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Abstract  24 

Statistics of central tendency and dispersion may not capture relevant or desired characteristics 25 

of the distribution of continuous phenomena and thus, they may not adequately describe 26 

temporal patterns of change. Here, we present two methodological approaches that can help to 27 

identify temporal changes in environmental regimes. First, we use higher-order statistical 28 

moments (skewness and kurtosis) to examine potential changes of empirical distributions at 29 

decadal extents. Second, we adapt a statistical procedure combining a non-metric 30 

multidimensional scaling technique and higher density region plots to detect potentially 31 

anomalous years. We illustrate the use of these approaches by examining long-term stream 32 

temperature data from minimally and highly human-influenced streams. In particular, we 33 

contrast predictions about thermal regime responses to changing climates and human-related 34 

water uses. Using these methods, we effectively diagnose years with unusual thermal variability 35 

and patterns in variability through time, as well as spatial variability linked to regional and local 36 

factors that influence stream temperature. Our findings highlight the complexity of responses of 37 

thermal regimes of streams and reveal their differential vulnerability to climate warming and 38 

human-related water uses. The two approaches presented here can be applied with a variety of 39 

other continuous phenomena to address historical changes, extreme events, and their associated 40 

ecological responses. 41 

 42 

Keywords: frequency analyses, probability distributions, kurtosis, skew, global warming, stream 43 

ecosystems, hydrology, thermal regimes  44 
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INTRODUCTION 46 

Environmental fluctuation is a fundamental feature that shapes ecological and evolutionary 47 

processes. Although empirical distributions of environmental data can be characterized in terms 48 

of the central tendency (or location), dispersion, and shape, most traditional statistical 49 

approaches are based on detecting changes in location and dispersion, and tend to oversimplify 50 

assumptions about temporal variation and shape. This issue is particularly troublesome for 51 

understanding the stationarity of temporally continuous phenomena and thus, the detection of 52 

potential shifts in distributional properties beyond the location and dispersion. For instance, 53 

descriptors of location, such as mean, median or mode, may not be the most informative when 54 

extreme hydrological events are of primary attention (e.g., Chebana et al., 2012). In many 55 

regions, the future climate is expected to be characterized by increasing the frequency of extreme 56 

events (e.g., Jentsch et al., 2007; IPCC 2012). Hence, the detection of changes in the shape of 57 

empirical distributions could be more informative than only using traditional descriptors of 58 

central tendency and dispersion (e.g., Shen et al., 2011; Donat & Alexander, 2012). More 59 

importantly, factors associated with changes in the shape of empirical distributions may have 60 

greater effects on species and ecosystems than do simple changes in location and dispersion 61 

(e.g., Colwell, 1974; Gaines & Denny, 1993; Thompson et al., 2013; Vasseur et al., 2014). 62 

 Here, we explore two approaches that identify and visualize temporal alterations in 63 

continuous environmental variables using thermal regimes of streams as an illustrative example. 64 

First, applying frequency analysis, we examine patterns of variability and long-term shifts in the 65 

shape of the empirical distribution of stream temperature using higher-order statistical moments 66 

(skewness and kurtosis) by season across decades. Second, we combine non-metric 67 

multidimensional scale ordination technique (N-MDS) and highest density regions (HDR) plots 68 
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to detect potentially anomalous years. To exemplify the utility of these approaches, we employ 69 

them to evaluate predictions about long-term responses of thermal regimes of streams to 70 

changing terrestrial climates and other human-related water uses (Fig. 1). Our main goal is to 71 

identify temporal changes of environmental regimes not captured by lower-order statistical 72 

moments. This is particularly relevant in streams because (1) global environmental change may 73 

affect water quality beyond the traditional lower-order statistical moments (e.g., Brock & 74 

Carpenter, 2012), and (2) ecosystems and organisms have been shown to be sensitive to such 75 

changes (e.g., Thompson et al., 2013; Vasseur et al., 2014).  76 

 77 

Thermal regime of streams as an illustrative example  78 

Temperature is a fundamental driver of ecosystem processes in freshwaters (Shelford, 1931; Fry, 79 

