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Abstract  24 

Central tendency statistics may not capture relevant or desired characteristics about the variation 25 

of continuous phenomena and thus, they may not completely track temporal patterns of change. 26 

Here, we present two methodological approaches to identify long-term changes in environmental 27 

regimes. First, we use higher statistical moments (skewness and kurtosis) to examine potential 28 

changes of empirical distributions at decadal scale. Second, we adapt an outlier detection 29 

procedure combining a non-metric multidimensional scaling technique and higher density region 30 

plots to detect anomalous years. We illustrate the use of these approaches by examining long-31 

term stream temperature data from minimally and highly human-influenced streams. In 32 

particular, we contrast predictions about thermal regime responses to changing climates and 33 

human-related water uses. Using these methods, we effectively diagnose years with unusual 34 

thermal variability, patterns in variability through time, and spatial variability linked to regional 35 

and local factors that influence stream temperature. Our findings highlight the complexity of 36 

responses of thermal regimes of streams and reveal a differentiated vulnerability to both the 37 

climate warming and human-related water uses. The two approaches presented here can be 38 

applied with a variety of other continuous phenomena to address historical changes, extreme 39 

events, and their associated ecological responses. 40 

 41 

Keywords: frequency analyses, probability distributions, kurtosis, skew, global warming, stream 42 

ecosystems, hydrology, thermal regimes  43 
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INTRODUCTION 45 

Environmental fluctuation is a fundamental feature that shapes ecological and evolutionary 46 

processes. Although empirical distributions of environmental data can be characterized in terms 47 

of the central tendency (or location), variability, and shape, most traditional statistical 48 

approaches are based on detecting changes in location and tend to oversimplify assumptions 49 

about temporal variation. This issue is particularly troublesome for understanding the stationarity 50 

of temporally continuous phenomena and thus, the detection of potential shifts in distributional 51 

properties beyond the location. For instance, descriptors of location, such as mean, median or 52 

mode, may not be the most informative when extreme hydrological events are of primary 53 

attention (e.g., Chebana et al., 2012). In many regions, the future climate is expected to be 54 

characterized by increasing the frequency of extreme events (e.g., Jentsch et al., 2007; IPCC 55 

2012). Hence, the detection of changes in the shape of empirical distributions appears to be more 56 

informative than only using traditional descriptors of central tendency (e.g., Shen et al., 2011; 57 

Donat & Alexander, 2012). More importantly, factors associated with changes in the shape of 58 

empirical distributions may have greater effects on species and ecosystems than do simple 59 

changes in location (e.g., Colwell, 1974; Gaines & Denny, 1993; Thompson et al., 2013; Vasseur 60 

et al., 2014). 61 

 Here, we explore two approaches that quantify and visualize changes in the shape of 62 

empirical distributions of continuous environmental variables using thermal regimes of streams 63 

as an illustrative example. First, applying frequency analysis, we examine patterns of variability 64 

and long-term shifts in the shape of stream temperature empirical distributions using higher 65 

statistical moments (skewness and kurtosis) by season across decades. Second, we combine non-66 

metric multidimensional scale ordination technique (N-MDS) and highest density regions (HDR) 67 
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plots to detect anomalous years. To exemplify the utility of these approaches, we employ them to 68 

contrast predictions and questions about long-term responses of thermal regimes of streams to 69 

changing terrestrial climates and other human-related water uses (Fig. 1). Our main goal is to 70 

identify temporal changes in empirical distributions of environmental regimes not captured by 71 

lower statistical moments. This is particularly relevant in streams because (1) global 72 

environmental change may affect empirical distributions of water quality beyond the traditional 73 

lower statistical moments, and (2) ecosystems and organisms have been shown to be sensitive to 74 

such distributional changes (e.g., Thompson et al., 2013; Vasseur et al., 2014).  75 

 76 

Thermal regime of streams as an illustrative example  77 

Temperature is a fundamental driver of ecosystem processes in freshwaters (Shelford, 1931; Fry, 78 

