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ABSTRACT 14 

Statistical models of the relationship between precipitation and topography are key elements for the 15 

spatial interpolation of rain-gauge measurements in high-mountain regions. This study investigates 16 

several extensions of the classical precipitation-height model in a direct comparison and within two 17 

popular interpolation frameworks, namely linear regression and kriging with external drift. The 18 

models studied include predictors of topographic height and slope, eventually at several spatial 19 

scales, a stratification by types of a circulation classification, and a predictor for wind-aligned 20 

topographic gradients. The benefit of the modeling components is investigated for the interpolation 21 

of seasonal mean and daily precipitation using leave-one-out crossvalidation. The study domain is a 22 

north-south cross-section of the European Alps (154 × 187 𝑘𝑚2), which disposes of dense rain-23 

gauge measurements (approx. 440 stations, 1971-2008).  24 

The significance of the topographic predictors was found to strongly depend on the interpolation 25 

framework. In linear regression, predictors of slope and at multiple scales reduce interpolation errors 26 

substantially. But with as many as nine predictors the resulting interpolation still poorly replicates 27 

the across-ridge variation of climatological mean precipitation. Kriging with external drift (KED) leads 28 

to much smaller interpolation errors than linear regression. But this is achieved with a single 29 

predictor (local topographic height) already, whereas the incorporation of more extended predictor 30 

sets brings only marginal further improvement. Furthermore, the stratification by circulation types 31 

and the wind-aligned gradient predictor do not improve over the single predictor KED model. As for 32 

daily precipitation, the interpolation accuracy improves considerably with KED and the use of a single 33 

predictor field (the distribution of seasonal mean precipitation) as compared to ordinary kriging (i.e. 34 

without predictor at all). But, again, information from circulation types did not improve interpolation 35 

accuracy.  36 



Our results confirm that the consideration of topography effects is important for spatial interpolation 37 

of precipitation in high-mountain regions. But a single predictor may be sufficient and taking 38 

appropriate account of the spatial autocorrelation (by kriging) can be more effective than the 39 

development of elaborate predictor sets within a regression model. Our results also question a 40 

popular practice of using linear regression for predictor selection in spatial interpolation. But they 41 

support the common practice of using a climatological mean field as a background in the 42 

interpolation of daily precipitation. 43 

  44 



1. INTRODUCTION 45 

High-mountain ranges contribute to the supply and storage of freshwater and river flow in many 46 

regions of the world (e.g., Viviroli et al., 2007). The role of mountains in extracting moisture from the 47 

atmosphere manifests in numerous regional anomalies and gradients in the distribution of the global 48 

precipitation climate (e.g., Basist et al., 1994; Schneider et al., 2013). Accurate knowledge of the 49 

distribution and variation of rain and snowfall is crucial for numerous planning tasks concerned, for 50 

example, with water resources, water power, agriculture, glaciology and natural hazards (e.g., 51 

Greminger, 2003; Holzkämper et al., 2012; Machguth et al., 2009; Yates et al., 2009). A convenient 52 

source of information are spatial analyses of observed precipitation, obtained by interpolation onto a 53 

regular grid, comprehensively over large areas. Such grid datasets have become of interest also for 54 

monitoring climate variations and for evaluating model-based re-analyses and climate models (e.g. 55 

(Alexander et al., 2006; Bukovsky and Karoly, 2007; Frei et al., 2003; Schmidli et al., 2002).  56 

The construction of accurate precipitation grid datasets for high-mountain regions is confronted with 57 

the challenge of complex spatial variations. Even with idealized topographic settings and flow 58 

configurations (e.g. isolated hill or ridge, constant flow), situations can be distinguished where 59 

precipitation maxima occur over the windward slope, over the crest or the downwind slope of a 60 

topographic obstacle (e.g., Sinclair et al., 1997; Smith, 1979). Distributions depend on the height and 61 

scale of the obstacle, and the strength, static stability and moisture profile of the impinging flow. 62 

More complex topographic shapes, transient weather systems, convection and the drift of 63 

hydrometeors quickly complicate the picture (e.g., Cosma et al., 2002; Fuhrer and Schär, 2005; Houze 64 

et al., 2001; Roe, 2005; Sinclair et al., 1997; Steiner et al., 2003). Therefore, the distribution of long-65 

term mean precipitation is, in many regions, a superposition of several distinct responses to 66 

topography, which act at different space scales, involve several characteristics of the topography (not 67 

just height) and pertain to different flow situations.  68 

A further complication for spatial analysis in mountain regions is posed by the limited spatial density 69 

of rain gauges, the standard device for climatological inference on precipitation. Even in 70 



comparatively densely instrumented areas, such as the European Alps, the networks do not resolve 71 

contrasts between individual valleys and hills explicitly, and they miss out episodic fine-scale patterns 72 

familiar from radar observations and numerical models (e.g., Bergeron, 1961; Frei and Schär, 1998; 73 

Germann and Joss, 2001; Zangl et al., 2008). Moreover, the distribution of rain gauges in complex 74 

terrain is often biased, with a majority of measurements taken at valley floors, while steep slopes 75 

and high elevations are underrepresented (e.g., Frei and Schär, 1998; Sevruk, 1997). The sampling 76 

bias entails a risk of systematic errors in spatial interpolation, which can impinge upon estimates at 77 

larger scale, such as for averages over river catchments (e.g., Daly et al., 1994; Sinclair et al., 1997). 78 

In this context, models of the relationship between precipitation and topography constitute an 79 

essential element of spatial interpolation methods. Their purpose is to enhance the methods’ 80 

capabilities in describing variations not explicitly resolved by the observations, and to reduce the risk 81 

of systematic errors related to the non-representativity of the measurement network. Approaches 82 

for considering precipitation topography relationships in interpolation methods can roughly be 83 

grouped into empirical statistical models using more or less extensive sets of physiographic 84 

predictors (e.g., Benichou and Le Breton, 1986; Daly et al., 1994; Prudhomme and Reed, 1998) and 85 

simplified physico-dynamical downscaling models in combination with information on larger-scale 86 

circulation (e.g., Crochet et al., 2007; Sinclair, 1994). 87 

In this study we explore and compare several ideas for the modeling of precipitation-topography 88 

relationships in the framework of empirical statistical models. Our specific focus is on models that (a) 89 

take account of the multi-scale nature of the relationship, (b) consider responses both to slope and 90 

elevation of the topography, (c) involve a dependency on the direction of the large-scale flow, and 91 

(d) examine the potential of a stratification by circulation types. The value of the different modeling 92 

components is assessed in terms of the skill of a geostatistical interpolation method, which has these 93 

models incorporated and is applied for the estimation of fields of seasonal mean and daily 94 

precipitation in a sub-region of the European Alps.  95 



Systematic topography effects on precipitation are usually difficult to discern in observations at short 96 

time scales (e.g. for daily totals). Precipitation topography relationships are therefore mostly 97 

estimated from long-term averages, which are then used, via a climatological background field, for 98 

the interpolation of shorter duration totals (Haylock et al., 2008; Rauthe et al., 2013; Widmann and 99 

Bretherton, 2000). 100 

A common model of topography effects is that of a linear relationship between climatological 101 

(seasonal or monthly) mean precipitation and in-situ topographic elevation. Precipitation-height 102 

gradients have been considered in various interpolation methodologies such as in linear regression 103 

by using height as a predictor (e.g., Gottardi et al., 2012; Rauthe et al., 2013; Sokol and Bližnák, 2009) 104 

in several variants of kriging by using a digital elevation model as secondary variable (Allamano et al., 105 

2009; Goovaerts, 2000; Hevesi et al., 1992; Phillips et al., 1992; Tobin et al., 2011), in thin-plate 106 

splines interpolation by using height as a third regionalization variable (Haylock et al., 2008; 107 

Hutchinson, 1998) or in triangular interpolation by adopting height corrections  (Tveito et al., 2005). 108 

The assumption of these procedures is that local height is a key explanatory variable of the 109 

distribution of precipitation and that the relationship, commonly estimated over larger domains, is 110 

representative at the scale relevant for the interpolation, i.e. at and below the spacing of stations.  111 

Three types of extensions of the aforementioned methodologies have been proposed: the first 112 

introduced a range of physiographic predictors (not just height) and/or predictors representing 113 

smoothed versions of the actual topography (e.g., Basist et al., 1994; Benichou and Le Breton, 1986; 114 

Gyalistras, 2003; Perry and Hollis, 2005; Prudhomme and Reed, 1998; Sharples et al., 2005). 115 

Additional predictors (e.g. slope, exposure) were found to significantly increase the explained 116 

variance compared to height only (e.g., Gyalistras, 2003; Prudhomme and Reed, 1998) and digital 117 

elevation models smoothed to resolutions of 5 to 50 kilometers (depending on region) were found to 118 

be more powerful predictors compared to high-resolution topography (e.g., Prudhomme and Reed, 119 

1998; Sharples et al., 2005). Conversely, the second extension remains with univariate height 120 

dependencies, but considers the relationship to be spatially variable (Brunetti et al., 2012; Daly et al., 121 



1994; Gottardi et al., 2012). The aim is to focus on dependencies at scales that are not explicitly 122 

resolved by the station network and, hence, are particularly relevant for interpolation. There are 123 

different emphases in the two extensions between robustness and local representativity of the 124 

precipitation-topography model used for interpolation. 125 

The third type of extending traditional precipitation-height models is to incorporate information on 126 

atmospheric flow conditions into the interpolation: Kyriakidis et al. (2001) have constructed new 127 

rainfall predictors by combination of lower-atmosphere flow and moisture with local terrain height 128 

and slope. When used in kriging these dynamical predictors yielded more accurate interpolations of 129 

the seasonal mean precipitation compared to using elevation only. Hewitson and Crane (2005) have 130 

modified the weighting scheme of a daily interpolation method to depend on synoptic state (discrete 131 

types of daily low-level circulation) in order to account for the varying short-range representativity of 132 

station measurements. Gottardi et al. (2012) use the circulation regime of the day under 133 

consideration to estimate orographic effects specifically for different weather conditions. All these 134 

ideas are building on empirical evidence that the mesoscale precipitation distribution in complex 135 

terrain varies considerably between days with different large-scale flow conditions (Cortesi et al., 136 