1947; Magnuson et al., 1979; Vannote & Sweeney, 1980). Short-term (daily/weekly/monthly) 80 

descriptors of mean and maximum temperatures during summertime are frequently used for 81 

characterizations of thermal habitat availability and quality (McCullough et al., 2009), 82 

definitions of regulatory thresholds (Groom et al., 2011), and predictions about possible 83 

influences of climate change on streams (Mohseni et al., 2003; Mantua et al., 2010; Arismendi et 84 

al., 2013a,b). These simple descriptors can serve as useful first approximations, but do not 85 

capture the full range of thermal conditions that the aquatic biota experience at daily, seasonal, or 86 

annual intervals (see Poole & Berman, 2001; Webb et al., 2008). Both human impacts and 87 

climate change have been shown to affect thermal regimes of streams at a variety of temporal 88 

scales (e.g., Steel & Lange, 2007; Arismendi et al., 2012; 2013a,b). For example, recent climate 89 

warming could lead to different responses of streams that may not be well described using 90 

average or maximum temperature values (Arismendi et al., 2012). Daily minimum stream 91 
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temperatures in winter have warmed faster than daily maximum values during summer 92 

(Arismendi et al., 2013a; for air temperatures see Donat & Alexander, 2012). In human modified 93 

streams, seasonal shifts in stream temperatures and earlier warmer temperatures have been 94 

recorded following removal of riparian vegetation (Johnson & Jones, 2000). Simple threshold 95 

descriptors of central tendency (location) and dispersion cannot characterize these shifts.   96 

 Using higher-order statistical moments, we examine the question of whether the warming 97 

climate has led shifts in the distribution of stream temperatures (Fig. 1a, b) or if all stream 98 

temperatures have warmed similarly and moved without any change in distribution or shape. In 99 

addition, we compare these potential shifts in the distribution of stream temperature between 100 

streams with unregulated and human-regulated streamflows. Using a technique that combines a 101 

non-metric multidimensional scaling procedure and higher density region plots, we address the 102 

question of whether potentially anomalous years are synoptically detected across streams types 103 

(regulated and unregulated) and examine if those potentially anomalous years represent the 104 

influence of regional climate or alternatively highlight the importance of local factors. Previous 105 

studies have shown that detecting changes in thermal regimes of streams is complex and the use 106 

of only traditional statistical approaches may oversimplify characterization of a variety of 107 

responses of ecological relevance (Arismendi et al., 2013a,b). 108 

 109 

MATERIAL AND METHODS 110 

Study sites and time series 111 

We selected long-term gage stations (US Geological Survey and US Forest Service) that 112 

monitored year-round daily stream temperature in Oregon, California, and Idaho (n = 10; Table 113 

1). The sites were chosen based on (1) availability of continuous daily records for at least 31 114 
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years (January 1st 1979 to December 31st 2009) and (2) complete information for time series of 115 

daily minimum (min), mean (mean), and maximum (max) stream temperature for at least 93% of 116 

the period of record. Half of the sites (n = 5) were located in unregulated streams (sites 1-5) and 117 

the other half were in regulated streams (sites 6-10). Regulated streams were those with 118 

reservoirs constructed before 1978, whereas unregulated streams had no reservoirs upstream 119 

during the entire time period of the study (1979-2009). Time series were carefully inspected and 120 

the percentage of daily missing records of each time series was less than 7% (Table 1). To ensure 121 

enough observations to adequately represent the tails of the respective distributions at a seasonal 122 

scale for analyses of higher-order statistical moments (i.e., winter: December-February; spring: 123 

March-May; summer: June-August; fall: September-November), we grouped and compared daily 124 

stream temperature data at each site among the three decades 1980-1989, 1990-1999, and 2000-125 

2009. For the procedure that detects potentially anomalous years only (see below), we 126 

interpolated missing data following Arismendi et al. (2013a). 127 

 128 

Higher-order statistical moments 129 

To visualize and use a similar scale of stream temperatures across sites, we standardized time 130 

series of daily temperature values using a Z-transformation as follows:  131 

 132 

 133 

where STi was the standardized temperature at day i, Ti was the actual temperature value at day i 134 

