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Abstract 14 

Two key sources of uncertainty in projections of future runoff for climate change impact 15 

assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. 16 

Within-GCM uncertainty is the variability in GCM output that occurs when running a 17 

scenario multiple times but each run has slightly different, but equally plausible, initial 18 

conditions. The limited number of runs available for each GCM and scenario combination 19 

within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) 20 

datasets, limits the assessment of within-GCM uncertainty. In this second of two companion 21 

papers, the primary aim is to present a proof-of-concept approximation of within-GCM 22 

uncertainty for monthly precipitation and temperature projections and to assess the impact of 23 

within-GCM uncertainty on modelled runoff for climate change impact assessments. A 24 

secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here 25 

we approximate within-GCM uncertainty by developing non-stationary stochastic replicates 26 

of GCM monthly precipitation and temperature data. These replicates are input to an off-line 27 

hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff 28 

and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate 29 
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within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and 1 

scenario are unavailable, other than the Climateprediction.net dataset for the Hadley Centre 2 

GCM. To-date within-GCM uncertainty has received little attention in the hydrologic climate 3 

change impact literature and this analysis provides an approximation of the uncertainty in 4 

projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of 5 

precipitation and temperature projections. In the companion paper, McMahon et al., (2014) 6 

sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting 7 

in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we 8 

present within- and between-GCM uncertainty results in mean annual precipitation (MAP), 9 

temperature (MAT) and runoff (MAR), the standard deviation of annual precipitation (SDP) 10 

and runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 world-wide catchments. 11 

Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM 12 

uncertainty was assessed in relative form as the standard deviation expressed as a percentage 13 

of the mean of the 100 replicate values of each variable. The average relative within-GCM 14 

uncertainty from the 17 catchments and 5 GCMs for 2015-2044 (A1B) were: MAP 4.2%, 15 

SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould-Dincer Gamma procedure 16 

was applied to each annual runoff time-series for hypothetical reservoir capacities of 1xMAR 17 

and 3xMAR and the average uncertainty in reservoir yield due to within-GCM uncertainty 18 

from the 17 catchments and 5 GCMs were: 25.1% (1xMAR) and 11.9% (3xMAR). Our 19 

approximation of within-GCM uncertainty is expected to be an underestimate due to not 20 

replicating the GCM trend. However, our results indicate that within-GCM uncertainty is 21 

important when interpreting climate change impact assessments. Approximately 95% of 22 

values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1xMAR or 3xMAR 23 

capacity reservoirs are expected to fall within twice their respective relative uncertainty 24 

(standard deviation/mean). Within-GCM uncertainty has significant implications for 25 

interpreting climate change impact assessments that report future changes within our range of 26 

uncertainty for a given variable – these projected changes may be due solely to within-GCM 27 

uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then 28 

to reservoir yield, climate change impact assessments that do not take into account within-29 

GCM uncertainty risk providing water resources management decision makers with a sense of 30 

certainty that is unjustified. 31 

 32 
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1 Introduction 1 

This study is part of a research project that seeks to enhance our understanding of the 2 

uncertainty of future annual river flows, leading to more informed decision-making for the 3 

sustainable management of scarce water resources. This is the second of two papers 4 

examining the uncertainty of streamflow estimates derived from global climate models 5 

(GCMs). In the first paper, McMahon et al., (2014) assessed the adequacy of GCMs from 6 

phase 3 of the Coupled Model Inter-comparison Project (CMIP3, Meehl et al., 2007) to 7 

simulate observed values of mean annual precipitation, standard deviation of annual 8 

precipitation, mean annual temperature, monthly patterns of precipitation and temperature, 9 

and Köppen climate classification. Five GCMs (HadCM3, MIROCM, MIUB, MPI and MRI, 10 

see Table 1 of McMahon et al., 2014 for full GCM names) were selected as better performing 11 

GCMs for use in this second paper. 12 

In this paper we address a significant limitation to characterising the uncertainty of future 13 

runoff which is the lack of sufficient GCM runs of historical (20C3M) and future projections 14 

(e.g., A1B). Modelling historical runoff involves numerous uncertainties (Peel and Blöschl, 15 

2011) including uncertainties in observed input data used to drive the hydrologic model 16 

(Andréassian et al., 2004; McMillan et al., 2011), observed data against which the hydrologic 17 

model is calibrated (Di Baldassarre and Montanari, 2009; McMillan et al., 2010), the 18 

calibration method and objective function adopted (Efstratiadis and Koutsoyiannis, 2010) and 19 

the hydrologic model structure itself (Andréassian et al., 2009; Vogel and 20 

Sankarasubramanian, 2003). Additional uncertainty is introduced when modelling future 21 

runoff through (1) assuming the hydrologic model calibration applies into the future (Chiew 22 

et al., 2014), (2) assuming a bias correction for adjusting GCM data developed over the 23 

observed period applies into the future and (3) through differences in future climate 24 

projections between GCMs and within a GCM. Recent investigations into uncertainty 25 

introduced at different stages of the model train, from GCM to hydrologic model, for climate 26 

change impact assessments include Bosshard et al. (2013), Dobler et al. (2012), Hingray and 27 

Saïd (2014), Kay et al. (2009), Lafaysse et al. (2014), Prudhomme and Davies (2009a; 28 

2009b), Steinschneider et al. (2012), Teng et al. (2012), and Woldemeskel et al. (2014). 29 

The uncertainty between GCM projections of future climate can be assessed through analysis 30 

of runs from a wide range of GCMs, such as those available from CMIP3 and being collated 31 

within the Coupled Model Intercomparison Project phase 5 (CMIP5). Our selection of five 32 
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better performing GCMs from CMIP3 in the companion paper (McMahon et al., 2014) is an 1 

attempt to reduce between-GCM uncertainty by removing poorly performing GCMs from the 2 

analysis conducted in this paper. Our primary aim in this proof-of-concept paper is to present 3 

an approximation of within-GCM uncertainty, which is the variability in GCM output that 4 

occurs when running a scenario multiple times but each run has slightly different, but equally 5 

plausible, initial conditions. Although the importance of within-GCM uncertainty for climate 6 

change impact assessments has been highlighted by Tebaldi and Knutti (2007), Hawkins and 7 

Sutton (2009; 2011) and Deser et al (2012; 2014), to-date it has received little attention in the 8 

hydrology climate change impact literature. Here we develop an approximation of within-9 

GCM uncertainty and apply it to a climate change impact assessment for future runoff and 10 

reservoir yield. 11 

The magnitude of within-GCM uncertainty for a metric like mean annual precipitation can be 12 

assessed directly from GCM output if a large enough ensemble of runs from a GCM for a 13 

given emission scenario are available. The number of GCM runs required to adequately assess 14 

uncertainty depends upon the metric of interest and the level of confidence adopted. For 15 

example, for a given level of confidence an extreme value metric will require many more runs 16 

than a mean to obtain a reliable estimate. For a more detailed discussion of this issue see Salas 17 

(1992). Currently, large ensembles of runs from each GCM and scenario are unavailable. In 18 

the CMIP3 dataset most GCMs have a single run of a given scenario from which a direct 19 

assessment of within-GCM uncertainty is impossible. In terms of ensemble members CMIP5 20 

is an improvement over CMIP3 in that more runs of each scenario are being reported for each 21 

GCM. However, the number of runs per GCM and scenario combination in CMIP5 is still in 22 

the order of 3 to 10, rather than the hundreds of runs required for adequate estimation of 23 

within-GCM uncertainty of some metrics. The Climateprediction.net dataset contains an 24 

ensemble of several thousand runs from the Hadley Centre GCM (Frame et al., 2009; 25 

Rowlands et al., 2012). However, this dataset can only be used to directly assess within-GCM 26 

uncertainty for the Hadley Centre GCM. 27 

Previous assessments of the impact of within-GCM uncertainty on runoff have been limited 28 

by the lack of available GCM runs. For example, when investigating sources of uncertainty in 29 

the climate change impact on hydrology, Chen et al. (2011) were limited to 5 runs with 30 

different initial conditions from the MRI GCM. Similarly, Velázquez et al. (2013) were 31 

limited to 5 runs from one GCM and 3 runs from a second in their comparison of the 32 
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uncertainty due to hydrologic models and within-GCM uncertainty. Prudhomme and Davies 1 

(2009a) sought to overcome the limited number of GCM runs by introducing a seasonal 2 

block-resampling technique to estimate natural climate variability via 100 bootstrap replicates 3 

of observed and GCM time series. In Prudhomme and Davies (2009b) they applied seasonal 4 

block-resampling to a 30-year baseline period and future period to assess whether climate 5 

change impacts were significantly different to baseline climate variability. However, seasonal 6 

block-resampling is unable to address inter-decadal variability, as noted by Kay et al. (2009), 7 

or periods with significant trend as the bootstrap replicates will scramble any inter-decadal 8 

variability or trend. Finally, Hingray and Saïd (2014) and Lafaysse et al. (2014) adopted a 9 

stochastic approach whereby they generated 100 stochastic replicates from each of six 10 

statistical downscaling models for each of 11 runs from 5 GCMs (Hingray and Saïd, 2014), or 11 

12 runs from 6 GCMs (Lafaysse et al., 2014). They used this multi-model ensemble of 12 

stochastic replicates to investigate the magnitude of within- and between-GCM uncertainty 13 

for the Durance catchment in France. 14 

In this proof-of-concept paper we develop an approximation of within-GCM uncertainty 15 

using non-stationary stochastic replicates of GCM monthly precipitation and temperature data 16 

that seeks to preserve any inter-decadal variability and trend. Unlike Hingray and Saïd (2014) 17 

and Lafaysse et al. (2014) whose replicates were produced by the statistical downscaling 18 

model, here we stochastically replicate the original GCM runs prior to downscaling. 19 

Estimating uncertainty in a time series metric via stochastic modelling of a time series is 20 

standard hydrologic practice (Hipel and McLeod, 1994). A stochastic model is fit to the time 21 

series of interest and an ensemble of time series replicates with the same stochastic properties 22 

as the original series is generated. The metric of interest is calculated for each ensemble 23 

member and the metric uncertainty is estimated from the distribution of metric values. In this 24 

paper we stochastically replicate the GCM output data, use an ensemble of stochastic 25 

replicates as input to an off-line hydrologic model to estimate an ensemble of future runoff 26 

projections, from which we estimate the variability in mean and variance of annual runoff. 27 

Finally, the ensemble of future runoff projections is used to investigate the impact of within- 28 

and between-GCM uncertainty on future reservoir yield. 29 

In this paper we model runoff in an off-line hydrologic model rather than adopt GCM 30 

generated runoff. Arora (2001) demonstrated the quality of GCM runoff mainly depends on 31 

the quality of GCM precipitation, with any bias in precipitation amplified in the resulting 32 
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runoff. In our companion paper (McMahon et al., 2014) we assessed GCM bias in 1 

reproducing observed precipitation conditions and found substantial biases for all GCMs, thus 2 

we would expect significant bias in runoff generated by a GCM. Furthermore, Sperna 3 

Weiland et al. (2012) found that runoff estimates from an external hydrologic model generally 4 

outperformed GCM runoff estimates. However, Sperna Weiland et al. (2012) noted that when 5 

the GCM Land Surface Scheme is specifically tuned to reproduce observed runoff and a 6 

routing scheme is added then GCM runoff becomes more acceptable. We also use the terms 7 

streamflow and runoff interchangeably and adopt depth (in mm) as a measure of flow rather 8 

than a volume unit. 9 

Following this introduction, in Section 2 we outline the approximation methodology 10 

(Ensemble Empirical Mode Decomposition, stochastic data generation, quantile-quantile bias 11 

correction of precipitation and temperature, precipitation-evapotranspiration-runoff 12 

modelling, and uncertainty in reservoir yield) and related literature. We test our stochastic 13 

within-GCM uncertainty approximation for the largest ensemble of GCM runs in the CMIP3 14 

dataset for a given GCM and scenario in Section 3. In Section 4 results of applying the 15 

methodology to output from five GCMs identified in the companion paper (McMahon et al., 16 

2014) are presented and discussed. Conclusions from the analysis and discussion are 17 

presented in Section 5. Further details about the precipitation-evapotranspiration-runoff 18 

model, source code and example input and output are provided in the Supplementary Material 19 

