unique a given year was (Fig. 1c,d). In N-MDS the order of
 223 the axes was arbitrary and the coordinates represented no meaningful absolute scales for the axis.
 224 Fundamental to this method was the relative distances between points; those with greater
 225 proximity indicated a higher degree of similarity, whereas more dissimilar points were
 226 positioned further apart. We performed the N-MDS analyses using the software Primer ver.
 227 6.1.15 (Clarke, 1993; Clarke & Gorley, 2006).

228 We created a bivariate high dimensional region (HDR) box-plot using the two coordinates of
229 each point (year) from the 2-D plot from the N-MDS ordination (Hyndman, 1996). The HDR
230 plot has been typically produced using the two main principal component scores from a
231 traditional principal component analysis (PCA) (Hyndman, 1996; Chebana et al., 2012).
232 However, in this study, we modified this procedure taking the advantage of the higher flexibility
233 and lack of assumptions of the N-MDS analysis (Everitt, 1978; Kenkel & Orloci, 1986) to
234 provide the two coordinates needed to create the HDR plot. In the HDR plot, there are regions
235 defined based on a probability coverage (e.g., 50%; 90%; or 95%) where all points (years) within
236 the probability coverage region have higher density estimates than any of the points outside the
237 region (Fig. 1c,d). The outer-region of the probability coverage region (Fig. 1c,d) is bounded by
238 points representing potentially anomalous years. We created the HDR plots using the package
239 'hdrcde' (Hyndman et al., 2012) in R ver. 2.15.1 (R Development Core Team, 2012).

240 Similarly to the higher-order statistical moments, there are some caveats that should be
241 considered when using the procedure that detect potentially anomalous years. First, it is
242 important to note that this procedure identified years outside a confidence region, in other words,
243 those years that fall in the tails of the distribution. Because the confidence region represented an
244 overall pattern extracted from the available data, it was constrained by the length of the time
245 series. Thus, potentially anomalous years located outside of the confidence region may not
246 necessarily represent true outliers. In addition, when the ordination is poor (stress > 0.2)
247 interpreting the regularity/irregularity of the geometry of the confidence region should be done
248 with caution. In our illustrative example, the regularity of the confidence region seen for
249 regulated streams (Fig. 1c), when contrasted to unregulated sites, could be interpreted as

250 influence of the reservoir in dampening the inter-annual variability of downstream water
251 temperature.

252

253 **RESULTS AND DISCUSSION**

254 Empirical distributions of stream temperature were distinctive among seasons, and seasons were
255 relatively similar across sites (Fig. 2). Temperature distributions during winter had high overlap
256 with those during spring. Winter had the narrowest range and, as would be expected, the highest
257 frequency of observations occurring at colder standardized temperature categories (-1.3, -0.7).

258 The second highest proportion of observations occurred in different seasons for regulated and
259 unregulated sites; during spring in unregulated streams and during summer at four of the five
260 regulated sites. This shift of frequency could be due to warming and release of the warmer water
261 from the upstream reservoirs. Fall distributions showed broadest range, with a similar proportion
262 for a number temperature values.

263 Changes in the shape of empirical distributions among seasons over decades were not
264 immediately evident. However, the values of skewness or types of kurtosis captured these
265 decadal changes in cases when lower-order statistical moments (average and standard deviation)
266 did not show marked differences (e.g., site1 during fall and spring in Fig. 3; Table 2 and 3; see
267 also differences among decades at site1 during summer in Supplement). The utility of combining
268 skewness and kurtosis to detect changes in distributional shapes over time can be illustrated
269 using site3 during winter and spring (Tables 2 and 3; Supplement). At this site, there was a shift
270 across decades from symmetric towards a negatively skewed distribution in winter and from
271 symmetric towards positively skewed in spring (Table 2), as well as from mesokurtic towards a
272 leptokurtic distribution in both winter and spring (Table 3). Overall, in most unregulated sites,

273 kurtosis type differed among decades s during winter and summer (Table 3; Supplement). Winter
274 and summer frequently had negatively skewed distributions whereas spring generally had
275 positively skewed distributions or those with little change across decades, except for site3 (Table
276 2; Supplement).