1947; Magnuson et al., 1979; Vannote & Sweeney, 1980). Short-term (daily/weekly/monthly) 79 

descriptors of mean and maximum temperatures during summertime are frequently used for 80 

characterizations of thermal habitat availability and quality (McCullough et al., 2009), 81 

definitions of regulatory thresholds (Groom et al., 2011), and predictions about possible 82 

influences of climate change on streams (Mohseni et al., 2003; Mantua et al., 2010; Arismendi et 83 

al., 2013a,b). These simple descriptors can serve as useful first approximations, but do not 84 

capture the full range of thermal conditions that the aquatic biota experience at daily, seasonal, or 85 

annual intervals (see Poole & Berman, 2001; Webb et al., 2008). Both human impacts and 86 

climate change have been shown to affect thermal regimes of streams at a variety of temporal 87 

scales (e.g., Steel & Lange, 2007; Arismendi et al., 2012; 2013a,b). For example, the recent 88 

warming climate could lead to different responses of streams that may not be well described 89 

using average or maximum temperature values (Arismendi et al., 2012). Daily minimum stream 90 
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temperatures in winter are showing more warming than daily maximum values during summer 91 

(Arismendi et al., 2013a; for air temperatures see Donat & Alexander, 2012). In human modified 92 

streams, seasonal shifts in stream temperatures and earlier warmer temperatures have been 93 

recorded following removal of riparian vegetation (Johnson & Jones, 2000).  However, simple 94 

threshold descriptors of central tendency or location cannot characterize these shifts.   95 

 Using higher statistical moments, we examine the question of whether a recent warming 96 

climate has led a shift in the shape of the stream temperature distribution or if stream 97 

temperatures have all warmed and simply moved entirely to the right without any change in 98 

shape. In addition, we compare these potential shifts in the distribution of stream temperature 99 

between streams with unregulated and human-regulated flows. Using outlier detection 100 

technique), we address the question of whether anomalous years are repeatedly detected across 101 

streams types (regulated and unregulated) and examine if those anomalous years represent a 102 

regional influence of the climate or alternatively highlight the importance of local factors. 103 

Previous studies have shown that detecting long-term changes of thermal regimes of streams is 104 

complex and the use of only traditional statistical approaches may oversimplify characterization 105 

of a variety of responses of ecological relevance (Arismendi et al., 2013a,b). 106 

 107 

MATERIAL AND METHODS 108 

Study sites and time series 109 

We selected long-term gage stations (US Geological Survey and US Forest Service) that 110 

monitored year-round daily stream temperature in Oregon, California, and Idaho (n = 10; Table 111 

1). The sites were selected based on (1) availability of continuous daily records for at least 31 112 

years (January 1st 1979 to December 31st 2009) and (2) complete information for time series of 113 
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daily minimum (min), mean (mean), and maximum (max) stream temperature for at least 93% of 114 

the period of record. Half of the sites (n = 5) were located in unregulated streams (sites 1-5) and 115 

the other half were in regulated streams (sites 6-10). Regulated streams were those with 116 

reservoirs constructed before 1978. Time series were carefully inspected and for the outlier 117 

analysis only (see below) we interpolated missing data following Arismendi et al. (2013a). The 118 

percentage of daily missing records of each time series was less than 7%. To ensure enough 119 

observations to adequately represent the tails of the respective distributions at a seasonal scale 120 

for analyses of higher statistical moments (i.e., winter: December-February; spring: March-May; 121 

summer: June-August; fall: September-November), we grouped and compared daily stream 122 

temperature data at each site among the three decades 1980-1989, 1990-1999, and 2000-2009.  123 

 124 

Higher statistical moments 125 

To visualize and use a similar scale of stream temperatures across sites, we standardized time 126 

series of daily temperature values using a Z-transformation as follows:  127 

 128 

 129 

where STi was the standardized temperature at day i, Ti was the actual temperature value at day i 130 