Section. 20 

 21 

2 Methodology and related literature 22 

2.1 Overall methodology 23 

The methodology to approximate within-GCM uncertainty and assess the impact of within- 24 

and between-GCM uncertainty on future runoff and reservoir yield is shown in Figure 1. Five 25 

better performing GCMs were identified in the companion paper for use in this paper through 26 

a literature review and assessment of how well CMIP3 GCMs reproduced observed mean 27 

annual precipitation, annual temperature and average monthly precipitation and temperature at 28 

GCM grid cell scales (McMahon et al., 2014). The five GCMs identified were HadCM3, 29 

MIROCM(1), MIUB(1), MPI(1) and MRI(3), where the number in brackets refers to the run 30 

number for that GCM in the CMIP3 data set (see McMahon et al., 2014, Table 1 for full 31 
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GCM names). As part of the analysis in McMahon et al., (2014) catchment average values of 1 

concurrent monthly precipitation and temperature for the 20C3M and A1B emissions 2 

scenarios were extracted from each GCM in the CMIP3 data set. The catchment average was 3 

calculated for each catchment and GCM combination by determining the proportion of 4 

catchment area associated with each GCM grid cell and performing an area weighted average 5 

of the GCM data for each month. Catchment average precipitation and temperature from the 6 

five better performing GCMs are used throughout this paper. 7 

An ideal assessment of within-GCM uncertainty would involve analysis of between hundreds 8 

of runs of a single GCM for a given scenario with each run having slightly different, but 9 

equally plausible, initial conditions. Each run in this ideal ensemble would have a different 10 

sequence of monthly values and a different overall trend. How different the monthly sequence 11 

and overall trend is from one run to the next represents the within-GCM uncertainty. In this 12 

paper we do not seek to approximate the overall trend, as this information is best provided by 13 

a GCM responding to an emissions scenario. Here we approximate differences in the monthly 14 

sequence around the trend by using stochastic data generation. To achieve this we de-trend 15 

the catchment average GCM data, stochastically replicate the de-trended series and add the 16 

trend to the stochastic data to form a stochastic replicate of the GCM data for the entire period 17 

of GCM record. In this way we approximate the uncertainty around the overall trend, but not 18 

the uncertainty in the trend. Therefore, the approximation presented here represents an under-19 

estimate of the true within-GCM uncertainty as the trends used are restricted to those 20 

available in GCM runs in the CMIP3 data set. This stochastic methodology is a temporary 21 

solution for approximating within-GCM uncertainty until sufficient GCM runs become 22 

available to directly estimate within-GCM uncertainty from a large ensemble of GCM runs. 23 

The procedure adopted here to approximate within-GCM uncertainty for a catchment consists 24 

of the following steps (see Figure 1): 25 

1. De-trend the 20C3M and A1B catchment average GCM monthly precipitation and 26 

temperature data using ensemble empirical mode decomposition (EEMD). EEMD also 27 

allows any low frequency signals in the time-series to be identified. 28 

2. Generate stochastically at a monthly time-step k replicates (where k is arbitrarily 29 

adopted as 100 to demonstrate the proof-of-concept) of precipitation and temperature 30 

of ~250 years (~150 from 20CM3 and 100 from A1B) ensuring the cross-correlations 31 

and auto-correlations in the precipitation and temperature time-series are preserved 32 
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and any significant low frequency signals are taken into account. The length of 1 

available 20C3M data differs between GCMs, hence there are approximately 250 2 

years of monthly data to replicate. 3 

3. Add the appropriate trend to the time-series for each replicate of monthly precipitation 4 

and temperature. 5 

4. Bias-correct both the precipitation and the temperature time-series using the quantile-6 

quantile procedure. 7 

5. Calibrate the precipitation-evapotranspiration-runoff monthly model (PERM) for each 8 

catchment using observed precipitation, temperature and runoff data. 9 

6. Model runoff using PERM and the bias-corrected stochastic replicates of GCM 10 

monthly precipitation and temperature. 11 

7. Compute mean annual runoff (MAR), standard deviation of annual runoff (SDR), the 12 

lag-1 serial correlation of annual runoff (lag-1) and hypothetical reservoir yield for 13 

each replicate. 14 

8. Estimate the within- and between-GCM uncertainty in MAR, SDR and lag-1 and 15 

hypothetical reservoir yield based on the 100 replicates. 16 

An advantage of this methodology over a bootstrap based methodology, like Prudhomme and 17 

Davies (2009a), is that the entire period of the GCM run is replicated, which can preserve any 18 

inter-decadal variability and trend in the replicates. The replicates can be used to drive a 19 

hydrologic model for the entire period (~250 years), rather than for short (~30 years) separate 20 

periods, since the overall trend has been preserved. Therefore, hydrologic model stores will be 21 

representative of prior conditions at the beginning of any future period of runoff impact 22 

assessment. 23 

2.2 De-trend GCM data 24 

GCM projections of precipitation and temperature are non-stationary in terms of mean and 25 

existing stochastic data generation techniques generally deal with stationary data. In order to 26 

apply existing stochastic methods we de-trend the GCM monthly precipitation and 27 

temperature data using Ensemble Empirical Mode Decomposition (EEMD). 28 
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The original Empirical Mode Decomposition (EMD) algorithm, introduced by Huang et al. 1 

(1998), is an adaptive spectral analysis technique that is robust when applied to non-linear and 2 

non-stationary data. EMD decomposes a time-series into a set of intrinsic mode functions 3 

(IMFs) and a residual. Each IMF is a zero-mean fluctuation in which the frequency and 4 

amplitude may vary within a given IMF. Subsequent IMFs represent progressively lower 5 

frequency fluctuations. The EMD residual captures any trend in a time-series which may be 6 

an unresolved low frequency fluctuation with an average period longer than the period of 7 

record or a linear or non-linear trend. The nature of the EMD residual is not assumed prior to 8 

running the algorithm, rather it is a data-driven output. More recently, Wu and Huang (2009) 9 

proposed Ensemble EMD (EEMD), a noise assisted data analysis procedure as an 10 

improvement over the original EMD. In EEMD, an ensemble of EMD trials is obtained by 11 

adding white noise of finite amplitude to the time-series prior to each EMD run. The IMFs 12 

and residual from each trial are grouped by IMF order into ensembles and the average of each 13 

IMF group and the average residual yield the EEMD result. Because the white noise is 14 

different for each EMD trial, during averaging the noise cancels out as the ensemble size 15 

increases. The purpose of the noise is to change the ordering of local maxima and minima 16 

within the time-series, thus generating a different EMD outcome in each trial. Details are 17 

given in Wu and Huang (2009) and an application to the Southern Oscillation Index is 18 

presented by Peel et al. (2011b) and to Australian monthly rainfall and temperature by 19 

Srikanthan et al. (2011). 20 

For this analysis the relevant features of EEMD are the residual, which represents the time-21 

series trend, and any low frequency signal in the GCM data. Some GCMs reproduce features 22 

of the El Niño–Southern Oscillation (ENSO) and associated low frequency variability (van 23 

Oldenborgh et al., 2005). For GCMs with an ENSO signal in precipitation we would like to 24 

maintain this information in the stochastic replicates. To identify low frequency signals in 25 

GCM data we follow Wu and Huang (2004) and compare each set of EEMD results against a 26 

white noise model. Low frequency IMFs (average period > 2 years) with more variance than 27 

expected from a white noise model are considered a low frequency signal. The white noise 28 

model is an ensemble of 200 EMD results from white noise series of the same length and 29 

variance as the GCM series. 30 

EEMD was applied to 20C3M and A1B precipitation and temperature data and the residual 31 

(trend) identified. For temperature data all IMFs are summed together to form a de-trended 32 
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time-series ready for stochastic replication. For precipitation data, where a low frequency 1 

signal is not present all IMFs are summed together to form a de-trended time-series ready for 2 

stochastic replication. Where a low frequency precipitation signal is identified, all IMFs with 3 

an average period ≤ 2 years are summed to form a high frequency component and all IMFs 4 

with an average period > 2 years are summed to form a low frequency component. 5 

In this EEMD analysis we use rational spline EMD (Pegram et al., 2008) with tension 6 

parameter = 0.5 and reflective spline end condition (Peel et al., 2009). Each EEMD analysis 7 

has 200 ensemble members, the standard deviation of white noise added to the series 8 

represents 0.4 of the original series standard deviation and non-orthogonal IMFs, IMF pairs 9 

with Orthogonality Index > 0.1, are automatically combined following Peel et al. (2011a). 10 

2.3 Stochastic data generation 11 

In this step we approximate uncertainty around the GCM trend by generating stochastic 12 

replicates of de-trended GCM catchment average time-series of concurrent monthly 13 

precipitation and temperature. In order to preserve any cross correlation between the 14 

precipitation and temperature series and their auto-correlations, the Matalas (1967) multi-site 15 

stochastic data generation procedure was adopted. In order to preserve any low frequency 16 

precipitation information the generation procedure also needs to be able to simulate both high 17 

and low frequency time-series. To achieve this we adapt the method of McMahon et al. 18 

(2008) who used EMD to decompose six-monthly precipitation data into intra- and inter-19 

decadal components, replicated each component separately, and then combined the 20 

component replicates to form the six-monthly precipitation replicate. In this way their 21 

stochastic replicates were able to reproduce observed multi-year dry periods. Replicating 22 

intra- and inter-decadal components separately was possible in McMahon et al. (2008) as 23 

IMFs from EMD, and EEMD, are orthogonal to each other. In this paper we use EEMD to 24 

identify any low frequency component (> 2 years) in the precipitation and utilise the 25 

orthogonal nature of EEMD IMFs to replicate the high and low frequency components 26 

separately before combining the generated component replicates and the trend to form the 27 

overall replicate. 28 

The first step in the data generation process is to remove the trends (one for precipitation and 29 

one for temperature) identified through EEMD analysis in Section 2.2 from the monthly 30 

precipitation and temperature time-series. If the GCM precipitation does not contain a low 31 
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frequency component then there are two separate time-series to replicate concurrently: (1) the 1 

de-trended temperature (sum of EEMD IMFs), and (2) the de-trended precipitation (sum of 2 

EEMD IMFs). If GCM precipitation does contain a low frequency component then the de-3 

trended precipitation is divided into a high frequency component (sum of EEMD IMFs with 4 

average period ≤ 2 years) and a low frequency component (sum of EEMD IMFs with average 5 

period > 2 years), resulting in three time-series to replicate concurrently. Next, for each 6 

calendar month, these time-series are standardised to zero mean and unit variance. Data 7 

generation then takes place and the resulting standardised values are rescaled by the calendar 8 

monthly means and variances. Finally, the respective trends are added to the rescaled 9 

precipitation and temperature data to form the final replicates. 10 

For sites without a low frequency precipitation component, the following auto-regressive lag-11 

one (AR1) model is appropriate: 12 
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To take into account the skewness in a time-series, tε  is defined by the Wilson-Hilferty 18 
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where tε is a random skewed variate (zero mean and unit variance) to account for the 21 

skewness in the standardised data defined by the coefficient of skewness γ , ξ  is a random 22 

normal variate with zero mean and unit variance. 23 

The matrices [ ]A  and [ ]B  are determined from (Matalas, 1967): 24 
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where [ ]0M  and [ ]1M  are the lag zero and lag-one cross correlation matrices respectively. 1 