277 Decadal changes in both skewness and kurtosis during winter and summer at unregulated
278 sites suggest that the probability mass moved from its shoulders into warmer values at its center,
279 but maintained the tail-weight of the extreme cold temperature values (Fig. 3; Tables 2 and 3;
280 Supplement). However, in spring the probability mass diminished around its shoulders, likely
281 due to decreases in the frequency of extreme cold temperature values. Hence, higher-order
282 statistical moments may help in describing the complexity of temporal changes in stream
283 temperature among seasons and highlight how shifts may occur at different portions of the
284 distribution (e.g., extreme cold, average, or warm conditions) or among streams.

285 In regulated sites, we observed shifts toward colder temperatures (e.g., site6 and site9 during
286 summer and fall in Fig. 3; Supplement) suggesting local influences of water regulation may
287 dominate the impacts from warming climate. This is illustrated by the mixed patterns of
288 skewness and kurtosis due to climate and water regulation, especially during spring, winter, and
289 summer (Tables 2 and 3; Fig. 3; Supplement). In particular, in spring, patterns of skewness in
290 regulated sites were similar to unregulated sites, whereas patterns of kurtosis were in opposite
291 directions (more platykurtic in regulated sites). This can be explained by the water discharged
292 from reservoirs in spring that could be a mix of the cool inflows to the reservoir, the deep, colder
293 water stored in the reservoir over the winter, and the accelerated warming of the exposed surface
294 of the reservoir. Patterns of skewness and kurtosis seen in regulated sites also highlight the
295 influences of site-dependent water management coupled with climatic influences. This is

296 exemplified by the skewness of site7 and site8 compared to site9 and site10 in fall, winter, and
297 spring (Table 2) and the high variability of the value of skewness among sites in summer.

298 Increased understanding of the shape of empirical distributions by season or by year will help
299 researchers and resource managers evaluate potential impacts of shifting environmental regimes
300 on organisms and processes across a range of disturbance types. Empirical distributions are a
301 simple, but comprehensive way to examine high frequency measurements that include the full
302 range of values. Higher-order statistical moments provide useful information to characterize and
303 compare environmental regimes and can show which seasons are most responsive to
304 disturbances. The use of higher-order moments could help improve predictive models of climate
305 change impacts in streams by incorporating full environmental regimes into scenarios rather than
306 only using descriptors of central tendency and dispersion from summertime.

307 The technique for detection of potentially anomalous years used here was able to incorporate
308 all daily data to provide a simple but comprehensive comparison of environmental regimes
309 among years. We were able to characterize whole year responses and identify where regional
310 climatic or hydrologic trends dominated versus where local influences distinctively influenced
311 stream temperature. For example, Year 1992 was identified as potentially anomalous at three
312 unregulated sites (or four at 90% CI) and at two regulated sites (or four at 90% CI), and
313 identified that across the region, the majority of stream temperatures were being influenced.

314 Stream temperatures in Years 1987 and 2008 were less synchronous across the region, but
315 regulated and unregulated sites located in the same watershed (site2, site7, and site8 in Table 1;
316 Figs. 4 and 5; Supplement) shared similar potentially anomalous years. We also observed site
317 specific anomalous years, suggesting that more local conditions of watersheds influenced stream
318 temperature (e.g., Arismendi et al., 2012). Indeed, sites located close to one another (site3 and

319 site4 in Table 1; Fig. 4; Supplement) did not necessarily share all potentially anomalous years,
320 suggesting that local drivers were more influential than regional climate forces during those
321 years. Hence, the procedure for detection of potentially anomalous years used here may be useful
322 to evaluate and contrast the vulnerability of streams to regional or local climate changes by
323 characterizing years with anomalous conditions.