(°C), μ was the mean and σ was the standard deviation of the respective time series considering 131 

the entire time period.  132 

Higher statistical moments of skewness and kurtosis are often considered problematic in 133 

parametric statistics, where data is often assumed to be normal. In reality, however, these 134 

moments can be useful to describe changes in the shape of the distribution of environmental 135 

variables over long-term periods (see Shen et al., 2011; Donat & Alexander, 2012). Skewness 136 




 i

i

T
ST



7 
 

addresses the question of whether or not a certain variable is symmetrically distributed around its 137 

mean value. With respect to temperature, positive skewness of the distribution or skewed right 138 

indicates colder conditions are more common (Fig. 1a) whereas negative skewness or skewed 139 

left represents increasing prevalence of warmer conditions (Fig. 1b). Therefore, increases in the 140 

skewness over time could occur with increases in warm conditions, decreases in cold conditions, 141 

or both. Kurtosis describes the structure of the distribution between the center and the tails 142 

representing the dispersion around its ‘shoulders’. In other words, as the probability mass 143 

decreases around its shoulders it may increase in either the center, or the tails, or both resulting 144 

in a rise in the peakedness, the tailweight, or both and thus, the dispersion of the distribution 145 

around its shoulders increases. The reference standard is zero, a normal distribution with excess 146 

kurtosis equal to kurtosis minus three (mesokurtic). A sharp peak in a distribution that is more 147 

extreme than a normal distribution (excess kurtosis exceeding zero) represented less dispersion 148 

in the observations over the tails (leptokurtic). Distributions with higher kurtosis tend to have 149 

"tails" that are more accentuated. Therefore, observations are spread more evenly throughout the 150 

tails. A distribution with tails more flattened than the normal distribution (excess kurtosis below 151 

zero) described higher frequencies spread across the tails (platykurtic). With respect to 152 

temperature, a leptokurtic distribution may indicate that average conditions are much more 153 

frequent and there is a lower proportion of both extreme cold and warm values (Fig. 1a). A 154 

platykurtic distribution represents a more evenly distributed distribution across all values with a 155 

higher proportion of both extreme cold and warm values (Fig. 1b). Therefore, increases in the 156 

kurtosis over time would occur with decreases in extreme conditions, increases of average 157 

conditions, or both.   158 
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Although time series of environmental data may include large datasets often they are 159 

incomplete due to missing values and errors. To account for a potential bias inherent to 160 

incomplete time series or in cases of small samples sizes, we used the sample skewness (adjusted 161 

Fisher-Pearson standardized moment coefficient) and the sample excess kurtosis (Joanes and Gill 162 

1998). The sample skewness and sample excess kurtosis are dimensionless and were estimated as 163 

follows: 164 

 165 

 166 

 167 

 168 

 169 

where n represented the number of records of the time series, Ti was the temperature of the day i, 170 

μ and σ the mean and standard deviation of the time series. 171 

To define the status of the skewness for the stream temperature distribution in a particular 172 

season and decade, we followed Bulmer (1979) defining three categories as follows “highly 173 

skewed” (if skewness was < -1 or > 1), “moderately skewed” (if skewness was between -1 and -174 

0.5 or between 0.5 and 1), and “symmetric” (if skewness was between -0.5 and 0.5). We used 175 

similar procedures to define the status of excess kurtosis. We defined five categories that 176 

included “negative kurtosis or platykurtic” (if kurtosis was < -1), “moderately platykurtic” (if 177 

kurtosis was between -0.5 and -1), “positive kurtosis or leptokurtic” (if kurtosis was > 1), 178 

“moderately leptokurtic” (if kurtosis was between 0.5 and 1). Finally, if kurtosis was between -179 

0.5 and 0.5, we considered the distribution as “mesokurtic”. 180 

 181 
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Outlier detection procedure 182 