The elements of [ ]0M  and [ ]1M  corresponding to variables i  and j  are given by:  2 
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The matrix [ ]A  can be obtained from Eq. (3). The matrix [ ][ ]TBB  in Eq. (4) is symmetric and 5 

should be positive semi-definite for solving [ ]B , where [ ]B  can be estimated by the Cholesky 6 

decomposition in which matrix [ ]B  is lower triangular (Hipel and McLeod, 1994). The 7 

elements ijb  of [ ]B  are obtained from the following recursive relationships: 8 

ijbij >= ,0            (7) 9 

1111 cb =            (8) 10 

where ijc  is the element of the matrix [ ]B  in Eq. (4). The remaining element in the first 11 

column of [ ]B  is given by: 12 

11

12
12 b

cb =            (9) 13 

The second diagonal element is obtained from: 14 

2
212222 bcb −=            (10) 15 

Once matrices [ ]A  and [ ]B  are determined, 100 replicates of standardised skewed values are 16 

generated using Equations (1) and (2), then rescaled by the standard deviation and the mean 17 

of the monthly calendar values and trend added to obtain the stochastic replicates of monthly 18 

precipitation and temperature data. In general, the generated monthly data will not preserve 19 

the annual characteristics especially for precipitation as it is highly variable. The generated 20 

monthly temperature data were found to preserve the annual characteristics, while the 21 

generated precipitation did not. Hence, the generated monthly precipitation data were nested 22 

in an annual model (Srikanthan 2004). The details of the nesting are described later. 23 
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For sites with a low frequency precipitation component, an AR(2) model is used to 1 

incorporate the low frequency component. A general multi-site AR(2) model takes the form: 2 
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[ ] 33×B  are 3×3 matrices of constant coefficients to preserve the cross-correlation between HP , 5 

LP  and T  at time t  and their auto-correlations. 6 

Due to problems with inverting matrices that are not positive semi-definite and only the low 7 

frequency precipitation is AR(2), a contemporaneous form of the model in Equations (12) and 8 

(13) is used (Hipel and McLeod, 1994). 9 
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where 11a  is the AR(1) parameter of the high frequency precipitation IMFs, 22a , 22b  are the 12 

AR(2) parameters of the low frequency precipitation IMFs, and 33a  is the AR(1) parameter of 13 

the temperature IMFs. 14 

Matrix [ ]C  is determined from the following equation (Salas et al., 1980): 15 

[ ][ ] [ ] [ ][ ] [ ][ ]TTT MBMAMCC 210 −−=         (14) 16 

where [ ]0M , [ ]1M  and [ ]2M  are the lag-zero, lag-one and lag-two correlation matrices 17 

respectively. The elements of [ ]0M  and [ ]1M  corresponding to variables i  and j  are given 18 

by Equations (5) and (6) respectively. The elements of [ ]2M  are given by: 19 
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and the elements of matrices [ ]A  and [ ]B  in Eq. (14) are given by: 21 
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For catchments with a low frequency precipitation component, matrices [ ]0M , [ ]1M  and 5 

[ ]2M  are calculated using Equations (5), (6), and (15). The elements of the matrices [ ]A  and 6 

[ ]B  are calculated using Equations (16) to (19) and those of matrix [ ]C  are calculated from 7 

Eq. (14). One hundred replicates of standardised variates are generated from Eq. (11) then the 8 

skewness is incorporated using Eq. (2). The mean and standard deviation are reintroduced 9 

and, finally, the trends added to obtain the 100 stochastic replications of monthly precipitation 10 

and temperature. 11 

As mentioned above, to ensure the generated monthly precipitation data preserved the annual 12 

characteristics, the generated monthly precipitation data were nested in an annual AR(1) 13 

model. 14 
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where iY  is the adjusted annual precipitation for year i , µ  the mean of the observed annual 16 

data, σ  the standard deviation of the observed annual data, ρ  the lag one autocorrelation 17 

coefficient of the observed annual data, iY~  the annual precipitation for year i  obtained by 18 

aggregating the generated monthly data, gµ  the mean of the generated annual data, and gσ  19 

the standard deviation of the generated annual data. The generated monthly data are then 20 

multiplied by the ratio 
iY

Yi~ . 21 

The stochastic model was tested by applying the above procedure to monthly precipitation 22 

and temperature data for 20CM3 from the MIROCM GCM after the data were subjected to 23 

EEMD analysis. Table 1 summarises the performance of the stochastic procedure to replicate 24 
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annual data for six catchments covering a range of climate types world-wide. Five of the 1 

catchments were modelled by an AR(1) process whereas station 6304 required an AR(2) 2 

model because it exhibited a low frequency precipitation component. Table 2 summarises the 3 

performance of the stochastic procedure to replicate monthly data for station 6304. Overall, 4 

the stochastic model performed satisfactorily at the monthly and annual time scales. As a 5 

general rule one would expect the value of the input parameters (GCM in this study) to be 6 

within ± 2x standard deviation (SD) of the mean of the generated values. This is achieved for 7 

all variables and catchments except in two cases: (1) annual lag-1 auto-correlation in 8 

catchment 6304 where the low frequency precipitation IMFs have high auto-correlation, 9 

which we assume bias the standardised variates and, therefore, the generated series; and (2) 10 

the standard deviation of January precipitation in catchment 6304. There was some variation 11 

between the generated and historical coefficient of skewness (results not shown) but in terms 12 

of the level of modelling required for this project, these differences are acceptable. The 13 

monthly precipitation and temperature values were satisfactorily generated as represented by 14 

station 6304 in Table 2, which was the most difficult catchment to replicate due to the high 15 

and low frequency precipitation components. We conclude from this assessment that the 16 

AR(1) and AR(2) stochastic models are able to preserve the monthly and annual precipitation 17 

and temperature characteristics satisfactorily for the purposes of this study. 18 

2.4 Quantile-quantile bias correction of P and T 19 

Prior to using GCM, or stochastic replicates of GCM, data in a climate change impact 20 

assessment, any bias between GCM and observed conditions needs to be corrected. The 21 

extent of bias in the GCM precipitation and temperature data is reported in the 22 

complementary paper (McMahon et al., 2014). For example, the mean annual precipitation 23 

(MAP) data for MIUB(3) compared with CRU MAP data at the GCM grid scale exhibits a 24 

slope of 0.69 on logarithmic scales, which indicates the GCM over-estimates low MAP and 25 

under-estimates high MAP. Mean annual temperatures are much less biased and require only 26 

a small amount of bias correction. 27 

Ehret et al. (2012) presents a detailed review of bias correction and discusses the associated 28 

assumptions and implications of applying bias correction to GCM or regional climate model 29 

data. Many procedures are available for bias correction, with techniques falling into two 30 

categories: dynamical downscaling and statistical downscaling. Dynamical downscaling 31 

procedures are sophisticated and resource intensive (Tisseuil et al., 2010) and are impractical 32 
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for applying to globally distributed catchments and a range of GCMs as proposed in this 1 

study. In keeping with the proof-of-concept nature of this paper we adopt a simple empirical-2 

statistical downscaling and error correction approach that is appropriate for bias correcting 3 

catchment average monthly (not daily) GCM outputs for input into a lumped (not spatially 4 

distributed) hydrologic model. We did not adopt the delta change method, also known as 5 

simply daily scaling (Chiew, 2010), where the observed series is scaled by the relative 6 

difference between future and baseline conditions, as delta change would not make full use of 7 

the re-ordering of precipitation and temperature events provided by the stochastic replicates. 8 

Rather, we adopted quantile-quantile or quantile mapping as discussed in Themeβl et al., 9 

(2012) and Bárdossy and Pegram (2011). The basis of the quantile-quantile bias correction is 10 

a comparison of the empirical cumulative distribution functions (ECDF) of the observed data 11 

and the GCM data for a common period. Here the common period is the observed catchment 12 

record and the concurrent period of GCM data from the 20C3M scenario. The difference 13 

between observed and GCM ECDFs for a given value provides the bias correction. Here we 14 

also adopt the frequency adaptation method discussed in Themeβl et al., (2012) for when the 15 

GCM series has a higher frequency of zero values than the observed series. The issue of new 16 

extremes, values outside the range of the GCM and observed data during the period in which 17 

the bias correction is established, was also investigated by Themeβl et al., (2012). We adopt 18 

option QMv1a of Themeβl et al., (2012), which takes the bias correction at the highest 19 

(lowest) quantile and applies that correction to all new upper (lower) extremes. In our analysis 20 

we establish and apply a bias correction for each calendar month (12 corrections in all), rather 21 

than a single correction for the whole of record at each catchment. 22 

An assumption of using this bias correction is that the correction applies into the future under 23 

different conditions. This assumption is supported by Teutschbein and Seibert (2013) who 24 

found the quantile-quantile method performed best out of six alternate bias corrections in 25 

differential split sample tests for non-stationary conditions. The quantile-quantile bias 26 

correction is applied to the precipitation and temperature stochastic replicates (100 replicates 27 

of ~250 years covering the 20CM3 and A1B scenarios) for each GCM run (5) at 17 global 28 

catchments. These 8,500 (100 x 5 x 17) sets of monthly precipitation and temperature are 29 

used as input to our hydrologic model PERM to estimate monthly runoff. 30 

 16 



2.5 Monthly Precipitation-Evapotranspiration-Runoff Model (PERM) 1 

In order to convert GCM monthly precipitation and temperature into runoff, the PERM model 2 

was developed specifically to meet the requirements for hydrologic modelling in this project. 3 

PERM is a simple lumped, not spatially distributed, conceptual precipitation-runoff model run 4 

on a monthly time-step with five parameters to be optimised. The time-step was dictated by 5 

the availability of monthly streamflow data and concurrent precipitation and temperature data. 6 

Further details about the precipitation-evapotranspiration-runoff model, source code and 7 

example input and output are provided in the Supplementary Material Section. 8 

2.5.1 Model structure 9 

The structure of PERM is shown in Figure 2 with the parameters to be calibrated highlighted 10 

in bold. As observed in Figure 2 monthly precipitation is either added to the interception store 11 

(if the monthly mean daily temperature is > 0°C) or accumulated in a snow pack (if the 12 

monthly mean daily temperature is ≤ 0°C). The contents of the interception store are reduced 13 

by evaporation. Excess precipitation is subject to an infiltration function in which a surface 14 

runoff component (designated as PAreaF) is dependent on the contents of the soil moisture 15 

store. When precipitation is accumulated as snow, there is no evaporation for that month from 16 

the snow pack or evapotranspiration from the soil moisture store. The snow pack continues to 17 

accumulate as long as the monthly mean daily air temperature is ≤ 0°C. The snow pack begins 18 

to melt when the monthly mean daily temperature is > 0°C. Snowmelt is partitioned into two 19 

components, a runoff and soil moisture infiltration component based on the parameter Melt. 20 

When the maximum capacity of the soil moisture store is exceeded, saturation excess runoff 21 

(SMF) occurs. Evapotranspiration from the soil moisture store is estimated either as a linear 22 

function of the available soil moisture or as a linear function of monthly mean daily 23 

temperature. The algorithms representing these soil moisture or energy limiting conditions are 24 

given in Figure 2. Baseflow from the soil moisture store is simulated as a linear recession of 25 

the water content in the store. 26 

Two other hydrologic processes – impervious area runoff and deep recharge – were 27 

considered for inclusion in PERM. The inclusion of impervious area was considered 28 

unnecessary. With respect to deep seepage, the reviews of Petheram et al. (2002), Scanlon 29 

(2006) and Crosbie et al. (2010) suggest the maximum effect could be, on average, equivalent 30 

to 5% of the long-term average annual precipitation. From the results of these reviews and 31 
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taking into account the model time-step, the available data, and the fact that the parameters in 1 

PERM are calibrated, it was concluded that incorporating deep seepage would yield little 2 

benefit to the modelling exercise. 3 

2.5.2 Model calibration 4 

PERM is run on a monthly time-step and calibrated against observed annual runoff. Details of 5 

the calibration are set out in the Supplementary Material Section. In summary, an objective 6 

function, defined as the sum of squared differences between the estimated and observed 7 

annual runoff, was minimised with penalties applied to the objective function to ensure the 8 

calibrated model approximately reproduced the mean and coefficient of variation of observed 9 

annual runoff. An automatic pattern search optimisation method was used to calibrate the 10 

model (Hooke and Jeeves, 1961; Monro, 1971) with 10 different parameter sets used as 11 

starting points to increase the likelihood of finding the global optimum of parameter values. A 12 

K-fold cross-validation method (where K = 3) described by Efron and Tibshirani (1993) was 13 

used to validate the calibrated model. PERM was calibrated for 699 catchments world-wide 14 

using the observed monthly precipitation, temperature and runoff data described in Peel et al. 15 

(2010). 16 

2.5.3 Model performance and catchment selection 17 

An objective of our study is to examine the within-GCM uncertainty in runoff estimated from 18 

GCM projections of precipitation and temperature. To examine this uncertainty we need to 19 

minimise any uncertainty in future runoff due to poor hydrologic model calibration. 20 