324 The technique that detects potentially anomalous years identified years with differences in
325 either magnitude or timing of events (Figs. 4 and 5) and mapped these differences within the
326 ordination plot. For example, year 1992 and 1987 were potentially anomalous likely due to
327 magnitude of warming throughout year. At other sites, such as site3, site4 and site5 (Fig. 4), the
328 potentially anomalous years were most likely due to increased temperatures in seasons other than
329 summertime, and not related to higher summertime temperatures. Years 1992 and 2008 plotted at
330 the opposite extremes of the ordination plot for site1, site2 and site7 (Figs. 4 and 5); see also
331 Years 1982-1983 and 1986-1987 for site3. These years contained warm and cold conditions,
332 respectively, and likely influenced the shape of the confidence region (Figs. 4 and 5;
333 Supplement). Interestingly, we observed that the confidence region for unregulated sites (Fig. 4)
334 appeared to be more irregularly shaped than regulated sites (Fig. 5), which suggests that stream
335 regulation may tightly cluster and homogenize temperature values across years (e.g., Fig. 1c, d).
336 Further attention on the interpretation of the geometry of confidence region may be useful to
337 contrast purely climatic from human influences on streams.

338 There are some considerations when detecting potential changes in continuous environmental
339 phenomena that are inherent to time series analysis including the length, timing, and quality of
340 the time series as well as the type of the driver that is investigated as responsible for such
341 change. Often, the detection of shifts in time series of environmental data is affected by the

342 amount of censored data that limits the length and timing of the time series (e.g., Arismendi et al.
343 2012). There are uncertainties regarding the importance of regional drivers and the
344 representativeness of sites (e.g., complex mountain terrain) and periods of record (e.g., ENSO,
345 and PDO climatic oscillations). Lastly, the type of climatic influences may affect the magnitude
346 and duration of the responses resulting in short-term abrupt shifts (e.g., extreme climatic events),
347 persistent long-term shifts (e.g., climate change), or a more complex combination of them (e.g.,
348 regime shifts - Brock & Carpenter, 2012).

349

350 **SUMMARY AND CONCLUSIONS**

351 Here we show the utility of using higher-order statistical moments and a procedure that detects
352 potentially anomalous years as complementary approaches to identify temporal changes in
353 environmental regimes and evaluate whether these changes are consistent across years and sites.
354 Stream ecosystems are exposed to multiple climatic and non-climatic forces which may
355 differentially affect their hydrological regimes (e.g., temperature and streamflow). In particular,
356 we show that potential timing and magnitude of responses of stream temperature to recent
357 climate warming and other human-related impacts may vary among seasons, years, and across
358 sites. Statistics of central tendency and dispersion may or may not distinguish between thermal
359 regimes or characterize changes to thermal regimes, which could be relevant to understanding
360 their ecological and management implications. In addition, when only single metrics are used to
361 describe environmental regimes, they have to be selected carefully. Often selection means
362 simplification resulting in the compression or loss of information (e.g., Arismendi et al., 2013a).
363 By examining the whole empirical distribution and multiple moments, we can provide a better

364 characterization of shifts over time or following disturbances than simple thresholds or
365 descriptors.

366 In conclusion, our two approaches complement traditional summary statistics by helping to
367 characterize continuous environmental regimes across seasons and years, which we illustrate
368 using stream temperatures in unregulated and regulated sites as an example. Although we did not
369 include a broad range of stream types, they were sufficiently different to demonstrate the utility
370 of the two approaches. These two approaches are transferable to many types of continuous
371 environmental variables and regions and suitable for examining seasonal and annual responses as
372 well as climate or human-related influences (e.g., for streamflow see Chebana et al., 2012; for air
373 temperature see Shen et al., 2011). These analyses will be useful to characterize the strength of
374 the resilience of regimes and to identify how regimes of continuous phenomena have changed in
375 the past and may respond in the future.

376

377 **ACKNOWLEDGEMENTS**

378 Brooke Penaluna and two anonymous reviewers provided comments that improved the
379 manuscript. Vicente Monleon revised statistical concepts. Part of the data was provided by the
380 HJ Andrews Experimental Forest research program, funded by the National Science
381 Foundation's Long-Term Ecological Research Program (DEB 08-23380), US Forest Service
382 Pacific Northwest Research Station, and Oregon State University. Financial support for IA was
383 provided by US Geological Survey, the US Forest Service Pacific Northwest Research Station
384 and Oregon State University through joint venture agreement 10-JV-11261991-055. Use of firm
385 or trade names is for reader information only and does not imply endorsement of any product or
386 service by the U.S. Government.

