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Abstract

Statistical models of the relationship between precipitation and topography are key
elements for the spatial interpolation of rain-gauge measurements in high-mountain
regions. This study investigates several extensions of the classical precipitation-height
model in a direct comparison and within two popular interpolation frameworks, namely5

linear regression and kriging with external drift. The models studied include predictors
of topographic height and slope, eventually at several spatial scales, a stratification by
types of a circulation classification, and a predictor for wind-aligned topographic gra-
dients. The benefit of the modeling components is investigated for the interpolation of
seasonal mean and daily precipitation using leave-one-out crossvalidation. The study10

domain is a north-south cross-section of the European Alps (154 km×187 km), which
disposes of dense rain-gauge measurements (approx. 440 stations, 1971–2008).

The significance of the topographic predictors was found to strongly depend on the
interpolation framework. In linear regression predictors of slope and at multiple scales
reduce interpolation errors substantially. But with as many as nine predictors the result-15

ing interpolation still poorly replicates the across-ridge variation. Kriging with external
drift (KED) leads to much smaller interpolation errors than linear regression. But this
is achieved with a single predictor of local height already, and the extended predictor
sets bring only marginal further improvement. Again, the stratification by circulation
types and the wind-aligned gradient predictor do not improve over the single predictor20

KED model. Similarly for daily precipitation, information from circulation types is not
improving interpolation accuracy. The results confirm that topographic predictors are
essential for reducing interpolation errors, but exploiting the spatial autocorrelation in
the data may be as effective as developing elaborate predictor sets. Our results also
question a popular practice of using linear regression for predictor selection and they25

support the common practice of using climatological background fields in the interpo-
lation of daily precipitation.
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1 Introduction

High-mountain ranges contribute to the supply and storage of freshwater and river flow
in many regions of the world (e.g. Viviroli et al., 2007). The role of mountains in ex-
tracting moisture from the atmosphere manifests in numerous regional anomalies and
gradients in the distribution of the global precipitation climate (e.g. Basist et al., 1994;5

Schneider et al., 2013). Accurate knowledge of the distribution and variation of rain
and snowfall is crucial for numerous planning tasks concerned, for example, with water
resources, water power, agriculture, glaciology and natural hazards (e.g. Greminger,
2003; Holzkamper et al., 2012; Machguth et al., 2009; Yates et al., 2009). A conve-
nient source of information are spatial analyses of observed precipitation, obtained by10

interpolation onto a regular grid, comprehensively over large areas. Such grid datasets
have become of interest also for monitoring climate variations and for evaluating model-
based re-analyses and climate models (e.g. Alexander et al., 2006; Bukovsky and
Karoly, 2007; Frei et al., 2003; Schmidli et al., 2002).

The construction of accurate precipitation grid datasets for high-mountain regions is15

confronted with the challenge of complex spatial variations. Even with idealized topo-
graphic settings and flow configurations (e.g. isolated hill or ridge, constant flow), situa-
tions can be distinguished where precipitation maxima occur over the windward slope,
over the crest or the downwind slope of a topographic obstacle (e.g. Sinclair et al.,
1997; Smith, 1979). Distributions depend on the height and scale of the obstacle, and20

the strength, static stability and moisture profile of the impinging flow. More complex
topographic shapes, transient weather systems, convection and the drift of hydrome-
teors quickly complicate the picture (e.g. Cosma et al., 2002; Fuhrer and Schär, 2005;
Houze et al., 2001; Roe, 2005; Sinclair et al., 1997; Steiner et al., 2003). Therefore,
the distribution of long-term mean precipitation is, in many regions, a superposition of25

several distinct responses to topography, which act at different space scales, involve
several characteristics of the topography (not just height) and pertain to different flow
situations.
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A further complication for spatial analysis in mountain regions is posed by the limited
spatial density of rain gauges, the standard device for climatological inference on pre-
cipitation. Even in comparatively densely instrumented areas, such as the European
Alps, the networks do not resolve contrasts between individual valleys and hills ex-
plicitly, and they miss out episodic fine-scale patterns familiar from radar observations5

and numerical models (e.g. Bergeron, 1961; Frei and Schär, 1998; Germann and Joss,
2001; Zangl et al., 2008). Moreover, the distribution of rain gauges in complex terrain is
often biased, with a majority of measurements taken at valley floors, while steep slopes
and high elevations are underrepresented (e.g. Frei and Schär, 1998; Sevruk, 1997).
The sampling bias entails a risk of systematic errors in spatial interpolation, which can10

impinge upon estimates at larger scale, such as for averages over river catchments
(e.g. Daly et al., 1994; Sinclair et al., 1997).

In this context, models of the relationship between precipitation and topography
constitute an essential element of spatial interpolation methods. Their purpose is to
enhance the methods’ capabilities in describing variations not explicitly resolved by15

the observations, and to reduce the risk of systematic errors related to the non-
representativity of the measurement network. Approaches for considering precipitation-
topography relationships in interpolation methods can roughly be grouped into empir-
ical statistical models using more or less extensive sets of physiographic predictors
(e.g. Benichou and Le Breton, 1986; Daly et al., 1994; Prudhomme and Reed, 1998)20

and simplified physico-dynamical downscaling models in combination with information
on larger-scale circulation (e.g. Crochet et al., 2007; Sinclair, 1994).

In this study we explore and compare several ideas for the modeling of precipitation-
topography relationships in the framework of empirical statistical models. Our specific
focus is on models that (a) take account of the multi-scale nature of the relationship,25

(b) consider responses both to slope and elevation of the topography, (c) involve a de-
pendency on the direction of the large-scale flow, and (d) examine the potential of
a stratification by circulation types. The value of the different modeling components is
assessed in terms of the skill of a geostatistical interpolation method, which has these
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models incorporated and is applied for the estimation of fields of seasonal mean and
daily precipitation in a sub-region of the European Alps.

Systematic topography effects on precipitation are usually difficult to discern in obser-
vations at short time scales (e.g. for daily totals). Precipitation-topography relationships
are therefore mostly estimated from long-term averages, which are then used, via a cli-5

matological background field, for the interpolation of shorter duration totals (Haylock
et al., 2008; Rauthe et al., 2013; Widmann and Bretherton, 2000).

A common model of topography effects is that of a linear relationship between clima-
tological (seasonal or monthly) mean precipitation and in-situ topographic elevation.
Precipitation-height gradients have been considered in various interpolation method-10

ologies such as in linear regression by using height as a predictor (e.g. Gottardi et al.,
2012; Rauthe et al., 2013; Sokol and Bližnák, 2009) in several variants of kriging by
using a digital elevation model as secondary variable (Goovaerts, 2000; Hevesi et al.,
1992; Phillips et al., 1992), in thin-plate splines interpolation by using height as a third
regionalization variable (Haylock et al., 2008; Hutchinson, 1998) or in triangular inter-15

polation by adopting height corrections (Tveito et al., 2005). The assumption of these
procedures is that local height is a key explanatory variable of the distribution of pre-
cipitation and that the relationship, commonly estimated over larger domains, is rep-
resentative at the scale relevant for the interpolation, i.e. at and below the spacing of
stations.20

Three types of extensions of the aforementioned methodologies have been pro-
posed: the first introduced a range of physiographic predictors (not just height) and/or
predictors representing smoothed versions of the actual topography (e.g. Basist et al.,
1994; Benichou and Le Breton, 1986; Gyalistras, 2003; Perry and Hollis, 2005;
Prudhomme and Reed, 1998; Sharples et al., 2005). Additional predictors (e.g. slope,25

exposure) were found to significantly increase the explained variance compared to
height only (e.g. Gyalistras, 2003; Prudhomme and Reed, 1998) and digital elevation
models smoothed to resolutions of 5 to 50 km (depending on region) were found to be
more powerful predictors compared to high-resolution topography (e.g. Prudhomme
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and Reed, 1998; Sharples et al., 2005). Conversely, the second extension remains
with univariate height dependencies, but considers the relationship to be spatially vari-
able (Brunetti et al., 2012; Daly et al., 1994; Gottardi et al., 2012). The aim is to focus
on dependencies at scales that are not explicitly resolved by the station network and,
hence, are particularly relevant for interpolation. There are different emphases in the5

two extensions between robustness and local representativity of the precipitation to-
pography model used for interpolation.