We considered an entire year as one finite-dimensional observation (365 days of daily minimum 183 

stream temperature). Using a non-metric multidimensional scaling (N-MDS) unconstrained 184 

ordination technique (Kruskal, 1964), we compared the similarity among years of the Euclidean 185 

distance of standardized temperatures for each day within a year across all years. The N-MDS 186 

analysis places each year in a multivariate space in the most parsimonious arrangement (relative 187 

to each other) with no a priori hypotheses. Based on an iterative optimization procedure (999 188 

random starts) we minimize a measure of disagreement or stress between their distances in 2-D 189 

(Kruskal, 1964). The Kruskal’s stress value is estimated as the square root of the ratio of the 190 

squared differences between the calculated distances and the plotted distances, and the sum of 191 

the plotted distances squared (Kruskal 1964). A rule of thumb (Clarke 1993) suggests the 192 

following benchmarks: stress <0.05 – excellent ordination; stress <0.1 - good ordination; stress 193 

<0.2 acceptable ordination; stress >0.2 – poor ordination. The resulting coordinates 1 and 2 from 194 

the resulted optimized 2-D plot provided a collective index of how unique a given year was (Fig. 195 

1c,d). In N-MDS the order of the axes was arbitrary and the coordinates represented no 196 

meaningful absolute scales for the axis. Fundamental to this method was the relative distances 197 

apart of points with a higher proximity indicating a higher degree of similarity, whereas more 198 

dissimilar points were positioned further apart. We performed the N-MDS analyses using the 199 

software Primer ver. 6.1.15 (Clarke, 1993; Clarke & Gorley, 2006).  200 

Using the two coordinates of each point (year) from the 2-D plot originated in the N-MDS 201 

ordination procedure, we created a bivariate high dimensional region (HDR) box-plot 202 

(Hyndman, 1996). The HDR plot has been typically produced using the two main principal 203 

component scores from a traditional principal component analysis (PCA) (Hyndman, 1996; 204 
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Chebana et al., 2012). However, is this study, we modified this procedure taking the advantage 205 

of the higher flexibility and lack of assumptions of the N-MDS analysis (Everitt, 1978; Kenkel & 206 

Orloci, 1986) to provide the two coordinates needed to create the HDR plot. In the HDR box-207 

plot, there are regions defined based on a probability coverage (e.g., 50%; 90%; or 95%) where 208 

all points (years) within the probability coverage region have higher density estimates than any 209 

of the points outside the region (Fig. 1c,d). The outer-region of the probability coverage region is 210 

bounded by points representing anomalous years (in Fig. 1c,d). We created the HDR plots using 211 

the package ‘hdrcde’ (Hyndman et al., 2012) in R ver. 2.15.1 (R Development Core Team, 212 

2012). 213 

 214 

RESULTS AND DISCUSSION 215 

Empirical distributions of stream temperature were distinctive among seasons, and seasons were 216 

relatively similar across sites (Fig. 2). Temperature distributions during winter had high overlap 217 

with those during spring. Winter had the narrowest range and the highest frequency of 218 

observations occurred at colder standardized temperature categories (-1.3, -0.7). The second 219 

highest proportion of observations in the year were also colder values occurring during spring in 220 

unregulated streams and during summer at four of the five regulated sites. This shift of frequency 221 

was likely due to release of warmer water from the reservoir management upstream. Fall 222 

distributions showed broadest range, with a similar proportion for a number temperature values.    223 

 Changes in the shape of empirical distributions among seasons over decades were not 224 

immediately evident, but the values of skewness or types of kurtosis captured these decadal 225 

changes in cases when lower statistical moments (average and standard deviation) did not show 226 

marked differences (e.g., unregulated site1 during fall and spring in Fig. 3; Table 2 and 3; see 227 
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also differences among decades at site 1 during summer in Supplement). The utility of 228 

combining skewness and kurtosis to detect changes in distributional shapes over time is 229 

illustrated by unregulated site2 during winter and spring (Tables 2 and 3; Supplement). At this 230 

site, there was a shift across decades from symmetric towards a negatively skewed distribution in 231 

winter and from symmetric towards positively skewed in spring, as well as from mesokurtic 232 

towards a leptokurtic distribution in both winter and spring. Overall, in most unregulated sites, 233 

kurtosis changed type with recent increases during winter, summer, and spring (Table 3; 234 

