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Abstract

abstr
Coupled hydrological-hydrogeological models, emphasising the importance of the stream–

aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies
aiming at investigating environmental issues. Based on an extensive literature review, stream–5

aquifer interfaces are described at five different scales: local [10 cm–∼ 10 m], intermediate
[∼ 10 m–∼ 1 km], watershed [10 km2–∼ 1000 km2], regional [10 000 km2–∼ 1 M km2] and
continental scales [> 10 M km2]. This led us to develop the concept of nested stream–aquifer
interfaces, which extends the well-known vision of nested groundwater pathways towards the
surface, where the mixing of low frequency processes and high frequency processes coupled10

with the complexity of geomorphological features and heterogeneities creates hydrological spi-
ralling. This conceptual framework allows the identification of a hierarchical order of the multi-
scale control factors of stream–aquifer hydrological exchanges, from the larger scale to the finer
scale. The hyporheic corridor, which couples the river to its 3D hyporheic zone, is then iden-
tified as the key component for scaling hydrological processes occurring at the interface. The15

identification of the hyporheic corridor as the support of the hydrological processes scaling is
an important step for the development of regional studies, which is one of the main concerns
for water practitioners and resources managers.

In a second part, the modelling of the stream-aquifer interface at various scales is investigated
with the help of the conductance model. Although the usage of the temperature as a tracer of the20

flow is a robust method for the assessment of stream–aquifer exchanges at the local scale, there
is a crucial need to develop innovative methodologies for assessing stream–aquifer exchanges
at the regional scale. After formulating the conductance model at the regional and intermedi-
ate scales, we address this challenging issue with the development of an iterative modelling
methodology, which ensures the consistency of stream–aquifer exchanges between the interme-25

diate and regional scales.
Finally, practical recommendations are provided for the study of the interface using the in-

novative methodology MIM (Measurements-Interpolation-Modelling), which is graphically de-
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veloped, scaling in space the three pools of methods needed to fully understand stream–aquifer
interfaces at various scales. In the MIM space, stream–aquifer interfaces that can be studied by a
given approach are localized. The efficiency of the method is demonstrated with two examples.
The first one proposes an upscaling framework, structured around river reaches of ∼ 10-100 m,
from the local to the watershed scale. The second example highlights the usefulness of space5

borne data to improve the assessment of stream–aquifer exchanges at the regional and continen-
tal scales. We conclude that further developments in modelling and field measurements have to
be undertaken at the regional scale to enable a proper modelling of stream-aquifer exchanges
from the local to the continental scale.

1 Introduction10

intro
The emergence of a systemic view of the hydrological cycle led to the concept of continental

hydrosystem (Dooge, 1968; Kurtulus et al., 2011), which “is composed of storage components
where water flows slowly (e.g. aquifers) and conductive components, where large quantities
of water flow relatively quickly (e.g. surface water)” (Flipo et al., 2012, p. 1). This concept15

merges surface and ground waters into the same hydrological system through the stream–aquifer
interface. Recently, Fan et al. (2013) estimated that 22 - 32 % of the land surface is influ-
enced by shallow groundwater. As a key transitional component characterised by a high spatio-
temporal variability in terms of physical and biogeochemical processes (Brunke and Gonser,
1997; Krause et al., 2009b), this interface requires further consideration for characterising the20

hydrogeological behaviour of basins (Hayashi and Rosenberry, 2002), and therefore continental
hydrosystem functioning (Saleh et al., 2011).

Water exchange dynamics at the stream–aquifer interface are complex and mainly depend
on geomorphological, hydrogeological, and climatological factors (Sophocleous, 2002; Winter,
1998). Recent eco-hydrological publications, dedicated to stream–aquifer interfaces, claim the25

recognition of the complexity of the multi-scale processes taking place at the interface (Ellis
et al., 2007; Hancock et al., 2005; Poole et al., 2008; Stonedahl et al., 2012).
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A number of published papers address the problem of reactive transport through the stream
aquifer interface. These papers imply sophisticated models, which represent the dynamics of
pollutants at the local scale (Bardini et al., 2012; Chen and MacQuarrie, 2004; Doussan et al.,
1997; Gu et al., 2008; Marzadri et al., 2011; Peyrard et al., 2011) fairly well, taking into ac-
count the effect of local heterogeneities, micro-topography and of sharp redox gradients on the5

exchanged fluxes. These models are used to investigate complex processes, such as the effect
of micro-topography on flow paths and associated geochemical fluxes (Frei et al., 2012), or
the potential effect of bank storage on denitrification (Gu et al., 2012), as well as the effect on
the stream curvature to hyporheic biogeochemical zonation (Boano et al., 2010b). At the re-
gional scale, coupled rainfall-runoff hydrological models and biogeochemical models are able10

to simulate pollutant transport and removal such as nitrates (Billen and Garnier, 2000; Oeurng
et al., 2010; Seitzinger et al., 2002; Thouvenot-Korppoo et al., 2009). These models i) under-
estimate the absolute water flux, flowing upwards and/or downwards, through the interface,
and ii) poorly simulate pollutants removal due to water fluxes through the sharp redox gradi-
ent of the hyporheic zone. This is due to their tautological nature, which does not integrate the15