The third type of extending traditional precipitation height models is to incorporate in-
formation on atmospheric flow conditions into the interpolation: Kyriakidis et al. (2001)
have constructed new rainfall predictors by combination of lower-atmosphere flow and10

moisture with local terrain height and slope. When used in kriging these dynamical pre-
dictors yielded more accurate interpolations of the seasonal mean precipitation com-
pared to using elevation only. Hewitson and Crane (2005) have modified the weighting
scheme of a daily interpolation method to depend on synoptic state (discrete types of
daily low-level circulation) in order to account for the varying short-range representa-15

tivity of station measurements. Gottardi et al. (2012) use the circulation regime of the
day under consideration to estimate orographic effects specifically for different weather
conditions. All these ideas are building on empirical evidence that the mesoscale pre-
cipitation distribution in complex terrain varies considerably between days with different
large-scale flow conditions (Cortesi et al., 2013; Schiemann and Frei, 2010).20

In this study we build on, extend and test ideas of all three extensions in a subre-
gion of the European Alps. We compare several sets of physiographic predictors with
regard to their relevance for high-resolution precipitation interpolation. Apart from in-
cluding height and directional gradients, our set encompasses predictors at several
spatial scales simultaneously in order to explicitly distinguish between patterns re-25

solved and unresolved by the station network. We also compare the role of predictor
setting between multivariate linear regression and kriging with external drift, to assess
how a model of spatial autocorrelation (kriging) can compensate for extensive predictor
sets. We further examine the prospect of stratifying seasonal means by independent
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analyses for composites of a circulation type classification and by including predictors
of the pertinent circulation terrain effect. Most of our analyses focus on interpolations for
seasonal mean precipitation, but we also assess the relevance of circulation-type de-
pendent background fields for the interpolation of daily precipitation. Essential for all our
comparisons is that interpolation errors will be examined as a function of topographic5

height and for both systematic and random error components. The main purpose of our
study is to gain insight on the role of different approaches to precipitation-topography
modelling, but some of our analyses also explore possibilities to improve an interpola-
tion method previously developed for the generation of a precipitation grid dataset for
the entire Alpine region (Isotta et al., 2013).10

The region of the European Alps is an interesting example for studying interpolation
procedures and pertinent models of the precipitation topography relationship. There is
an exceptional density of long-term rain-gauge observations (see Fig. 1), which allows
modeling approaches of larger complexity than in sparsely gauged mountain regions.
Moreover, there is a broad range of topographic scales (from hundreds of kilometers15

for the main ridge down to few kilometers for individual massifs) and variations in ridge
height (2000–3000 m for the main ridge down to few hundred meters for adjacent hill
ranges). Accordingly, the distribution of mean precipitation reveals several nested pat-
terns of the precipitation response that is indicative of its multi-scale nature (see Fig. 1).

This study is part of the European project EURO4M (European Reanalysis and Ob-20

servations for Monitoring). The outline of the study is organized as follows: in Sect. 2
we introduce the study domain and the data. The methods of spatial analysis and the
procedure of evaluation are described in Sect. 3. The results of the evaluation are then
presented and discussed in Sect. 4 and the conclusions of this study are drawn in
Sect. 5.25
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2 Study domain and data

In this study we consider a sub-domain of the Alps (11–13◦ E/46.85–48.5◦ N) that cov-
ers an area of 154km×187km and extends from the flatlands of Bavaria (Southern
Germany), over the Northern slopes of the Alpine ridge (at the country border between
Germany and Austria) towards the inner Alpine region of Tyrol (Inn and Salzach valleys,5

Austria and Northern Italy). The domain is indicated in Fig. 1 (red frame) and a detailed
topographic map is depicted in Fig. 2a. Our choice is motivated by the comparatively
simple large-scale pattern of the topography here, so that the domain can be consid-
ered as a cross-section through an elongated west-east oriented ridge, extending from
flatlands over foothills to high mountains with major inner mountain valleys (from North10

to South). As opposed to a larger domain with more convoluted topography, the inter-
mediate complexity eases the exploration of potential physiographic predictors but still
comprises the challenges encountered with distinct and typical climates of the entire
Alpine ridge. In addition, the selected domain disposes of a homogenous and, com-
pared to other regions, very dense coverage with rain gauges (cf. Fig. 1).15

The rain-gauge data for this study (Fig. 2a) was obtained from the German Weather
Service (DWD, for Germany), from the Austrian Federal Ministry of Agriculture,
Forestry, Environment and Water (for Austria) and from Servizio Meteorologico and
Ufficio Idrografico Bolzano Alto Adige (for Italy). The dataset is a subset of 440 stations
out of a pan-Alpine compilation of high-resolution daily rain-gauge time series extend-20

ing over the period 1971–2008 (Isotta et al., 2013). On average the station density is
1 station per 70 km2 corresponding to a typical inter-station distance of 8.5 km, a very
dense coverage over a high-mountain region.

Like in other mountainous regions, the distribution of the stations in our study domain
has a limited representativity with respect to terrain height (Fig. 2b). High-elevation ar-25

eas (> 1500 mMSL) are significantly underrepresented. For example, elevations above
1500 mMSL contribute about 25 % of the total area but are represented with only 6 %
of the stations. This setting involves a risk of precipitation estimates for high-elevation
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areas being biases due to inappropriate interpolation between valley stations. This will
be given particular attention in the assessment of interpolation methods later.

The rain-gauge time series underwent different quality control procedures at the orig-
inal data providers. In addition they were rigorously checked for raw errors, jointly af-
ter compilation, using criteria of temporal and spatial consistency and physical plau-5

sibility (for details see Isotta et al., 2013). One caveat of the quality of the data is,
however, posed by the systematic measurement error emanating from wind-induced
under-catch, wetting and evaporation losses (Groisman and Legates, 1994; Neff, 1977;
Sevruk, 2005). Sevruk (1985) and Richter (1995) estimate the systematic measure-
ment error in the Alps to range from about 7 % (5 %) over the flatland regions in winter10

(summer) to 30 % (10 %) above 1500 mMSL The data used in this study is not corrected
for these systematic errors. Indeed, water balance considerations in the Alps have chal-
lenged existing correction procedures (Schädler and Weingartner, 2002; Weingartner
et al., 2007). The systematic errors may affect the strength and estimation of empir-
ical precipitation topography relationships. However, given that the spatial variability15

of mean precipitation across the domain (see the example in Fig. 2a) is much larger
than the range of expected systematic errors, we assume that these errors are not
significantly affecting the conclusions of the present study.

Our statistical analyses are conducted with estimates of mean precipitation at the
above stations, that is, with seasonal means over a multi-year period or with composite20

means over the classes of a daily circulation type classification. The fact that many
rain-gauge series extend over a part of the full 38-year period only requires care in
establishing robust and comparable means values. For this purpose quantitative tests
have been carried out, aiming at determining the minimum number of days required
to build a mean value of a given accuracy. The tests were conducted by bootstrap25

experiments (sampling across days) over the time series of the 20 most complete sta-
tion records. Our accuracy requirement was that the probability of a sampling error
larger than 10 % of the “exact” mean value should be smaller than 5 %. The resulting
minimum requirement on the available length of the time series varies between season
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and circulation class. Stations not fulfilling this minimum requirement are discarded
from the analysis. As a result the station sample varies between analyses with different
seasons and between seasonal and circulation-type stratifications. Typically, the selec-
tion procedure eliminates 5 to 15 % of the total number of stations, leaving between
317 and 420 time series, depending on stratification.5

The circulation type classification chosen in this study is the PCACA classification
(Philipp et al., 2010; Yarnal, 1993). It uses daily mean sea level pressure distribu-
tions as input for a hierarchical cluster analysis of principal components. The classifi-
cation catalog used here was taken from an application of PCACA in the framework of
COST-Action 733 over an extended Alpine domain, using sea level pressure fields from10

ERA40 and ERA-Interim (Dee et al., 2011; Uppala et al., 2005) and with a target num-
ber of 9 clusters (Weusthoff, 2011). The choice of the 9-types classification (PCACA9)
is a compromise between differentiation of daily circulation patterns and robustness
of mean values (i.e. enough days within a weather class). In a comprehensive inter-
comparison, PCACA9 was found to be particularly skillful in explaining the distribution15

of mesoscale daily precipitation in the Alpine region (Schiemann and Frei, 2010). The
geostrophic wind fields for each of the clusters were calculated from sea level pressure
composites based on ERA40 (Uppala et al., 2005).