Therefore, a sub-set of the 699 catchments was selected for further analysis that exhibited 21 

minimum error as a result of the calibration process. Several criteria were used to assess the 22 

adequacy of the PERM calibration for selecting the catchments. These criteria included: the 23 

annual Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) between observed and 24 

modelled runoffs was > 0.8, NSE values based on 3-fold independent testing were > 0.60, 25 

monthly NSE values were > 0.6, and the mean and the coefficient of variation of annual 26 

runoff were estimated to be within ± 5% and ± 10% respectively of the observed values. From 27 

a practical point of view, catchments less than 1,000 km2 were excluded as were several that 28 

were spatially very close. Using these selection criteria, 17 catchments from the initial 699 29 

data set were selected for later analyses. Figure 3 shows the location of all 699 catchments 30 
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and the sub-set of 17 catchments used in later analyses, while Table 3 provides information 1 

about the selected catchments. 2 

Details of the modelling performance of PERM for the 699 catchments are presented in the 3 

Supplementary Material Section. For the 17 selected catchments the difference between the 4 

average modelled and observed MAR is -0.2% and coefficient of variation of annual runoff is 5 

-4.4%. At the annual time-step, the average NSE and R2 between modelled and observed 6 

runoff are both 0.88, and the monthly NSE is 0.72. PERM is well calibrated for these 17 7 

catchments and, therefore, uncertainty in runoff due to poor model calibration is minimised 8 

using these catchments. 9 

A key assumption of using PERM, or any hydrologic model, to model future runoff is that the 10 

calibrated parameters are appropriate for the future climatic conditions. Where future climatic 11 

conditions are similar to the observed calibration period, then this assumption is likely to 12 

hold. If climatic conditions differ from the calibration period, then there is no evidence to 13 

support this assumption. However, in terms of the analysis conducted in the next section this 14 

assumption is a pragmatic one that may well affect the bias of future runoffs but should have 15 

less impact on the range of uncertainty. 16 

2.6 Uncertainty in reservoir yield 17 

The 17 catchments modelled by PERM are unregulated catchments and do not have an 18 

existing reservoir on which to base our analysis. Therefore, we need to assume a hypothetical 19 

reservoir for each catchment. Many procedures exist to estimate reservoir yield from a 20 

hypothetical storage (see McMahon and Adeloye, 2005). For the purposes of this analysis we 21 

require a method that is simple to apply as there are 100 replicates of future runoff generated 22 

by PERM from 5 GCMs for the 17 selected catchments. Here we adopt the Gould-Dincer 23 

Gamma (G-DG) procedure for estimating reservoir yield, which is defined as (McMahon and 24 

Adeloye, 2005; Petheram et al., 2008): 25 
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where D  is the annual yield or draft (mm year-1), µ  and σ  are the mean and the standard 27 

deviation, respectively, of annual runoff (mm year-1) into the reservoir storage, τ  is the 28 
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hypothetical storage capacity specified as a ratio of mean annual runoff, γ  is the coefficient 1 

of skewness of annual runoff, ρ  is the lag-1 serial correlation of annual runoff, and pz  is the 2 

standardized normal variate (zero mean and unit variance) at p the probability of failure. In 3 

our analysis, we adopted 95% reliability of supply, thus ( )p−1  = 0.05. In our analysis we 4 

specify two hypothetical storage sizes, τ  = 1 and τ  = 3, which are storage capacities equal to 5 

one and three times the mean annual runoff. The G-DG procedure assumes there is no net 6 

evaporation loss from the storage (see McMahon et al., (2007) for a detailed description of the 7 

procedure), which in this analysis is not considered critical as we are mainly considering 8 

relative changes in yield. In this analysis the uncertainty in reservoir yield is estimated via the 9 

G-DG procedure using annual runoff parameters (µ ,σ ,γ , and ρ ) estimated from the 10 

monthly runoff time-series generated by PERM (see steps 7 and 8 of Figure 1). 11 
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3 Testing the stochastic within-GCM uncertainty approximation 13 

Testing our stochastic approximation of within-GCM uncertainty requires multiple runs from 14 

a single GCM for a given scenario from which to estimate within-GCM uncertainty and 15 

compare against our stochastic results. In the CMIP3 data set the CCSM GCM has the most 16 

runs (seven) for the 20C3M and A1B scenarios. In this section we test the ability of our 17 

stochastic methodology to approximate within-GCM uncertainty for the CCSM GCM using 18 

the seven available runs for the period 1870-2100 (20C3M and A1B emissions scenarios). 19 

A comparison of within-GCM uncertainty based on seven runs from the CCSM GCM and the 20 

stochastic approximation of within-GCM uncertainty for (a) annual precipitation and (b) 21 

annual temperature for the Herbert River at Gleneagle is shown in Figure 4. The CCSM runs 22 

and stochastic replicates presented in Figure 4 are not bias corrected. In each plot the 23 

maximum, median and minimum annual value for a given year are shown for the seven 24 

CCSM runs and are compared with the maximum, median and minimum of the 700 (7 x 100) 25 

stochastic replicates of the CCSM runs for annual precipitation and temperature. For both 26 

precipitation and temperature the median of the 700 stochastic replicates overlies the median 27 

of the 7 CCSM runs and the difference between the maximum and minimum lines around the 28 

median for the two datasets is totally consistent given only seven CCSM runs and 700 29 

stochastic replicates. A comparison of the standard deviation of all annual values calculated 30 

for the seven CCSM runs (precipitation = 110 mm, temperature = 1.21 oC) and the 700 31 
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stochastic replicates (precipitation = 111 mm, temperature = 1.20 oC) confirms the stochastic 1 

replicates are replicating the CCSM GCM runs well in terms of overall trend and variability 2 

around the trend. These results confirm the credibility of the stochastic methodology for 3 

approximating the within-GCM uncertainty when limited GCM runs are available. 4 

 5 

4 Results and Discussion 6 

In this section we present and discuss results from the methodology described in the previous 7 

section to approximate within-GCM uncertainty of precipitation and temperature from five 8 

GCMs and assess the consequent impact of these uncertainties on estimated runoff and 9 

reservoir yield at 17 catchments for two 30-year periods – 1965-1994 (20C3M emissions 10 

scenario) and 2015-2044 (A1B emissions scenario). 11 

To assist interpretation of within- and between-GCM uncertainty results for 17 catchments 12 

and 5 GCMs presented in later tables and figures we present results for an example 13 

catchment, the Herbert River at Gleneagle in Australia, in Figure 5. Box-plots of MAP 14 

(Figure 5a) and MAT (Figure 5b) are presented for two 30-year periods for each GCM. These 15 

box-plots represent our approximation of within-GCM uncertainty of MAP and MAT. The 16 

box represents the inter-quartile range of MAP (MAT) from the 100 bias-corrected stochastic 17 

replicates of GCM precipitation (temperature). The median MAP (MAT) is represented by the 18 

bar across the box and the box-plot whiskers represent the maximum and minimum MAP 19 

(MAT) from the 100 replicates. The range of within-GCM uncertainty of MAP (Figure 5a) is 20 

similar for all GCMs except MIROCM(1), where the inter-quartile and maximum/minimum 21 

range are approximately 50% larger. The range of within-GCM uncertainty of MAT (Figure 22 

5b) is similar for all GCMs. 23 

The box-plots in Figure 5 can also be used to assess between-GCM uncertainty through 24 

differences between GCMs in the range of within-GCM uncertainty and differences in the 25 

direction of change between 30-year period box-plots. All GCMs have an increasing trend in 26 

MAP over time for this catchment except HadCM3 (Figure 5a), whereas all GCMs show a 27 

similar increasing trend in MAT over time (Figure 5b). 28 

Also shown in Figure 5 is a ‘Raw’ symbol plotted next to each box-plot. These MAP and 29 

MAT values are calculated from bias-corrected original CMIP3 GCM runs and are the only 30 

values of MAP and MAT available for this combination of catchment, GCM and scenario if 31 
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stochastic replication is not used. In a traditional climate change impact assessment, without 1 

stochastic replication, the ‘Raw’ values are all that are available for analysis and the 2 

magnitude of uncertainty associated with them is unknown. Figure 5 shows that the range of 3 

within-GCM uncertainty associated with ‘Raw’ values of MAT is smaller than for MAP. 4 

Figure 5 can also be used to check whether our stochastic methodology is performing well at 5 

this catchment. Our stochastic methodology generates statistically similar replicates of each 6 

20C3M and A1B GCM run from which we calculate MAP and MAT over two 30-year 7 

periods to obtain our box plots. If our methodology is performing well we would expect the 8 

‘Raw’ values from the original GCM runs to fall within our box-plot range, which they do in 9 

all cases. In should be noted that the true within-GCM uncertainty range for MAP and MAT 10 

will be larger than what is shown by our box-plots since we have only replicated the 11 

uncertainty around the GCM trend and not the uncertainty in the trend itself. 12 

In Table 4 within-GCM uncertainty results are presented for the five GCMs over the period 13 

1965-1994 at the 17 catchments for six variables – MAP, standard deviation of annual 14 

precipitation (SDP), MAT, MAR, SDR and lag-1. Here the six variables have been calculated 15 

for each stochastic replicate and the results are presented as the mean ± the standard deviation 16 

of the 100 replicate estimates. The mean values in Table 4 show the range of hydroclimatic 17 

conditions represented by the 17 catchments, while the standard deviation around each mean 18 

represents our approximation of within-GCM uncertainty of that variable. The mean values 19 

differ between the five GCMs for a given catchment for at least two reasons: (1) the stochastic 20 

variability in the mean value of a sample of 100 replicates; and (2) each GCM has a different 21 

trend for each catchment during this period. 22 

Although Table 4 provides absolute values of within-GCM uncertainty for each combination 23 

of catchment, GCM and variable, it is difficult to draw conclusions from this table. Therefore, 24 

in Tables 5, 6 and 8 we express within-GCM uncertainty in relative form as the standard 25 

deviation of the 100 replicate estimates as a percentage of the mean of the 100 replicate 26 

estimates. If the 100 replicate values are normally distributed, then approximately 95% of the 27 

values will be within ± 2 standard deviations of the mean. The assumption of normality was 28 

tested for six variables – MAP, SDP, MAT, MAR, SDR and reservoir yield for a reservoir 29 

equal to 3x MAR – estimated from 100 replicates of HadCM3 at each of the 17 catchments 30 

for the period 1965-1994. Normality was assessed using the Anderson-Darling normality test 31 

(Anderson and Darling, 1954). Of the 102 normality tests (17 catchments x 6 variables) 11 32 
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(10.8%) were not normally distributed at the 5% level of significance (not shown), which is 1 

more than expected from random chance. The distribution of non-normal results was MAP(2), 2 

SDP(0), MAT(1), MAR(4), SDR(2) and reservoir yield(2). Based on our analysis of HadCM3 3 

replicates an expectation that roughly 95% of MAP, SDP and MAT values will be within ± 2 4 

standard deviations of the mean appears reasonable. Whereas for MAR, SDR and reservoir 5 

yield this expectation is less justified and within-GCM uncertainty is less likely to be 6 

symmetrically distributed around the mean. 7 

4.1 Annual precipitation and temperature 8 

In this sub-section we present and discuss within- and between-GCM uncertainty results for 9 

annual precipitation (MAP and SDP) and temperature (MAT). In Table 5 a summary is 10 

presented of the within-GCM uncertainty results shown in Table 4. The uncertainty results in 11 

Table 5 are in relative form (standard deviation as a percentage of the mean), except for lag-1 12 

where the standard deviation is used, and are the average uncertainty across the 17 catchments 13 

for each GCM. Averaging relative uncertainty values across the catchments allows 14 

differences in within-GCM uncertainty between GCMs to be examined and the average 15 

uncertainty across all GCMs for a given variable of interest to be estimated. For MAP within-16 

GCM uncertainty varies between GCMs from 3.4% to 4.6% and the average across the five 17 

GCMs is 4.1%. Given a normal distribution of MAP values across the 100 replicates this 18 

translates into 95% of MAP values being within ±7% to ±9% of the replicate mean. Although 19 

the average within-GCM uncertainty for SDP (14.3%) is 3 – 4 times higher than for MAP 20 