Supplement). Winter and summer mostly had negatively skewed distributions whereas spring 235 

generally had positively skewed distributions or those with little change across decades, except 236 

for site 3 (Table 2; Supplement). Decadal changes in both skewness and kurtosis during winter 237 

and summer observed at unregulated sites suggest the probability mass moved from its shoulders 238 

into warmer values at its center, but maintained the tail-weight of the extreme colder conditions 239 

(Fig. 3; Tables 2 and 3; Supplement). However, in spring the probability mass diminished around 240 

its shoulders apparently due to decreases in the frequency of extreme colder conditions. Hence, 241 

higher statistical moments may help in describing the complexity of temporal changes in stream 242 

temperature among seasons and highlight how shifts may occur at different portions of the 243 

distribution (e.g., extreme cold, average, or warm conditions) or among streams.  244 

 In regulated sites, we observed shifts toward colder temperatures (e.g., sites 6 and 9 during 245 

summer and fall in Fig. 3; Supplement) suggesting local influences of water regulation may 246 

mask the impacts from recent warming climate. This illustrated the mixed patterns of skewness 247 

and kurtosis due to climate and water regulation, especially during spring, winter, and summer 248 

(Tables 2 and 3; Fig. 3; Supplement). In particular, in spring, patterns of skewness were similar 249 

to unregulated sites whereas patterns of kurtosis were in opposite directions (more platykurtic in 250 
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regulated sites). This can be explained by the water discharged from reservoirs in spring that was 251 

a mix of the cool inflows to the reservoir, the cold water stored in the reservoir itself from the 252 

winter, and yet the surface of the reservoir warmed because of increasing solar radiation. Patterns 253 

of skewness and kurtosis seen in regulated sites also highlights the influences of site-dependent 254 

water management coupled with climatic influences. This is exemplified by the skewness of sites 255 

7 and 8 compared to sites 9 and 10 in fall, winter, and spring (Table 2) and the high variability of 256 

the value of skewness among sites in summer.  257 

 Collectively, increased understanding of the shape of empirical distributions by season or 258 

year will help researchers and resource managers evaluate potential impacts of shifting 259 

environmental regimes on organisms and processes across a range of disturbance types. 260 

Empirical distributions were a simple, but comprehensive way to examine high frequency 261 

measurements that included the full range of values. Higher statistical moments provided useful 262 

information to characterize and compare environmental regimes showing which season were 263 

most responsive to disturbances. Use of higher moment metrics could help improve predictive 264 

models of climate change impacts in streams by incorporating site-specific characteristics and 265 

full environmental regimes into scenarios rather than only the inclusion of summer conditions. 266 

 The outlier detection technique used here was able to incorporate all daily data to represent a 267 

complete and realistic comparison of environmental regimes across years. We were able to 268 

characterize whole year responses and identify where regional climatic or hydrologic trends 269 

dominated versus where local influences distinctively influenced stream temperature. For 270 

example, Year 1992 was identified as anomalous at three unregulated sites (or four at 90% CI) 271 

and at two regulated sites (or four at 90% CI), and identified that across the region, the majority 272 

of stream temperatures were being influenced. Stream temperatures in Years 1987 and 2008 273 
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were less synchronous across the region, but regulated and unregulated sites located in the same 274 

watershed (sites 2, 7, and 8 in Table 1; Figs. 4 and 5; Supplement) shared similar anomalous 275 

years. We also observed inconsistent anomalous years across sites, suggesting that more local 276 

conditions of watersheds influenced stream temperature (e.g., Arismendi et al., 2012). Indeed, 277 

sites spatially located close to one another (unregulated sites 3 and 4 in Table 1; Fig. 4; 278 