2013; Schiemann and Frei, 2010). 137 

In this study we build on, extend and test ideas of all three extensions in a subregion of the European 138 

Alps. We compare several sets of physiographic predictors with regard to their relevance for high-139 

resolution precipitation interpolation. Apart from including height and directional gradients, our set 140 

encompasses predictors at several spatial scales simultaneously in order to explicitly distinguish 141 

between patterns resolved and unresolved by the station network. We also compare the role of 142 

predictor setting between multivariate linear regression and kriging with external drift, to assess how 143 

a model of spatial autocorrelation (kriging) can compensate for extensive predictor sets. We further 144 

examine the prospect of stratifying seasonal means by independent analyses for composites of a 145 

circulation type classification and by including predictors of the pertinent circulation terrain effect. 146 

Most of our analyses focus on interpolations for seasonal mean precipitation, but we also assess the 147 



relevance of circulation-type dependent background fields for the interpolation of daily precipitation. 148 

Essential for all our comparisons is that interpolation errors will be examined as a function of 149 

topographic height and for both systematic and random error components. The main purpose of our 150 

study is to gain insight on the role of different approaches to precipitation-topography modelling, but 151 

some of our analyses also explore possibilities to improve an interpolation method previously 152 

developed for the generation of a precipitation grid dataset for the entire Alpine region (Isotta et al., 153 

2013). 154 

The region of the European Alps is an interesting example for studying interpolation procedures and 155 

pertinent models of the precipitation topography relationship. There is an exceptional density of 156 

long-term rain-gauge observations (see Fig. 1), which allows modeling approaches of larger 157 

complexity than in sparsely gauged mountain regions. Moreover, there is a broad range of 158 

topographic scales (from hundreds of kilometers for the main ridge down to few kilometers for 159 

individual massifs) and variations in ridge height (2000-3000 meters for the main ridge down to few 160 

hundred meters for adjacent hill ranges). Accordingly, the distribution of mean precipitation reveals 161 

several nested patterns of the precipitation response that is indicative of its multi-scale nature (see 162 

Fig. 1). 163 

This study is part of the European project EURO4M (European Reanalysis and Observations for 164 

Monitoring). The outline of the study is organized as follows: in Section 2 we introduce the study 165 

domain and the data. The methods of spatial analysis and the procedure of evaluation are described 166 

in Section 3. The results of the evaluation are then presented and discussed in Section 4 and the 167 

conclusions of this study are drawn in section 5. 168 

 169 

 170 

 171 



2. STUDY DOMAIN AND DATA 172 

In this study we consider a sub-domain of the Alps (11°E-13°E / 46.85°N-48.5°N) that covers an area 173 

of 154 × 187 𝑘𝑚2 and extends from the flatlands of Bavaria (Southern Germany), over the Northern 174 

slopes of the Alpine ridge (at the country border between Germany and Austria) towards the inner 175 

Alpine region of Tyrol (Inn and Salzach valleys, Austria and Northern Italy). The domain is indicated in 176 

Fig.1 (red frame) and a detailed topographic map is depicted in Fig.2a. Our choice is motivated by the 177 

comparatively simple large-scale pattern of the topography here, so that the domain can be 178 

considered as a cross-section through an elongated west-east oriented ridge, extending from 179 

flatlands over foothills to high mountains with major inner mountain valleys (from North to South). 180 

As opposed to a larger domain with more convoluted topography, the intermediate complexity eases 181 

the exploration of potential physiographic predictors but still comprises the challenges encountered 182 

with distinct and typical climates of the entire Alpine ridge. In addition, the selected domain disposes 183 

of a homogenous and, compared to other regions, very dense coverage with rain gauges (cf. Fig.1). 184 

The rain-gauge data for this study (Fig.2a) was obtained from the German Weather Service (DWD, for 185 

Germany), from the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water (for 186 

Austria) and from Servizio Meteorologico and Ufficio Idrografico Bolzano Alto Adige (for Italy). The 187 

dataset is a subset of 440 stations out of a pan-Alpine compilation of high-resolution daily rain-gauge 188 

time series extending over the period 1971-2008 (Isotta et al., 2013). On average the station density 189 

is 1 station per 70 km2 corresponding to a typical inter-station distance of 8.5 km, a very dense 190 

coverage over a high-mountain region.  191 

Like in other mountainous regions, the distribution of the stations in our study domain has a limited 192 

representativity with respect to terrain height (Fig.2b). High-elevation areas (>1500 mMSL) are 193 

significantly underrepresented. For example, elevations above 1500 mMSL contribute about 25% of 194 

the total area but are represented with only 6% of the stations. This setting involves a risk of 195 

precipitation estimates for high-elevation areas being biases due to inappropriate interpolation 196 



between valley stations. This will be given particular attention in the assessment of interpolation 197 

methods later. 198 

The rain-gauge time series underwent different quality control procedures at the original data 199 

providers. In addition they were rigorously checked for raw errors, jointly after compilation, using 200 

criteria of temporal and spatial consistency and physical plausibility (for details see Isotta et al., 201 

2013). One caveat of the quality of the data is, however, posed by the systematic measurement error 202 

emanating from wind-induced under-catch, wetting and evaporation losses (Groisman and Legates, 203 

1994; Neff, 1977; Sevruk, 2005). Sevruk (1985) and Richter (1995) estimate the systematic 204 

measurement error in the Alps to range from about 7% (5%) over the flatland regions in winter 205 

(summer) to 30% (10%) above 1500 mMSL. The data used in this study is not corrected for these 206 

systematic errors. Indeed, water balance considerations in the Alps have challenged existing 207 

correction procedures (Schädler and Weingartner, 2002; Weingartner et al., 2007). The systematic 208 

errors may affect the strength and estimation of empirical precipitation-topography relationships. 209 

However, given that the spatial variability of mean precipitation across the domain (see the example 210 

in Fig.2a) is much larger than the range of expected systematic errors, we assume that these errors 211 

are not significantly affecting the conclusions of the present study. 212 

Our statistical analyses are conducted with estimates of mean precipitation at the above stations, 213 

that is, with seasonal means over a multi-year period or with means over all days belonging to the 214 

same class of a daily circulation type classification. The fact that many rain-gauge series extend over 215 

a part of the full 38-year period only, requires care in establishing robust and comparable mean 216 

values. For this purpose quantitative tests have been carried out, aiming at determining the 217 

minimum number of days required to build a mean value of a given accuracy. The tests were 218 

conducted by bootstrap experiments (sampling across days) over the time series of the 20 most 219 

complete station records. The error metric is based on the relative mean root transformed error 220 

presented in the evaluation section. Our accuracy requirement was that the probability of a sampling 221 

error larger than 10% of the “full” mean (i.e. mean over the complete time series) should be smaller 222 



than 5%.  The error thresholds are somewhat arbitrary but are chosen to guarantee reliable climatic 223 

estimates compared to the spatial variations while retaining enough data.  The resulting minimum 224 

requirement on the available length of the time series varies between season and circulation class. 225 

Stations not fulfilling this minimum requirement are discarded from the analysis. As a result the 226 

station sample varies between analyses with different seasons and between seasonal and circulation-227 

type stratifications. Typically, the selection procedure eliminates 5 to 15 % of the total number of 228 

stations, leaving between 317 and 420 time series, depending on stratification. 229 

The circulation type classification chosen in this study is the PCACA classification (Philipp et al., 2010; 230 

Yarnal, 1993). It uses daily mean sea level pressure distributions as input for a hierarchical cluster 231 

analysis of principal components. The classification catalog used here was taken from an application 232 

of PCACA in the framework of COST-Action 733 over an extended Alpine domain, using sea level 233 

pressure fields from ERA40 and ERA-Interim (Dee et al., 2011; Uppala et al., 2005) and with a target 234 

number of 9 clusters (Weusthoff, 2011). The choice of the 9-types classification (PCACA9) is a 235 

compromise between differentiation of daily circulation patterns and robustness of mean values (i.e. 236 

enough days within a weather class). In a comprehensive intercomparison, PCACA9 was found to be 237 

particularly skillful in explaining the distribution of mesoscale daily precipitation in the Alpine region 238 

(Schiemann and Frei, 2010). The geostrophic wind fields for each of the clusters were calculated from 239 

sea level pressure composites based on ERA40 (Uppala et al., 2005). 240 

3. METHODS AND EXPERIMENTS 241 

Our study on the significance and utility of physiographic predictors for spatial interpolation is, in the 242 

first instance, dealing with seasonal mean precipitation, where topographic effects on the 243 

distribution are standing out more clearly from spatial variations of episodic nature. The 244 

methodological framework employed is that of kriging with external drift (KED, Schabenberger and 245 

Gotway, 2005), an interpolation model with a component for multi-linear dependence on pre-246 

defined variables (external drift or trend, here a set of topographic predictors) and a component of 247 



spatial autocorrelation. Two limiting cases of KED will also be considered for comparison: multi-linear 248 

regression models (LM), which comprise the linear dependence on topographic predictors only (i.e. 249 

no spatial auto-correlation) and ordinary kriging (OK) with only the spatial autocorrelation 250 

component included (i.e. omitting dependence on predictors). As topographic predictors, a set of 251 

candidates will be considered, including elevation (‘e’), gradients (‘g’) in two cardinal directions 252 