3 Methods and experiments

Our study on the significance and utility of physiographic predictors for spatial inter-20

polation is, in the first instance, dealing with seasonal mean precipitation, where to-
pographic effects on the distribution are standing out more clearly from spatial vari-
ations of episodic nature. The methodological framework employed is that of krig-
ing with external drift (KED, Schabenberger and Gotway, 2005), an interpolation
model with a component for multi-linear dependence on pre-defined variables (exter-25

nal drift or trend, here a set of topographic predictors) and a component of spatial
autocorrelation. Two limiting cases of KED will also be considered for comparison:
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multi-linear regression models (LM), which comprise the linear dependence on topo-
graphic predictors only (i.e. no spatial auto-correlation) and ordinary kriging (OK) with
only the spatial autocorrelation component included (i.e. omitting dependence on pre-
dictors). As topographic predictors, a set of candidates will be considered, including
elevation (“e”), gradients (“g”) in two cardinal directions (across and along the main5

ridge), as well as the gradient in the direction of the geostrophic wind of circulation
types (“v”). Various spatial scales of these predictors are considered, in combination,
representing variations of the topography at and beyond scales of 1, 5, 10, 25 and
75 km, respectively. The different method settings and predictor sets will be compared
by means of leave-one-out cross-validation, examining statistics of the systematic and10

random errors of the interpolation and their dependence on elevation.
In a second step we will compare the quality of daily precipitation interpolations when

using various climatologies (with different predictor sets, seasonal or circulation type
stratification) as a background reference (Widmann and Bretherton, 2000). As in the
seasonal experiments, KED will provide the methodological framework for the daily15

interpolation, but using the previously determined background reference fields as trend
variables.

The following subsections describe in detail the methodological setup (Sect. 3.1),
the derivation and usage of the topographic predictor sets (Sect. 3.2), the method for
daily interpolation (Sect. 3.3) and the cross-validation procedure (Sect. 3.4). Table 120

lists the experiments conducted for seasonal precipitation with the different methods
and predictor sets, using the acronyms just introduced. The experiments conducted for
daily interpolation are listed in Table 2.

3.1 Interpolation methods

For the interpolation concept, the present study builds on kriging with external drift25

(KED, Schabenberger and Gotway, 2005) and two simplified limit cases of it. KED be-
longs to a broad class of geostatistical interpolation methods, which estimate values
at target locations as the best linear unbiased combination of sample observations,
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under the assumption that the field of interest is a realization of a second order sta-
tionary Gaussian process (see e.g. Cressie, 1993; Diggle and Ribeiro, 2007). KED
considers the observations Y at sample locations s as a random variable of the form
(see e.g. Diggle and Ribeiro, 2007):

Y (s) = µ(s)+Z(s), µ(s) = β0 +
K∑

k=1

βk ·xk(s). (1)5

Here, µ(s) describes the deterministic component of the model (also termed external
drift or trend), and is given as a linear combination of K predictor fields xk(s) (also
termed trend variables) plus an intercept β0. The βk are denoted as trend coefficients.
Z(s) describes the stochastic part of the KED model and represents a random Gaus-10

sian field with a zero mean and a second order stationary covariance structure. The
latter is conveniently modeled by an eligible parametric semi-variogram function, de-
scribing the dependence of semi-variance as a function of lag (eventually with a direc-
tional dependence).

In our application of KED for seasonal mean precipitation the trend variables xk(s)15

are specified as fields of topographic predictors (elevation and gradient) that have
been pre-calculated from a high-resolution digital elevation model as further detailed in
Sect. 3.2. Several different sets of predictors will be considered and the accuracy of the
pertinent interpolations will be compared by cross-validation. In all our applications, the
semi-variogram is assumed to be exponential with a nugget, sill and range as parame-20

ters. The semi-variogram is assumed to be isotropic. All model parameters (trend coef-
ficients and variogram parameters) are estimated jointly using the method of restricted
maximum likelihood (Schabenberger and Gotway, 2005), which accounts for biases
from limited sample size/large predictor sets. The utilization of a likelihood-based es-
timation procedure is central in our application. Estimating trend coefficients and var-25

iogram parameters jointly means that the procedure implicitly distinguishes between
variations in the observations that are better explained by the predictors and variations
that are better explained by spatial covariance (spatial continuity).
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A complication for adopting KED in the present study is posed by the assumption
of a multivariate Gaussian with constant variance for the stochastic component (the
residuals of the trend). This condition is rarely met with precipitation data, whose distri-
bution is bounded by zero, has positive skewness and shows larger variance in areas
of high compared to low precipitation. Partial remedy of this can be made with a prior5

monotonic transformation of the data, the application of KED in transformed space, and
subsequent back-transformation of the estimated kriging distribution. The procedure,
commonly known as trans-Gaussian kriging (Schabenberger and Gotway, 2005), has
been adopted in all KED experiments of the present study, using the Box–Cox power
transformation (Box and Cox, 1964):10

Y ∗ =

{
Y λ−1
λ λ 6= 0

log(Y ) λ = 0
. (2)

Here we prescribe the transformation parameter at λ = 0.5, which corresponds to
a square root transformation of the data. This choice is motivated by analyses of
Erdin et al. (2012), showing that a formal estimation of λ (by maximum likelihood)15

did not significantly alter the best estimates compared to when it was prescribed at
0.5. (The change was however significant for the kriging uncertainty.) Finally, the back-
transformed results of KED were obtained, in the present study, following a numerical
procedure described in Erdin et al. (2012).

The KED model of Eq. (1) comprises two simplifying special cases that will be consid-20

ered in this study as alternative methods of spatial interpolation. The first is to assume
that Z(s) is a spatially uncorrelated Gaussian field with zero mean and constant vari-
ance. This corresponds to the classical linear regression model (hereafter denoted as
LM) with estimates at location s determined by the linear combination of predictors only.
As with KED we apply the linear regression case with square-root transformed data and25

appropriately back-transformed results. The LM method is used here for comparative
purposes because it is often adopted as an exploratory tool to constitute suitable pre-
dictor sets for KED. It is important, however, to note that the best estimate of the linear
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model µLM(s) is not equal to the deterministic part of KED µKED(s), because the esti-
mates for the parameters βk differ without and with consideration of spatial autocorre-
lation.

The second special case of the KED model Eq. (1) is that when topographic pre-
dictors are omitted, i.e. presuming βk = 0 (k = 1,. . . ,K ), and assuming the spatial vari-5

ations in the observations are purely the result of a second order stationary process.
This is the limit of Ordinary Kriging (denoted OK). As with the other methods, OK is
used here with square-root transformed data. Differences in the performance between
KED and OK describe the value added by topographic predictors. But, again, the best
estimate fields of OK are not equal to the stochastic component of KED because the10

parameter estimates differ.
All computations are done in R using the geostatistics package geoR (Diggle and

Ribeiro, 2007).

3.2 Predictors for the interpolation of long-term mean precipitation

The topographic predictors used in this study are based on the digital elevation model15

(DEM) of the Shuttle Radar Topography Mission (SRTM, Farr et al., 2007). SRTM was
obtained using both C- and X-band microwave radars and has, originally, a resolution
of about 90 m. In this study we use the SRTM elevation model on a 1 km grid of the
Lambert Azimuthal Equal Area Coordinate Reference System (ETRS89-LAEA, Annoni
et al., 2001).20

The three main topographic predictors considered are fields of elevation and gradi-
ents in the two cardinal directions across the ridge (north–south) and along the ridge
(east-west). Several predictors for each of these quantities will be considered, describ-
ing variations in elevation and gradients at different space scales. These were derived
from smoothed versions of the original DEM, after applying a Gaussian kernel with25

window widths of 1, 5, 10, 25 and 75 km, respectively. A predictor set that involves, for
example, elevation and gradients at three space scales, comprises a total of 9 different
predictor fields, 3 for elevation, 3 for the north–south gradient and 3 for the east-west
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gradient. Values of the predictors at the station locations were always taken from the
nearest grid-cell of the predictor fields.

Care was required to avoid co-linearity between predictors when combining several
of them for the various space scales. To this end, predictors for a scale were defined
as the difference between the variable at that scale and the same variable at the next5

larger scale. For example, the 25 km elevation predictor in a set involving the scales
1, 25 and 75 km is obtained by calculating the difference between the 25 km and the
75 km smoothed versions of the DEM.

Apart from analyzing fields of seasonal mean precipitation directly from seasonal
mean station observations, we also investigate the potential of recombining a seasonal10

mean field from several separate spatial analyses for average precipitation within the
classes of a circulation type classification. Precipitation topography relationships may
be more clearly established under conditions of similar large-scale circulation, and this
could assist the derivation of a seasonal mean field through further stratification.