(°C), μ was the mean and σ was the standard deviation of the respective time series considering 135 

the entire time period.  136 
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Although common estimators of skewness and kurtosis are unbiased only for normal 137 

distributions, these moments can be useful to describe changes in the shape of the distribution of 138 

environmental variables over long-term periods (see Shen et al., 2011; Donat & Alexander, 139 

2012). Skewness addresses the question of whether or not a certain variable is symmetrically 140 

distributed around its mean value. With respect to temperature, positive skewness of the 141 

distribution (or skewed right) indicates colder conditions are more common (Fig. 1a) whereas 142 

negative skewness (skewed left) represents increasing prevalence of warmer conditions (Fig. 1b). 143 

Therefore, increases in the skewness over time could occur with increases in warm conditions, 144 

decreases in cold conditions, or both.  145 

Kurtosis describes the structure of the distribution between the center and the tails 146 

representing the dispersion around its ‘shoulders’. In other words, as the probability mass 147 

decreases around its shoulders it may increase in either the center, or the tails, or both resulting 148 

in a rise in the peakedness, the tailweight, or both and thus, the dispersion of the distribution 149 

around its shoulders increases. The reference standard is zero, a normal distribution with excess 150 

kurtosis equal to kurtosis minus three (mesokurtic). A sharp peak in a distribution that is more 151 

extreme than a normal distribution (excess kurtosis exceeding zero) is represented by less 152 

dispersion in the observations over the tails (leptokurtic). Distributions with higher kurtosis tend 153 

to have "tails" that are more accentuated. Therefore, observations are spread more evenly 154 

throughout the tails. A distribution with tails more flattened than the normal distribution (excess 155 

kurtosis below zero) is described by higher frequencies spread across the tails (platykurtic). With 156 

respect to temperature, a leptokurtic distribution may indicate that average conditions are much 157 

more frequent with a lower proportion of both extreme cold and warm values (Fig. 1a). A 158 

platykurtic distribution represents a more evenly distributed distribution across all values with a 159 
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higher proportion of both extreme cold and warm values (Fig. 1b). Therefore, increases in the 160 

kurtosis over time would occur with decreases in extreme conditions, increases of average 161 

conditions, or both.   162 

Time series of environmental data are generally large datasets that often have missing values 163 

and errors (see Table 1). Although the data we selected had no more than 7% missing values, we 164 

accounted for potential bias inherent to incomplete time series or small samples sizes by using 165 

sample skewness (adjusted Fisher-Pearson standardized moment coefficient) and sample excess 166 

kurtosis (Joanes and Gill, 1998). The sample skewness and sample excess kurtosis are 167 

dimensionless and were estimated as follows: 168 

 169 

 170 

 171 

 172 

 173 

where n represented the number of records of the time series, Ti was the temperature of the day i, 174 

μ and σ the mean and standard deviation of the time series. 175 

To define the status of the skewness for the stream temperature distribution in a particular 176 

season and decade, we followed Bulmer (1979) in defining three categories as follows: “highly 177 

skewed” (if skewness was < -1 or > 1), “moderately skewed” (if skewness was between -1 and -178 

0.5 or between 0.5 and 1), and “symmetric” (if skewness was between -0.5 and 0.5). We used 179 

similar procedures to define the status of excess kurtosis. We defined five categories that 180 

included “negative kurtosis or platykurtic” (if kurtosis was < -1), “moderately platykurtic” (if 181 

kurtosis was between -0.5 and -1), “positive kurtosis or leptokurtic” (if kurtosis was > 1), 182 
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“moderately leptokurtic” (if kurtosis was between 0.5 and 1). Finally, if kurtosis was between -183 

0.5 and 0.5, we considered the distribution as “mesokurtic”.  184 

There are some caveats inherent to time series analyses of environmental data that should be 185 

considered. First, error terms for sequential time periods may be influenced by serial correlation 186 

affecting the independence of data. For hypothesis testing, when serial correlation occurs, the 187 

goodness of fit is inflated and the estimated standard error is smaller than the true standard error. 188 