(4.1%), the difference between GCMs is narrower for SDP (13.9% – 14.6%). Within-GCM 21 

uncertainty of inter-annual variability of precipitation is high with approximately 95% of SDP 22 

values being within ±28% to ±29% of the mean SDP. In contrast, within-GCM uncertainty for 23 

MAT is very small (1%, 95% within ±2% of mean MAT) and is very consistent between 24 

GCMs. Across the five GCMs MIUB(1) has the least within-GCM uncertainty for MAP and 25 

SDP and the highest for MAT, while MIROCM(1) has the highest for MAP and SDP. 26 

A similar set of results to those in Table 5 are presented in Table 6 for the 30-year period 27 

2015-2044 (A1B). On average across the five GCMs within-GCM uncertainty of MAP, SDP 28 

and MAT are similar between the two periods. However, differences in uncertainty between 29 

GCMs are apparent across the two periods. For example, for MAP the maximum and 30 

minimum values in Tables 5 and 6 are from MIROCM(1) (4.6% and 4.9%) and MIUB(1) 31 

(3.4% and 3.4%) respectively. It should be noted that the uncertainties in Table 6 are for the 32 
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projected values of precipitation, temperature and runoff in 2015-2044, and not the 1 

uncertainties in their changes between the earlier and the later periods.  Often, regional 2 

climate change projections present uncertainties in the projected changes in variables. 3 

However, here we present the uncertainties in the projected values, as these are important for 4 

the projected runoff and reservoir yield. 5 

Within-GCM uncertainty results for MAP, SDP and MAT from Table 4 are also summarised 6 

in Figures 6 to 8 where results from the 17 catchments are plotted for each GCM. Figure 6 7 

shows within-GCM uncertainty in MAP varies from below 20 mm year-1 to more than 90 mm 8 

year-1. For each GCM there is a weak positive relationship between uncertainty and MAP. 9 

The strongest relationship is for MIUB(1), which also has the lowest uncertainty. In Figure 7, 10 

within-GCM uncertainty results for SDP are in contrast to the MAP results of Figure 6. 11 

Although the range in uncertainty of SDP is only slightly less than for MAP, ranging from 12 

approximately 10 mm year-1 to above 70 mm year-1, there is a very strong positive 13 

relationship between uncertainty in SDP and SDP for each GCM shown. The reason for the 14 

difference in relationship strengths in Figures 6 and 7 is due to the uncertainty in MAP being 15 

strongly positively related to SDP (not shown). This is to be expected as higher inter-annual 16 

variability, represented here by SDP, increases the uncertainty in a 30-year estimate of MAP. 17 

Thus in Figure 6 the weak relationship between MAP and the uncertainty in MAP is due to a 18 

combination of stochastic variability and the SDP at each catchment. Whereas the strong 19 

relationship observed in Figure 7 between SDP and uncertainty in SDP is solely a function of 20 

stochastic variability. Within-GCM uncertainty in mean annual temperature is small, varying 21 

from less than 0.05°C to 0.18°C, and decreases with increasing MAT for all GCMs, although 22 

the relationships between uncertainty and mean annual temperature are weak (Figure 8). 23 

4.2 Annual runoff 24 

In this sub-section we present and discuss within- and between-GCM uncertainty results for 25 

annual runoff (MAR, SDR and lag-1). For each GCM and catchment 100 bias-corrected 26 

stochastic replicates of monthly P and T were used as input to PERM and 100 series of 27 

monthly runoff generated. In Figure 9 box-plots of MAR (Figure 9a) and SDR (Figure 9b) are 28 

presented for the Herbert River at Gleneagle in Australia as an example of the runoff results 29 

for 17 catchments and 5 GCMs. For each GCM a box-plot of the 100 values calculated from 30 

PERM is presented for the two 30-year periods. Consistent with results for MAP shown in 31 

Figure 5a the range of within-GCM uncertainty of MAR is similar for all GCMs except 32 
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MIROCM(1), where the inter-quartile and maximum/minimum range are approximately 50% 1 

larger. For MAP all GCMs, except HadCM3, had an increasing trend in MAP over time 2 

(Figure 5a). However, trends in MAP are not consistently transferred to MAR. As expected 3 

HadCM3 has a decreasing trend in MAR and MIROCM(1) shows an increasing trend in 4 

MAR. However, MIUB(1), MPI(1) and MRI(3) show little change in MAR between periods. 5 

In Figure 9b the range of within-GCM uncertainty of SDR is similar across all the GCMs, 6 

except MIROCM(1) which again has the highest inter-quartile and maximum/minimum 7 

range. The pattern of trend in SDR between the two periods is complex. MIROCM(1) is the 8 

only GCM to have an increase in median SDR and inter-quartile range over time, while 9 

HadCM3, MIROCM(1) and MRI(3) all have an increase in maximum/minimum range over 10 

time. Also shown in Figure 9 are the ‘Raw’ values of MAR and SDR calculated from PERM 11 

runs of bias-corrected original GCM data, which are the only values of MAR and SDR 12 

available for this combination of catchment, GCM and scenario if stochastic replication is not 13 

used. As was the case for MAP and MAT, the ‘Raw’ MAR and SDR values for each GCM 14 

and 30-year period fall within the box-plot range, indicating that our stochastic replication 15 

methodology is performing satisfactorily. Again, the true within-GCM uncertainty range for 16 

MAR and SDR is expected to be larger than what is shown by our box-plots since we only 17 

replicated the noise around the GCM trend and not the GCM trend itself. 18 

Within-GCM uncertainty results for MAR and SDR averaged across the 17 catchments for 19 

each of the 5 GCMs and expressed in relative form (standard deviation as a percentage of the 20 

mean) are shown in Table 5 for the 30-year period 1965-1994 (20C3M). Also shown in Table 21 

5 is the standard deviation and the lag-1 serial correlation of runoff. In Table 5 within-GCM 22 

uncertainty of MAR varies between GCMs from 8.1% to 10.9% and the average across the 23 

GCMs is 9.7%. Although the 100 MAR values may not be normally distributed we would 24 

expect roughly 95% of the MAR values to be within ±16% to ±22% of the replicate mean 25 

MAR. The average within-GCM uncertainty of MAR (9.7%) is over double that of MAP 26 

(4.1%), which demonstrates how uncertainty in precipitation is magnified in runoff through 27 

the precipitation-runoff relationship. In Table 5 the average within-GCM uncertainty for SDR 28 

(17.4%) is approximately 80% higher than for MAR (9.7%) and the difference between 29 

GCMs is narrower for SDR (16.4% – 18.4%) than for MAR. Within-GCM uncertainty of 30 

inter-annual variability of runoff is high with approximately 95% of SDR values being within 31 

±33% to ±37% of the mean SDR. Although the within-GCM uncertainty of SDR is high 32 

(17.4%), it is only ~20% higher than the uncertainty for SDP (14.3%). In Table 5 there is little 33 
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difference between GCMs in within-GCM uncertainty of lag-1 serial correlation with 1 

standard deviation values varying from 0.17 to 0.18 and the average across the GCMs is 0.18. 2 

Within-GCM uncertainty of MAR, SDR and lag-1 serial correlation for the 30 year period 3 

2015-2044 (A1B) in Table 6 is similar to the results shown in Table 5. However, differences 4 

in uncertainty between GCMs are apparent across the two periods. For example, for MAR the 5 

minimum values in Tables 5 and 6 are from MIUB(1) (8.1% and 8.0%), whereas the second 6 

highest MAR in Table 5 and the maximum value in Table 6 are from HadCM3 (10.8% and 7 

13.0%). 8 

Within-GCM uncertainty results for MAR and SDR from the 17 catchments and 5 GCMs in 9 

Table 4 are summarised in Figures 10 and 11. Figure 10 shows the within-GCM uncertainty 10 

in MAR varies from below 10 mm year-1 to more than 80 mm year-1. For each GCM there is a 11 

positive relationship between uncertainty and MAR. The strongest relationship is for 12 

MIUB(1), which also has the lowest uncertainty. In Figure 11, the within-GCM uncertainty 13 

results for SDR are in contrast to the MAR results of Figure 10. Although the range in 14 

uncertainty of SDR is slightly less than for MAR, ranging from under 10 mm year-1 to above 15 

60 mm year-1, there is a much stronger positive relationship between the uncertainty in SDR 16 

and SDR for each GCM shown. Although the uncertainty relationships for precipitation 17 

(Figures 6 and 7) and runoff (Figures 10 and 11) are broadly similar, modelling runoff 18 

through PERM has modified the uncertainty relationships of precipitation relative to runoff. 19 

The relationships in Figure 10 for MAR are stronger than those for MAP in Figure 6, while 20 

the relationships for SDR in Figure 11 are weaker than those for SDP in Figure 7. The within-21 

GCM uncertainty of lag-1 serial correlation of annual runoff is approximately constant at 0.18 22 

and shows little difference between GCMs (not shown). 23 

4.3 Reservoir yield 24 

In this sub-section we present and discuss within- and between-GCM uncertainty results for 25 

reservoir yield. The impact of within-GCM uncertainty on reservoir yield is shown in Figure 26 

12 for the Herbert River at Gleneagle. The Gould-Dincer Gamma method was used to 27 

estimate average annual yield from a hypothetical reservoir of capacity equal to 3x MAR with 28 

95% reliability of draft using annual runoff statistics from PERM modelled runoff. Each box-29 

plot is based on 100 values of average annual reservoir yield for the two 30-year periods 30 

estimated from PERM runs using stochastic replicates of precipitation and temperature for 31 
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each GCM. In Figure 12 the minimum average annual yield is zero in two cases – HadCM3 1 

(2015-2044) and MIROCM(1) (1965-1994). In these two cases the Gould-Dincer Gamma 2 

method returned a physically impossible negative draft, which indicates that a positive draft 3 

cannot be supplied with 95% reliability from the hypothetical reservoir for at least one 4 

replicate. For a given GCM an increasing trend in average reservoir yield between periods is 5 

due to either an increasing trend in MAR (Figure 9a) and or a decreasing trend in SDR 6 

(Figure 9b). The within-GCM uncertainty of average annual yield for MIROCM(1) is 70% 7 

larger than for the other GCMs for this catchment, which is consistent with the MAP, MAR 8 

and SDR results. The ‘Raw’ values of average reservoir yield again fall within the box-plot 9 

range, indicating that our stochastic replication methodology is performing satisfactorily. 10 

Table 7 lists reservoir yield results for the 17 catchments, 5 GCMs and two hypothetical 11 

reservoir capacities (1x MAR and 3x MAR) for the 30-year period 2015-2044 (A1B). The 12 

average reservoir yield is the average of the 100 PERM runs and the uncertainty is the 13 

standard deviation of the 100 PERM runs. Differences between GCMs in average reservoir 14 

yield at a given catchment largely reflect differences in MAR and SDR trends during this 15 

period. If the Gould-Dincer Gamma method returned a physically impossible negative draft, 16 

the yield for that run was set to zero. In Table 7 if more than half the yields (>50) were set to 17 

zero then results for that GCM and catchment combination were not reported (N/R). 18 

The yield uncertainties in Table 7 due to within-GCM uncertainty are expressed as a 19 

percentage of the mean yield and averaged across the 17 catchments in Table 8. For the larger 20 

storage, τ  = 3, the average uncertainty across the 5 GCMs is 11.9%, which is approximately 21 

half the average uncertainty (25.1%) for the smaller storage (τ  = 1). The GCM with the 22 

highest uncertainty in reservoir yield is MIROCM(1), which is consistent with the high 23 

uncertainty in MAP, MAR and SDR for this GCM. MIUB(1) is the only GCM to have below 24 

average uncertainty for both reservoir sizes. The uncertainty data in Table 7 for τ  = 3 are 25 

plotted in Figure 13 against mean reservoir yield. Uncertainty of reservoir yield is only 26 

weakly positively related to reservoir yield. For a given reservoir yield MIROCM(1) and 27 

HadCM3 generally have higher uncertainty than the other GCMs. The range of uncertainty is 28 

approximately 15 mm year-1 for low yield reservoirs (100 mm year-1) through 40 mm year-1 29 

for reservoirs that yield 1,000 mm year-1. 30 

The main driver of uncertainty in reservoir yield is the variability of annual reservoir inflows. 31 