The consideration of circulation types permits the introduction of an additional15

circulation-guided topographic predictor. It is defined as

Gw(s,λ,k) = ∇e(s,λ) ·
V

(k)
g (s)∥∥∥V (k)
g (s)

∥∥∥ (3)

where ∇e(s,λ) denotes the gradient of the topographic elevation (valid for smoothing
scale λ at location s). V (k)

g (s) the geostrophic wind of circulation class k at location20

s. Gw describes the topographic gradient along the direction of the geostrophic wind
and will be denoted as wind-aligned gradient for brevity. As with the topographic gra-
dients along the cardinal directions, Gw is considered to depend on spatial scale. The
geostrophic wind was determined from the sea level pressure composites of the cir-
culation type classification (PCACA9 see Sect. 2), originally given on a 0.5◦ grid, by25

interpolation (Gaussian kernel) onto the 1 km grid of the DEM and subsequent calcu-
lation of the geostrophic wind. Note, that for Gw the smoothing is applied to elevation
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e(s) only because the geostrophic wind field is already smooth as a result of the coarse
resolution of the underlying sea level pressure field and its smooth interpolation to the
DEM grid.

Figure 3 illustrates examples of the wind-aligned gradient Gw obtained for two circula-
tion types of the PCACA9 classification. The marked change of Gw across topographic5

crests (and across valleys) is evident, as well as its distinct spatial distribution between
the two circulation types with their distinct sea level pressure gradient (geostrophic
wind) over the domain.

Consideration of Gw as a candidate predictor is obviously motivated by ideas of up-
slope orographic rainfall enhancement and rain shadowing on the lee of mountains.10

Indeed at the scale of the entire ridge such flow related precipitation anomalies are
clearly evident with the PCACA9 circulation type classification, at least in autumn, win-
ter and spring (see Schiemann and Frei, 2010).

Apart from Gw as defined in Eq. (3) we have also experimented with an alternative
definition that has omitted the normalisation of the geostrophic wind. Such a predictor15

was previously considered in Johansson and Chen (2003) and in Kyriakidis et al. (2001)
for example. However, our experiments showed less explanatory power for precipitation
in our study domain compared to Gw as defined in Eq. (3). In the following, we consider
Gw simply as an alternative to the topographic gradients along the two cardinal axes
and will examine how this replacement (together with the stratification of circulation20

types) affects interpolation quality for seasonal mean precipitation in the domain.

3.3 Interpolation of daily precipitation

Our experiments on the interpolation of daily precipitation are also making use of the
concepts of kriging with external drift and ordinary kriging (Sect. 3.1) as used for the in-
terpolation of seasonal mean precipitation. However, rather than using the topographic25

predictors directly as trend variables, the daily interpolation adopts fields of seasonal
mean or circulation-type mean precipitation as trend variables. Precipitation measure-
ments at short time scales usually exhibit large spatial variations from which systematic

4654

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/4639/2014/hessd-11-4639-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/4639/2014/hessd-11-4639-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 4639–4694, 2014

Spatial analysis of
precipitation in a

high-mountain region

D. Masson and C. Frei

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

topographic effects are difficult to estimate. The solution followed here is to inject this
information via pre-calculated long-term averages. The approach is somewhat related
to the common use of climatological mean fields as reference (e.g. New et al., 2000;
Widmann and Bretherton, 2000), but instead of adopting the reference as scaling fac-
tor, uses it as trend variable in KED.5

Following the main focus of our study on precipitation topography relationships, we
conduct experiments with daily interpolations and shed light on the role of the clima-
tological reference fields. To this end the interpolation errors are compared between
different specifications of the trend variable (see Table 2 for a list of experiments). The
trend settings include (a) a long-term seasonal mean built with topographic predictors10

(experiment KED(KED1e)), (b) the long-term mean of the day’s pertinent circulation
type (experiment KED(KED1e+)), and (c) a representation of the seasonal climatology
that has not used topographic predictors (KED(OK)). Comparison of these settings
with an ordinary kriging based direct interpolation (experiment OK(·)) will clear up the
benefit of using climatological reference fields in daily interpolation.15

Finally, we compare the results obtained in this study using KED over a small cross-
section of the Alps with results obtained from a previously developed deterministic in-
terpolation scheme that was applied for daily precipitation over the entire Alpine ridge
(Isotta et al., 2013). The trans-Alpine method builds on a version of PRISM (Daly et al.,
1994, 2002; Schwarb, 2001) for monthly long-term mean fields and on SYMAP (Frei20

et al., 1998; Shepard, 1984) for the daily relative anomalies from the mean. The exper-
iment will be denoted as SYMAP(PRISM). Results from this method rely on a cross-
validation table previously calculated and provided by Isotta et al. (2013).

3.4 Evaluation

Our comparison and discussion of the various interpolation experiments is based on25

systematic leave-one-out cross-validations, rejecting one-by-one all the stations of the
domain and estimating pertinent interpolations at the location and with the predictors
for that station.
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Two error scores will be used to summarize the performance of the methods. The
first is a measure of the relative bias and corresponds to the ratio of predicted (predi )
over observed obsi precipitation totals, averaged over all (or a subset of n) rain gauges:

Bias =

∑n
i=1 predi∑n
i=1 obsi

. (4)
5

The second score is defined as:

rel.MRTE =

1
n

∑n
i=1

(√
predi −

√
obsi

)2

1
n

∑n
i=1

(√
obs−

√
obsi

)2
. (5)

Here obs is the spatial average of the observations over all (or a subset of n) stations.
The numerator represents a sort of mean squared error, but with square-root trans-10

formed data. The transformation is introduced here to avoid excessive dependence
on large precipitation values and hence to obtain a more balanced sensitivity on er-
rors across the frequency distribution. The denominator is then representing some sort
of spatial variance of the transformed values and this is used as a reference against
which errors of the prediction are measured. Values of rel.MRTE are always greater15

than zero. Values smaller than 1 mean that typical errors are smaller than the spatial
variations. Values larger than one mean that the prediction has larger errors compared
to a simple prediction of the spatial mean and this can be considered a non-skillful
prediction.

Depending on the data stratification and interpolation method, between 317 and 42020

stations are available for estimation and interpolation. To ensure maximum compara-
bility of the evaluation results, however, we use a fixed set of 317 stations to calculate
the above error scores.
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4 Results

4.1 Interpolation of mean precipitation

Linear regression is often considered an exploratory framework with which potential
predictors for a trend model of KED can be compared. We therefore develop our dis-
cussion starting with results from the special case when spatial autocorrelation is ne-5

glected and then pursue the changes when introducing autocorrelation in combination
with topographic predictors.

The number of possible regression models with three variables (elevation, north-
south gradient, east-west gradient) and six different spatial scales is very large. We
have selected three of them for our discussion because of their illustrative purposes.10

The simplest (LM1e, see Table 1) has only elevation at the finest spatial scale (1 km) as
predictor. It is a traditional and wide spread model of topography effects on precipitation
(see Sect. 1). The second (LM3e, see Table 1) involves also elevation only, but at three
different space scales (75, 25, 1 km). The third model (LM9eg, see Table 1) involves el-
evation and gradients (in both cardinal directions), again at the three space scales (75,15

25, 1 km). Experiments with all five space scales (including also 5 and 10 km) showed
that the three selected scales led to the largest values in adjusted R2. There were slight
variations in the “optimal” model choice between seasons but the prescription of the
three scales did not significantly lower the explanatory power. Note that a formal and
automated model selection procedure (using step-wise linear regression) was not fea-20

sible in our application, because the predictors for one scale depend on those retained
for other scales (elimination of co-linearity, see Sect. 3b).

Table 3 lists values of adjusted R2 for the three selected regression models. The
overall pattern is very similar between the seasons. Topography at the finest scale only
(LM1e) explains a very low proportion of the spatial variance in the observations. This is25

not too surprising, considering that the distribution of mean precipitation is mainly char-
acterized by anomalous wet conditions along the northern foothills and dryer conditions
in the high-elevation interior of the ridge (see e.g. Fig. 2a, results for other seasons are
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not much different). Local elevation does, obviously, not explain this larger-scale pattern
well. The situation improves when involving elevation at three space scales (1, 25 and
75 km): LM3e explains a considerable portion the precipitation variability across the
domain. Finally, the largest explained variance is obtained when topographic gradient
fields are included (LM9eg). Now, the predictor set involves a large-scale pattern (the5

north-south gradient at the coarsest scale) that distinguishes between flatland, foothills
and inner Alps, i.e. the major large-scale contrasts in the precipitation field that was
a major obstacle for the previous two models. Interestingly, the coefficient (and statis-
tical significance) of the 1 km elevation predictor is much larger in this comprehensive
model than in the simple model LM1e. This suggests that there is some dependence10

on local elevation in the distribution, but this was difficult to represent in the elevation-
only models because it is superimposed by a larger-scale north-south profile that is,
itself, poorly explained by elevation.