proper physical processes, and also to their discretisation which does not account for sub-cell
heterogeneities. Few applications considered the potential reversal of flow at the interface and
its impact on nitrate removal at the catchment scale (Conan et al., 2003; Galbiati et al., 2006),
but until today the exact quantification of the intensity of the removal due to various processes
occurring at the stream-aquifer interface remains uncertain (Flipo et al., 2007a). Although cer-20

tain control factors of biogeochemical processes occurring at the stream-aquifer interface are
known, such as water residence time, nitrate concentration or organic matter content (Carleton
and Montas, 2010; Dahm et al., 1998; Hill et al., 1998; Kjellin et al., 2007; Peyrard et al., 2011;
Rivett et al., 2008; Weng et al., 2003), as well as water level fluctuations (Burt et al., 2002;
Dahm et al., 1998; Hefting et al., 2004; Turlan et al., 2007), numerical models remain limited25

by their ability to simulate water pathways in the interface properly (Burt, 2005). Consequently,
large scale biogeochemical models lack predictive abilities with regards to climate change is-
sues or the assessment of the implementation of environmental regulatory frameworks, such as
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the European Water Framework Directive (WFD) (Parliament Council of the European Union,
2000).

Although the number of papers concerning stream-aquifer interfaces exponentially increased
over the last 15 years (Fleckenstein et al., 2010), they mostly focus on local scale issues, follow-
ing a classic bottom-up scientific approach (Nalbantis et al., 2011). The lack of models aiming5

at quantifying stream aquifer exchanges at large basins’ scale was already alleged by Fleck-
enstein et al. (2010) and Krause et al. (2011). The current review quantitatively confirms that
the larger the scale (scale in the sense of model dimension), the less understood the interfaces.
This is one of the major concerns for large scale river basin managers. Indeed, they have dif-
ficulties to fulfill the requirements of for instance the European WFD, especially for providing10

guidelines towards a good ecological status of both surface water bodies and subsurface wa-
ter bodies. State-of-the-art coupled surface-subsurface models nowadays fail to integrate eco-
hydrological concepts based on functionalities of morphological units (Bertrand et al., 2012;
Dahl et al., 2007), mostly because they are not able yet to integrate the multi-scale nature of the
stream–aquifer interfaces into a holistic view of the system.15

Consequently, innovative methodologies for assessing stream–aquifer exchanges at the re-
gional and continental scales need to be developed, which is a challenging issue for modellers
(Fleckenstein et al., 2010; Graillot et al., 2014). The aim of this paper is to pave the way towards
a multi-scale modelling of the stream-aquifer interface, with the ambitious goal of being able
to simulate the complexity of the processes occurring at the local scale in larger scale mod-20

els, i.e., at the regional scale for large basin decision makers, and also at the continental scale,
which is the primary scale of interest for the assessment of the effect of climate change on
hydrosystems. In other words, this paper aims at rationalising the modelling of stream–aquifer
interfaces within a consistent framework that fully accounts for the multi-scale nature of the
stream–aquifer exchange processes (Marmonier et al., 2012). This is a necessary primary step25

before assessing hydrological impacts on geochemical fluxes.
Following the attempt of Mouhri et al. (2013), who rationalised the design of a stream–aquifer

interface sampling system, we first define the various scales of interest. Based on a literature
review, we include the hydrologic spiralling concept of Poole et al. (2008) – which denotes the
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complexity of water pathways in heterogeneous alluvial plains – into the nested groundwater
pathways vision of Tóth (1963) to formulate the concept of nested stream–aquifer interfaces.
This concept then permits to identify stream–aquifer interfaces as a key transitional component
of continental hydrosystems (Sect. 2). We also introduce a hierarchical order of the multi-scale
controlling factors of stream–aquifer hydrological exchanges, from the larger scale to the finer5

scale. The stream network is finally identified as the key component for scaling hydrological
processes occurring at the interface. In Sect. 3, the paper focuses on the stream–aquifer inter-
face modelling at various scales, with up-to-date methodologies. After describing the modelling
approaches at the two extreme spatial scales, we emphasize which hydrological parameters and
variables have to be up and downscaled around the river and also for which models. Finally,10

integrating the telescopic approach of Kikuchi et al. (2012) with the nested stream-aquifer in-
terface concept, we develop the MIM (Measurements-Interpolation-Modelling) methodological
framework for the design of multi-scale studies of stream-aquifer exchanges based on a more
holistic view of the hydrosystem (Sect. 4). MIM is a valuable tool to define strategies for com-
bining field measurements and modelling approaches more easily. Given the usage of the MIM15

methodology, we show that the scaling of processes from the local to the watershed scale is
structured around river reaches of ∼ 10-100 m. We also analyse the question of how to model
stream-aquifer exchanges at the continental scale, and investigate the usage of remote sensing
data, which should improve global hydrological budgets. We conclude that further develop-
ments in modelling and field measurements have to be performed at the regional scale to enable20

the proper modelling of stream-aquifer exchanges from the local to the continental scale.