(across and along the main ridge), as well as the gradient in the direction of the geostrophic wind of 253 

circulation types (‘v’). Various spatial scales of these predictors are considered, in combination, 254 

representing variations of the topography at and beyond scales of 1 km, 5 km, 10 km, 25 km and 255 

75 km, respectively. The different method settings and predictor sets will be compared by means of 256 

leave-one-out cross-validation, examining statistics of the systematic and random errors of the 257 

interpolation and their dependence on elevation. 258 

In a second step we will compare the quality of daily precipitation interpolations when using various 259 

climatologies (with different predictor sets, seasonal or circulation type stratification) as a 260 

background reference (Widmann and Bretherton, 2000). As in the seasonal experiments, KED will 261 

provide the methodological framework for the daily interpolation, but using the previously 262 

determined background reference fields as trend variables.  263 

The following subsections describe in detail the methodological setup (section 3a), the derivation and 264 

usage of the topographic predictor sets (section 3b), the method for daily interpolation (section 3c) 265 

and the cross-validation procedure (section 3d). Table 1 lists the experiments conducted for seasonal 266 

precipitation with the different methods and predictor sets, using the acronyms just introduced. The 267 

experiments conducted for daily interpolation are listed in Table 2. 268 

3.1. Interpolation methods 269 

For the interpolation concept, the present study builds on kriging with external drift (KED, 270 

Schabenberger and Gotway, 2005) and two simplified limit cases of it. KED belongs to a broad class of 271 

geostatistical interpolation methods, which estimate values at target locations as the best linear 272 

unbiased combination of sample observations, under the assumption that the field of interest is a 273 



realization of a second order stationary Gaussian process (see e.g., Cressie, 1993; Diggle and Ribeiro, 274 

2007). KED considers the observations Y at sample locations s as a random variable of the form (see 275 

e.g., Diggle and Ribeiro, 2007): 276 

𝑌(𝒔) = 𝜇(𝒔) + 𝑍(𝒔)    ,     𝜇(𝒔) = 𝛽0 + ∑ 𝛽𝑘 ∙ 𝑥𝑘(𝒔)𝐾
𝑘=1    (1) 277 

Here, (s) describes the deterministic component of the model (also termed external drift or trend), 278 

and is given as a linear combination of K predictor fields xk(s) (also termed trend variables) plus an 279 

intercept 0. The k are denoted as trend coefficients. Z(s) describes the stochastic part of the KED 280 

model and represents a random Gaussian field with a zero mean and a second order stationary 281 

covariance structure. The latter is conveniently modeled by an eligible parametric semi-variogram 282 

function, describing the dependence of semi-variance as a function of lag (eventually with a 283 

directional dependence).  284 

In our application of KED for seasonal mean precipitation the trend variables xk(s) are specified as 285 

fields of topographic predictors (elevation and gradient) that have been pre-calculated from a high-286 

resolution digital elevation model as further detailed in section 3.2. Several different sets of 287 

predictors will be considered and the accuracy of the pertinent interpolations will be compared by 288 

cross-validation.  289 

In all our applications, the semi-variogram is assumed to be exponential with a nugget, sill and range 290 

as parameters. Despite the two-dimensional character of our study domain (i.e. ridge aligned in the 291 

east-west direction) we have chosen an isotropic variogram model in all our experiments. The reason 292 

for this is that the deterministic model component in KED comprises the angular asymmetry of the 293 

variations in precipitation implicitly via predictor fields that represent the orientation of the ridge. 294 

Predictors of height and slope, especially at larger space scales, vary in the north-south direction 295 

more than in the west-east direction. Introducing an anisotropy in the stochastic model part 296 

(variogram) is likely to compete with the significance of these predictors for interpolation. As a 297 

consequence, the results would become very specific to our study domain with its simple geography, 298 



where the missing of predictors can be compensated by variogram anisotropy. In a more complex 299 

domain – e.g. with a topography orientation changing across the region – such a compensation is far 300 

less effective and the incorporation of informative predictors more decisive. In this study, we are 301 

interested in predictor dependence in this more general setting, which is why we deliberately refrain 302 

from the added flexibility with anisotropic variograms. As for the choice of the exponential 303 

variogram, this is motivated by simplicity. Preliminary sensitivity experiments with a spherical 304 

variogram (again allowing for nugget) did show very minor differences in results compared to the 305 

exponential model.  306 

All model parameters (trend coefficients and variogram parameters) are estimated jointly using the 307 

method of restricted maximum likelihood (Schabenberger and Gotway, 2005), which accounts for 308 

biases from limited sample size / large predictor sets. The utilization of a likelihood-based estimation 309 

procedure is central in our application. Estimating trend coefficients and variogram parameters 310 

jointly means that the procedure implicitly distinguishes between variations in the observations that 311 

are better explained by the predictors and variations that are better explained by spatial covariance 312 

(spatial continuity). This procedure ensures optimality of the parameter estimates and consistency of 313 

assumptions with the stochastic model of Eq. (1) (see also Diggle and Ribeiro, 2007). Prior estimation 314 

of predictor coefficients by linear regression followed by ordinary kriging of residuals, an estimation 315 

procedure frequently applied, has a risk of disturbing spatial autocorrelation when relationship to 316 

predictors is the sole source for explaining variance in the regression step.  317 

A complication for adopting KED in the present study is posed by the assumption of a multivariate 318 

Gaussian with stationary variance in space for the stochastic component (the residuals of the trend). 319 

This condition is rarely met with precipitation data, whose distribution is bounded by zero, has 320 

positive skewness and shows larger variance in areas of high compared to low precipitation. Partial 321 

remedy of this can be made with a prior monotonic transformation of the data, the application of 322 

KED in transformed space, and subsequent back-transformation of the estimated kriging distribution. 323 

The procedure, commonly known as trans-Gaussian kriging (Schabenberger and Gotway, 2005), has 324 



been adopted in all KED experiments of the present study, using the Box-Cox power transformation 325 

(Box and Cox, 1964): 326 

𝑌∗ = {
 
𝑌𝜆−1

𝜆
     𝜆 ≠ 0

log(𝑌)       𝜆 = 0
   (2) 327 

Here we prescribe the transformation parameter at =0.5, which corresponds to a square root 328 

transformation of the data. This choice is motivated by analyses of Erdin et al. (2012), showing that a 329 

formal estimation of  (by maximum likelihood) did not significantly alter the best estimates 330 

compared to when it was prescribed at 0.5. (The change was however significant for the kriging 331 

uncertainty.) Finally, the back-transformed results of KED were obtained, in the present study, 332 

following a numerical procedure described in Erdin et al. (2012).  333 

It is worth noting here, that the Box-Cox transformation improves compliance with model 334 

assumptions only with respect to non-stationarity related to the skewness of precipitation amounts. 335 

Precipitation intermittency (the existence of contiguous dry/wet areas) is responsible for non-336 

stationarities that the transformation does not eliminate. Note that, with =0.5, transformation (2) 337 

maps all dry measurements to –2. Methods have been proposed to deal with intermittency explicitly 338 

in the spatial modeling of precipitation  (e.g. Fuentes et al., 2008; Schleiss et al., 2014; Seo, 1998). 339 

These were not considered in our application. While intermittency is violating model assumptions in 340 

the interpolation of daily precipitation, this is not an issue for the interpolation of seasonal 341 

climatological means. 342 

The KED model of Eq. (1) comprises two simplifying special cases that will be considered in this study 343 

as alternative methods of spatial interpolation. The first is to assume that Z(s) is a spatially 344 

uncorrelated Gaussian field with zero mean and constant variance. This corresponds to the classical 345 

linear regression model (hereafter denoted as LM) with estimates at location s determined by the 346 

linear combination of predictors only. As with KED we apply the linear regression case with square-347 

root transformed data and appropriately back-transformed results. The LM method is used here for 348 



comparative purposes because it is often adopted as an exploratory tool to constitute suitable 349 

predictor sets for KED. It is important, however, to note that the best estimate of the linear model 350 

𝜇𝐿𝑀(𝒔) is not equal to the deterministic part of KED KED(s), because the estimates for the 351 

parameters k differ without and with consideration of spatial autocorrelation. 352 

The second special case of the KED model (1) is that when topographic predictors are omitted, i.e. 353 

presuming k=0 (k=1,..,K), and assuming the spatial variations in the observations are purely the 354 

result of a second order stationary process. This is the limit of Ordinary Kriging (denoted OK). As with 355 

the other methods, OK is used here with square-root transformed data. Differences in the 356 

performance between KED and OK describe the value added by topographic predictors. But, again, 357 

the best estimate fields of OK are not equal to the stochastic component of KED because the 358 

parameter estimates differ.  359 

All computations are done in R (R Core Team, 2012) using the geostatistics package geoR (Diggle and 360 

Ribeiro, 2007). 361 

3.2.  Predictors for the interpolation of long-term mean precipitation 362 

The topographic predictors used in this study are based on the digital elevation model (DEM) of the 363 

Shuttle Radar Topography Mission (SRTM, Farr et al., 2007). SRTM was obtained using both C- and X-364 

band microwave radars and has, originally, a resolution of about 90m. In this study we use the SRTM 365 

elevation model on a 1 km grid of the Lambert Azimuthal Equal Area Coordinate Reference System 366 

(ETRS89-LAEA, Annoni et al., 2001). 367 

The three main topographic predictors considered are fields of elevation and gradients in the two 368 

cardinal directions across the ridge (north-south) and along the ridge (east-west). Several predictors 369 

for each of these quantities will be considered, describing variations in elevation and gradients at 370 

different space scales. These were derived from smoothed versions of the original DEM, after 371 

applying a Gaussian kernel with window widths of 1 km, 5 km, 10 km, 25 km and 75 km, respectively. 372 