Despite its decent values in explained variance, the 9-predictor model LM9eg shows
elementary deficiencies in reproducing the distribution of rain-gauge measurements in15

the domain. These are illustrated for the example of DJF mean precipitation in Fig. 4a.
Precipitation is systematically overestimated over a wide flatland belt adjacent to the
ridge (see e.g. full red square), underestimated along the foothills and, again, over-
estimated in interior parts of the ridge (see e.g. dashed red square). Apparently, the
larger-scale topographic predictors provide, in linear combination, only a partial match20

to the observed north-south profile and the resulting prediction tends to smooth out
some of the variations. Similar types of deficiencies (although differing in exact loca-
tion) were evident with other combinations or the full set of space scales, and for the
other seasons. There was always clear spatial clustering in the prediction errors (re-
gression residuals). It seems that, even with quite comprehensive predictor sets, it is25

difficult to capture in a regression model all aspects of the precipitation field resolved
by the station network. Surprisingly, this is even the case with the comparatively simple
north-south profile of this study, for which the construction of a suitable predictor set
may have looked easy at first.
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Ordinary kriging (OK) seeks to represent the precipitation distribution entirely without
topographic predictors. The corresponding estimation (Fig. 4b) has a smooth appear-
ance but reproduces the characteristic north-south contrasts between flatland, foothills
and inner Alps. Hence, OK amends some of the regional deficiencies of the linear re-
gression model of Fig. 4a (see red squares). However, in the inner Alpine region, sev-5

eral rain-gauges with anomalously wet conditions (mostly at mountain peak stations)
are represented as isolated spots. It appears as if some elevation dependency that is
not explicitly resolved by the station network is missed out because of the absence of
predictors in OK.

Figure 4c depicts the result obtained with KED, i.e. integrating predictors and spatial10

autocorrelation, using the comprehensive three-scale elevation and gradients model as
trend (KED9eg). The distribution shows the superposition of a spatially smooth pattern
(similar to OK, Fig. 4b) and a small-scale pattern with topographic features that are
not explicitly resolved by the station network (similar to LM9eg). The consideration
of spatial autocorrelation has amended for the deficiencies of LM9eg in representing15

the larger-scale north-south profile (e.g. red squares). Moreover, the strong contrasts
between mountain stations (moist) and valley stations (dry) in the interior Alps are now
integrated via an elevation (and gradient) dependence at small scales.

It is interesting to realize that the three just discussed interpolation methods yield
markedly different estimates, not just regionally, but also when aggregated over larger20

scales. This is further illustrated in Fig. 5, which depicts the results of Fig. 4 when
averaged over latitude bands (along the ridge). OK and KED9eg both represent a moist
anomaly at the foothills, centered at an elevation of about 1200 mMSL. This anomaly
is much less pronounced and more wide-spread in LM9eg. Towards the inner Alpine
region the three methods yield markedly different areal estimates with OK being much25

dryer than the regression model and KED. OK and KED differ by between 5–25 % in
this area. In the inner Alpine region, it is not entirely clear, at this point, which of the
methods are more realistic. Clearly, there is a risk of general underestimates by OK
due to the missing out of topography dependence in conjunction with poor sampling of
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high-elevation areas. But there is also a risk that KED suffers from overestimates, if, for
example, the elevation dependence estimated over the full domain is not representative
for the inner Alps.

In the following we assess the relative performance of a range of interpolation mod-
els from the above three categories by means of a systematic leave-one-out cross-5

validation. Results are depicted for DJF mean precipitation in Fig. 6. The two panels
are for Bias (panel a, ratio) and for rel.MRTE (panel b, dimensionless, see Sect. 3.4 for
the definition of the scores). To better visualize the effects of the various interpolation
schemes, both error scores are calculated separately for the stations within four eleva-
tion ranges. Here, we discuss the results more extensively for the case of DJF mean10

precipitation, but very similar results – and similar interpretations – were found for the
other seasons. This is supported by Tables 4 and 5, which list a summary of the error
scores for all seasons.

When averaged over all stations the values of bias are small, varying between 0.97–
0.995 depending on method (Fig. 6a, dashed lines). The largest underestimate (three15

percent) is obtained for LM1e (the linear model with local elevation as single predic-
tor). More significant biases are, however, found in individual elevation ranges. This is
particularly so for the linear regression model LM1e and for ordinary kriging OK. The
lack of topographic predictors in OK impinges upon the interpolation at high elevation.
Here OK systematically underestimates by about 30 %. This deficiency is mostly cor-20

rected with interpolation models that incorporate topographic predictors (LM9eg and
KED9eg). The explicit modeling of topography allows for a compensation of the effects
of non-representative vertical distribution of the station sample. In the framework of
KED, this remedy is almost as good with only one predictor (KED1e) as with many
predictors (KED9eg). In the linear model framework, however, in-situ elevation alone25

provides a poor model of the spatial distribution (see also Table 3), and this reflects
in large and alternating biases between the elevation ranges. An interpretation of this
difference may be seen in the fact that the estimated coefficient for the 1 km elevation
predictor is quite different between LM1e and KED1e. It seems that the consideration
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of spatial autocorrelation in KED1e permitted for a much more realistic separation be-
tween small-scale elevation dependence (modelled by the predictor) and larger-scale
precipitation variations (modelled by the autocorrelation part). In contrast, LM1e at-
tempts to capture larger-scale and small-scale variations with one single linear depen-
dence by construction. It is then likely that larger-scale variations (such as the north-5

south profile) disturb a realistic estimate of the small-scale elevation dependence.
The limited accuracy of linear regression models in predicting the spatial variations

of seasonal mean precipitation is most evident in the relative error score rel.MRTE
(Fig. 6b, Table 5). Values are close to the critical value of 1, where prediction errors are
comparable to the magnitude of spatial variations (see Sect. 3.4). There is improvement10

when including more predictors (e.g. LM9eg vs. LM1e), but considerable errors remain
even with comprehensive predictor sets. This reflects results previously seen in Fig. 4a.
Note, that the inclusion of the gradient at the 75 km scale (the largest considered)
yields the smallest errors. Obviously, this predictor is essential for a regression model
to capture the characteristic north-south profile.15

The OK model (no topographic predictors) has much smaller errors than the regres-
sion models, except for the highest elevation range (Fig. 6b). OK profits from its explicit
account for spatial autocorrelation, which permits the reproduction of larger-scale vari-
ations (e.g. the north-south profile) from the information at neighboring stations (see
also Fig. 4b). In our application, this methodological feature yields considerably smaller20

errors than a comprehensive predictor set in a regression model, at least for low and
intermediate elevation ranges. At large elevations, however, the OK model suffers large
rel.MRTE values (close to 1), which reflects the large bias there (see also Fig. 6a) and
the poor reproduction of wet conditions at inner-Alpine mountain stations (see also
Fig. 4b).25

The family of KED models, which include both topographic predictors and spatial
autocorrelation, yield the smallest interpolation errors of all models (rel.MRTE scores,
Fig. 6b, Table 5). In comparison to OK the improvement is modest in the lower elevation
classes, but substantial at higher elevation. The inclusion of topographic predictors
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seems to be central for reducing the caveats of OK in the inner-Alpine region (biases
and over-smoothing of small-scale variations, see also Fig. 4). But the KED models
also yield markedly smaller errors (at all elevations) compared to using the predictors
in a linear regression.