Supplement) did not necessarily share all anomalous years suggesting that local drivers were 279 

more influential than regional climate forces during those years. Hence, the outlier-detection 280 

method used here may be useful to evaluate and contrast the vulnerability of streams to regional 281 

or local climate changes by characterizing years with extreme conditions or those when seasonal 282 

shifts occurred (e.g., Brock & Carpenter 2012).   283 

 The outlier-detection method identified years with anomalies in either magnitude or timing of 284 

events (Figs. 4 and 5) and mapped these differences within the ordination plot. For example, year 285 

1992 and 1987 were anomalous likely due to magnitude of warming throughout year. At other 286 

sites, such as unregulated sites 3, 4 and 5 (Fig. 4), the anomalous years were most likely due to 287 

increased temperatures in seasons other than summertime, and not related to higher summertime 288 

temperatures. Years 1992 and 2008 plotted at the opposite extremes of the ordination plot for 289 

sites 1, 2 and 7 (Figs. 4 and 5); see also Years 1982-1983 and 1986-1987 for site3. These years 290 

represented warm and cold conditions respectively and likely they influenced the shape of the 291 

confidence region (Figs. 4 and 5; Supplement). Interestingly, we observed that the confidence 292 

region for unregulated sites (Fig. 4) appeared to be more irregularly shaped than regulated sites 293 

(Fig. 5). Collectively, this suggests that stream regulation may tightly cluster and homogenize 294 

temperature values across years (e.g., Fig. 1c, d) and, in some cases, mask the influence of 295 

extreme climate conditions on these sites. Further attention on the interpretation of the geometry 296 
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of confidence region may be useful to contrast purely climatic from human influences on 297 

streams.  298 

 When using these proposed approaches, there are some caveats inherent to time series 299 

analyses of environmental data that should be considered. First, error terms for nearby time 300 

periods may lead to serial correlation affecting the independence of data. For hypothesis testing, 301 

when serial correlation occurs, the goodness of fit is inflated and the estimated standard error is 302 

smaller than the true standard error. Serial correlation often occurs on short-term scales (hourly, 303 

daily, weekly) in analyses of environmental water quality (Helsel & Hirsch, 1992). In this study, 304 

we reduced the potential for serial correlation by using longer time periods that allowed for a 305 

contrast among decades. Second, it is important to note that temporal changes in skewness and 306 

kurtosis could lead to misleading interpretations if they are only attributed to the change of any 307 

single high-moment ratio. Because skewness and kurtosis are ratios based on lower-order 308 

moments their temporal changes may be the result of changes in only the lower-order moments, 309 

changes in the higher-order moments or both. Thus, we recommend the use of higher-moment 310 

ratios in conjunction to the lower-order moments of central tendency and dispersion. Further, the 311 

outlier-detection technique used here identified years outside a confidence region, in other 312 

words, those years that fall in the tails of the distribution. Because the confidence region 313 

represented an overall pattern extracted from the available data, it was constrained by the length 314 

of the time series. Thus, anomalous years located outside of the confidence region may not 315 

necessarily represent true outliers. In addition, when the level of “stress” in the ordination of 316 

years is acceptable (stress < 0.2) interpreting the regularity/irregularity of the geometry of the 317 

confidence region may provide interesting outcomes. For example, in our illustrative example, 318 

the regularity of the confidence region seen for regulated streams, when contrasted to 319 
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unregulated sites, could be interpreted as the reservoir effect buffering the inter-annual 320 

variability of hydroclimatic conditions. 321 

 322 

SUMMARY AND CONCLUSIONS 323 

Here we show the utility of using higher statistical moments and outlier detection as 324 

complementary approaches to capture long-term changes in empirical distributions of 325 

environmental regimes and evaluate whether these changes are consistent across site types. 326 