Serial correlation often occurs on short-term scales (hourly, daily, weekly) in analyses of 189 

environmental water quality (Helsel & Hirsch, 1992). In this study, we reduced the potential for 190 

serial correlation by using higher-order statistical moments aggregated over longer time periods 191 

that allowed for a contrast among decades. Second, it is important to note that temporal changes 192 

in skewness and kurtosis could be influenced by several factors. Because skewness and kurtosis 193 

are ratios based on lower-order moments, their temporal changes may be the result of changes in 194 

only the lower-order moments, changes in the higher-order moments or both. Thus, we 195 

recommend the use of higher-moment ratios in conjunction to the lower-order moments of 196 

central tendency and dispersion. 197 

 198 

Statistical procedure to detect potentially anomalous years 199 

We considered an entire year as one finite-dimensional observation (365 days of daily minimum 200 

stream temperature; see study sites and time series section above). Using a non-metric 201 

multidimensional scaling (N-MDS) unconstrained ordination technique (Kruskal, 1964), we 202 

compared the similarity among years of the Euclidean distance of standardized temperatures for 203 

each day within a year across all years. The N-MDS analysis places each year in multivariate 204 

space in the most parsimonious arrangement (relative to each other) with no a priori hypotheses. 205 
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Based on an iterative optimization procedure, we minimized a measure of disagreement or stress 206 

between their distances in 2-D using 999 random starts following the original MDSCAL 207 

algorithm (Kruskal, 1964; Clarke, 1993; Clarke & Gorley, 2006). The algorithm started with a 208 

random 2-D ordination of the years and it regressed the inter-year 2-D distances to the actual 209 

multidimensional distances (365-D). The distance between the jth and the kth year of the random 210 

2-D ordination is denoted as djk whereas the corresponding multidimensional distance is denoted 211 

as Djk. The algorithm performed a non-parametric rank order regression using all the jth and the 212 

kth pairs of values. The goodness of fit of the regression was estimated using the Kruskal’s stress 213 

as follows: 214 

𝑆𝑡𝑟𝑒𝑠𝑠 =  √
∑ ∑ (𝑑𝑗𝑘 − 𝑑̂𝑗𝑘)

2
𝑘𝑗

∑ ∑ 𝑑𝑗𝑘
2

𝑘𝑗

 215 

where 𝑑̂𝑗𝑘 represented the predicted distance from the fitted regression between  djk  and Djk. If 216 

djk = 𝑑̂𝑗𝑘for all the distances, the stress is zero. The algorithm used a steepest descent numerical 217 

optimization method to evaluate the stress of the proposed ordination and it stops when the stress 218 

converges to a minimum. Clarke (1993) suggests the following benchmarks: stress <0.05 – 219 

excellent ordination; stress <0.1 - good ordination; stress <0.2 acceptable ordination; stress >0.2 220 

– poor ordination. The resulting coordinates 1 and 2 from the resulted optimized 2-D plot 221 

provided a collective index of how unique a given year was (Fig. 1c,d). In N-MDS the order of 222 

the axes was arbitrary and the coordinates represented no meaningful absolute scales for the axis. 223 

Fundamental to this method was the relative distances between points; those with greater 224 

proximity indicated a higher degree of similarity, whereas more dissimilar points were 225 

positioned further apart. We performed the N-MDS analyses using the software Primer ver. 226 

6.1.15 (Clarke, 1993; Clarke & Gorley, 2006).  227 
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We created a bivariate high dimensional region (HDR) box-plot using the two coordinates of 228 

each point (year) from the 2-D plot from the N-MDS ordination (Hyndman, 1996). The HDR 229 

plot has been typically produced using the two main principal component scores from a 230 

traditional principal component analysis (PCA) (Hyndman, 1996; Chebana et al., 2012). 231 

However, in this study, we modified this procedure taking the advantage of the higher flexibility 232 

and lack of assumptions of the N-MDS analysis (Everitt, 1978; Kenkel & Orloci, 1986) to 233 

provide the two coordinates needed to create the HDR plot. In the HDR plot, there are regions 234 

defined based on a probability coverage (e.g., 50%; 90%; or 95%) where all points (years) within 235 

the probability coverage region have higher density estimates than any of the points outside the 236 

region (Fig. 1c,d). The outer-region of the probability coverage region (Fig. 1c,d) is bounded by 237 

points representing potentially anomalous years. We created the HDR plots using the package 238 

‘hdrcde’ (Hyndman et al., 2012) in R ver. 2.15.1 (R Development Core Team, 2012). 239 