A predictor set that involves, for example, elevation and gradients at three space scales, comprises a 373 



total of 9 different predictor fields, 3 for elevation, 3 for the north-south gradient and 3 for the east-374 

west gradient. Values of the predictors at the station locations were always taken from the nearest 375 

grid-cell of the predictor fields. 376 

Care was required to avoid co-linearity between predictors when combining several of them for the 377 

various space scales. To this end, predictors for a scale were defined as the difference between the 378 

variable at that scale and the same variable at the next larger scale. For example, the 25 km elevation 379 

predictor in a set involving the scales 1, 25 and 75 km is obtained by calculating the difference 380 

between the 25 km and the 75 km smoothed versions of the DEM. 381 

Apart from analyzing fields of seasonal mean precipitation directly from seasonal mean station 382 

observations, we also investigate the potential of recombining a seasonal mean field from several 383 

separate spatial analyses for average precipitation within the classes of a circulation type 384 

classification. Precipitation topography relationships may be more clearly established under 385 

conditions of similar large-scale circulation, and this could assist the derivation of a seasonal mean 386 

field through further stratification.  387 

The consideration of circulation types permits the introduction of an additional circulation-guided 388 

topographic predictor. It is defined as 389 

𝐺𝑤(𝒔, 𝜆, 𝑘) = 𝜵𝑒(𝒔, 𝜆) ∙
𝑽𝒈

(𝒌)
(𝒔)

‖𝑽𝒈
(𝒌)

(𝒔)‖
    (3) 390 

where 𝜵𝑒(𝒔, 𝜆) denotes the gradient of the topographic elevation (valid for smoothing scale 𝜆  at 391 

location s).  𝑽𝒈
(𝒌)

(𝒔) the geostrophic wind of circulation class k at location s. 𝐺𝑤 describes the 392 

topographic gradient along the direction of the geostrophic wind and will be denoted as wind-393 

aligned gradient for brevity. As with the topographic gradients along the cardinal directions, 𝐺𝑤 is 394 

considered to depend on spatial scale. The geostrophic wind was determined from the sea level 395 

pressure composites of the circulation type classification (PCACA9 see section 2), originally given on a 396 

0.5 degree grid, by interpolation (Gaussian kernel) onto the 1 km grid of the DEM and subsequent 397 



calculation of the geostrophic wind. Note, that for 𝐺𝑤 the smoothing is applied to elevation e(s) only 398 

because the geostrophic wind field is already smooth as a result of the coarse resolution of the 399 

underlying sea level pressure field and its smooth interpolation to the DEM grid.  400 

Fig. 3 illustrates examples of the wind-aligned gradient 𝐺𝑤 obtained for two circulation types of the 401 

PCACA9 classification. The marked change of 𝐺𝑤 across topographic crests (and across valleys) is 402 

evident, as well as its distinct spatial distribution between the two circulation types with their distinct 403 

sea level pressure gradient (geostrophic wind) over the domain.  404 

Consideration of 𝐺𝑤 as a candidate predictor is obviously motivated by ideas of upslope orographic 405 

rainfall enhancement and rain shadowing on the lee of mountains. Indeed at the scale of the entire 406 

ridge such flow related precipitation anomalies are clearly evident with the PCACA9 circulation type 407 

classification, at least in autumn, winter and spring (see Schiemann and Frei, 2010). 408 

Apart from 𝐺𝑤 as defined in (3) we have also experimented with an alternative definition that has 409 

omitted the normalization of the geostrophic wind. Such a predictor was previously considered in 410 

Johansson and Chen (2003) and in Kyriakidis et al. (2001) for example. However, our experiments 411 

showed less explanatory power for precipitation in our study domain compared to 𝐺𝑤 as defined in 412 

(3). In the following, we consider 𝐺𝑤 simply as an alternative to the topographic gradients along the 413 

two cardinal axes and will examine how this replacement (together with the stratification of 414 

circulation types) affects interpolation quality for seasonal mean precipitation in the domain. 415 

3.3. Interpolation of daily precipitation 416 

Our experiments on the interpolation of daily precipitation are also making use of the concepts of 417 

kriging with external drift and ordinary kriging (section 3.1) as used for the interpolation of seasonal 418 

mean precipitation. However, rather than using the topographic predictors directly as trend 419 

variables, the daily interpolation adopts fields of seasonal mean or circulation-type mean 420 

precipitation as trend variables. Precipitation measurements at short time scales usually exhibit large 421 

spatial variations from which systematic topographic effects are difficult to estimate. The solution 422 



followed here is to inject this information via pre-calculated long-term averages. The approach is 423 

somewhat related to the common use of climatological mean fields as reference (e.g., New et al., 424 

2000; Widmann and Bretherton, 2000), but instead of adopting the reference as scaling factor, uses 425 

it as trend variable in KED.  426 

Following the main focus of our study on precipitation topography relationships, we conduct 427 

experiments with daily interpolations and shed light on the role of the climatological reference fields. 428 

To this end the interpolation errors are compared between different specifications of the trend 429 

variable (see Table 2 for a list of experiments). The trend settings include (a) a long-term seasonal 430 

mean built with topographic predictors (experiment KED(KED1e)), (b) the long-term mean of the 431 

day’s pertinent circulation type (experiment KED(KED1e+)), and (c) a representation of the seasonal 432 

climatology that has not used topographic predictors (KED(OK)). Comparison of these settings with 433 

an ordinary kriging based direct interpolation (experiment 𝑂𝐾(∙)) will clear up the benefit of using 434 

climatological reference fields in daily interpolation. (Note that in contrast to the interpolation of 435 

climatic average where most of the stations have non-zero precipitation values, daily measurements 436 

can sometimes report dry conditions everywhere. Since kriging cannot operate with zero variance, 437 

the precipitation field is set to zero in this particular case.) 438 

Finally, we compare the results obtained in this study using KED over a small cross-section of the Alps 439 

with results obtained from a previously developed deterministic interpolation scheme that was 440 

applied for daily precipitation over the entire Alpine ridge (Isotta et al., 2013). The trans-Alpine 441 

method builds on a version of PRISM (Daly et al., 1994, 2002; Schwarb, 2001) for monthly long-term 442 

mean fields and on SYMAP (Frei et al., 1998; Shepard, 1984) for the daily relative anomalies from the 443 

mean. The experiment will be denoted as SYMAP(PRISM). Results from this method rely on a cross-444 

validation table previously calculated and provided by Isotta et al. (2013). 445 



3.4. Evaluation 446 

Our comparison and discussion of the various interpolation experiments is based on systematic 447 

leave-one-out cross-validations, rejecting one-by-one all the stations of the domain and estimating 448 

pertinent interpolations at the location and with the predictors for that station. 449 

 450 

Two error scores will be used to summarize the performance of the methods. The first is a measure 451 

of the relative bias and corresponds to the ratio of predicted (𝑝𝑖) over observed 𝑜𝑖 precipitation 452 

totals, averaged over all (or a subset of n) rain gauges:  453 

𝑩 =
∑ 𝑝𝑖

𝑛
𝑖=1

∑ 𝑜𝑖
𝑛
𝑖=1

   (4) 454 

 455 

The second score is the relative mean root transformed error and defined as: 456 

𝑬 =
1

𝑛
∑ (√𝑝𝑖−√𝑜𝑖)

2𝑛
𝑖=1

1

𝑛
∑ (√�̅�−√𝑜𝑖)

2𝑛
𝑖=1

   (5) 457 

Here �̅� is the spatial average of the observations over all (or a subset of n) stations. The numerator 458 

represents a sort of mean squared error, but with square-root transformed data. The transformation 459 

is introduced here to avoid excessive dependence on large precipitation values and hence to obtain a 460 

more balanced sensitivity on errors across the frequency distribution. The denominator is then 461 

representing some sort of spatial variance of the transformed values and this is used as a reference 462 

against which errors of the prediction are measured. Values of E are always greater than zero. Values 463 

smaller than 1 mean that typical errors are smaller than the spatial variations. Values larger than one 464 

mean that the prediction has larger errors compared to a simple prediction of the spatial mean and 465 

this can be considered a non-skillful prediction.  466 

 467 

Depending on the data stratification and interpolation method, between 317 and 420 stations are 468 

available for estimation and interpolation. To ensure maximum comparability of the evaluation 469 

results, however, we use a fixed set of 317 stations to calculate the above error scores. 470 



4. RESULTS 471 

4.1. Interpolation of mean precipitation 472 

4.1.1. Linear regression 473 

Linear regression is often considered an exploratory framework with which potential predictors for a 474 

trend model of KED can be compared. We therefore develop our discussion starting with results from 475 

the special case when spatial autocorrelation is neglected and then pursue the changes when 476 

introducing autocorrelation in combination with topographic predictors.  477 

The number of possible regression models with three variables (elevation, north-south gradient, 478 

east-west gradient) and six different spatial scales is very large. We have selected three of them for 479 

our discussion because of their illustrative purposes. The simplest (LM1e, see Table 1) has only 480 

elevation at the finest spatial scale (1 km) as predictor. It is a traditional and wide spread model of 481 

topography effects on precipitation (see section 1). The second (LM3e, see Table 1) involves also 482 

elevation only, but at three different space scales (75 km, 25 km, 1 km). The third model (LM9eg, see 483 

Table 1) involves elevation and gradients (in both cardinal directions), again at the three space scales 484 