Figure 14 shows the relationship between uncertainty in reservoir yield, for τ  = 3, against the 32 
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variability of reservoir inflows expressed as the standard deviation of annual runoff for the 5 1 

GCMs over the period 2015-2044 (A1B). The relationship between uncertainty in reservoir 2 

yield and annual runoff variability is strongly positive with all GCMs having an R2 ≥ 0.78, 3 

except for MIROCM(1). Uncertainty in yield is driven more strongly by inflow variability 4 

than by inflow mean (not shown, but very similar to Figure 13 as reservoir yield and mean 5 

annual runoff are highly correlated). 6 

 7 

5 Conclusions and Implications 8 

Climate change impact assessments for future hydrology are subject to significant 9 

uncertainties. The contribution of within-GCM uncertainty to total uncertainty has not been 10 

well quantified due to the limited number of GCM runs available for each GCM and scenario 11 

combination. In this paper we developed a methodology to approximate within-GCM 12 

uncertainty of precipitation and temperature projections using non-stationary stochastic data 13 

generation. Our methodology is a contribution toward quantifying within-GCM uncertainty 14 

and provides an objective approach for communicating the uncertainty in climate change 15 

impact assessments in a quantitative manner. In a proof-of-concept application of our 16 

procedure we estimated the impact of within-GCM uncertainty on annual runoff and reservoir 17 

yield, which can inform water resources engineers and management decision makers about 18 

the uncertainty in climate change impacts in the short to medium term planning horizon. For 19 

the research community our stochastic data generation methodology provides a way to assess 20 

within-GCM uncertainty on a temporary basis until the number of GCM runs for a given 21 

GCM and scenario combination becomes adequate to estimate within-GCM uncertainty 22 

directly from GCM runs. 23 

In our proof-of-concept application we de-trended GCM projections of monthly precipitation 24 

and temperature from five better performing CMIP3 GCMs (HadCM3, MIROCM, MIUB 25 

MPI and MRI) identified in the companion paper (McMahon et al., 2014). We stochastically 26 

replicated the de-trended series 100 times, combined the replicates with their respective trends 27 

and applied a bias-correction to the replicates. Within-GCM uncertainty of precipitation and 28 

temperature were assessed using the stochastic replicates from each GCM for two periods: (1) 29 

1965-1994 (20C3M scenario); and (2) 2015-2044 (A1B scenario) at 17 catchments distributed 30 

around the world. At each catchment within-GCM uncertainty was estimated as the standard 31 

deviation of the replicate values divided by the mean replicate value. The uncertainty value 32 
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for a given GCM was taken as the average of the 17 catchment values for that GCM. Within-1 

GCM uncertainty of mean annual precipitation varied from 3.4% – 4.9% between GCMs over 2 

the two periods and averaged approximately 4.1% across the five GCMs. For the standard 3 

deviation of annual precipitation the average within-GCM uncertainty (14.3%) was 3 – 4 4 

times larger than for mean annual precipitation, while within-GCM uncertainty of mean 5 

annual temperature was smaller (1%). 6 

The stochastic replicates were input to a calibrated hydrologic model (PERM) to estimate 7 

future projections of annual runoff. The impact of within-GCM uncertainty on mean annual 8 

runoff varied from 8.0% – 13.0% between GCMs over the two periods and averaged 9 

approximately 9.9% across the five GCMs. The uncertainty in the standard deviation of 10 

annual runoff varied from 16.0% – 20.1% between GCMs and averaged approximately 17.5% 11 

across the five GCMs. The within-GCM uncertainty in precipitation and temperature is 12 

amplified in the runoff through the precipitation-runoff relationship. Summary statistics for 13 

the two periods were estimated from each annual runoff series (100 per catchment) and used 14 

in the Gould-Dincer Gamma method to estimate reservoir yield from two hypothetical 15 

reservoir capacities (1x and 3x mean annual runoff) for 95% reliability of supply. For the 16 

period 2015-2044 the uncertainty in reservoir yield due to within-GCM uncertainty varied 17 

from 18.6% (9.3%) to 33.2% (14.3%) for the 1x (3x) mean annual runoff capacity reservoir 18 

and averaged approximately 25% (12%) across the 5 GCMs. The main driver of uncertainty 19 

in reservoir yield was the variability of annual runoff inflows. 20 

In this analysis between-GCM uncertainty was limited to small differences in within-GCM 21 

uncertainty for a given variable and differences in trend between the two 30-year periods 22 

analysed. The reason why differences between GCMs are not larger here is due to the 23 

application of bias correction. The quantile-quantile bias correction forces the mean and 24 

variance of the GCM precipitation and temperature data over the observed period to match the 25 

observed mean and variance. Thus, a significant source of between-GCM uncertainty, their 26 

bias in mean and variance, has been removed. 27 

A significant implication of our results is that within-GCM uncertainty is important when 28 

interpreting climate change impact assessments. Although the variables calculated from the 29 

stochastic replicates and hydrologic modelling of the replicates are not strictly normally 30 

distributed, a rough guide to the magnitude of within-GCM uncertainty is to double the values 31 

reported above (±2x standard deviation / mean). Thus for the five GCMs analysed here during 32 
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the period 2015-2044 the within-GCM uncertainty around a value of mean annual 1 

precipitation is approximately ±7% to ±10%. For the standard deviation of annual 2 

precipitation the uncertainty is approximately ±27% to ±29%, while for mean annual 3 

temperature the uncertainty is approximately ±1.2% to ±1.6%. Compared to precipitation, 4 

runoff uncertainties are larger with approximate uncertainties of mean and standard deviation 5 

of annual runoff being ±16% to ±26% and ±32% to ±40% respectively. The uncertainty 6 

around reservoir yield for a 1x mean annual runoff reservoir is approximately ±37% to ±66% 7 

and ±18% to ±28% for a 3x mean annual runoff reservoir. 8 

The amplification of precipitation and temperature within-GCM uncertainty in runoff and 9 

reservoir yield has significant implications for interpreting climate change impact assessments 10 

of these variables. For example, in Figures 5 (MAP, MAT), 9 (MAR, SDR) and 12 (3xMAR 11 

yield) we presented within-GCM uncertainty box-plots for two periods for each GCM and the 12 

‘Raw’ value associated with each box-plot that would be the only value available in a 13 

traditional climate change impact assessment for the Herbert River at Gleneagle. For MAT 14 

(Figure 5b), low within-GCM uncertainty allows conclusions based on analysis of the ‘Raw’ 15 

values to be consistent with conclusions drawn from the box-plots – the ‘Raw’ values indicate 16 

MAT is projected to increase by ~5% between the two periods and the box-plots don’t 17 

overlap between the two periods for any of the GCMs. However, for variables where within-18 

GCM uncertainty is higher, conclusions drawn from a traditional climate change impact 19 

assessment would be misleading. For example, in Figure 5a MIUB(1) shows the largest 20 

increase in ‘Raw’ MAP between the two periods (14.7%), yet the box-plots for this GCM 21 

clearly overlap and the increase in median MAP is only 4.3%. Similarly in Figure 9a 22 

MIUB(1) shows the largest increase in ‘Raw’ MAR between the two periods (34.1%), yet the 23 

box-plots for this GCM overlap and the increase in median MAR is only 0.3%. Finally, in 24 

Figure 12 MIUB(1) shows the largest increase in ‘Raw’ reservoir yield between the two 25 

periods (41.3%), yet the box-plots for this GCM overlap and the increase in median yield is 26 

only 0.6%. A traditional, without stochastic replication, climate change impact assessment 27 

reporting future increases in MAP, MAR and reservoir yield of 14.7%, 34.1% and 41.3% 28 

respectively would initially seem significant, yet our approximation of within-GCM 29 

uncertainty suggests these increases could be solely due to within-GCM uncertainty. 30 

Finally, we expect our results are an under-estimate of the true within-GCM uncertainty due 31 

to our stochastic method only approximating the uncertainty around the overall GCM trend 32 
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and not the uncertainty in the GCM trend itself. To obtain a true estimate of within-GCM 1 

uncertainty requires analysis of many (≥100) GCM runs of a given scenario. Until 2 

considerably more GCM runs of a scenario become available the methodology presented here 3 

provides an interim objective technique for estimating the influence of within-GCM 4 

uncertainty on climate change impact assessments that is suitable for existing, or future, GCM 5 

scenario runs. Climate change impact assessments based on projections that do not take into 6 

account within-GCM uncertainty risk providing water resources management decision makers 7 

with a sense of certainty that is unjustified. 8 
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Table 1. Comparison between MIROCM(1) GCM estimates of mean and standard deviation 1 

of annual precipitation and mean annual temperature of 20C3M data and stochastically 2 

generated values for six world-wide catchments. Generated values are based on 100 3 

replicates, each 151 years long. 4 

Reference number 1237 3284 4133 5410 6043 6304 

River Faleme Duck Huasco Prut Donnelly Pioneer 

Station Gourbassy Columbia Algodones Chernovtzsy Nannup 

Road Br 

Pleystowe 

Mill 

Lat° 13.23 35.62 -28.73 48.26 -34.33 -21.15 

Longº -11.38 -87.03 -70.5 25.95 115.77 149.05 

Catchment area (km2)† 14698 3140 7269 6874 755 1375 

Köppen climate zone* Aw Cfa BWk Dfb Csb Cwa 

MAP (mm yr-1) GCM 1120 1111 126 763 620 1039 

Gen+ 1120±20 1111±13 126±3.3 763±8.3 620±8.8 1039±99 

SDP (mm yr-1) GCM 212 155 39.1 94.7 94.4 274 

Gen 213±13 156±9 39.1±2.6 94.9±5.6 95.6±6.3 302±71 

Precipitation 

lag-1 

GCM 0.13 0.07 0.00 0.03 0.16 0.16 

Gen 0.17±0.08 0.10±0.07 0.01±0.08 0.09±0.08 0.24±0.07 0.77±0.07 

MAT (°C) GCM 26.6 16.6 15.0 8.87 14.8 22.5 

Gen 26.6±0.03 16.6±0.04 15.0±0.03 8.87±0.06 14.8±0.02 22.5±0.04 

† catchment area from digital elevation model (see Peel et al., 2010) is within 5% of reported 5 

catchment area. 6 

* see Peel et al. (2007) 7 

+ Gen: shows the mean value ± standard deviation of 100 replicates; MAP: mean annual 8 

precipitation; SDP: standard deviation of annual precipitation; MAT: mean annual 9 

temperature  10 

11 
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Table 2. Comparison between MIROCM(1) GCM estimates of mean and standard deviation 1 

of monthly precipitation and mean monthly temperature of 20C3M data and stochastically 2 

generated values for catchment 6304. Generated values are based on 100 replicates, each 151 3 

years long. 4 

Month MMP (mm month-1)* SDMP (mm month-1) MMT (°C) 

GCM Gen+ GCM Gen GCM Gen 

1 163 158±10 103 86.3±7.9 26.3 26.3±0.1 

2 172 168±10 93.3 80.8±6.9 26.2 26.2±0.1 

3 150 147±9.3 79.4 72.2±5.5 25.1 25.1±0.1 

4 75.1 73.8±11 45.0 49.1±4.6 23.0 23.0±0.1 

5 52.3 53.1±11 30.5 40.0±5.3 20.5 20.5±0.1 

6 48.3 50.4±9.9 36.7 41.1±5.0 18.5 18.5±0.1 

7 31.5 38.1±9.2 29.0 39.4±5.8 17.5 17.5±0.1 

8 34.4 38.0±9.3 32.8 36.8±5.4 18.7 18.7±0.1 

9 33.1 37.5±9.7 28.6 35.6±5.7 20.8 20.8±0.1 

10 54.8 56.2±9.8 38.6 44.7±4.4 23.0 23.0±0.1 

11 96.4 93.9±8.8 59.0 58.9±4.4 24.6 24.6±0.1 

12 127 125±10 83.2 75.0±6.7 26.0 26.0±0.1 

*MMP: mean monthly precipitation; SDMP: standard deviation of monthly precipitation; 5 
MMT: mean monthly temperature. 6 

+ Gen: shows the mean value ± standard deviation of 100 replicates. 7 
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Table 3. Details of the 17 selected catchments. 1 

Ref. 