 Similarly to the higher-order statistical moments, there are some caveats that should be 240 

considered when using the procedure that detect potentially anomalous years. First, it is 241 

important to note that this procedure identified years outside a confidence region, in other words, 242 

those years that fall in the tails of the distribution. Because the confidence region represented an 243 

overall pattern extracted from the available data, it was constrained by the length of the time 244 

series. Thus, potentially anomalous years located outside of the confidence region may not 245 

necessarily represent true outliers. In addition, when the ordination is poor (stress > 0.2) 246 

interpreting the regularity/irregularity of the geometry of the confidence region should be done 247 

with caution. In our illustrative example, the regularity of the confidence region seen for 248 

regulated streams (Fig. 1c), when contrasted to unregulated sites, could be interpreted as 249 



12 
 

influence of the reservoir in dampening the inter-annual variability of downstream water 250 

temperature. 251 

 252 

RESULTS AND DISCUSSION 253 

Empirical distributions of stream temperature were distinctive among seasons, and seasons were 254 

relatively similar across sites (Fig. 2). Temperature distributions during winter had high overlap 255 

with those during spring. Winter had the narrowest range and, as would be expected, the highest 256 

frequency of observations occurring at colder standardized temperature categories (-1.3, -0.7). 257 

The second highest proportion of observations occurred in different seasons for regulated and 258 

unregulated sites; during spring in unregulated streams and during summer at four of the five 259 

regulated sites. This shift of frequency could be due to warming and release of the warmer water 260 

from the upstream reservoirs. Fall distributions showed broadest range, with a similar proportion 261 

for a number temperature values.    262 

 Changes in the shape of empirical distributions among seasons over decades were not 263 

immediately evident. However, the values of skewness or types of kurtosis captured these 264 

decadal changes in cases when lower-order statistical moments (average and standard deviation) 265 

did not show marked differences (e.g., site1 during fall and spring in Fig. 3; Table 2 and 3; see 266 

also differences among decades at site1 during summer in Supplement). The utility of combining 267 

skewness and kurtosis to detect changes in distributional shapes over time can be illustrated 268 

using site3 during winter and spring (Tables 2 and 3; Supplement). At this site, there was a shift 269 

across decades from symmetric towards a negatively skewed distribution in winter and from 270 

symmetric towards positively skewed in spring (Table 2), as well as from mesokurtic towards a 271 

leptokurtic distribution in both winter and spring (Table 3). Overall, in most unregulated sites, 272 
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kurtosis type differed among decades s during winter and summer (Table 3; Supplement). Winter 273 

and summer frequently had negatively skewed distributions whereas spring generally had 274 

positively skewed distributions or those with little change across decades, except for site3 (Table 275 

2; Supplement).  276 

 Decadal changes in both skewness and kurtosis during winter and summer at unregulated 277 

sites suggest that the probability mass moved from its shoulders into warmer values at its center, 278 

but maintained the tail-weight of the extreme cold temperature values (Fig. 3; Tables 2 and 3; 279 

Supplement). However, in spring the probability mass diminished around its shoulders, likely 280 

due to decreases in the frequency of extreme cold temperature values. Hence, higher-order 281 

statistical moments may help in describing the complexity of temporal changes in stream 282 

temperature among seasons and highlight how shifts may occur at different portions of the 283 

distribution (e.g., extreme cold, average, or warm conditions) or among streams.  284 

 In regulated sites, we observed shifts toward colder temperatures (e.g., site6 and site9 during 285 

summer and fall in Fig. 3; Supplement) suggesting local influences of water regulation may 286 

dominate the impacts from warming climate. This is illustrated by the mixed patterns of 287 

skewness and kurtosis due to climate and water regulation, especially during spring, winter, and 288 

summer (Tables 2 and 3; Fig. 3; Supplement). In particular, in spring, patterns of skewness in 289 

regulated sites were similar to unregulated sites, whereas patterns of kurtosis were in opposite 290 

directions (more platykurtic in regulated sites). This can be explained by the water discharged 291 

from reservoirs in spring that could be a mix of the cool inflows to the reservoir, the deep, colder 292 

water stored in the reservoir over the winter, and the accelerated warming of the exposed surface 293 

of the reservoir. Patterns of skewness and kurtosis seen in regulated sites also highlight the 294 

influences of site-dependent water management coupled with climatic influences. This is 295 
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exemplified by the skewness of site7 and site8 compared to site9 and site10 in fall, winter, and 296 

spring (Table 2) and the high variability of the value of skewness among sites in summer.  297 