(75 km, 25 km, 1 km). Experiments with all five space scales (including also 5 km and 10 km) showed 485 

that the three selected scales led to the largest values in adjusted R2. There were slight variations in 486 

the “optimal” model choice between seasons but the prescription of the three scales did not 487 

significantly lower the explanatory power. Note that a formal and automated model selection 488 

procedure (using step-wise linear regression) was not feasible in our application, because the 489 

predictors for one scale depend on those retained for other scales (elimination of co-linearity, see 490 

section 3b).  491 

Table 3 lists values of adjusted R2 for the three selected regression models. The overall pattern is very 492 

similar between the seasons. Topography at the finest scale only (LM1e) explains a very low 493 

proportion of the spatial variance in the observations. This is not too surprising, considering that the 494 

distribution of mean precipitation is mainly characterized by anomalous wet conditions along the 495 



northern foothills and dryer conditions in the high-elevation interior of the ridge (see e.g. Fig. 2a, 496 

results for other seasons are not much different). Local elevation does, obviously, not explain this 497 

larger-scale pattern well. The situation improves when involving elevation at three space scales 498 

(1 km, 25 km and 75 km): LM3e explains a considerable portion the precipitation variability across 499 

the domain. Finally, the largest explained variance is obtained when topographic gradient fields are 500 

included (LM9eg). Now, the predictor set involves a large-scale pattern (the north-south gradient at 501 

the coarsest scale) that distinguishes between flatland, foothills and inner Alps, i.e. the major large-502 

scale contrasts in the precipitation field that was a major obstacle for the previous two models. 503 

Interestingly, the coefficient (and statistical significance) of the 1 km elevation predictor is much 504 

larger in this comprehensive model than in the simple model LM1e. This suggests that there is some 505 

dependence on local elevation in the distribution, but this was difficult to represent in the elevation-506 

only models because it is superimposed by a larger-scale north-south profile that is, itself, poorly 507 

explained by elevation. 508 

 509 

Despite its decent values in explained variance, the 9-predictor model LM9eg shows elementary 510 

deficiencies in reproducing the distribution of rain-gauge measurements in the domain. These are 511 

illustrated for the example of DJF mean precipitation in Fig. 4a. Precipitation is systematically 512 

overestimated over a wide flatland belt adjacent to the ridge (see e.g. full red square), 513 

underestimated along the foothills and, again, overestimated in interior parts of the ridge (see e.g. 514 

dashed red square). Apparently, the larger-scale topographic predictors provide, in linear 515 

combination, only a partial match to the observed north-south profile and the resulting prediction 516 

tends to smooth out some of the variations. Similar types of deficiencies (although differing in exact 517 

location) were evident with other combinations or the full set of space scales, and for the other 518 

seasons. There was always clear spatial clustering in the prediction errors (regression residuals). It 519 

seems that, even with quite comprehensive predictor sets, it is difficult to capture in a regression 520 

model all aspects of the precipitation field resolved by the station network. Surprisingly, this is even 521 



the case with the comparatively simple north-south profile of this study, for which the construction 522 

of a suitable predictor set may have looked easy at first. 523 

4.1.2. Kriging 524 

Ordinary kriging (OK) seeks to represent the precipitation distribution entirely without topographic 525 

predictors. The corresponding estimation (Fig. 4b) has a smooth appearance but reproduces the 526 

characteristic north-south contrasts between flatland, foothills and inner Alps. Hence, OK amends 527 

some of the regional deficiencies of the linear regression model of Fig. 4a (see red squares). 528 

However, in the inner Alpine region, several rain-gauges with anomalously wet conditions (mostly at 529 

mountain peak stations) are represented as isolated spots. It appears as if some elevation 530 

dependency that is not explicitly resolved by the station network is missed out because of the 531 

absence of predictors in OK.  532 

Fig. 4c depicts the result obtained with KED, i.e. integrating predictors and spatial autocorrelation, 533 

using the comprehensive three-scale elevation and gradients model as trend (KED9eg). The 534 

distribution shows the superposition of a spatially smooth pattern (similar to OK, Fig. 4b) and a small-535 

scale pattern with topographic features that are not explicitly resolved by the station network 536 

(similar to LM9eg). The consideration of spatial autocorrelation has amended for the deficiencies of 537 

LM9eg in representing the larger-scale north-south profile (e.g. red squares). Moreover, the strong 538 

contrasts between mountain stations (moist) and valley stations (dry) in the interior Alps are now 539 

integrated via an elevation (and gradient) dependence at small scales.  540 

 541 

It is interesting to realize that the three just discussed interpolation methods yield markedly different 542 

estimates, not just regionally, but also when aggregated over larger scales. This is further illustrated 543 

in Fig. 5, which depicts the results of Fig. 4 when averaged over latitude bands (along the ridge). OK 544 

and KED9eg both represent a moist anomaly at the foothills, centered at an elevation of about 545 

1200 mMSL. This anomaly is much less pronounced and more wide-spread in LM9eg. Towards the 546 



inner Alpine region the three methods yield markedly different areal estimates with OK being much 547 

dryer than the regression model and KED. OK and KED differ by between 5-25% in this area. In the 548 

inner Alpine region, it is not entirely clear, at this point, which of the methods are more realistic. 549 

Clearly, there is a risk of general underestimates by OK due to the missing out of topography 550 

dependence in conjunction with poor sampling of high-elevation areas. But there is also a risk that 551 

KED suffers from overestimates, if, for example, the elevation dependence estimated over the full 552 

domain is not representative for the inner Alps.  553 

 554 

In the following we assess the relative performance of a range of interpolation models from the 555 

above three categories by means of a systematic leave-one-out cross-validation. Results are depicted 556 

for DJF mean precipitation in Figure 6. The two panels are for B (panel a, ratio) and for E (panel b, 557 

dimensionless, see section 2d for the definition of the scores). To better visualize the effects of the 558 

various interpolation schemes, both error scores are calculated separately for the stations within 559 

four elevation ranges. Here, we discuss the results more extensively for the case of DJF mean 560 

precipitation, but very similar results – and similar interpretations – were found for the other 561 

seasons. This is supported by Tables 4 and 5, which list a summary of the error scores for all seasons. 562 

When averaged over all stations the values of bias are small, varying between 0.97 - 0.995 depending 563 

on method (Fig. 6a, dashed lines). The largest underestimate (three percent) is obtained for LM1e 564 

(the linear model with local elevation as single predictor). More significant biases are, however, 565 

found in individual elevation ranges. This is particularly so for the linear regression model LM1e and 566 

for ordinary kriging OK. The lack of topographic predictors in OK impinges upon the interpolation at 567 

high elevation. Here OK systematically underestimates by about 30%. This deficiency is mostly 568 

corrected with interpolation models that incorporate topographic predictors (LM9eg and KED9eg). 569 

The explicit modeling of topography allows for a compensation of the effects of non-representative 570 

vertical distribution of the station sample. In the framework of KED, this remedy is almost as good 571 

with only one predictor (KED1e) as with many predictors (KED9eg). In the linear model framework, 572 



however, in-situ elevation alone provides a poor model of the spatial distribution (see also Table 3), 573 

and this reflects in large and alternating biases between the elevation ranges. An interpretation of 574 

this difference may be seen in the fact that the estimated coefficient for the 1 km elevation predictor 575 

is quite different between LM1e and KED1e. It seems that the consideration of spatial 576 

autocorrelation in KED1e permitted for a much more realistic separation between small-scale 577 

elevation dependence (modelled by the predictor) and larger-scale precipitation variations (modelled 578 

by the autocorrelation part). In contrast, LM1e attempts to capture larger-scale and small-scale 579 

variations with one single linear dependence by construction. It is then likely that larger-scale 580 

variations (such as the north-south profile) disturb a realistic estimate of the small-scale elevation 581 

dependence.  582 

The limited accuracy of linear regression models in predicting the spatial variations of seasonal mean 583 

precipitation is most evident in the relative error score E (Fig. 6b, Table 5). Values are close to the 584 

critical value of 1, where prediction errors are comparable to the magnitude of spatial variations (see 585 

section 3.4). There is improvement when including more predictors (e.g. LM9eg vs LM1e), but 586 

considerable errors remain even with comprehensive predictor sets. This reflects results previously 587 

seen in Fig. 4a. Note, that the inclusion of the gradient at the 75 km scale (the largest considered) 588 

yields the smallest errors. Obviously, this predictor is essential for a regression model to capture the 589 

characteristic north-south profile.  590 

The OK model (no topographic predictors) has much smaller errors than the regression models, 591 

except for the highest elevation range (Fig. 6b). OK profits from its explicit account for spatial 592 

autocorrelation, which permits the reproduction of larger-scale variations (e.g. the north-south 593 

profile) from the information at neighboring stations (see also Fig. 4b). In our application, this 594 

methodological feature yields considerably smaller errors than a comprehensive predictor set in a 595 

regression model, at least for low and intermediate elevation ranges. At large elevations, however, 596 

the OK model suffers large E values (close to 1), which reflects the large bias there (see also Fig. 6a) 597 

and the poor reproduction of wet conditions at inner-Alpine mountain stations (see also Fig. 4b). 598 



The family of KED models, which include both topographic predictors and spatial autocorrelation, 599 

yield the smallest interpolation errors of all models (E scores, Fig. 6b, Table 5). In comparison to OK 600 

the improvement is modest in the lower elevation classes, but substantial at higher elevation. The 601 

inclusion of topographic predictors seems to be central for reducing the caveats of OK in the inner-602 

Alpine region (biases and over-smoothing of small-scale variations, see also Fig. 4). But the KED 603 

models also yield markedly smaller errors (at all elevations) compared to using the predictors in a 604 

linear regression.  605 

Between the different KED models (with different predictor sets) there are only marginal differences 606 

in the scores (Fig. 6b, Table 5). Values of E are roughly the same for the model with only one 607 

predictor (elevation at the 1 km scale, KED1e) and models with elaborate predictor sets (e.g. KED3e, 608 