387

388 **REFERENCES**

389 Arismendi I, Johnson SL, Dunham JB, Haggerty R, Hockman-Wert D (2012) The paradox of
390 cooling streams in a warming world: Regional climate trends do not parallel variable local
391 trends in stream temperature in the Pacific continental United States. *Geophysical Research
392 Letters*, 39, L10401.

393 Arismendi I, Johnson SL, Dunham JB, Haggerty R (2013a) Descriptors of natural thermal
394 regimes in streams and their responsiveness to change in the Pacific Northwest of North
395 America. *Freshwater Biology*, 58, 880-894.

396 Arismendi I, Safeeq M, Johnson SL, Dunham JB, Haggerty R (2013b) Increasing synchrony of
397 high temperature and low flow in western North American streams: double trouble for
398 coldwater biota? *Hydrobiologia*, 712, 61-70.

399 Brock WA, Carpenter SR (2012) Early warnings of regime shift when the ecosystem structure is
400 unknown. *PLoS ONE*, 7, e45586.

401 Bulmer MG (1979) Principles of Statistics. Dover Publications Inc., New York.

402 Chebana F, Dabo-Niang S, Ouarda TBMJ (2012) Exploratory functional flood frequency
403 analysis and outlier detection. *Water Resources Research*, 48, W04514.

404 Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure.
405 *Australian Journal of Ecology*, 18, 117-143.

406 Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

407 Colwell RK (1974) Predictability, constancy, and contingency of periodic phenomena. *Ecology*,
408 55, 1148-1153.

409 Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and
410 night-time temperatures. *Geophysical Research Letters*, 39, L14707.

411 Everitt B (1978) *Graphical techniques for multivariate data*. North-Holland, New York.

412 Fry FEJ (1947) *Effects of the environment on animal activity*. University of Toronto Studies,
413 Biological Series 55. Publication of the Ontario Fisheries Research Laboratory, 68, 1-62.

414 Gaines SD, Denny MW (1993) The largest, smallest, highest, lowest, longest, and shortest:
415 extremes in ecology. *Ecology*, 74, 1677–1692.

416 Groom JD, Dent L, Madsen LJ, Fleuret J (2011) Response of western Oregon (USA) stream
417 temperatures to contemporary forest management. *Forest Ecology and Management*, 262,
418 1618-1629.

419 Helsel DR, Hirsch RM (1992) Statistical methods in water resources, Elsevier, Netherlands.

420 Hyndman RJ (1996) Computing and graphing highest density regions. *The American
421 Statistician*, 50, 120-126.

422 Hyndman RJ, Einbeck J, Wand M (2012) *Package 'hdrcde': highest density regions and
423 conditional density estimation*. <http://cran.r-project.org/web/packages/hdrcde/hdrcde.pdf>

424 IPCC (2012) Managing the risks of extreme events and disasters to advance climate change
425 adaptation. In: A Special Report of Working Groups I and II of the Intergovernmental Panel on
426 Climate Change (eds Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL,
427 Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM). Cambridge
428 University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-19.

429 Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments:
430 events, not trends. *Frontiers in Ecology and Environment*, 5, 365-374.

431 Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. *Journal of*
432 *the Royal Statistical Society (Series D): The Statistician*, 47, 183-189.

433 Johnson SL, Jones JA (2000) Stream temperature response to forest harvest and debris flows in
434 western Cascades, Oregon. *Canadian Journal of Fisheries and Aquatic Sciences*, 57, 30-39.

435 Kruskal JB (1964) Non-metric multidimensional scaling: a numerical method. *Psychometrika*,
436 29, 115-129.

437 Kenkel NC, Orloci L (1986) Applying metric and nonmetric multidimensional scaling to
438 ecological studies: some new results. *Ecology*, 67, 919-928.

439 Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource.
440 *American Zoologist*, 19, 331-343.

441 Mantua N, Tohver I, Hamlet A (2010) Climate change impacts on streamflow extremes and
442 summertime stream temperature and their possible consequences for freshwater salmon habitat
443 in Washington State. *Climatic Change*, 102, 187-223.

444 McCullough DA, Bartholow JM, Jager HI *et al.* (2009) Research in Thermal Biology: Burning
445 Questions for Coldwater Stream Fishes. *Reviews in Fisheries Science*, 17, 90-115.