2 The concept of nested stream–aquifer interfaces

2.1 Historical developments of the nested stream-aquifer interface concept

Stream–aquifer interfaces have only been intensively surveyed for two decades (Fleckenstein
et al., 2006; Marmonier et al., 2012). Its study by the eco-hydrological community led to a re-25

conceptualisation of its nature from the river being seen as an impervious drain that collects
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the effective rainfall and transfers it to the ocean, towards a more subtle view that integrates
more spatio-temporal processes in the hydrosystem functioning. Indeed, the stream–aquifer in-
terface is now conceptualised as a filter through which water flows many times over various
spatial (from centimetres to kilometres) and temporal scales (from seconds to months) before
reaching the sea (Datry et al., 2008). One of the main challenges is to understand the role of the5

stream–aquifer interfaces in the hydro(geo)logical functioning of basins (Hayashi and Rosen-
berry, 2002). The multi-scale nature of the problem at hand imposes the definition of the scales
of interest.

The five commonly recognised scales (in this context scale refers to the size of the studied
objects) are the local, the reach, the catchment, the regional, and the continental scales (Blöschl10

and Sivapalan, 1995; Dahl et al., 2007; Gleeson and Paszkowski, 2013), being defined as:

– Local scale (or the experimental site scale) [10 cm–∼ 10 m]: this scale concerns the riverbed
or the hyporheic zone (HZ, see Sect. 2.2 for more details);

– Intermediate or reach scale [∼ 10 m–∼ 1 km]: it concerns the river reach, a pond or
a small lake;15

– Catchment–watershed scale [10 km2–∼ 1000 km2] or [∼ 1 km–∼ 10 km]: this scale con-
nects the stream network to its surface watershed and more broadly to the hydrosystem.
This is the scale from which surface-ground water exchanges are linked to the hydrologi-
cal cycle and the hydrogeological processes;

– Regional scale [10 000 km2–∼ 1 M km2] or [∼ 100 km–∼ 1000 km]: this is the scale of20

water resources management, and the one for which the least is known about stream–
aquifer exchange dynamics. For a conceptual analysis of the stream–aquifer interfaces,
the watershed and the regional scales can be merged into a single category referred to as
the regional scale (Mouhri et al., 2013). Merging these two scales is consistent with the
fact that a regional basin is a collection of smaller watersheds. The distinction between25

the two categories is only necessary to conceptualise the scaling of processes as discussed
in the final section of this paper;
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– Continental scale [> 10 M km2] or [∼ 1000 km–∼ 10000 km]: this scale is a collection
of regional scale basins. The difference with the regional scale is that there is a broader
range of hydro-climatic conditions, which imposes accounting for climatic circulations.

From a conceptual point of view, stream–aquifer exchanges are driven by two main factors:
the hydraulic gradient and the geological structure. The hydraulic gradient defines the water5

pathways (Winter, 1998), whereas the geological structure defines the conductive properties of
the stream–aquifer interface (White, 1993; Dahm. et al., 2003). These two factors are funda-
mental for hydrogeologists, who derive subsurface flow velocities and transfer times from those
factors. The time scale to be considered also varies depending on the studied object (HZ itself
or a sedimentary basin functioning) (Harvey, 2002). Estimating the stream–aquifer exchanges10

at a sedimentary basin scale then requires the combination of various processes with different
characteristic times or periods covering a wide range of temporal orders of magnitude (Blöschl
and Sivapalan, 1995; Cardenas, 2008b; Flipo et al., 2012; Massei et al., 2010): hour-day for
river processes, year-decade for effective rainfall, decade-century for subsurface transit time.

Mouhri et al. (2013) proposed a multi-scale framework to study stream–aquifer interfaces.15

Their approach is based on the observation that the two main hydrosystem components are
the surface and groundwater components, which are connected by nested interfaces (Fig. 1)
leading to patterns in residence time over the scales (Cardenas, 2008b). Stream–aquifer in-
terfaces consist in alluvial plain at the regional and watershed scales (Fig. 1a and b), while
within the alluvial plain, they consist in riparian zone at the reach scale (Fig. 1d). Within the20

riparian zone, they consist in the hyporheic zone at the local scale (Fig. 1c), and so on, un-
til the water column–benthos interface within the river itself (Fig. 1f). The concept of nested
stream–aquifer interfaces includes the hydrologic spiralling concept of Poole et al. (2008) into
the nested groundwater pathways vision of Tóth (1963), recently revisited to account for multi-
scale anisotropy (Zlotnik et al., 2011). Before further developing the multi-scale framework, the25

various descriptions of stream–aquifer interfaces are outlined from the local to the continental
scale. A classification by order of importance of heterogeneity controls on stream-aquifer water
exchanges is proposed in Sect. 2.6.
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2.2 The stream–aquifer interface at the local scale – The hyporheic zone

At the local scale (plot, river cross section), the stream–aquifer interface consists in a hyporheic
zone (HZ, Fig. 1c), which corresponds to an ecotone, whose extent varies dynamically in space
and time. This ecotone is at the interface between two more uniform, yet contrasted ecologi-
cal systems (Brunke and Gonser, 1997): the river and the aquifer. In a broad sense, the HZ is5

“the saturated transition zone between surface water and groundwater bodies that derives its
specific physical (e.g. water temperature) and biogeochemical (e.g. steep chemical gradients)
characteristics from active mixing of surface and groundwater to provide a habitat and refugia
for obligate and facultative species” (Krause et al., 2009a, p. 2103). White (1993) also indicates
that the HZ is located beneath the stream bed and in the stream banks that contain infiltrated10

stream water. Furthermore, Malard et al. (2002) identified five generic HZ configurations, that
depend on the structure of the subsurface medium, and especially on the location of the imper-
vious substratum:

1. No HZ: the stream flows directly on the impervious substratum. A perennial lateral HZ
can appear in a zone of significant longitudinal curvature of the stream, for instance in the15

case of meanders (Sect. 2.3.1).