KED9eg). At first sight this is surprising, given that the scores for linear regression models showed to 609 

be sensitive to the predictor sets. Our explanation of this result is that the role of topographic 610 

predictors is distinct between linear models and KED. Linear models are in need of geographic 611 

predictors to capture the full distribution. The 25 km and 75 km predictors are therefore highly 612 

relevant. In KED, however, the part of the distribution that is well resolved by the station network 613 

can be represented by the spatial autocorrelation component (kriging) and topographic predictors 614 

are primarily used to describe smaller-scale variations not explicitly resolved by the station network. 615 

Here the 25 km and 75 km predictors may be virtually unnecessary. The distinct role of topographic 616 

predictors in the two model families also reflects in differences in the statistical significance and 617 

quantitative values of the predictor coefficients (k, see Eq. 1). In all the KED models, the 1 km 618 

elevation predictor is by far the most statistically significant, whereas in the linear models other 619 

predictors (notably the 75 km topography gradient) are occasionally more significant.  620 

Experiment KED9eg (10 km, 5 km, 1 km) involves predictors at spatial scales all smaller than the 621 

station spacing. Still there seems to be little added value compared to the model with the 1 km 622 

elevation predictor only (KED1e, see Fig. 6b and Table 5). It is unclear if this result implies that the 623 

additional predictors (5 km and 10 km elevations and gradients) are, indeed, not very relevant (on 624 



top of the 1 km elevation) for describing small-scale precipitation variations in the Alps. There may 625 

be insufficient sampling of these predictors in the station sample, considering that most of the inner-626 

Alpine stations are in valleys or on mountain tops. 627 

Note that E shows a general U-shape for the more skillful interpolation models (Fig. 6b), implying 628 

that relative errors are larger (smaller) at low and high (intermediate) elevations. This pattern is also 629 

related to the definition of the score, which uses spatial variance within the elevation classes as a 630 

reference (see denominator in Eq. 3). Larger values of E at low elevations are primarily because of 631 

the small variance in precipitation measurements over the flatland. In fact the numerator of E 632 

increases monotonically with elevation. 633 

4.2. Stratification by circulation types 634 

In this section we examine the potential of considering circulation types for the derivation of 635 

interpolated mean seasonal precipitation fields. Two extensions will be considered. The first deals 636 

with a sub-stratification of the season. For this purpose, several KED interpolation models are 637 

adopted for each class of the circulation classification, separately. The resulting fields of mean 638 

precipitation for each class are subsequently re-combined into a seasonal mean field by weighting 639 

according to the classes’ frequency. Experiments adopting this sub-stratification are labeled with a ‘+’ 640 

sign (see Table 1). The second extension deals with the circulation-dependent predictor 𝐺𝑤 as 641 

outlined in section 3.2. The wind-aligned gradient is considered here as an alternative for the 642 

gradients in the two cardinal directions. The experiment involving this topographic predictor is 643 

labeled with the letter ‘v’ (KED6ev+, see Table 1). KED6ev+ uses three different components of the 644 

𝐺𝑤 field, corresponding to three space scales (1 km, 25 km and 75 km). These were derived by the 645 

smoothing procedure and removal of co-linearities, just as with the previous predictor fields (see 646 

section 3b). Our results were derived with the 9-class PCACA9 classification as described in section 2. 647 

Cross-validation results with these experiments are depicted in Fig. 7, again for B and E, using the 648 

same format as in Fig. 6. Note that these are scores for a mean seasonal (here DJF) precipitation 649 

field, not a field for the mean of a circulation class. Hence the scores include errors from the re-650 



combination over the classes. Results using circulation classification input are compared against a 651 

direct interpolation of seasonal means using the previously adopted model KED9eg. Results of the 652 

two scores for other seasons are listed in Tables 6 and 7. 653 

With all tested interpolation methods, the biases are smaller than 2% (5%) below (above) 654 

1000 mMSL (Fig. 7a). The interpolation with circulation classes (KED1e+, KED6ev+, KED9eg+) exhibits 655 

a slightly different bias pattern compared to that of seasonal the means directly (KED9eg), with a 656 

smaller underestimation at elevations between 1500-3500 m and a larger overestimation between 657 

1000-1500 m. But these differences (and the bias values themselves) are small, much smaller than 658 

typical random errors, and there is not much meaning in using them for a relative assessment of the 659 

methods. The conclusion is that stratification by circulation class and usage of a wind-aligned 660 

gradient 𝐺𝑤 do not significantly change the bias pattern of the interpolation methods.  661 

Comparison of the different methods in terms of E (Fig. 7b) reveals that all interpolation methods 662 

have a very similar error pattern. Neither the stratification by circulation class alone (with 663 

conventional predictors, KED1e+ and KED9eg+), nor the consideration of a wind-aligned gradient 664 

(KED6ev+) can significantly improve over the interpolation of mean seasonal values (KED9eg). The 665 

overall scores (dashed lines) are slightly better for the stratification methods with gradient (KED9eg+) 666 

and wind-aligned gradient (KED6ev+) predictors (see also Table 7), but the direct seasonal method 667 

(KED9eg) is superior at three of the four elevation classes.  668 

We have tested several alternative definitions of a circulation dependent predictor, deviating from 669 

that in Eq 3. These included the introduction of an asymmetry between upslope and downslope 670 

gradients, truncating the 𝐺𝑤 field to only measure upslope gradients, including the wind speed (i.e. 671 

discarding the denominator in Eq. 3), and a simple model for an ageostrophic wind component. None 672 

of these alternative definitions led to significantly different results. 673 

There are several possible reasons why circulation class information did not improve interpolation 674 

accuracy in our application: the region may be geographically too simple or too small to reveal the 675 



benefits of a predictor that builds on spatially variable wind directions. The large-scale wind field 676 

(derived from a coarse resolution sea level pressure field) may be of limited representativity for the 677 

true air flow in such a complex topography. The variability of airflows within a circulation class may 678 

be large, so that systematic topographic effects are not necessarily manifest at the small space scales 679 

addressed by the 𝐺𝑤 predictor. The station sample may not sample the 𝐺𝑤 predictor field 680 

adequately. And finally, there may be larger sampling errors involved, because less stations could be 681 

used in the estimation of means for circulation classes, due to the minimum constraint employed to 682 

ensure robustness in temporal sampling (see section 2).  683 

 684 

4.3. Interpolation of daily precipitation 685 

In this section we compare and evaluate several options for extending the KED interpolation 686 

framework for daily precipitation. The main purpose of this comparison is to investigate how 687 

sensitive the accuracy of a daily interpolation scheme is to various options of integrating small-scale 688 

topography-related information. Alongside, we also compare the KED-based daily models with 689 

results from a previously implemented deterministic daily interpolation scheme, that was calibrated 690 

over a much larger area (the entire Alpine region) and was used for a popular dataset of trans-Alpine 691 

daily precipitation (Isotta et al., 2013).  692 

Table 2 lists the interpolation models compared here and Fig. 8 depicts results from some of these 693 

models for a day with widespread and intense precipitation in the study domain. All KED models 694 

considered adopt the stochastic concept of Eq. 1 but with one of the previously determined 695 

climatological mean fields as trend, rather than with the topographic predictors themselves. The 696 

trend field for KED(KED1e) is the mean seasonal field KED1e that was derived with the 1 km elevation 697 

predictor. Recall, that this version of the mean seasonal distribution showed cross-validation skills 698 

comparable to other versions with comprehensive predictor sets (Fig. 6). The precipitation for the 699 

example day (Fig. 8a) shows small-scale patterns along the foothills and in the interior of the ridge 700 

that reflect patterns of the trend field. For KED(KED1e+) the trend field is the mean precipitation for 701 



class 9 of the PCACA9 circulation classification. (The example day belongs to this class.) Again, the 702 

distribution for the example day (Fig. 8b) bares small-scale variations reflecting the trend field. There 703 

are only small differences to the result for KED(KED1e) (panel a), because the small-scale pattern (not 704 

the magnitude) is very similar between the mean over the class and the mean over the season. Our 705 

consideration of KED(KED1e+) in the subsequent evaluation will answer whether the sub-706 

stratification by circulation classes can improve interpolation accuracy. As a reference we also 707 

consider the models KED(OK) and 𝑂𝐾(∙) which use, respectively, the OK-based seasonal climatology 708 

(Fig. 4b) as trend or a simple ordinary kriging of the (transformed) daily values (i.e. no trend). The 709 

distributions for the example day are very similar and, compared to the other models much 710 

smoother in appearance (see Fig. 8c ).  711 

Fig. 8d depicts daily precipitation for the example day derived by the Alpine-wide SYMAP(PRISM) 712 

interpolation. This procedure uses, as background, a seasonal climatology derived from a local 713 

regression approach (PRISM, DALY et al., 1994; Daly et al., 2002; Schwarb, 2000). The result depicted 714 

comes from a 5 km grid interpolation (Isotta et al., 2013), hence, is coarser the results for the other 715 

models (1 km grid). It shows more variable and larger peak values than the other models. In contrast 716 

to the KED models with elevation as predictor, PRISM estimates precipitation-height gradients locally 717 

(considering the representativity of surrounding stations) and this results in more pronounced small-718 

scale variations.  719 

 720 

The daily interpolation methods have been quantitatively evaluated using cross-validation over all 721 

winter days of 1971-2008 (3400 days). For computational reasons, the cross-validation of the models 722 

was only calculated for the daily interpolation step, i.e. with the seasonal background field estimated 723 

from all the data, including the test station. Clearly, the daily interpolation step contributes the 724 

largest error component, but the errors calculated this simplified way should be considered as a 725 

lower bound of the true errors.  726 



Fig. 9 depicts the bias B and the relative mean root transformed error E for daily interpolation in 727 

winter (DJF) using the same display format as with Figs. 6 and 7. Note that E values for daily 728 

interpolation are much smaller than for the climatological case, because the space-time variance in 729 

the observations (denominator in Eq. 3) is much larger. 730 

The bias of the daily interpolation (Fig. 9a) reveals similar features like in the climatic case. Methods 731 

without consideration of topographic predictors in the climatological background field (𝑂𝐾(∙) and 732 