Between the different KED models (with different predictor sets) there are only5

marginal differences in the scores (Fig. 6b, Table 5). Values of rel.MRTE are roughly
the same for the model with only one predictor (elevation at the 1 km scale, KED1e)
and models with elaborate predictor sets (e.g. KED3e, KED9eg). At first sight this is
surprising, given that the scores for linear regression models showed to be sensitive to
the predictor sets. Our explanation of this result is that the role of topographic predictors10

is distinct between linear models and KED. Linear models are in need of geographic
predictors to capture the full distribution. The 25 and 75 km predictors are therefore
highly relevant. In KED, however, the part of the distribution that is well resolved by
the station network can be represented by the spatial autocorrelation component (krig-
ing) and topographic predictors are primarily used to describe smaller-scale variations15

not explicitly resolved by the station network. Here the 25 and 75 km predictors may
be virtually unnecessary. The distinct role of topographic predictors in the two model
families also reflects in differences in the statistical significance and quantitative values
of the predictor coefficients (βk , see Eq. 1). In all the KED models, the 1 km elevation
predictor is by far the most statistically significant, whereas in the linear models other20

predictors (notably the 75 km topography gradient) are occasionally more significant.
Experiment KED9eg (10, 5, 1 km) involves predictors at spatial scales all smaller

than the station spacing. Still there seems to be little added value compared to the
model with the 1 km elevation predictor only (KED1e, see Fig. 6b and Table 5). It is
unclear if this result implies that the additional predictors (5 and 10 km elevations and25

gradients) are, indeed, not very relevant (on top of the 1 km elevation) for describing
small-scale precipitation variations in the Alps. There may be insufficient sampling of
these predictors in the station sample, considering that most of the inner-Alpine stations
are in valleys or on mountain tops.
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Note that rel.MRTE shows a general U-shape for the more skillful interpolation mod-
els (Fig. 6b), implying that relative errors are larger (smaller) at low and high (interme-
diate) elevations. This pattern is also related to the definition of the score, which uses
spatial variance within the elevation classes as a reference (see denominator in Eq. 3).
Larger values of rel.MRTE at low elevations are primarily because of the small variance5

in precipitation measurements over the flatland. In fact the numerator of rel.MRTE in-
creases monotonically with elevation.

4.2 Stratification by circulation types

In this section we examine the potential of considering circulation types for the deriva-
tion of interpolated mean seasonal precipitation fields. Two extensions will be consid-10

ered. The first deals with a sub-stratification of the season. For this purpose, several
KED interpolation models are adopted for each class of the circulation classification,
separately. The resulting fields of mean precipitation for each class are subsequently
re-combined into a seasonal mean field by weighting according to the classes’ fre-
quency. Experiments adopting this sub-stratification are labeled with a “+” sign (see15

Table 1). The second extension deals with the circulation-dependent predictor Gw as
outlined in Sect. 3.2. The wind-aligned gradient is considered here as an alternative for
the gradients in the two cardinal directions. The experiment involving this topographic
predictor is labeled with the letter “v” (KED6ev+, see Table 1). KED6ev+ uses three
different components of the Gw field, corresponding to three space scales (1, 25 and20

75 km). These were derived by the smoothing procedure and removal of co-linearities,
just as with the previous predictor fields (see Sect. 3b). Our results were derived with
the 9-class PCACA9 classification as described in Sect. 2.

Cross-validation results with these experiments are depicted in Fig. 7, again for Bias
and rel.MRTE, using the same format as in Fig. 6. Note that these are scores for25

a mean seasonal (here DJF) precipitation field, not a field for the mean of a circulation
class. Hence the scores include errors from the re-combination over the classes. Re-
sults using circulation classification input are compared against a direct interpolation
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of seasonal means using the previously adopted model KED9eg. Results of the two
scores for other seasons are listed in Tables 6 and 7.

With all tested interpolation methods, the biases are smaller than 2 % (5 %) below
(above) 1000 mMSL (Fig. 7a). The interpolation with circulation classes (KED1e+,
KED6ev+, KED9eg+) exhibits a slightly different bias pattern compared to that of sea-5

sonal the means directly (KED9eg), with a smaller underestimation at elevations be-
tween 1500–3500 m and a larger overestimation between 1000–1500 m. But these dif-
ferences (and the bias values themselves) are small, much smaller than typical random
errors, and there is not much meaning in using them for a relative assessment of the
methods. The conclusion is that stratification by circulation class and usage of a wind-10

aligned gradient Gw do not significantly change the bias pattern of the interpolation
methods.

Comparison of the different methods in terms of rel.MRTE (Fig. 7b) reveals that all
interpolation methods have a very similar error pattern. Neither the stratification by cir-
culation class alone (with conventional predictors, KED1e+ and KED9eg+), nor the15

consideration of a wind-aligned gradient (KED6ev+) can significantly improve over the
interpolation of mean seasonal values (KED9eg). The overall scores (dashed lines) are
slightly better for the stratification methods with gradient (KED9eg+) and wind-aligned
gradient (KED6ev+) predictors (see also Table 7), but the direct seasonal method
(KED9eg) is superior at three of the four elevation classes.20

We have tested several alternative definitions of a circulation dependent predictor,
deviating from that in Eq. (3). These included the introduction of an asymmetry between
upslope and downslope gradients, truncating the Gw field to only measure upslope gra-
dients, including the wind speed (i.e. discarding the denominator in Eq. 3), and a simple
model for an ageostrophic wind component. None of these alternative definitions led to25

significantly different results.
There are several possible reasons why circulation class information did not improve

interpolation accuracy in our application: the region may be geographically too simple
or too small to reveal the benefits of a predictor that builds on spatially variable wind
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directions. The large-scale wind field (derived from a coarse resolution sea level pres-
sure field) may be of limited representativity for the true air flow in such a complex
topography. The variability of airflows within a circulation class may be large, so that
systematic topographic effects are not necessarily manifest at the small space scales
addressed by the Gw predictor. The station sample may not sample the Gw predictor5

field adequately. And, finally, there may be larger sampling errors involved, because of
the omission of stations from circulation-type composits (see Sect. 2).

4.3 Interpolation of daily precipitation

In this section we compare and evaluate several options for extending the KED inter-
polation framework for daily precipitation. The main purpose of this comparison is to10

investigate how sensitive the accuracy of a daily interpolation scheme is to various
options of integrating small-scale topography-related information. Alongside, we also
compare the KED-based daily models with results from a previously implemented de-
terministic daily interpolation scheme, that was calibrated over a much larger area (the
entire Alpine region) and was used for a popular dataset of trans-Alpine daily precipi-15

tation (Isotta et al., 2013).
Table 2 lists the interpolation models compared here and Fig. 8 depicts results from

some of these models for a day with widespread and intense precipitation in the study
domain. All KED models considered adopt the stochastic concept of Eq. (1) but with
one of the previously determined climatological mean fields as trend, rather than with20

the topographic predictors themselves. The trend field for KED(KED1e) is the mean
seasonal field KED1e that was derived with the 1 km elevation predictor. Recall, that
this version of the mean seasonal distribution showed cross-validation skills compara-
ble to other versions with comprehensive predictor sets (Fig. 6). The precipitation for
the example day (Fig. 8a) shows small-scale patterns along the foothills and in the in-25

terior of the ridge that reflect patterns of the trend field. For KED(KED1e+) the trend
field is the mean precipitation for class 9 of the PCACA9 circulation classification. (The
example day belongs to this class.) Again, the distribution for the example day (Fig. 8b)
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bares small-scale variations reflecting the trend field. There are only small differences
to the result for KED(KED1e) (Fig. 8a), because the small-scale pattern (not the mag-
nitude) is very similar between the mean over the class and the mean over the season.
Our consideration of KED(KED1e+) in the subsequent evaluation will answer whether
the sub-stratification by circulation classes can improve interpolation accuracy. As a ref-5

erence we also consider the models KED(OK) and OK(·) which use, respectively, the
OK-based seasonal climatology (Fig. 4b) as trend or a simple ordinary kriging of the
(transformed) daily values (i.e. no trend). The distributions for the example day are very
similar and, compared to the other models much smoother in appearance (see Fig. 8c).

Figure 8d depicts daily precipitation for the example day derived by the Alpine-wide10

SYMAP(PRISM) interpolation. This procedure uses, as background, a seasonal cli-
matology derived from a local regression approach (PRISM, Daly et al., 1994, 2002;
Schwarb, 2000). The result depicted comes from a 5 km grid interpolation (Isotta et al.,
2013), hence, is coarser the results for the other models (1 km grid). It shows more vari-
able and larger peak values than the other models. In contrast to the KED models with15

elevation as predictor, PRISM estimates precipitation height gradients locally (consid-
ering the representativity of surrounding stations) and this results in more pronounced
small-scale variations.