No. 

Country River Station Lat° Longº Catchment 

area (km2) 

Length of 

record 

(years) 

Köppen 

climate 

zone* 

1202 Mali Bafing Daka Saydou 12.15 -10.2 15500 21 Aw 

1325 Benin Oueme Pont de Beterou 9.2 2.27 10326 16 Aw 

1333 Zimbabwe Sabi Condo D/S G/W -19.22 32.02 11000 26 Cwb 

2270 China Songhuajiang Haerbin 45.77 126.58 391000 34 Dwa/Dwb 

2274 India Tapi Kathore 21.28 72.95 61575 18 Aw/BSh 

2288 China Wujiang Gongtan 28.9 108.35 58300 37 Cfa 

3195 USA Kiamichi Belzoni 34.2 -95.48 3686 45 Cfa 

3279 USA Black Kingstree 33.66 -79.84 3243 54 Cfa 

3543 USA Umpqua Elkton 43.58 -123.55 9539 19 Csb 

4014 Colombia Magdalena Puerto Berrio 6.5 -74.38 74410 31 Af/Aw/Cfb 

4019 Guyana Cuyuni Kamaria Falls 6.43 -58.82 53354 30 Af/Aw 

4145 Chile Lumaco Lumaco -38.15 -72.9 1054 40 Csb 

4179 Brazil Rio Jaguaribe Iguatu -6.35 -39.3 21770 32 BSh 

5255 United 

Kingdom 

Clyde Blairston 55.8 -4.07 1704 24 Cfb 

6058 Australia Herbert Gleneagle -18.2 145.33 5236 80 Cwa 

6103 Australia Nymboida Nymboida -29.98 152.72 1660 73 Cfa 

6279 Australia Ovens Wangaratta -36.36 146.35 5410 41 Cfb 

*see Peel et al. (2007). 2 
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Table 4. Variation and uncertainty in key hydrologic statistics for five highest ranking GCMs 1 

and 17 catchments, based on 100 replicates of de-trended 20C3M for the period 1965-1994. 2 

Hydrologic variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) 
1202 Bafing at Daku Saydou (Mali) 
Annual P MAP 1733±45* 1700±46 1743±43 1743±39 1693±41 

SDP 195±27 201±28 182±21 206±30 194±26 
Annual T MAT 23.7±0.05 23.6±0.04 23.7±0.05 23.7±0.06 23.8±0.05 
Annual R MAR 620±33 589±33 595±30 587±27 566±29 

SDR 143±21 147±22 126±16 143±21 135±19 
Lag-1 0.14±0.17 0.11±0.19 0.12±0.19 0.05±0.19 0.05±0.19 

1325 Oueme at Pont de Beterou (Benin) 
Annual P MAP 1292±30 1358±41 1257±37 1309±28 1254±30 

SDP 169±21 193±28 169±24 159±22 157±21 
Annual T MAT 26.3±0.04 26.2±0.04 26.3±0.05 26.3±0.05 26.4±0.04 
Annual R MAR 226±18 272±24 189±20 202±16 161±14 

SDR 99±14 115±18 96±14 86±13 80±12 
Lag-1 -0.03±0.19 0.05±0.18 0.16±0.19 -0.09±0.16 -0.07±0.18 

1333 Sabi at Condo D/S G/W (Zimbabwe) 
Annual P MAP 823±38 799±35 855±26 785±41 854±44 

SDP 204±27 185±24 149±19 185±24 214±28 
Annual T MAT 19.3±0.09 19.4±0.06 19.3±0.06 19.4±0.07 19.4±0.06 
Annual R MAR 146±17 120±14 130±10 115±15 128±17 

SDR 93±19 75±17 59±9 72±15 87±21 
Lag-1 -0.07±0.17 -0.01±0.19 -0.09±0.17 0.01±0.19 0.06±0.18 

2270 Songhuajiang at Haerbin (China) 
Annual P MAP 492±20 477±18 510±16 495±16 514±17 

SDP 84±14 72±13 72±10 84±12 79±11 
Annual T MAT 1.5±0.13 1.7±0.11 1.7±0.18 1.8±0.14 1.8±0.11 
Annual R MAR 91±10 87±10 99±9 90±9 100±9 

SDR 39±7 37±8 37±6 41±6 39±6 
Lag-1 0.25±0.16 0.20±0.19 0.19±0.18 0.19±0.16 0.19±0.17 

2274 Tapi at Kathore (India) 
Annual P MAP 887±38 865±40 854±38 815±42 891±46 

SDP 204±27 190±23 175±22 206±24 216±34 
Annual T MAT 26.9±0.07 26.9±0.07 26.7±0.10 26.9±0.10 26.7±0.08 
Annual R MAR 259±25 269±28 259±25 241±27 282±32 

SDR 129±19 131±19 117±16 135±18 143±23 
Lag-1 0.02±0.18 0.04±0.19 0.09±0.17 -0.04±0.17 0.21±0.21 

2288 Wujiang at Gongtan (China) 
Annual P MAP 1136±31 1125±26 1186±27 1126±31 1172±29 

SDP 159±23 141±19 139±20 147±20 166±25 
Annual T MAT 15.7±0.09 15.8±0.09 15.7±0.08 15.8±0.09 15.7±0.08 
Annual R MAR 589±31 576±27 640±27 578±32 625±28 

SDR 137±23 126±18 122±18 127±19 143±22 
Lag-1 0.17±0.16 0.22±0.17 0.00±0.18 0.16±0.17 0.07±0.18 

3195 Kiamichi at Belzoni (United States) 
Annual P MAP 1237±53 1302±60 1260±42 1318±65 1308±49 
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SDP 267±38 260±38 242±33 284±43 269±36 
Annual T MAT 17.1±0.12 16.8±0.13 16.7±0.14 16.6±0.13 16.9±0.11 
Annual R MAR 407±37 466±47 419±35 483±53 480±41 

SDR 199±30 213±34 187±29 227±38 221±31 
Lag-1 0.02±0.17 0.06±0.19 -0.02±0.17 0.08±0.21 0.01±0.17 

3279 Black at Kingstree (United States) 
Annual P MAP 1110±60 1147±43 1164±29 1127±47 1187±37 

SDP 236±34 198±26 177±23 231±33 208±29 
Annual T MAT 17.5±0.12 17.3±0.11 17.3±0.11 17.4±0.12 17.5±0.11 
Annual R MAR 255±37 276±29 272±21 273±31 294±25 

SDR 140±26 128±22 112±18 143±24 130±19 
Lag-1 0.24±0.17 0.15±0.20 0.05±0.21 0.14±0.18 0.04±0.19 

3543 Umpqua at Elkton (United States) 
Annual P MAP 1085±44 1088±43 1025±36 1134±42 1142±36 

SDP 211±29 224±29 197±27 218±27 217±31 
Annual T MAT 10.3±0.12 10.8±0.09 10.5±0.10 10.7±0.08 10.6±0.11 
Annual R MAR 752±38 734±40 679±35 784±37 801±33 

SDR 189±26 213±27 183±26 203±26 191±26 
Lag-1 0.02±0.19 -0.01±0.19 -0.02±0.20 -0.01±0.19 -0.02±0.17 

4014 Magdalena at Puerto Berrio (Colombia) 
Annual P MAP 1962±46 1843±57 1800±53 1905±37 1901±40 

SDP 226±32 189±30 145±25 206±31 176±24 
Annual T MAT 20.7±0.08 20.7±0.05 20.7±0.07 20.7±0.07 20.8±0.08 
Annual R MAR 1085±30 1007±37 978±34 1047±24 1044±26 

SDR 138±20 115±20 85±17 121±17 103±16 
Lag-1 0.15±0.18 0.42±0.17 0.50±0.16 0.06±0.16 0.26±0.18 

4019 Cuyuni at Kamaria Falls (Guyana) 
Annual P MAP 1566±89 1457±90 1454±31 1413±49 1442±42 

SDP 306±43 258±46 185±26 218±33 244±31 
Annual T MAT 25.1±0.11 25.3±0.13 25.1±0.08 25.2±0.07 25.2±0.06 
Annual R MAR 818±85 697±87 686±31 650±48 673±40 

SDR 293±39 236±49 164±22 203±30 227±30 
Lag-1 0.33±0.17 0.53±0.19 -0.03±0.17 0.21±0.17 -0.04±0.17 

4145 Lumaco at Lumaco (Chile) 
Annual P MAP 1084±47 1037±58 1096±50 1088±43 1052±43 

SDP 217±28 204±29 210±29 224±35 210±29 
Annual T MAT 11.5±0.07 11.6±0.10 11.5±0.08 11.5±0.08 11.6±0.09 
Annual R MAR 595±38 553±47 613±41 584±37 564±35 

SDR 171±24 161±25 175±24 188±31 167±24 
Lag-1 0.12±0.18 0.39±0.17 0.23±0.18 0.06±0.20 0.09±0.17 

4179 Rio Jaguaribe at Iguata (Brazil) 
Annual P MAP 801±96 808±65 675±34 744±38 694±46 

SDP 315±53 266±44 180±23 236±34 260±40 
Annual T MAT 26.6±0.12 26.6±0.12 26.5±0.09 26.5±0.14 26.9±0.08 
Annual R MAR 51.5±22 48.7±16 45.3±9.0 64.7±14 56.4±16 

SDR 81.0±34 62.0±24 50.1±14 76.9±22 81.6±30 
Lag-1 0.20±0.19 0.16±0.19 0.00±0.18 -0.02±0.17 -0.05±0.17 

5255 Clyde at Blairston (United Kingdom) 
Annual P MAP 1025±29 1032±29 989±27 1026±28 978±30 

 43 



SDP 154±20 140±17 147±20 134±16 140±20 
Annual T MAT 8.4±0.09 8.5±0.10 8.7±0.10 8.4±0.10 8.7±0.10 
Annual R MAR 762±28 774±29 717±27 784±31 704±30 

SDR 149±20 141±17 149±19 145±21 141±21 
Lag-1 -0.05±0.16 0.05±0.19 0.00±0.19 -0.02±0.17 0.04±0.18 

6058 Herbert at Gleneagle (Australia) 
Annual P MAP 854±44 908±73 900±42 873±50 868±44 

SDP 245±42 323±52 253±40 267±50 251±37 
Annual T MAT 21.5±0.09 21.4±0.08 21.5±0.11 21.5±0.09 21.6±0.07 
Annual R MAR 184±28 230±44 210±29 202±29 201±29 

SDR 150±34 206±45 161±33 166±39 158±31 
Lag-1 -0.06±0.17 0.03±0.16 -0.08±0.17 0.01±0.19 -0.03±0.19 

6103 Nymboida at Nymboida (Australia) 
Annual P MAP 1477±83 1432±88 1479±69 1497±92 1474±90 

SDP 414±72 436±66 365±55 437±62 412±66 
Annual T MAT 17.1±0.07 17.0±0.06 17.2±0.08 17.0±0.08 17.2±0.06 
Annual R MAR 493±59 475±59 480±48 510±64 485±61 

SDR 268±61 282±59 236±47 289±55 270±59 
Lag-1 0.11±0.18 0.15±0.18 0.03±0.20 0.20±0.14 0.11±0.19 

6279 Ovens at Wangaratta (Australia) 
Annual P MAP 1137±58 823±42 1057±36 1074±48 1040±42 

SDP 243±33 181±25 206±30 257±33 214±33 
Annual T MAT 12.6±0.08 12.4±0.10 12.7±0.11 12.5±0.10 13.0±0.08 
Annual R MAR 215±24 106±14 186±15 195±21 182±18 

SDR 105±17 60±10 84±15 106±15 88±14 
Lag-1 0.14±0.17 0.29±0.17 0.00±0.18 0.01±0.16 0.07±0.18 

* Mean value ± standard deviation based on 100 replicates. 1 
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Table 5. Relative within-GCM uncertainty of mean and standard deviation of annual 1 

precipitation, mean annual temperature and mean, standard deviation and lag-1 serial 2 

correlation of annual runoff. Relative uncertainty is the standard deviation of the 100 replicate 3 

estimates as a percentage of the mean replicate estimate for each GCM during the period 4 