KED(OK)) are prone to considerable underestimates at high elevations. The inclusion of topographic 733 

predictors in the climatology reduces this bias a lot (KED(KED1e) and KED(KED1e+)). The results differ 734 

only slightly between a seasonal and a circulation-class climatology as trend, the latter being slightly 735 

better. The SYMAP(PRISM) system is largely unbiased, except at the highest elevation class, where it 736 

underestimates by about 10%. Our results confirm that the use of a high-resolution climatology as a 737 

background, a widely used concept for the interpolation of daily precipitation (e.g., Haylock et al., 738 

2008; Rauthe et al., 2013; Widmann and Bretherton, 2000), indeed contribute to reducing biases 739 

over complex terrain.  740 

The relative ranking of methods in terms of E (Fig. 9b) is similar in all elevation classes, but the 741 

differences are largest at high elevations. The KED models that employ a climatology with 742 

topographic predictors score best (KED(KED1e) and KED(KED1e+)). There is no clear preference 743 

between the methods using a seasonal mean or a circulation-class mean as trend. Obviously, the 744 

categorical information on large-scale circulation did not improve daily interpolation. This may seem 745 

surprising considering that the classification utilized (PCACA9) distinguishes Alpine precipitation 746 

distributions better than others (Schiemann and Frei, 2010). A likely reason for this is that the 747 

circulation responses of precipitation in the study region are more clearly established at larger scales, 748 

but less so at scales below the station spacing which matter most for spatial interpolation. 749 

The KED(KED1e) and KED(KED1e+) methods exhibit clearly better B and E scores than the Alpine-wide 750 

SYMAP(PRISM) interpolation in the highest elevation class (Fig. 9). Several reasons may contribute to 751 



these differences: Firstly, the distance-angular weighting scheme of SYMAP uses prescribed 752 

weighting functions, whereas the weighting in KED is optimized and flexibly estimated day-by-day 753 

(semi-variogram). Secondly, the local estimation of precipitation topography relationships in PRISM 754 

may be more prone to sampling errors (small local station sample) than the trend coefficients in 755 

KED1e/KED1e+. (See also the large small-scale variations in the example of Fig. 8d.) Finally, KED 756 

allows for a multiplicative adjustment of the background field and, hence, is more flexible to ‘adjust’ 757 

the background field to the concrete distribution of a day. In this comparison one should, however, 758 

take into account that SYMAP(PRISM) was designed and calibrated for a much larger area. The KED 759 

approach as used here for a subregion of the Alps might become inappropriate for the climatological 760 

diversity of the entire ridge given its assumption on stationarity in trend and variogram parameters 761 

(see e.g., Phillips et al., 1992).  762 

5. CONCLUSION 763 

Modeling the relationship between precipitation and topography is essential for the construction of 764 

accurate precipitation grid datasets by statistical interpolation. Here, we have investigated several 765 

extensions of the classical precipitation-height model, including predictors of slope in addition to 766 

elevation, a multi-scale decomposition of the predictors, a circulation-type dependence of the 767 

relationship and the inclusion of a wind-aligned gradient predictor. Variants of these extensions have 768 

been proposed previously but their effect on interpolation accuracy was not systematically evaluated 769 

and mutually compared so far. Station measurements in our study region (a cross-section of the 770 

European Alps) show imprints of slope effects and coarser scale topography in the distribution of 771 

mean seasonal precipitation. Intuitively one would therefore expect that the considered extensions 772 

could improve interpolation accuracy. 773 

Our experiments illustrate that the benefit from complex predictor sets (elevation and slope, 774 

multiple scales) in the interpolation of seasonal mean precipitation depends strongly on the 775 

statistical modeling framework. In a linear regression framework there is a clear benefit in the sense 776 



that cross-validation errors (random and systematic) are reduced with more predictors included. 777 

However, even with nine predictors, the resulting interpolation is unsatisfactory. It poorly replicates 778 

the characteristic changes from the flatland over the foothills to the inner section of the ridge as 779 

revealed by the station measurements. Linear regression would require many more predictors for a 780 

decent reproduction of this pattern because all spatial variations need to be modeled with 781 

predictors.  782 

For kriging with external drift (KED, predictors with spatially correlated residuals), however, the role 783 

of a complex predictor set was found to be much smaller. Local elevation (a 1 km digital elevation 784 

model) was found to be essential for reducing the systematic underestimates and large random 785 

errors observed at high elevations with ordinary kriging (OK, no predictors). In fact, the simple one-786 

predictor KED model was substantially better than the linear regression model with nine predictors. 787 

But the inclusion of more complex physiographic predictor sets in KED did bring only marginal 788 

additional improvement. Neither topographic slopes nor a wind-aligned gradient could effectively 789 

reduce the cross-validation errors. Interpolation results with comprehensive multi-scale predictor 790 

sets in KED were very similar to those of the one-predictor model, and also the inclusion of 791 

circulation-type dependence had only small effects. It seems that a large portion of the spatial 792 

precipitation variation in our study region is captured by a model of spatial autocorrelation directly 793 

from the measurements (kriging), and that a simple digital elevation model was sufficient (but 794 

essential) to correct for interpolation errors emanating from the non-representative vertical 795 

distribution of stations.  796 

Linear regression is often considered an exploratory framework in spatial interpolation to identify 797 

potential predictors for a trend model of KED. This practice is somewhat questioned by the results of 798 

our study. We find a strong contrast in sensitivity to predictor choice between the two methods. 799 

Linear regression tends to suggest larger predictor sets than are actually necessary in KED. Our 800 

results with KED were not measurably degraded by the inclusion of non-informative predictors. But 801 

this resistance is dependent on the estimation procedure. Our approach of estimating the trend 802 



coefficients and variogram parameters jointly by maximum likelihood (see section 3.1) permits the 803 

estimation process to distinguish between predictor dependence and spatial autocorrelation 804 

implicitly (Diggle and Ribeiro, 2007). This distinction is more restricted in an alternative estimation 805 

procedure, often referred to as residual kriging or detrended kriging (Martínez-Cob, 1996; Phillips et 806 

al., 1992; Prudhomme and Reed, 1999) where predictor coefficients and variogram parameters are 807 

estimated in disjoint steps (regression followed by simple kriging of residuals). This will make the 808 

method more prone to errors in predictor choice. Regression kriging, yet another estimation 809 

procedure (Hengl et al., 2007; Pebesma, 2004; Tadić Perčec, 2010) uses an iterative procedure and 810 

should be similarly robust to predictor choice like the likelihood-based estimation used in our study.  811 

Our experiments for daily precipitation illustrate that the utilization of a climatological background 812 

field (seasonal climatology) reduces interpolation errors significantly, particularly systematic errors at 813 

high elevations in comparison to direct interpolation. The large spatial variability of daily 814 

precipitation complicates robust estimation of systematic topographic responses directly from the 815 

daily data, but a climatological background field can pick up some of these patterns, which translates 816 

into smaller interpolation errors. This result supports a practice widely used in the construction of 817 

short-term precipitation grid datasets, but rarely verified so far (Harris et al., 2013; Haylock et al., 818 

2008; Isotta et al., 2013; Rauthe et al., 2013). Clearly, the topographic effects evident in mean 819 

precipitation are not necessarily representative for all weather conditions. Our results, however, 820 

suggest that estimating these effects separately for typical circulation types does not significantly 821 

improve the performance compared to that with a seasonal background. This result may depend on 822 

the region considered and the circulation-type classification chosen. At least, the classification we 823 

have experimented with here was previously shown to explain precipitation variations in the Alps 824 

better than other common classification schemes (Schiemann and Frei, 2010). 825 

The daily KED interpolation method using a seasonal mean climatology as background has turned out 826 

to perform better in the Alpine cross-section compared to the method used for a grid dataset over 827 

the entire Alpine region (Isotta et al., 2013). This may hint to ways of methodological improvement, 828 



but it is premature to value the two methods with regard to their suitability over the entire Alpine 829 

region. On the one hand, the existing method makes compromises in order to meet very diverse 830 

conditions in climate and station density. On the other hand, extending the KED approach over the 831 

entire region raises questions about the representativity of ‘globally’ estimated trend coefficients 832 

and variogram parameters. Moreover, on a practical side, the KED approach may become 833 

computationally very demanding with several thousands of stations.  834 

The results of our study are likely dependent on the setting of our study region, such as the density 835 

of the station network, the complexity of the topography and the diversity of weather patterns. In 836 

other regions where the station network is coarser and, hence, the nearest observations are less 837 

informative, extended predictor sets may become more relevant. Nevertheless, our results call for 838 

reluctance in our expectations into seemingly versatile topographic predictors for filling the 839 

information between in-situ measurements. Clearly, sensitivity experiments like those conducted can 840 

help to make a parsimonious choice and to ensure robustness of the final interpolation method. 841 
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Tables and figures 1072 

Acronym Interpolation method Predictors Number of 

predictors 

LM1e Multi-linear regression. 

Topographic predictors 

only. 

Spatial autocorrelation 

neglected. 

Elevation only 1 

LM3e  Elevation (‘e’) at 3 spatial 

scales (75 km,25 km,1 km). 

 

3 

LM9eg  Elevation (‘e’) at 3 spatial 

scales. 

 Topographic gradient (‘g’) at 

3 spatial scales. 