Stream ecosystems are exposed to multiple climatic and non-climatic forces which may 327 

differentially affect their hydrological regimes (e.g., temperature and streamflow). In particular, 328 

we show that potential timing and magnitude of responses of stream temperature to both the 329 

recent warming climate and other human-related impacts may vary among seasons, years, and 330 

across sites. Central tendency statistics may or may not distinguish between thermal regimes or 331 

characterize changes to thermal regimes which could be relevant to infer their ecological and 332 

management implications. In addition, when only single metrics are used to describe 333 

environmental regimes, they have to be selected carefully. Often selection means simplification 334 

resulting in the compression or loss of information (e.g., Arismendi et al., 2013a). By examining 335 

the whole empirical distributions, we can provide a better characterization of shifts over time or 336 

following disturbances than simple thresholds or descriptors. 337 

 In conclusion, our two approaches complement traditional summary statistics by helping to 338 

characterize long-term continuous environmental variable behaviors for seasons and years. We 339 

illustrate this using temperature of streams in unregulated and regulated sites as an example. 340 

Although we did not include a broad range of stream types, they were sufficiently different to 341 

demonstrate the utility of the two approaches. The two approaches are transferable to other types 342 
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of continuous environmental variable measurements and regions to examining seasonal and 343 

annual responses, and climate or human-related influences (e.g., for streamflow see Chebana et 344 

al., 2012; for air temperature see Shen et al., 2011). These analyses will be useful to characterize 345 

how regimes of continuous phenomena have changed in the past, may respond in the future, or to 346 

identify the type and timing of their resilience.  347 
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Table 1. Location and characteristics of unregulated (n = 5) and regulated (n = 5) streams at the gaging sites. Percent of gaps in the 443 

stream temperature time series from Jan-1979 to Dec-2009 used in this study.  444 

River 

Start of 

water 

regulation  

gage ID 

 

ID 

Lat  

N 

Long 

W 

elevation 

(m) 

watershed 

area 

(km2) 

% of daily 

gaps  

Fir Creek, OR unregulated 14138870 site1 45.48 122.02 439 14.1 2.8% 

SF Bull Run River, OR unregulated 14139800 site2 45.45 122.11 302 39.9 2.0% 

McRae Creek, OR  unregulated TSMCRA site3 44.26 122.17 840 5.9 3.5% 

Lookout Creek, OR unregulated TSLOOK site4 44.23 122.12 998 4.9 2.6% 

Elk Creek, OR unregulated 14338000 site5 42.68 122.74 455 334.1 5.2% 

Clearwater River, ID 1971 13341050 site6 46.50 116.39 283 20,658 4.0% 

Bull Run River near Multnomah Falls, OR 1915a 14138850 site7 45.50 122.01 329 124.1 5.3% 

NF Bull Run River, OR 1958 14138900 site8 45.49 122.04 323 21.6 2.6% 

Rogue River near McLeod, OR 1977 14337600 site9 42.66 122.71 454 2,429 3.7% 

Martis Creek near Truckee, CA 1971 10339400 site10 39.33 120.12 1747 103.4 6.5% 

a Regulation at times 445 
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Table 2. Magnitude and direction of the value of skewness in probability distributions of daily minimum stream temperature by 446 

season and decade at unregulated (sites 1-5) and regulated (sites 6-10) streams. Symmetric distributions are not shown. m = 447 

moderately skewed; h = highly skewed; (-) = negatively skewed; (+) = positively skewed (see Supplement for more details). 448 

  season/time period 

site type site ID fall winter Spring summer 

   80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 

u
n
re

g
u
la

te
d
 (

1
-5

) site1    m(-) m(-) m(-) m(+) m(+) m(+)    

site2     m(-) m(-) m(+) m(+) m(+) m(-)  m(-) 

site3      m(-)  m(+) h(+)   m(-) 

site4       h(+) m(+) h(+) m(-) m(-) m(-) 

site5       m(+) h(+) m(+) m(-) m(-) m(-) 

re
g
u
la

te
d
 (

6
-1

0
) 

site6       m(+)     m(+) 

site7     m(-)  m(+) m(+) m(+)   m(-) 

site8 m(-) m(-)     m(+)  m(+)   h(-) 

site9 m(+) m(+) m(+) m(+) m(+)       m(+) 

site10     m(+)     h(-) m(-)  