The daily interpolation methods have been quantitatively evaluated using cross-
validation over all winter days of 1971–2008 (3400 days). For computational reasons,20

the cross-validation of the models was only calculated for the daily interpolation step,
i.e. with the seasonal background field estimated from all the data, including the test
station. Clearly, the daily interpolation step contributes the largest error component, but
the errors calculated this simplified way should be considered as a lower bound of the
true errors.25

Figure 9 depicts the bias and relative mean root transformed error for daily interpo-
lation in winter (DJF) using the same display format as with Figs. 6 and 7. Note that
rel.MRTE values for daily interpolation are much smaller than for the climatological
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case, because the space-time variance in the observations (denominator in Eq. 3) is
much larger.

The bias of the daily interpolation (Fig. 9a) reveals similar features like in the cli-
matic case. Methods without consideration of topographic predictors in the climatolog-
ical background field (OK(·) and KED(OK)) are prone to considerable underestimates5

at high elevations. The inclusion of topographic predictors in the climatology reduces
this bias a lot (KED(KED1e) and KED(KED1e+)). The results differ only slightly be-
tween a seasonal and a circulation-class climatology as trend, the latter being slightly
better. The SYMAP(PRISM) system is largely unbiased, except at the highest eleva-
tion class, where it underestimates by about 10 %. Our results confirm that the use of10

a high-resolution climatology as a background, a widely used concept for the interpola-
tion of daily precipitation (e.g. Haylock et al., 2008; Rauthe et al., 2013; Widmann and
Bretherton, 2000), indeed contribute to reducing biases over complex terrain.

The relative ranking of methods in terms of rel.MRTE (Fig. 9b) is similar in all el-
evation classes, but the differences are largest at high elevations. The KED models15

that employ a climatology with topographic predictors score best (KED(KED1e) and
KED(KED1e+)). There is no clear preference between the methods using a seasonal
mean or a circulation-class mean as trend. Obviously, the categorical information on
large-scale circulation did not improve daily interpolation. This may seem surprising
considering that the classification utilized (PCACA9) distinguishes Alpine precipitation20

distributions better than others (Schiemann and Frei, 2010). A likely reason for this is
that the circulation responses of precipitation in the study region are more clearly es-
tablished at larger scales, but less so at scales below the station spacing which matter
most for spatial interpolation.

The KED(KED1e) and KED(KED1e+) methods exhibit clearly better bias and25

rel.MRTE scores than the Alpine-wide SYMAP(PRISM) interpolation in the highest
elevation class (Fig. 9). Several reasons may contribute to these differences: firstly,
the distance-angular weighting scheme of SYMAP uses prescribed weighting func-
tions, whereas the weighting in KED is optimized and flexibly estimated day-by-day
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(semi-variogram). Secondly, the local estimation of precipitation topography relation-
ships in PRISM may be more prone to sampling errors (small local station sample)
than the trend coefficients in KED1e/KED1e+. (See also the large small-scale varia-
tions in the example of Fig. 8d.) Finally, KED allows for a multiplicative adjustment of
the background field and, hence, is more flexible to “adjust” the background field to5

the concrete distribution of a day. In this comparison one should, however, take into
account that SYMAP(PRISM) was designed and calibrated for a much larger area. The
KED approach as used here for a subregion of the Alps might become inappropriate
for the climatological diversity of the entire ridge given its assumption on stationarity in
trend and variogram parameters (see e.g. Phillips et al., 1992).10

5 Conclusion

Modeling the relationship between precipitation and topography is essential for the
construction of accurate precipitation grid datasets by statistical interpolation. Here,
we have investigated several extensions of the classical precipitation height model,
including predictors of slope in addition to elevation, a multi-scale decomposition of15

the predictors, a circulation-type dependence of the relationship and the inclusion of
a wind-aligned gradient predictor. Variants of these extensions have been proposed
previously but their effect on interpolation accuracy was not systematically evaluated
and mutually compared so far. Station measurements in our study region (a cross-
section of the European Alps) show imprints of slope effects and coarser scale topog-20

raphy in the distribution of mean seasonal precipitation. Intuitively one would therefore
expect that the considered extensions could improve interpolation accuracy.

Our experiments illustrate that the benefit from complex predictor sets (elevation
and slope, multiple scales) in the interpolation of seasonal mean precipitation depends
strongly on the statistical modeling framework. In a linear regression framework there25

is a clear benefit in the sense that cross-validation errors (random and systematic)
are reduced with more predictors included. However, even with nine predictors, the

4668

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/4639/2014/hessd-11-4639-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/4639/2014/hessd-11-4639-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 4639–4694, 2014

Spatial analysis of
precipitation in a

high-mountain region

D. Masson and C. Frei

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

resulting interpolation is unsatisfactory. It poorly replicates the characteristic changes
from the flatland over the foothills to the inner section of the ridge as revealed by the
station measurements. Linear regression would require many more predictors for a de-
cent reproduction of this pattern because all spatial variations need to be modeled with
predictors.5

For kriging with external drift (KED, predictors with spatially correlated residuals),
however, the role of a complex predictor set was found to be much smaller. Local
elevation (a 1 km digital elevation model) was found to be essential for reducing the
systematic underestimates and large random errors observed at high elevations with
ordinary kriging (OK, no predictors). In fact, the simple one-predictor KED model was10

substantially better than the linear regression model with nine predictors. But the in-
clusion of more complex physiographic predictor sets in KED did bring only marginal
additional improvement. Neither topographic slopes nor a wind-aligned gradient could
effectively reduce the cross-validation errors. Interpolation results with comprehensive
multi-scale predictor sets in KED were very similar to those of the one-predictor model,15

and also the inclusion of circulation-type dependence had only small effects. It seems
that a large portion of the spatial precipitation variation in our study region is captured
by a model of spatial autocorrelation directly from the measurements (kriging), and that
a simple digital elevation model was sufficient (but essential) to correct for interpolation
errors emanating from the non-representative vertical distribution of stations.20

Linear regression is often considered an exploratory framework in spatial interpola-
tion to identify potential predictors for a trend model of KED. This practice is somewhat
questioned by the results of our study. We find a strong contrast in sensitivity to predic-
tor choice between the two methods. Linear regression tends to suggest larger predic-
tor sets than are actually necessary in KED. Our results with KED were not measurably25

degraded by the inclusion of non-informative predictors. But this resistance is depen-
dent on the estimation procedure. Our approach of estimating the trend coefficients and
variogram parameters jointly by maximum likelihood permits the estimation process to
distinguish between predictor dependence and spatial autocorrelation implicitly (Diggle
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and Ribeiro, 2007). This distinction is more restricted in an alternative estimation pro-
cedure, often referred to as residual kriging or detrended kriging (Martínez-Cob, 1996;
Phillips et al., 1992; Prudhomme and Reed, 1999) where predictor coefficients and var-
iogram parameters are estimated in disjoint steps (regression followed by simple krig-
ing of residuals). This will make the method more prone to errors in predictor choice.5

Regression kriging, yet another estimation procedure (Hengl et al., 2007; Pebesma,
2004; Tadić Perčec, 2010) uses an iterative procedure and should be similarly robust
to predictor choice like the likelihood-based estimation used in our study.

Our experiments for daily precipitation illustrate that the utilization of a climatological
background field (seasonal climatology) reduces interpolation errors significantly, par-10

ticularly systematic errors at high elevations in comparison to direct interpolation. The
large spatial variability of daily precipitation complicates robust estimation of system-
atic topographic responses directly from the daily data, but a climatological background
field can pick up some of these patterns, which translates into smaller interpolation
errors. This result supports a practice widely used in the construction of short-term15

precipitation grid datasets, but rarely verified so far (Harris et al., 2013; Haylock et al.,
2008; Isotta et al., 2013; Rauthe et al., 2013). Clearly, the topographic effects evident
in mean precipitation are not necessarily representative for all weather conditions. Our
results, however, suggest that estimating these effects separately for typical circulation
types does not significantly improve the performance compared to that with a seasonal20

background. This result may depend on the region considered and the circulation-type
classification chosen. At least, the classification we have experimented with here was
previously shown to explain precipitation variations in the Alps better than other com-
mon classification schemes (Schiemann and Frei, 2010).