 Two sets of scales:  

i) 75 km,25 km,1 km. 

ii) 10 km, 5 km, 1 km. 

9 

OK Ordinary kriging (OK). 

Spatial autocorrelation 

only, no topographic 

predictors. 

- 0 

KED1e Kriging with external drift 

(KED). Topographic 

predictors and spatial 

autocorrelation. 

Stratification by season. 

Elevation (‘e’) only 1 

KED3e  Elevation (‘e’) at 3 spatial 

scales (75 km,25 km,1 km). 

3 

KED9eg  Elevation (‘e’) at 3 spatial 

scales. 

 Topographic gradient (‘g’) at 

3 spatial scales . 

 Two sets of scales:  

i) 75 km,25 km,1 km. 

ii) 10 km, 5 km, 1 km. 

9 

KED1e+ Kriging with external drift 

(KED).  

Season stratified by 

circulation types (‘+’). 

Elevation (‘e’) only 1 

KED6ev+  Elevation (‘e’) at 3 spatial 

scales. 

 Wind-aligned topographic 

gradient (‘v’) at 3 spatial 

scales. 

 Set of spatial scales: 

75 km,25 km,1 km. 

6 

KED9eg+  Elevation (‘e’) at 3 spatial 

scales. 

 Topographic gradient (‘g’) at 

3 spatial scales. 

 Set of spatial scales: 75 km, 

25 km, 1 km. 

9 



Table 1:  Interpolation experiments conducted for long-term seasonal mean precipitation. 1073 

Interpolation method, predictors used and the total number of predictors included. 1074 

  1075 



 1076 

Acronym Interpolation method Background field 

𝑂𝐾(∙) Ordinary kriging (OK) of 

daily precipitation 

(square root 

transformed) 

none 

KED(KED1e) Kriging with external 

drift (KED) 

KED1e, long-term 

seasonal mean 

derived with 

elevation (1 km) as 

predictor 

KED(KED1e+) KED KED1e+, long-term 

seasonal mean 

over days of 

circulation type, 

derived with 

elevation (1 km) as 

predictor 

SYMAP(PRISM) SYMAP PRISM, long-term 

seasonal mean 

derived with PRISM 

KED(OK) KED OK (long-term 

seasonal mean 

derived with OK, no 

topographic 

predictors) 

 1077 

Table 2: Interpolation experiments conducted for daily precipitation. The name of a scheme is a 1078 

combination of the name of the daily scheme and the background field used. 1079 

  1080 



 LM1e LM3e LM9eg 

DJF 0.01 0.42 0.59 

MAM 0.05 0.52 0.66 

JJA 0.1 0.51 0.73 

SON 0.1 0.44 0.57 

 1081 

Table 3: Adjusted 𝑅2 for three linear models (see Table 1) and for each season.  1082 



 Winter Spring Summer Fall 

LM1e 0.971 0.993 1.000 1.000 

LM9eg (10 km, 5 km, 1 km) 0.981 0.997 1.004 1.003 

LM3e (75 km, 25 km, 1 km) 0.976 0.996 1.002 1.002 

LM9e (75 km, 25 km, 1 km) 0.979 0.997 1.003 1.001 

OK 0.995 1.004 1.007 1.007 

KED1e 0.989 1.002 1.006 1.005 

KED9eg (10 km, 5 km, 1 km) 0.990 1.003 1.008 1.006 

KED3e (75 km, 25 km, 1 km) 0.989 1.002 1.006 1.005 

KED9e (75 km, 25 km, 1 km) 0.989 1.002 1.006 1.005 

     
Table 4: Relative bias B calculated over all stations for different seasons using different interpolation 1083 

models (see Table 1 for model acronyms). 1084 

 1085 

 1086 

 Winter Spring Summer Fall 

LM1e 1 0.972 0.931 0.929 

LM9eg (10 km, 5 km, 1 km) 0.749 0.717 0.641 0.787 

LM3e (75 km, 25 km, 1 km) 0.571 0.482 0.475 0.570 

LM9e (75 km, 25 km, 1 km) 0.438 0.366 0.278 0.452 

OK 0.217 0.237 0.104 0.173 

KED1e 0.114 0.111 0.066 0.099 

KED9eg (10 km, 5 km, 1 km) 0.109 0.105 0.062 0.098 

KED3e (75 km, 25 km, 1 km) 0.114 0.111 0.066 0.099 

KED9e (75 km, 25 km, 1 km) 0.109 0.101 0.063 0.095 

     
Table 5: Relative mean root-transformed error E calculated over all stations for different seasons 1087 

using different interpolation models (see Table 1 for model acronyms). 1088 

  1089 



 Winter Spring Summer Fall 

KED1e+ 1 0.998 1.005 1 

KED6ev+ 1 0.999 1.005 1 

KED9eg+ 1 0.999 1.005 1 

KED9eg 0.989 1.002 1.006 1.005 
 1090 

Table 6: Relative bias B calculated over all stations for different seasons using different interpolation 1091 

models (see Table 1 for model acronyms). 1092 

 1093 

 1094 

 Winter Spring Summer Fall 

KED1e+ 0.113 0.104 0.062 0.092 

KED6ev+ 0.105 0.095 0.061 0.089 

KED9eg+ 0.106 0.095 0.059 0.090 

KED9eg 0.109 0.101 0.063 0.096 
 1095 

Table 7: Relative mean root-transformed error E calculated over all stations for different seasons 1096 

using different interpolation models (see Table 1 for model acronyms).  1097 



 1098 

 1099 

Figure 1: Map of long-term mean winter precipitation (mm/day) over the Alpine domain at station 1100 

locations (dots) for the period 1971-2008. The grey contour lines indicate the Alpine relief (400 m 1101 

levels) and the red frame delimits the region in which the interpolation methods are tested.  1102 



 1103 

Figure 2: (a) Map of the study domain, a section of the Alpine ridge (see also Fig.1). The topography is 1104 

indicated by grey-shaded contour lines (spacing 250 m).  The station network is indicated by colored 1105 

circles, representing long-term mean winter (DJF) precipitation in mm/day. The thick black line 1106 

represents the national borders between Germany (top), Austria (middle) and Italy (bottom). (b) 1107 

Barplot of the distribution with height (x-axis, mMSL) of the number of stations (grey, left y-axis) and 1108 

the number of grid-points in a 1 km DEM (red, right y-axis).  1109 



 1110 

Figure 3: Illustration of 𝐺𝑤, the wind-aligned gradient, for two classes of the PCACA9 circulation type 1111 

classification: (a) North-Easterly flow in the summer, and (b) South-Westerly flow in the autumn. The 1112 

example fields are valid for a smoothing scale of 5 km. The topography is depicted in grey lines 1113 

(spacing 250 m) and the streamlines of the geostrophic wind are shown by the blue curves. 1114 

  1115 



 1116 

Figure 4: Distribution of DJF long-term mean precipitation (mm per day) as estimated by (a) a multi-1117 

linear regression using as predictors elevation and gradients at three spatial scales (75 km, 25 km and 1118 

1 km, LM9eg), (b) ordinary kriging (OK, no topographic predictors), (c) kriging with external drift using 1119 

the same predictors an in (a). Color-filled circles represent observations at rain-gauge stations. Red 1120 

squares denote areas mentioned in the text. The topography is depicted in orange lines (spacing 1121 

500 m).   1122 



 1123 

Figure 5: North-south precipitation profile as estimated by the three interpolation methods LM9eg, 1124 

OK, KED9eg (see Table 1). DJF long-term mean precipitation (lower x-axis, mm per day) as a function 1125 

of latitude (y-axis, degrees North). The dashed line indicates the height profile (upper x-axis, m) as 1126 

function of the latitude.  1127 



  1128 

Figure 6: Error statistics for the interpolation of mean DJF precipitation using different interpolation 1129 

models (see Table 1 for model acronyms). Relative bias B (dimensionless, Eq. 3, panel a) and relative 1130 

mean root-transformed error E (dimensionless, Eq. 4, panel b, log-scale) of a leave-one-out cross-1131 

validation. Results are shown for four elevation classes. Horizontal dashed lines represent the scores 1132 

over all stations. The vertical bars represent the number of stations per elevation class (right axes). 1133 



 1134 

 1135 

Figure 7: Error statistics for the interpolation of mean DJF precipitation using interpolation models 1136 

that utilize information from a circulation classification (see Table 1 for model acronyms). Relative 1137 

bias B (dimensionless, Eq. 3, panel a) and relative mean root-transformed error E (dimensionless, Eq. 1138 

4, panel b, log-scale) of a leave-one-out cross-validation. Results are shown for four elevation classes. 1139 

Horizontal dashed lines represent the scores over all stations. The vertical bars represent the number 1140 

of stations per elevation class (right axes). 1141 



  1142 

Figure 8: Daily precipitation total (mm) for February 13 1990, as derived by the daily interpolation 1143 

methods investigated in this study. (a) KED(KED1e), (b) KED(KED1e+), (c) KED(OK), (d) SYMAP(PRISM), 1144 

see Table 2 for a description of the method acronyms. The fields for panels (a-c) were produced on a 1145 

1 km grid, that of panel (d) on a 5 km grid. 1146 
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 1148 

Figure 9: Error statistics for the interpolation of daily precipitation in winter (DJF, 1971-2008) using 1149 

the interpolation models of Table 2 (see also section 3). Relative bias B (dimensionless, Eq. 3, panel a) 1150 

and relative mean root-transformed error E (dimensionless, Eq. 4, panel b, log-scale) of a leave-one-1151 

out cross-validation. Results are shown for four elevation classes. Horizontal dashed lines represent 1152 

the scores over all stations. The vertical bars represent the number of stations per elevation class 1153 

(right axes). 1154 