 449 

 450 

 451 

 452 
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Table 3. Types of kurtosis of probability distributions of daily minimum stream temperature by season and decade at unregulated and 453 

regulated sites. ↔↔ = platykurtic; ↔ = moderately platykurtic; ↕ ↕ = leptokurtic, and ↕ = moderately leptokurtic. Mesokurtic 454 

distributions are not shown (see Supplement for more details). 455 

  season/time period 

site type site fall winter Spring summer 

  80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 80-89 90-99 00-09 

u
n
re

g
u
la

te
d
 (

1
-5

) 

site 1   ↔ ↕ ↕ ↕ ↕↕      

site 2   ↔   ↕ ↕↕    ↔ ↕ 

site 3 ↔ ↔ ↔   ↕↕   ↕ ↔   

site 4   ↔    ↕↕  ↕↕   ↕ 

site 5 ↔ ↔ ↔ ↔    ↕ ↕ ↕↕  ↕ 

re
g
u
la

te
d
 (

6
-1

0
) 

site 6 ↔ ↔ ↔        ↔ ↕ 

site 7 ↔  ↔    ↕↕      

site 8 ↕  ↔ ↕  ↕  ↔   ↕ ↕↕ 

site 9   ↔ ↕   ↔ ↔ ↔ ↔ ↔  

site 10 ↔↔ ↔↔ ↔↔ ↔ ↕↕  ↔↔ ↔ ↔ ↕↕ ↕ ↕ 

 456 
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FIGURE LEGENDS 

 

Fig. 1. Conceptual diagram showing hypothesized long-term responses of water temperature at both seasonal (upper panel) and annual 

(lower panel) scales in regulated (left panel) and unregulated (right panel) streams. In the upper panel we showed examples of changes 

in skewness and kurtosis for temperature distributions affected by stream regulation and a warming climate in a given season. For 

instance, in regulated streams the influence of the reservoir may reduce both extreme cold and warm temperatures confounding the 

effect from the climate (a) whereas less cold temperatures and an overall shift toward warming values may occur in unregulated 

streams (b). In the lower panel we illustrate the use of N-MDS and HDR plots for detecting anomalous years in regulated and 

unregulated streams (the shaded area represent a given coverage probability). Points located in the outer or the confidence region 

represent anomalous years. For instance, in regulated streams individual years are more clustered due to the reservoir may homogenize 

temperatures across years whereas (c) whereas in unregulated streams individual years are less clustered due to more heterogeneous 

responses to the warming climate (b). 

 

Fig. 2. Density plots of standardized temperatures (1979-2009) by season (winter – blue line; spring – green line; summer – red line; 

fall – black line) in unregulated (left panel) and regulated (right panel) streams using time series of daily minimum.  
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Fig. 3. Examples of (a) density plots of standardized temperatures by decade (period 80-89 dashed line; period 90-99 gray line; period 

00-09 solid color line) and season using time series of daily minimum in an unregulated (site1) and a regulated (site6) stream. In the 

lower panel (b) central tendency statistics (average ± SD) for each decade and season (winter – blue; spring – green; summer – red; 

fall – black) are also included. See results for all sites in the Supplement. 

 

Fig. 4. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in unregulated streams using 

annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols 

outside the grey regions and darker lines represent anomalous years. Examples of years between 90% and 95% of the coverage 

probability were italicized. See results for all sites in the Supplement. 

 

Fig. 5. Bivariate HDR boxplots (left panel) and standardized daily temperature distribution (right panel) in regulated streams using 

annual time series of daily minimum. The dark and light grey regions show the 50%, 90%, 95% coverage probability. The symbols 

outside the grey regions and darker lines represent anomalous years. Examples of years between 90% and 95% of the coverage 

probability were italicized. See results for all sites in the Supplement. 
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