446 Mohseni O, Stefan HG, Eaton JG (2003) Global warming and potential changes in fish habitat in
447 U.S. streams. *Climatic Change*, 59, 389-409.

448 Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat
449 dynamics and mechanisms of human-caused thermal degradation. *Environmental*
450 *Management*, 27, 787-802.

451 Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building
452 variability into community-level climate change experiments. *Ecology Letters*, 16, 799-806.

453 Shelford VE (1931) Some concepts of bioecology. *Ecology*, 123, 455-467.

454 Shen SSP, Gurung AB, Oh H, Shu T, Easterling DR (2011) The twentieth century contiguous
455 US temperature changes indicated by daily data and higher statistical moments. *Climatic
456 Change*, 109, 287-317.

457 Steel EA, Lange IA (2007) Using wavelet analysis to detect changes in water temperature
458 regimes at multiple scales: effects of multi-purpose dams in the Willamette River basin. *River
459 Research Applications*, 23, 351-359.

460 Vannote RL, Sweeney BW (1980) Geographic analysis of thermal equilibria: a conceptual model
461 for evaluating the effects of natural and modified thermal regimes on aquatic insect
462 communities. *American Naturalist*, 115, 667-695.

463 Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney
464 TD, O'Connor MI (2014) Increased temperature variation poses a greater risk to species than
465 climate warming. *Proceedings of the Royal Society B*, 281, 20132612.

466 Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and
467 river temperature research. *Hydrological Processes*, 22, 902-918.

468

469 **SUPPORTING INFORMATION**

470 **Supplement** Supplementary results of skewness, kurtosis, and outlier's detection

471 **Table 1.** Location and characteristics of unregulated ($n = 5$) and regulated ($n = 5$) streams at the gaging sites. Percent of daily gaps in
 472 the stream temperature time series from Jan-1979 to Dec-2009 used in this study.

River	Start of			Lat	Long	elevation	watershed area	% of daily gaps
	water	gage ID	ID					
	regulation			N	W	(m)		
Fir Creek, OR	unregulated	14138870	site1	45.48	122.02	439	14.1	2.8%
SF Bull Run River, OR	unregulated	14139800	site2	45.45	122.11	302	39.9	2.0%
McRae Creek, OR	unregulated	TSMCRA	site3	44.26	122.17	840	5.9	3.5%
Lookout Creek, OR	unregulated	TSLOOK	site4	44.23	122.12	998	4.9	2.6%
Elk Creek, OR	unregulated	14338000	site5	42.68	122.74	455	334.1	5.2%
Clearwater River, ID	1971	13341050	site6	46.50	116.39	283	20,658	4.0%
Bull Run River near Multnomah Falls, OR	1915 ^a	14138850	site7	45.50	122.01	329	124.1	5.3%
NF Bull Run River, OR	1958	14138900	site8	45.49	122.04	323	21.6	2.6%
Rogue River near McLeod, OR	1977	14337600	site9	42.66	122.71	454	2,429	3.7%
Martis Creek near Truckee, CA	1971	10339400	site10	39.33	120.12	1747	103.4	6.5%

473 ^aRegulation at times

474 **Table 2.** Magnitude and direction of the value of skewness in probability distributions of daily minimum stream temperature by
 475 season and decade at unregulated (sites 1-5) and regulated (sites 6-10) streams. Symmetric distributions are not shown. m =
 476 moderately skewed; h = highly skewed; (-) = negatively skewed; (+) = positively skewed (see Supplement for more details).

site type	site ID	season/time period											
		fall			winter			Spring			summer		
		80-89	90-99	00-09	80-89	90-99	00-09	80-89	90-99	00-09	80-89	90-99	00-09
unregulated (1-5)	site1				m(-)	m(-)	m(-)	m(+)	m(+)	m(+)			
	site2					m(-)	m(-)	m(+)	m(+)	m(+)	m(-)		m(-)
	site3						m(-)		m(+)	h(+)			m(-)
	site4							h(+)	m(+)	h(+)	m(-)	m(-)	m(-)
	site5							m(+)	h(+)	m(+)	m(-)	m(-)	m(-)
regulated (6-10)	site6							m(+)					m(+)
	site7					m(-)		m(+)	m(+)	m(+)			m(-)
	site8	m(-)	m(-)					m(+)		m(+)			h(-)
	site9	m(+)	m(+)	m(+)	m(+)	m(+)							m(+)
	site10					m(+)					h(-)	m(-)	