 Increased understanding of the shape of empirical distributions by season or by year will help 298 

researchers and resource managers evaluate potential impacts of shifting environmental regimes 299 

on organisms and processes across a range of disturbance types. Empirical distributions are a 300 

simple, but comprehensive way to examine high frequency measurements that include the full 301 

range of values. Higher-order statistical moments provide useful information to characterize and 302 

compare environmental regimes and can show which seasons are most responsive to 303 

disturbances. The use of higher-order moments could help improve predictive models of climate 304 

change impacts in streams by incorporating full environmental regimes into scenarios rather than 305 

only using descriptors of central tendency and dispersion from summertime. 306 

 The technique for detection of potentially anomalous years used here was able to incorporate 307 

all daily data to provide a simple but comprehensive comparison of environmental regimes 308 

among years. We were able to characterize whole year responses and identify where regional 309 

climatic or hydrologic trends dominated versus where local influences distinctively influenced 310 

stream temperature. For example, Year 1992 was identified as potentially anomalous at three 311 

unregulated sites (or four at 90% CI) and at two regulated sites (or four at 90% CI), and 312 

identified that across the region, the majority of stream temperatures were being influenced. 313 

Stream temperatures in Years 1987 and 2008 were less synchronous across the region, but 314 

regulated and unregulated sites located in the same watershed (site2, site7, and site8 in Table 1; 315 

Figs. 4 and 5; Supplement) shared similar potentially anomalous years. We also observed site 316 

specific anomalous years, suggesting that more local conditions of watersheds influenced stream 317 

temperature (e.g., Arismendi et al., 2012). Indeed, sites located close to one another (site3 and 318 
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site4 in Table 1; Fig. 4; Supplement) did not necessarily share all potentially anomalous years, 319 

suggesting that local drivers were more influential than regional climate forces during those 320 

years. Hence, the procedure for detection of potentially anomalous years used here may be useful 321 

to evaluate and contrast the vulnerability of streams to regional or local climate changes by 322 

characterizing years with anomalous conditions.  323 

 The technique that detects potentially anomalous years identified years with differences in 324 

either magnitude or timing of events (Figs. 4 and 5) and mapped these differences within the 325 

ordination plot. For example, year 1992 and 1987 were potentially anomalous likely due to 326 

magnitude of warming throughout year. At other sites, such as site3, site4 and site5 (Fig. 4), the 327 

potentially anomalous years were most likely due to increased temperatures in seasons other than 328 

summertime, and not related to higher summertime temperatures. Years 1992 and 2008 plotted at 329 

the opposite extremes of the ordination plot for site1, site2 and site7 (Figs. 4 and 5); see also 330 

Years 1982-1983 and 1986-1987 for site3. These years contained warm and cold conditions, 331 

respectively, and likely influenced the shape of the confidence region (Figs. 4 and 5; 332 

Supplement). Interestingly, we observed that the confidence region for unregulated sites (Fig. 4) 333 

appeared to be more irregularly shaped than regulated sites (Fig. 5), which suggests that stream 334 

regulation may tightly cluster and homogenize temperature values across years (e.g., Fig. 1c, d). 335 

Further attention on the interpretation of the geometry of confidence region may be useful to 336 

contrast purely climatic from human influences on streams.  337 

 There are some considerations when detecting potential changes in continuous environmental 338 

phenomena that are inherent to time series analysis including the length, timing, and quality of 339 

the time series as well as the type of the driver that is investigated as responsible for such 340 

change. Often, the detection of shifts in time series of environmental data is affected by the 341 
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amount of censored data that limits the length and timing of the time series (e.g., Arismendi et al. 342 