2. No aquifer unit: a HZ can appear due to the infiltration of the stream water towards the
substratum or through the stream banks. In the former case, the substratum is located near
the stream bed sediments.

3. Existence of a HZ in a connected stream–aquifer system: the HZ is created by advective20

water from both the stream and the aquifer unit. The impervious substratum is located
beneath the aquifer unit.

4. Existence of a HZ in a disconnected stream–aquifer system: a distinct porous medium
lies in-between the stream bed and the aquifer unit. This porous medium would not be
saturated if the stream bed were impervious. In this configuration, two subcategories are25

to be found:
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a. The vertical infiltration of stream water towards the top of the aquifer unit generates
a zone of mixing waters at the top of the aquifer unit, far enough below the stream
bed to be disconnected from it;

b. A perched HZ is formed below the stream bed due to the infiltration of stream water.
In this particular case, the porous medium below the stream bed is either very thick or5

its conductive properties are so poor that the surface water may not reach the aquifer
unit.

Hydro-sedimentary processes generate heterogeneous, usually layered, streambed (Hatch
et al., 2010; Sawyer and Cardenas, 2009). In situ measurements revealed that the streambed
permeabilities range over several order of magnitude both vertically and horizontally (Leek10

et al., 2009; Ryan and Boufadel, 2007; Sawyer and Cardenas, 2009; Sebok et al., 2014). These
heterogeneities favoure horizontal flow paths rather than vertical flow paths (Marion et al., 2008;
Ryan and Boufadel, 2006), leading to a stratification of chemical concentration in the streambed
(Ryan and Boufadel, 2006). Overall the heterogeneities modify both the penetration depth and
the residence time of stream–aquifer exchanges (Cardenas et al., 2004; Salehin et al., 2004;15

Sawyer and Cardenas, 2009). The common hypothesis of an homogeneous bed therefore gen-
erates errors on the assessment of stream–aquifer exchanges (Cardenas et al., 2004; Frei et al.,
2010; Kalbus et al., 2009; Irvine et al., 2012), which are difficult to estimate for real case studies
due to the fact that small scale heterogeneities are difficult to assess.

Coupled to the structural heterogeneities, the micro-topography of the streambed modulates20

the exchanges longitudinally (Fig. 1f), due to the occurence of advective pumping (Cardenas
and Wilson, 2007a,b; Endreny et al., 2011; Janssen et al., 2012; Käser et al., 2013; Krause
et al., 2012b; Munz et al., 2011; Sawyer and Cardenas, 2009; Stonedahl et al., 2010).

2.3 The stream–aquifer interfaces at the intermediate scale –
The hyporheic corridor25

At the intermediate scale, the stream–aquifer interface consists of a complex mosaic of surface
and subsurface flow paths of variable length, depth, residence time, and direction, composing
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the hydrological spiralling concept of Poole et al. (2008). These flow paths are controlled by the
geometrical shapes and the hydraulic properties of the structural heterogeneities. Confronted
with such complexity, Brunke and Gonser (1997); Stanford and Boulton (1993) developed the
concept of “hyporheic corridor”, which considers, not only the river, but also its extension
as a continuum (Bencala et al., 2011; Malard et al., 2002) in the form of alluvial flow paths5

maintaining biodiversity patterns and ecosystem metabolism. The hyporheic corridor extends
the 2-D hyporheic zone (previous section) to a dynamical 3-D system, which links the actual
hydro-sedimentary behaviour of the river to its mid-term and long-term history by the means of
the sediment heterogeneities within the alluvial plain and the associated water pathways.

2.3.1 Morphological shaping related to the hydro-sedimentary river dynamics10

At the local scale, the hyporheic exchanges are described by 2-D water pathways across the het-
erogeneous stream bed and river banks. However, at the reach scale, rivers develop a complex
geometry, such as meander belts, which transforms the vertical 2-D understanding of hydrolog-
ical processes (Fig. 1c) into a more complicated 3-D system involving lateral water pathways
(Fig. 1d).15

At the reach scale, hyporheic exchanges therefore develop in various geomorphological struc-
tures, such as stream curvature (Fig. 1d), as well as in-stream pool and riffle sequences and
sediment bars (Fig. 1e). Each of these structures significantly affects stream-aquifer exchanges
(Stonedahl et al., 2010) involving a specific transfer time (Cardenas, 2008b).

As stated by Rubin et al. (2006, 2), there is ”a hierarchy of different bed form sizes in rivers”,20

consisting of ripples, dunes, and compound bars. These forms are related, through river morpho-
logical characteristics such as width, cross-section, and slope, to hydro-sedimentary processes
taking place in the river and forming stratasets (Bridge and Best, 1997; Paola and Borgman,
1991; Rubin et al., 2006).