477

478

479

480

481 **Table 3.** Types of kurtosis of probability distributions of daily minimum stream temperature by season and decade at unregulated and
 482 regulated sites. $\leftrightarrow\leftrightarrow$ = platykurtic; \leftrightarrow = moderately platykurtic; $\uparrow\downarrow$ = leptokurtic, and \downarrow = moderately leptokurtic. Mesokurtic
 483 distributions are not shown (see Supplement for more details).

site type	site	season/time period											
		fall			winter			Spring			summer		
		80-89	90-99	00-09	80-89	90-99	00-09	80-89	90-99	00-09	80-89	90-99	00-09
unregulated (1-5)	site1				\leftrightarrow	\downarrow	\downarrow	\downarrow	$\uparrow\downarrow$				
	site2				\leftrightarrow			\uparrow	$\uparrow\downarrow$			\leftrightarrow	\uparrow
	site3	\leftrightarrow	\leftrightarrow	\leftrightarrow				$\uparrow\downarrow$		\uparrow	\leftrightarrow		
	site4				\leftrightarrow				$\uparrow\downarrow$		$\uparrow\downarrow$		\uparrow
	site5	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow					\uparrow	\uparrow	$\uparrow\downarrow$	\uparrow
	site6	\leftrightarrow	\leftrightarrow	\leftrightarrow								\leftrightarrow	\uparrow
regulated (6-10)	site7	\leftrightarrow			\leftrightarrow				$\uparrow\downarrow$				
	site8	$\uparrow\downarrow$			\leftrightarrow	\uparrow		\uparrow		\leftrightarrow		\uparrow	$\uparrow\downarrow$
	site9				\leftrightarrow	\uparrow			\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\uparrow
	site10	$\leftrightarrow\leftrightarrow$	$\leftrightarrow\leftrightarrow$	$\leftrightarrow\leftrightarrow$	\leftrightarrow	$\uparrow\downarrow$		$\leftrightarrow\leftrightarrow$	\leftrightarrow	\leftrightarrow	$\uparrow\downarrow$	\uparrow	\uparrow

FIGURE LEGENDS

Fig. 1. Conceptual diagram showing hypothesized shifts of distribution of water temperatures at both seasonal (upper panels) and annual (lower panels) scales in regulated (left panels) and unregulated (right panels) streams. In the upper panels examples of changes in skewness and kurtosis are shown for temperature distributions affected by stream regulation and a warming climate in a given season. For instance, in regulated streams the influence of the reservoir may reduce both extreme cold and warm temperatures confounding the effect from the climate (a) whereas less cold temperatures and an overall shift toward warming values may occur in unregulated streams (b). In the lower panels, we illustrate the use of N-MDS and HDR plots for detecting potentially anomalous years in regulated and unregulated streams (the shaded area represent a given coverage probability). Points located in the outer or the confidence region represent potentially anomalous years. For instance, in regulated streams individual years are more clustered due to the reservoir may homogenize temperatures across years whereas (c) whereas in unregulated streams individual years are less clustered due to more heterogeneous responses to the warming climate (b).

Fig. 2. Density plots of standardized temperatures (1979-2009) by season (winter – blue line; spring – green line; summer – red line; fall – black line) in unregulated (left panel) and regulated (right panel) streams using time series of daily minimum.

Fig. 3. Examples of (a) density plots of standardized temperatures by decade (period 80-89 dashed line; period 90-99 gray line; period 00-09 solid color line) and season using time series of daily minimum in an unregulated (site1) and a regulated (site6) stream. In the lower panel (b) central tendency statistics (average \pm SD) for each decade and season (winter – blue; spring – green; summer – red; fall – black) are also included. See results for all sites in the Supplement.

Fig. 4. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in unregulated streams using annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the coverage probability were italicized. See results for all sites in the Supplement.

Fig. 5. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in regulated streams using annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the coverage probability were italicized. See results for all sites in the Supplement.