2012). There are uncertainties regarding the importance of regional drivers and the 343 

representativeness of sites (e.g., complex mountain terrain) and periods of record (e.g., ENSO, 344 

and PDO climatic oscillations). Lastly, the type of climatic influences may affect the magnitude 345 

and duration of the responses resulting in short-term abrupt shifts (e.g., extreme climatic events), 346 

persistent long-term shifts (e.g., climate change), or a more complex combination of them (e.g., 347 

regime shifts - Brock & Carpenter, 2012). 348 

 349 

SUMMARY AND CONCLUSIONS 350 

Here we show the utility of using higher-order statistical moments and a procedure that detects 351 

potentially anomalous years as complementary approaches to identify temporal changes in 352 

environmental regimes and evaluate whether these changes are consistent across years and sites. 353 

Stream ecosystems are exposed to multiple climatic and non-climatic forces which may 354 

differentially affect their hydrological regimes (e.g., temperature and streamflow). In particular, 355 

we show that potential timing and magnitude of responses of stream temperature to recent 356 

climate warming and other human-related impacts may vary among seasons, years, and across 357 

sites. Statistics of central tendency and dispersion may or may not distinguish between thermal 358 

regimes or characterize changes to thermal regimes, which could be relevant to understanding 359 

their ecological and management implications. In addition, when only single metrics are used to 360 

describe environmental regimes, they have to be selected carefully. Often selection means 361 

simplification resulting in the compression or loss of information (e.g., Arismendi et al., 2013a). 362 

By examining the whole empirical distribution and multiple moments, we can provide a better 363 
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characterization of shifts over time or following disturbances than simple thresholds or 364 

descriptors. 365 

 In conclusion, our two approaches complement traditional summary statistics by helping to 366 

characterize continuous environmental regimes across seasons and years, which we illustrate 367 

using stream temperatures in unregulated and regulated sites as an example. Although we did not 368 

include a broad range of stream types, they were sufficiently different to demonstrate the utility 369 

of the two approaches. These two approaches are transferable to many types of continuous 370 

environmental variables and regions and suitable for examining seasonal and annual responses as 371 

well as climate or human-related influences (e.g., for streamflow see Chebana et al., 2012; for air 372 

temperature see Shen et al., 2011). These analyses will be useful to characterize the strength of 373 

the resilience of regimes and to identify how regimes of continuous phenomena have changed in 374 

the past and may respond in the future. 375 

 376 
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Table 1. Location and characteristics of unregulated (n = 5) and regulated (n = 5) streams at the gaging sites. Percent of daily gaps in 471 

the stream temperature time series from Jan-1979 to Dec-2009 used in this study.  472 

River 

Start of 

water 

regulation  

gage ID 

 

ID 

Lat  

N 

Long 

W 

elevation 

(m) 

watershed 

area 

(km2) 

% of daily 

gaps  

Fir Creek, OR unregulated 14138870 site1 45.48 122.02 439 14.1 2.8% 

SF Bull Run River, OR unregulated 14139800 site2 45.45 122.11 302 39.9 2.0% 

McRae Creek, OR  unregulated TSMCRA site3 44.26 122.17 840 5.9 3.5% 

Lookout Creek, OR unregulated TSLOOK site4 44.23 122.12 998 4.9 2.6% 

Elk Creek, OR unregulated 14338000 site5 42.68 122.74 455 334.1 5.2% 

Clearwater River, ID 1971 13341050 site6 46.50 116.39 283 20,658 4.0% 

Bull Run River near Multnomah Falls, OR 1915a 14138850 site7 45.50 122.01 329 124.1 5.3% 

NF Bull Run River, OR 1958 14138900 site8 45.49 122.04 323 21.6 2.6% 

Rogue River near McLeod, OR 1977 14337600 site9 42.66 122.71 454 2,429 3.7% 

Martis Creek near Truckee, CA 1971 10339400 site10 39.33 120.12 1747 103.4 6.5% 

a Regulation at times 473 
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Table 2. Magnitude and direction of the value of skewness in probability distributions of daily minimum stream temperature by 474 

season and decade at unregulated (sites 1-5) and regulated (sites 6-10) streams. Symmetric distributions are not shown. m = 475 

moderately skewed; h = highly skewed; (-) = negatively skewed; (+) = positively skewed (see Supplement for more details). 476 

  season/time period 

site type site ID fall winter Spring summer 

   80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 

u
n
re

g
u
la

te
d
 (

1
-5

) site1    m(-) m(-) m(-) m(+) m(+) m(+)    