The daily KED interpolation method using a seasonal mean climatology as back-25

ground has turned out to perform better in the Alpine cross-section compared to the
method used for a grid dataset over the entire Alpine region (Isotta et al., 2013). This
may hint to ways of methodological improvement, but it is premature to value the two
methods with regard to their suitability over the entire Alpine region. On the one hand,
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the existing method makes compromises in order to meet very diverse conditions in cli-
mate and station density. On the other hand, extending the KED approach over the en-
tire region raises questions about the representativity of “globally” estimated trend co-
efficients and variogram parameters. Moreover, on a practical side, the KED approach
may become computationally very demanding with several thousands of stations.5

The results of our study are likely dependent on the setting of our study region,
such as the density of the station network, the complexity of the topography and the
diversity of weather patterns. In other regions where the station network is coarser
and, hence, the nearest observations are less informative, extended predictor sets may
become more relevant. Nevertheless, our results call for prudence in expectations into10

seemingly versatile topographic predictors for filling the information between in-situ
measurements. Clearly, sensitivity experiments like those conducted can help to make
a parsimonious choice and to ensure robustness of the final interpolation method.
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Table 1. Interpolation experiments conducted for long-term seasonal mean precipitation. Inter-
polation method, predictors used and the total number of predictors included.

Acronym Interpolation method Predictors Number of predictors

LM1e Multi-linear regression. Topographic pre-
dictors only.
Spatial autocorrelation neglected.

Elevation only 1

LM3e 3– Elevation (“e”) at 3 spatial scales (75 km, 25 km,
1 km).

LM9eg 9– Elevation (“e”) at 3 spatial scales.

– Topographic gradient (“g”) at 3 spatial scales.

– Two sets of scales:

(i) 75 km,25 km,1 km.

(ii) 10 km, 5 km, 1 km.

OK Ordinary kriging (OK). Spatial autocorre-
lation only, no topographic predictors.

– 0

KED1e Kriging with external drift (KED). Topo-
graphic predictors and spatial autocorre-
lation. Stratification by season.

Elevation (“e”) only 1

KED3e 3– Elevation (“e”) at 3 spatial scales (75 km, 25 km,
1 km).

KED9eg 9– Elevation (“e”) at 3 spatial scales.

– Topographic gradient (“g”) at 3 spatial scales.

– Two sets of scales:

(i) 75 km,25 km,1 km.

(ii) 10 km, 5 km, 1 km.

KED1e+ Kriging with external drift (KED).
Season stratified by circulation types
(“+”).

Elevation (“e”) only 1

KED6ev+ 6– Elevation (“e”) at 3 spatial scales.

– Wind-aligned topographic gradient (“v”) at 3 spatial
scales.

– Set of spatial scales: 75 km,25 km,1 km.

KED9eg+ 9– Elevation (“e”) at 3 spatial scales.

– Topographic gradient (“g”) at 3 spatial scales.

– Set of spatial scales: 75 km, 25 km, 1 km.
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Table 2. Interpolation experiments conducted for daily precipitation. The name of a scheme is
a combination of the name of the daily scheme and the background field used.

Acronym Interpolation method Background field

OK(·) Ordinary kriging (OK) of daily precipita-
tion (square root transformed)

none

KED(KED1e) Kriging with external drift (KED) KED1e, long-term seasonal mean de-
rived with elevation (1 km) as predictor

KED(KED1e+) KED KED1e+, long-term seasonal mean over
days of circulation type, derived with ele-
vation (1 km) as predictor

SYMAP(PRISM) SYMAP PRISM, long-term seasonal mean de-
rived with PRISM

KED(OK) KED OK (long-term seasonal mean derived
with OK, no topographic predictors)
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Table 3. Adjusted R2 for three linear models (see Table 1) and for each season.

LM1e LM3e LM9eg

DJF 0.01 0.42 0.59
MAM 0.05 0.52 0.66
JJA 0.1 0.51 0.73
SON 0.1 0.44 0.57
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Table 4. Relative bias calculated over all stations for different seasons using different interpo-
lation models (see Table 1 for model acronyms).

Winter Spring Summer Fall

LM1e 0.971 0.993 1.000 1.000
LM9eg (10, 5, 1 km) 0.981 0.997 1.004 1.003
LM3e (75, 25, 1 km) 0.976 0.996 1.002 1.002
LM9e (75, 25, 1 km) 0.979 0.997 1.003 1.001
OK 0.995 1.004 1.007 1.007
KED1e 0.989 1.002 1.006 1.005
KED9eg (10, 5, 1 km) 0.990 1.003 1.008 1.006
KED3e (75, 25, 1 km) 0.989 1.002 1.006 1.005
KED9e (75, 25, 1 km) 0.989 1.002 1.006 1.005
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Table 5. Rel.MRTE calculated over all stations for different seasons using different interpolation
models (see Table 1 for model acronyms).

Winter Spring Summer Fall

LM1e 1 0.972 0.931 0.929
LM9eg (10, 5, 1 km) 0.749 0.717 0.641 0.787
LM3e (75, 25, 1 km) 0.571 0.482 0.475 0.570
LM9e (75, 25, 1 km) 0.438 0.366 0.278 0.452
OK 0.217 0.237 0.104 0.173
KED1e 0.114 0.111 0.066 0.099
KED9eg (10, 5, 1 km) 0.109 0.105 0.062 0.098
KED3e (75, 25, 1 km) 0.114 0.111 0.066 0.099
KED9e (75, 25, 1 km) 0.109 0.101 0.063 0.095
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Table 6. Relative bias calculated over all stations for different seasons using different interpo-
lation models (see Table 1 for model acronyms).

Winter Spring Summer Fall

KED1e+ 1 0.998 1.005 1
KED6ev+ 1 0.999 1.005 1
KED9eg+ 1 0.999 1.005 1
KED9eg 0.989 1.002 1.006 1.005
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Table 7. Rel.MRTE calculated over all stations for different seasons using different interpolation
models (see Table 1 for model acronyms).

Winter Spring Summer Fall

KED1e+ 0.113 0.104 0.062 0.092
KED6ev+ 0.105 0.095 0.061 0.089
KED9eg+ 0.106 0.095 0.059 0.090
KED9eg 0.109 0.101 0.063 0.096
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Fig. 1. Map of long-term mean winter precipitation (mmday−1) over the Alpine domain at station
locations (dots) for the period 1971–2008. The grey contour lines indicate the Alpine relief
(400 m levels) and the red frame delimits the region in which the interpolation methods are
tested.
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Fig. 2. (a) Map of the study domain, a section of the Alpine ridge (see also Fig. 1). The topogra-
phy is indicated by grey-shaded contour lines (spacing 250 m). The station network is indicated
by colored circles, representing long-term mean winter (DJF) precipitation in mmday−1. The
thick black line represents the national borders between Germany (top), Austria (middle) and
Italy (bottom). (b) Barplot of the distribution with height (x axis, mMSL) of the number of stations
(grey, left y axis) and the number of grid-points in a 1 km DEM (red, right y axis).
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Fig. 3. Illustration of Gw, the wind-aligned gradient, for two classes of the PCACA9 circulation
type classification: (a) North-Easterly flow in the summer, and (b) South-Westerly flow in the
autumn. The example fields are valid for a smoothing scale of 5 km. The topography is depicted
in grey lines (spacing 250 m) and the streamlines of the geostrophic wind are shown by the blue
curves.
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Fig. 4. Distribution of DJF long-term mean precipitation (mmday−1) as estimated by (a) a multi-
linear regression using as predictors elevation and gradients at three spatial scales (75, 25 and
1 km, LM9eg), (b) ordinary kriging (OK, no topographic predictors), (c) kriging with external
drift using the same predictors an in (a). Color-filled circles represent observations at rain-
gauge stations. Red squares denote areas mentioned in the text. The topography is depicted
in orange lines (spacing 500 m).
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OK, KED9eg (see Table 1). DJF long-term mean precipitation (lower x axis, mmday−1) as
a function of latitude (y axis, degrees North). The dashed line indicates the height profile (upper
x axis, m) as function of the latitude.
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Fig. 8. Daily precipitation total (mm) for 13 February 1990, as derived by the daily interpo-
lation methods investigated in this study. (a) KED(KED1e), (b) KED(KED1e+), (c) KED(OK),
(d) SYMAP(PRISM), see Table 2 for a description of the method acronyms. The fields for (a)–
(c) were produced on a 1 km grid, that of (d) on a 5 km grid.
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Fig. 9. Error statistics for the interpolation of daily precipitation in winter (DJF, 1971–2008) using
the interpolation models of Table 2 (see also Sect. 3). Relative bias (dimensionless, Eq. 4,
panel a) and relative mean root-transformed error (dimensionless, Eq. 5, panel b, log-scale)
of a leave-one-out cross-validation. Results are shown for four elevation classes. Horizontal
dashed lines represent the scores over all stations. The vertical bars represent the number of
stations per elevation class (right axes).
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