Due to the longitudinal water head decrease along the flow, pool and riffle sequences are sub-25

mitted, from upstream to downstream, to a head gradient, which involves water downwelling
upstream riffles and water upwelling at the riffle tail (Crispell and Endreny, 2009; Frei et al.,
2010; Gooseff et al., 2006; Harvey and Bencala, 1993; Gariglio et al., 2013; Kasahara and
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Hill, 2006; Maier and Howard, 2011; Marzadri et al., 2011; Saenger et al., 2005; Tonina and
Buffington, 2007). Due to the sequence, stream-aquifer exchanges seem to increase with the
amplitude of the stream bed oscillations, until a threshold is reached (Trauth et al., 2013). Be-
sides combined stream bed oscillating frequencies may increase the intensity of the exchanges
in a complex way (Käser et al., 2013). Bedform induced hyporheic exchanges can be viewed5

as longitudinally 2D vertical processes. Similar 2D horizontal processes also occur in single or
alternating unit bars (Burkholder et al., 2008; Cardenas, 2009a; Deforet et al., 2009; Derx et al.,
2010; Marzadri et al., 2010; Shope et al., 2012) or bed form discontinuities (Hester and Doyle,
2008).

The development of a hyporheic zone inside a meander belt was recently simulated to esti-10

mate the water pathways involved by such a hyporheic flow (Boano et al., 2006; Revelli et al.,
2008; Cardenas, 2008a). The numerical results of Cardenas (2008a) prove that the shape of the
meander is responsible for the flow paths length and the residence time distribution within the
point bar. Only few exchanges and low discharges occur in the core of the meander, while the
neck is characterised by intense water exchanges between the river and the sediments (Rev-15

elli et al., 2008). The effect of successive meanders on water pathways and travel times was
also simulated in a homogeneous alluvial aquifer (Cardenas, 2009a), which can help restora-
tion projects involving channel modifications (Gomez et al., 2012). The sinuosity of the stream
depends on its functioning and the characteristics of its alluvial plain.

Although the stream morphological heterogeneities are of primary importance for the quan-20

tification of the water fluxes in the hyporheic corridor (Kasahara and Wondzell, 2003; Lautz
and Siegel, 2006; Tonina and Buffington, 2011; Wondzell et al., 2009), the understanding of the
stream-aquifer interactions also relies on a proper characterisation of the physical flow proper-
ties of alluvial plains and their various geomorphological units (Anderson et al., 1999).

2.3.2 Hydrofacies related to the alluvial plain architecture25

Alluvial plains are the result of the sedimentary infilling of valleys cut into the bedrock. In Qua-
ternary coastal settings, cutting and filling respond strongly to base-level fluctuations driven
by glacioeustatic sea-level changes (Schumm, 1993; Dalrymple, 2006). For upstream alluvial
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valleys beyond the influence of sea-level fluctuations, cutting and filling reflect complex inter-
actions between climate, tectonics, sediment supply and river drainage changes (Gibling et al.,
2011). Sediment heterogeneity within the alluvial plains is produced by the transport and de-
positional processes that have operated in different paleogeomorphic settings within the fluvial
system. This results in a complex stacking of lithofacies, bounded by erosional and depositional5

surfaces. These lithofacies are composed of sediments ranging over a broad scale of grain size
and sorting, and can be described in terms of hydraulic parameters (e.g. conductivity), defining
an hydrofacies (Anderson et al., 1999; Hornung and Aigner, 1999; Klingbeil et al., 1999; Heinz
et al., 2003; Fleckenstein et al., 2006). Sediment heterogeneity can thus produce sharp contrasts
in hydraulic conductivity of several orders of magnitude (Miall, 1996). Different scales of sed-10

iment heterogeneity are nested within an alluvial plain (Koltermann and Gorelick, 1996): grain
segregation in bedload and turbulent fluctuations of the flow produces heterogeneous cross-
stratification within bedforms at the centimetre scale (Allen, 1963, 1966). Sand and gravel bar
internal structures reflect the distribution of the sediment load in the water column, the succes-
sion of different flow stages, and the morphodynamic interactions with other bars and cross-bar15

channels (Bridge, 2006). Their sizes, highly variable but proportional to the channel size, range
between several tens to several hundreds of metres. At the kilometre scale, fine overbank de-
posits and abandoned channels filled with high organic content clays produce sharp lithological
contrasts with the coarser channelised facies.

The nature of sediment heterogeneity is closely linked to the functioning of the river channel20

and its associated floodplain, controlled by hydro-climatic, geologic and geomorphologic condi-
tions at the regional scale (Nanson and Croke, 1992). The degree of heterogeneity at the regional
scale between coarse channelized facies and less permeable floodplain deposits mainly depends
on the ratios between the rate of lateral migration of the river channel, the rate of vertical ac-
cretion by overbank deposits, the avulsive behaviour of the fluvial system, and the degree of25

confinement of the floodplain (Bristow and Best, 1993; Miall, 1996). The substratum on which
the channel migrates (containing the hyporheic zone), is thus composed of sediments represen-
tative either of an alluvial plain contemporaneous with present hydroclimatic conditions, or of
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relict floodplain elements formed under prior river flow regimes (Brunke and Gonser, 1997;
Nanson and Croke, 1992; Woessner, 2000).