1965-1994 (20C3M). The average of the 17 catchment relative uncertainty values is 5 

presented, except for lag-1 annual runoff which is the average of the 17 standard deviations. 6 

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average 

MAP 4.6% 4.6% 3.4% 3.9% 3.8% 4.1% 

SDP 14.4% 14.6% 13.9% 14.2% 14.2% 14.3% 

MAT 1.0% 0.9% 1.1% 1.0% 0.8% 1.0% 

MAR 10.8% 10.9% 8.1% 9.3% 9.3% 9.7% 

SDR 17.9% 18.4% 16.4% 16.8% 17.3% 17.4% 

Lag-1 0.17 0.18 0.18 0.18 0.18 0.18 
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Table 6. Relative within-GCM uncertainty of mean and standard deviation of annual 1 

precipitation, mean annual temperature and mean, standard deviation and lag-1 serial 2 

correlation of annual runoff. Relative uncertainty is the standard deviation of the 100 replicate 3 

estimates as a percentage of the mean replicate estimate for each GCM during the period 4 

2015-2044 (A1B). The average of the 17 catchment relative uncertainty values is presented, 5 

except for lag-1 annual runoff which is the average of the 17 standard deviations. 6 

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average 

MAP 4.9% 4.9% 3.4% 3.8% 3.8% 4.2% 

SDP 14.7% 14.4% 14.4% 13.6% 13.7% 14.2% 

MAT 0.8% 0.6% 0.7% 0.8% 0.7% 0.7% 

MAR 13.0% 11.7% 8.0% 8.9% 9.0% 10.1% 

SDR 20.1% 18.8% 16.6% 16.0% 16.5% 17.6% 

Lag-1 0.18 0.17 0.18 0.18 0.18 0.18 
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Table 7. Average and within-GCM uncertainty of reservoir yield (mm year-1) for 17 1 

catchments using the Gould-Dincer Gamma reservoir storage model for two reservoir sizes 2 

(τ  = 1x MAR and τ  = 3x MAR) and 95% reliability of draft. Average and uncertainty 3 

(standard deviation) are calculated from 100 bias-corrected replicates of precipitation and 4 

temperature passed through the PERM model for each GCM over the period 2015-2044 5 

(A1B). 6 

Ref. 
No. 

Observed Relative 
reservoir 
size 

HadCM3 
(mm yr-1) 

MIROCM(1) 
(mm yr-1) 

MIUB(1) 
(mm yr-1) 

MPI(1) 
(mm yr-1) 

MRI(3) 
(mm yr-1) MAP 

(mm 
yr-1) 

MAR 
(mm 
yr-1) 

CvR‡ 

1202 1672 569 0.26 1xMAR 609±40 531±39 620±34 516±34 477±33 
3xMAR 632±33 560±34 641±28 537±31 497±25 

1325 1253 194 0.54 1xMAR 208±23 238±29 194±40 188±20 121±19 
3xMAR 229±18 268±25 228±28 205±16 143±14 

1333 809 126 0.75 1xMAR 90.7±23 75.9±23 112±15 56.6±19 58.0±27 
3xMAR 119±15 105±13 125±10 82.8±11 93.4±15 

2270 495 93.9 0.46 1xMAR 68.3±21 74.0±15 89.3±13 70.1±18 82.2±16 
3xMAR 88.6±11 89.8±9 100±8 87.6±10 95.7±10 

2274 801 225 0.53 1xMAR 221±40 236±39 244±33 178±51 316±68 
3xMAR 259±27 277±28 278±25 226±29 371±43 

2288 1158 617 0.20 1xMAR 557±45 429±44 601±28 541±36 550±37 
3xMAR 587±33 459±34 615±25 563±31 577±29 

3195 1234 416 0.45 1xMAR 243±53 197±77 336±42 362±66 391±58 
3xMAR 303±36 273±42 380±30 439±46 443±46 

3279 1122 260 0.54 1xMAR 173±69 104±40 220±37 236±69 259±42 
3xMAR 242±53 152±24 249±24 303±41 300±30 

3543 1078 721 0.35 1xMAR 599±43 605±44 560±36 688±38 762±39 
3xMAR 630±34 639±39 588±33 715±35 786±35 

4014 1900 1043 0.14 1xMAR 1046±37 1058±37 1204±63 1072±23 1122±28 
3xMAR 1059±35 1078±34 1247±41 1081±23 1131±27 

4019 1397 636 0.29 1xMAR 283±162 147±109 651±31 341±65 622±52 
3xMAR 475±90 243±88 669±29 400±38 657±42 

4145 1050 570 0.33 1xMAR 434±52 229±99 382±79 417±55 399±46 
3xMAR 476±38 318±54 441±46 464±40 433±34 

4179 636 38.9 1.37 1xMAR N/R* N/R 7.8±9 7.6±11 N/R 
3xMAR N/R N/R 30.8±9 37.9±14 19.9±13 

5255 1007 749 0.17 1xMAR 729±27 765±28 706±32 723±24 714±31 
3xMAR 742±24 777±27 722±30 735±22 727±29 

6058 873 201 0.88 1xMAR 59.8±41 52.6±61 116±48 83.5±55 89.3±52 
3xMAR 130±31 169±52 181±32 161±38 164±31 

6103 1455 482 0.59 1xMAR 251±109 494±146 391±85 264±112 273±102 
3xMAR 370±58 653±96 476±54 394±64 390±61 

6279 1119 206 0.55 1xMAR 62.0±35 27.6±22 162±20 131±34 125±27 
3xMAR 107±20 54.7±17 184±15 169±21 155±19 
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‡ Coefficient of variation of annual runoff, * N/R indicates more than half the replicates had 1 

negative draft estimate set to zero, so statistics are not reported. 2 

3 
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Table 8. Relative within-GCM uncertainty of reservoir yield for hypothetical reservoirs of 1x 1 

and 3x MAR. The average of 17 catchment relative uncertainty values is presented. Relative 2 

uncertainty is the standard deviation of the 100 replicate estimates as a percentage of the mean 3 

replicate estimate for each GCM over the period 2015-2044 (A1B). 4 

Variable HadCM3 MIROCM(1) MIUB(1) MPI(1) MRI(3) Average 

1xMAR 25.9% 33.2% 19.6% 28.3% 18.6% 25.1% 

3xMAR 11.6% 14.3% 9.3% 11.6% 12.7% 11.9% 

5 
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 2 

Figure 1. Outline of process to approximate within-GCM uncertainty of future runoff and 3 

reservoir yield. The companion paper is McMahon et al. (2014). 4 

5 
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Figure 2. Structure of the monthly conceptual precipitation-evapotranspiration-runoff model 3 

(PERM) where the five calibration parameters are highlighted in bold. 4 

5 
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Figure 3. Locations of the initial 699 catchments and the final sub-set of 17 catchments. 3 

4 
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Figure 4. Within-GCM uncertainty for the Herbert River at Gleneagle based on seven runs 4 

from the CCSM GCM compared with the stochastic approximation of within-GCM 5 

uncertainty for un-bias corrected (a) annual precipitation and (b) annual temperature. In each 6 

plot the maximum, median and minimum annual value for a given year are shown for the 7 

seven CCSM runs compared with the maximum, median and minimum of the 700 (7 x 100) 8 

stochastic replicates of the CCSM runs. 9 

10 
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 3 

Figure 5. Box-plots of 30-year mean annual (a) precipitation and (b) temperature for the 4 

periods 1965-1994 (20C3M) and 2015-2044 (A1B) for five GCMs. Each box-plot is based on 5 

100 quantile-quantile bias-corrected stochastic replicates of GCM data for catchment 6058 – 6 

Herbert River at Gleneagle (Australia). The box represents the inter-quartile range and the 7 

whiskers extend to the maximum and minimum values. The ‘Raw’ value next to each box-8 
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plot represents the bias-corrected mean annual value from the GCM run that the stochastic 1 

replicates are based on. 2 

3 
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Figure 6. Within-GCM uncertainty (mm year-1) in mean annual precipitation versus mean 3 

annual precipitation based on 100 replicates of monthly precipitation (1965-1994, 20C3M) for 4 

five GCMs. 5 

6 
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Figure 7. Within-GCM uncertainty (mm year-1) in standard deviation of annual precipitation 3 

versus the standard deviation of annual precipitation based on 100 replicates of monthly 4 

precipitation (1965-1994, 20C3M) for five GCMs. 5 

6 
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Figure 8. Within-GCM uncertainty (oC) in mean annual temperature versus mean annual 3 

temperature based on 100 replicates of monthly temperature (1965-1994, 20C3M) for five 4 

GCMs. 5 

6 
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 3 

Figure 9. Box-plots of 30-year (a) mean annual runoff and (b) standard deviation of annual 4 

runoff for the periods 1965-1994 (20C3M) and 2015-2044 (A1B) for five GCMs. Each box-5 

plot is based on 100 quantile-quantile bias-corrected stochastic replicates of GCM data that 6 

have been input to the PERM model of catchment 6058 – Herbert River at Gleneagle 7 

(Australia). The box represents the inter-quartile range and the whiskers extend to the 8 

maximum and minimum values. The ‘Raw’ value next to each box-plot represents the PERM 9 

output when using the bias-corrected GCM runs that the stochastic replicates are based on. 10 

11 
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Figure 10. Within-GCM uncertainty (mm year-1) in mean annual runoff versus mean annual 3 

runoff based on 100 PERM runs using replicates of monthly precipitation and temperature 4 

(1965-1994, 20C3M) as input from five GCMs. 5 
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Figure 11. Within-GCM uncertainty (mm year-1) in standard deviation of annual runoff versus 3 

standard deviation of annual runoff based on 100 PERM runs using replicates of monthly 4 

precipitation and temperature (1965-1994, 20C3M) as input from five GCMs. 5 
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Figure 12. Box-plots of average reservoir yield for the 30-year periods 1965-1994 (20C3M) 3 

and 2015-2044 (A1B) for five GCMs. Reservoir yield is estimated using the Gould-Dincer 4 

Gamma reservoir storage model for reservoir size τ  = 3x MAR and 95% reliability of draft. 5 

Runoff metrics for the Gould-Dincer Gamma method are estimated from 100 PERM runs of 6 

quantile-quantile bias-corrected stochastic replicates of GCM data for catchment 6058 – 7 

Herbert River at Gleneagle (Australia). The box represents the inter-quartile range and the 8 

whiskers extend to the maximum and minimum values. The ‘Raw’ value next to each box-9 

plot represents the Gould-Dincer Gamma output when using the bias-corrected GCM runs 10 

that the stochastic replicates are based on. 11 

12 
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Figure 13. Within-GCM uncertainty (mm year-1) in reservoir yield versus reservoir yield 3 

based on 100 Gould-Dincer Gamma estimates (hypothetical capacity: τ  = 3, reliability of 4 

draft: 95%) from PERM runs of monthly precipitation and temperature replicates (2015-2044, 5 

A1B) from five GCMs. 6 
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Figure 14. Within-GCM uncertainty (mm year-1) in reservoir yield versus standard deviation 3 

of annual runoff based on 100 Gould-Dincer Gamma estimates (hypothetical capacity: τ  = 3, 4 

reliability of draft: 95%) from PERM runs of monthly precipitation and temperature replicates 5 

(2015-2044, A1B) from five GCMs. 6 

 7 

 64 


	Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of Global Climate Model data
	M. C. Peel1, R. Srikanthan2, T. A. McMahon1 and D. J. Karoly3
	Abstract

	1 Introduction
	2 Methodology and related literature
	2.1 Overall methodology
	2.2 De-trend GCM data
	2.3 Stochastic data generation
	2.4 Quantile-quantile bias correction of P and T
	2.5 Monthly Precipitation-Evapotranspiration-Runoff Model (PERM)
	2.5.1 Model structure
	2.5.2 Model calibration
	2.5.3 Model performance and catchment selection

	2.6 Uncertainty in reservoir yield

	3 Testing the stochastic within-GCM uncertainty approximation
	4 Results and Discussion
	4.1 Annual precipitation and temperature
	4.2 Annual runoff
	4.3 Reservoir yield

	5 Conclusions and Implications
	Acknowledgements
	References