site2     m(-) m(-) m(+) m(+) m(+) m(-)  m(-) 

site3      m(-)  m(+) h(+)   m(-) 

site4       h(+) m(+) h(+) m(-) m(-) m(-) 

site5       m(+) h(+) m(+) m(-) m(-) m(-) 

re
g
u
la

te
d
 (

6
-1

0
) 

site6       m(+)     m(+) 

site7     m(-)  m(+) m(+) m(+)   m(-) 

site8 m(-) m(-)     m(+)  m(+)   h(-) 

site9 m(+) m(+) m(+) m(+) m(+)       m(+) 

site10     m(+)     h(-) m(-)  

 477 

 478 

 479 

 480 
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Table 3. Types of kurtosis of probability distributions of daily minimum stream temperature by season and decade at unregulated and 481 

regulated sites. ↔↔ = platykurtic; ↔ = moderately platykurtic; ↕ ↕ = leptokurtic, and ↕ = moderately leptokurtic. Mesokurtic 482 

distributions are not shown (see Supplement for more details). 483 

  season/time period 

site type site fall winter Spring summer 

  80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 

u
n
re

g
u
la

te
d
 (

1
-5

) 

site1   ↔ ↕ ↕ ↕ ↕↕      

site2   ↔   ↕ ↕↕    ↔ ↕ 

site3 ↔ ↔ ↔   ↕↕   ↕ ↔   

site4   ↔    ↕↕  ↕↕   ↕ 

site5 ↔ ↔ ↔ ↔    ↕ ↕ ↕↕  ↕ 

re
g
u
la

te
d
 (

6
-1

0
) 

site6 ↔ ↔ ↔        ↔ ↕ 

site7 ↔  ↔    ↕↕      

site8 ↕  ↔ ↕  ↕  ↔   ↕ ↕↕ 

site9   ↔ ↕   ↔ ↔ ↔ ↔ ↔  

site10 ↔↔ ↔↔ ↔↔ ↔ ↕↕  ↔↔ ↔ ↔ ↕↕ ↕ ↕ 

 484 
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FIGURE LEGENDS 

 

Fig. 1. Conceptual diagram showing hypothesized shifts of distribution of water temperatures at both seasonal (upper panels) and 

annual (lower panels) scales in regulated (left panels) and unregulated (right panels) streams. In the upper panels examples of changes 

in skewness and kurtosis are shown for temperature distributions affected by stream regulation and a warming climate in a given 

season. For instance, in regulated streams the influence of the reservoir may reduce both extreme cold and warm temperatures 

confounding the effect from the climate (a) whereas less cold temperatures and an overall shift toward warming values may occur in 

unregulated streams (b). In the lower panels, we illustrate the use of N-MDS and HDR plots for detecting potentially anomalous years 

in regulated and unregulated streams (the shaded area represent a given coverage probability). Points located in the outer or the 

confidence region represent potentially anomalous years. For instance, in regulated streams individual years are more clustered due to 

the reservoir may homogenize temperatures across years whereas (c) whereas in unregulated streams individual years are less 

clustered due to more heterogeneous responses to the warming climate (b). 

 

Fig. 2. Density plots of standardized temperatures (1979-2009) by season (winter – blue line; spring – green line; summer – red line; 

fall – black line) in unregulated (left panel) and regulated (right panel) streams using time series of daily minimum.  
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Fig. 3. Examples of (a) density plots of standardized temperatures by decade (period 80-89 dashed line; period 90-99 gray line; period 

00-09 solid color line) and season using time series of daily minimum in an unregulated (site1) and a regulated (site6) stream. In the 

lower panel (b) central tendency statistics (average ± SD) for each decade and season (winter – blue; spring – green; summer – red; 

fall – black) are also included. See results for all sites in the Supplement. 

 

Fig. 4. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in unregulated streams using 

annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols 

outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the 

coverage probability were italicized. See results for all sites in the Supplement. 

 

Fig. 5. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in regulated streams using 

annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols 

outside the grey regions and darker lines represent potentially anomalous years. Examples of years between 90% and 95% of the 

coverage probability were italicized. See results for all sites in the Supplement. 
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