The stream bed heterogeneities, coupled with the longitudinal variation of the bed, impact
the dynamics of the stream-aquifer exchanges by creating complex flow paths (Salehin et al.,
2004) as flow re-circulation (Cardenas et al., 2004). In the case of a meandering channel, sed-5

iment deposition on the inner meander bank results in the formation of a permeable point-bar
which texture and architecture reflects the flow characteristics and the sediment size distribution
within the water column. On the outer eroded bank, the sediment is composed of older deposits,
which composition eventually reflects the past history of construction of the alluvial plain. This
specific configuration creates asymmetrical stream aquifer interactions between the two river10

banks (O’Driscoll et al., 2010), and, depending on the outer bank sediment heterogeneities, can
generate preferential flow paths in the alluvial plain (Peterson and Sickbert, 2006).

The spatial distribution of porosity and transmissivity, associated with sediment heterogeneities,
impacts the dynamics of the stream-aquifer exchanges by creating flow recirculations both verti-
cally across the stream bed, and horizontally across the channel banks. Along with the sediment15

heterogeneities, the geomorphological structures of the alluvial plain can also create preferen-
tial pathways, which can have a significant impact on stream–aquifer exchanges (Conant, 2004;
Fleckenstein et al., 2006; Krause et al., 2007; Poole et al., 2002, 2008; Storey et al., 2003; van
Balen et al., 2008; Weng et al., 2003; Woessner, 2000). Overall, the preferential flow paths lead
to a spatially and temporally complex piezometric head distribution in the alluvial plain, es-20

pecially during transitional event as floods (Bendjoudi et al., 2002; Heeren et al., 2014; Koch
et al., 2011; Wondzell and Swanson, 1999; Wroblicky et al., 1998), when bank storage occurs
(Whiting and Pomeranets, 1997).

2.4 The stream–aquifer interfaces at the regional scale –
Buffering effect of alluvial plains25

The pioneer work of Tóth (1963) showed that topography, geology and climate are major control
factors of hierarchically nested groundwater flow systems: local, intermediate and regional.
These nested flow systems are gravity driven from uphill to downhill. The piezometric surface
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of the groundwater near the alluvial plain usually flattens and becomes highly correlated to the
soil surface topography (Tóth, 1962). It remains to locate the lowest piezometric level in the
downhill alluvial plain, where the hyporheic corridor develops. The complex piezometric head
distribution of the hyporheic corridor constitutes the boundary conditions for the exchanges
between the alluvial plain and the underlying regional aquifer system. In this configuration,5

the river is not always representative of the lowest piezometric head in the hyporheic corridor.
For instance, Curie et al. (2009) report a case study, where alluvial ground waters and stream
waters were converging to a zone parallel to the stream, which acts as a drainage pathway inside
the alluvial plain. In this specific case, the drainage pathway is the lowest piezometric head. It
thence controls the exchanges between regional aquifer and the alluvial one.10

Moreover, longitudinal changes in the width and in the depth of the alluvial plain along
the hyporheic corridor modify the piezometric head gradient of the hyporheic corridor at the
kilometre scale (Malard et al., 2002; Woessner, 2000), which also influences the exchanges be-
tween the alluvial plain and the regional aquifer spatially. In addition to the complex behaviour
of nested flow systems, Zlotnik et al. (2011) prove that small-scale anisotropy prevents or am-15

plifies the flow patterns due to large-scale aquifer anisotropy.
These complex interactions between, on the one side, the river network and the hyporheic

corridor, and on the other side, the hyporheic corridor and the regional aquifer system, contribute
to the riparian turn over mentioned by Jencso et al. (2010). It characterises the fact that alluvial
aquifers behave as a buffering zone between low frequency processes occurring at the regional20

scale and high frequency processes occurring in the river network. The flow patterns resulting
from this complex interaction can be evaluated by water transit time (Haitjema, 1995; McGuire
and McDonnell, 2006) or using tracers (Macpherson and Sophocleous, 2004).

2.5 The stream–aquifer interface at the continental scale – The closure of the continental
hydrological cycle25

At the continental scale, the complex dynamics of stream–aquifer exchanges might have con-
sequences on the proper closure of the hydrological cycle, which partly consists in assessing
groundwater and surface water pathways and travel time. Currently, a large range of satellite
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data allows the remote observation of the continental hydrological cycle, temporarily from the
seasonal to the decennial scale, and spatially from the sub-kilometre (Brunner et al., 2008) to
the continental scale (Garcı́a-Garcı́a et al., 2011). Even if satellites cannot measure the stream–
aquifer exchanges directly, they provide valuable ancillary data, especially for obtaining in-
formation on temporal and spatial low frequency variabilities. They might also be a source of5

information crucial for ungauged or poorly gage large basins, as for example the Congo river
(O’Loughlin et al., 2013) or other big monsoon rivers.

For example, total water storage (e.g. surface waters and ground waters) variations can be
estimated from the Gravity Recovery and Climate Experiment (GRACE) mission, launched in
2002 (Tapley et al., 2004). Examples of space borne based hydrological studies can be found in10

Ramillien et al. (2008), who provide an extensive review of large-scale hydrological use of the
first years of GRACE data. These data have coarse spatial (300–400 km) and temporal (from 10
days to 1 month) resolutions (Ramillien et al., 2012), but cover all continental surfaces, making
their use particularly suitable at continental or large river basin scales. Yet, as GRACE data
correspond to changes in total water storage, they have to be coupled with ancillary information15

to distinguish between surface water and ground water variations.
For the specific stream–aquifer exchanges, satellite observations of water extents and water

elevations might be the most straightforward data to use. Current nadir altimeter satellites pro-
vide estimates of surface elevation (but not water depth) above a given reference datum of big
water bodies crossed by the satellite ground track (Calmant et al., 2008), the instrument foot-20

print being around 1 km. These measurements have a repeatability depending on the satellite
orbit, which typically ranges from 10 to 35 days. Recent attempts have also demonstrated the
possibility to estimate water storage variations by combining multi-sensor measurements. Opti-
cal or radar images are used to compute water extent (Cretaux et al., 2011) and can be combined
with Digital Elevation Model (DEM) or with water elevation measurements from nadir altime-25

ters to derive storage changes and fluxes (Neal et al., 2009; Gao et al., 2012). Yet, satellites
providing water surface extents and the ones measuring water elevations do not have the same
repeatability and spatial coverage, introducing errors in water storage variation estimates and
limiting assessment of stream–aquifer exchanges at the continental scale.
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To overcome this last issue, a new space borne mission, the Surface Water and Ocean To-
pography (SWOT) mission, is currently being developed by NASA, CNES (French Spatial
Agency), CSA (Canadian Space Agency) and UKSA (United-Kingdom Space Agency), for
a planned launch in 2019. SWOT will provide maps of distributed water elevations, water ex-
tents and water slopes on two swaths of 50 km each. It will enable the observation of rivers5

wider than 100 m and surface areas larger than 250m× 250m (Rodrı́guez, 2012). Accuracies
on water elevation and water slope will be around 10 cm and 1 cm.km−1, respectively, after av-
eraging over 1 km2 water area (Rodrı́guez, 2012). From these requirements, Biancamaria et al.
(2010) estimated that SWOT should be able to provide useful information to compute discharge
for river reaches with drainage areas above 70 000 km2. This preliminary assessment was re-10

cently refined by Andreadis et al. (2013), who estimate that rivers with a bank full width of
100 m have drainage area ranging from 1050 to 50 000 km2. Although the database contains
errors (reported errors on river width range from 8 to 62 %), it provides the order of magnitude
of minimum drainage area that will be sampled by SWOT. Given the two swaths and its 21-day
orbit, the instrument will observe almost all continental surfaces in-between 78◦ S and 78◦N,15

allowing the sampling of all drainage areas above 50 000 km2.
More information on the usage of these satellite data is given within the MIM framework in

Sect. 4.2.

2.6 A multi-scale issue structured around the river network

As developed in Sect. 2.3, the hyporheic corridor, closely related to the river network, is identi-20

fied as being the location where flow paths mix at all scales. Consequently, it is the location of
hydrological processes scaling.

Near river groundwater flow paths are mainly controlled by regional flow paths in aquifer
systems (Malard et al., 2002). Indeed, the groundwater component of hydrosystem controls the
regional flows towards the alluvial plains and the rivers. Such flow paths define the total amount25

of water that flows in the stream–aquifer interface (Cardenas and Wilson, 2007b; Frei et al.,
2009; Kalbus et al., 2009; Rushton, 2007; Storey et al., 2003). This is not a new concept as the
river network corresponds to drains collecting regional groundwater (Fig. 1a), which sustain the
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network during low flow period (Ellis et al., 2007; Pinder and Jones, 1969; Tóth, 1963). These
large scale structural heterogeneities can also generate local conditions that favour local re-
infiltration of river water towards the aquifer system (Boano et al., 2010a; Cardenas, 2009a,b;
Fleckenstein et al., 2006). These re-infiltrations (Fig. 1b and c) can even constitute the main
recharge of some peculiar local aquifer systems, as for instance some alluvial plain (Krause and5

Bronstert, 2007; Krause et al., 2007).
In second instance, the spatial distribution of the stream bed permeabilities controls the dy-

namics of stream–aquifer exchanges within the alluvial plain, and therefore the near-river piezo-
metric head distribution (Calver, 2001; Fleckenstein et al., 2006; Frei et al., 2009; Genereux
et al., 2008; Hester and Doyle, 2008; Kalbus et al., 2009; Käser et al., 2009; Rosenberry and10

Pitlick, 2009). Finally, the longitudinal morphology of the river and the topography of the river
bed, consisting of a pluri-metric succession of pools and riffles (Fig. 1e), also impact the stream–
aquifer exchanges (Crispell and Endreny, 2009; Frei et al., 2010; Gooseff et al., 2006; Harvey
and Bencala, 1993; Kasahara and Hill, 2006; Käser et al., 2013; Maier and Howard, 2011; Ton-
ina and Buffington, 2007), until a threshold of stream bed amplitudes is reached (Trauth et al.,15

2013). Likewise, the depth of the alluvial aquifer (Koch et al., 2011; Marzadri et al., 2010;
Whiting and Pomeranets, 1997), and the river hydraulic regime (Cardenas and Wilson, 2007a;
Munz et al., 2011; Saenger et al., 2005) influence stream-aquifer exchanges. Ultimately a very
fine scale process (∼ cm–dm), due to the in-stream non hydrostatic flow induced by bedform
micro-topography (Fig. 1f), increases the absolute value of the total stream–aquifer exchanges20

(Cardenas and Wilson, 2007a,b; Endreny et al., 2011; Janssen et al., 2012; Käser et al., 2013;
Krause et al., 2012b; Sawyer and Cardenas, 2009; Stonedahl et al., 2010).

It is thus important to study the stream–aquifer exchanges in the dual perspective of regional
and local exchanges; the former being controlled by regional recharge and structural hetero-
geneities, the latter by the longitudinal distribution of stream bed heterogeneities and the river25

morphology (Schmidt et al., 2006). These two types of control factors may also generate wa-
ter loops within the stream–aquifer interfaces, the hyporheic corridor being the location where
these processes merge (Poole et al., 2008).
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3 Modelling stream–aquifer exchanges

A literature review of process-based modelling of stream–aquifer interfaces’ functioning is pre-
sented in Tab. 1, which synthesises 51 references. The majority of these focuses on the local
scale (25), while only four consider the regional and continental scales. The remaining mostly
focuses on the local-intermediate (11) and intermediate scales (11).5

3.1 Overview of coupled surface-subsurface hydrological models

Many hydrosystem models have been developed, and especially coupled surface–subsurface hy-
dro(geo)logical models (Loague and VanderKwaak, 2004), with no special emphasis on stream–
aquifer interfaces.

During the 1970’s and 1980’s, the first sedimentary basin’ Distributed Physically-Based Mod-10

els (DPBMs) were developed based on the finite differences numerical scheme (Abbott et al.,
1986; Freeze, 1971; Harbaugh et al., 2000; Ledoux et al., 1989; de Marsily et al., 1978; Mc-
Donald and Harbaugh, 1988; Parkin et al., 1996; Perkins and Sophocleous, 1999; Refsgaard
and Knudsen, 1996). In this type of approach, the hydrosystem is divided into compartments,
which exchange through interfaces.15

Since the late 1990’s, new models based on finite elements numerical schemes have been
developed (Bixio et al., 2002; Goderniaux et al., 2009; Kolditz et al., 2008; Kollet and Maxwell,
2006; Li et al., 2008; Panday and Huyakorn, 2004; Therrien et al., 2010; VanderKwaak and
Loague, 2001; Weill et al., 2009). These models allow the simulation of the pressure head in
3-D instead of the former pseudo 3-D modelling of the piezometric head. However, it is not yet20

possible to straightforwardly simulate large hydrosystems (> 10 000 km2) with a high spatio-
temporal resolution for long periods of time (a few decades) (Flipo et al., 2012). This is due to
the large number of elements required to simulate such hydrosystems (Gunduz and Aral, 2005),
which imposes the usage of heavily parallelised codes for simulating these systems with such
a spatio-temporal resolution. Only recently, a proof of concept has been published by Kollet25

et al. (2010), who have simulated a 1000 km2 basin with a high spatio-temporal resolution.
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3.2 Models for simulating stream–aquifer interface

Surface water-groundwater exchanges, mostly through the soil or the stream–aquifer interface,
are simulated with two different models (Ebel et al., 2009; Kollet and Maxwell, 2006; LaBolle
et al., 2003; Furman, 2008):

– A conductance model or first order exchange coefficient (Rushton and Tomlinson, 1979),5

for which the interface is described with a water conductivity value. The exchanged water
flux is then calculated as the product of the conductivity by the difference of piezomet-
ric heads between the aquifer and the surface water body. Depending on the model, the
difference of pressures can also be used. This model implicitly formulates the hypothe-
sis of a vertical water flux between surface water and groundwater, whatever the mesh10

size. This is the most common model for simulating stream–aquifer exchanges. There
are diverse conductance formulations, especially in the case of disconnected aquifers and
streams (Osman and Bruen, 2002). The conductance model usually assumes an equivalent
homogeneous river bed for the definition of the conductance value, which can imply es-
timation errors in the exchanged water fluxes compared to a more realistic heterogeneous15

river bed. However, if the model is appropriately calibrated with regards to the connec-
tion/disconnection status, this assumption leads to slight estimation errors (Irvine et al.,
2012). Another potential drawback of the conductance model is that the conductance co-
efficient depends on the temperature because it implicitly integrates the fluid viscosity
(Doppler et al., 2007; Engeler et al., 2011). Moreover, the validity of the first order law20

is critical in case of a flood when water expends in the flood plain (Doppler et al., 2007;
Engeler et al., 2011).

– Continuity of pressures and fluxes at the interface. This boundary condition requires an
iterative or a sequential computation, although the iterative one is more precise (Sulis
et al., 2010). Sometimes the iterative process also leads to a discontinuity of the tangential25

component of the water velocity at the interface with the stream bed (Discacciati et al.,
2002; Miglio et al., 2003; Urquiza et al., 2008). This is not a problem as this discontinuity
can be interpreted as representative of the stream bed load. It should also be noted that the
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validity of this approach relies on the knowledge of structural heterogeneities constitutive
of the stream-aquifer interface.

Recent numerical developments allow for solving the coupled surface and subsurface equations
at once with a matricial system (Gunduz and Aral, 2005; Liang et al., 2007; Peyrard et al.,
2008; Qu and Duffy, 2007; Spanoudaki et al., 2009; Yuan et al., 2008). This method can be5

used with whatever selected stream–aquifer interface model. Its main drawback is that it is
computationally demanding and usually requires a parallelised model in order to simulate a real
hydrosystem.

From a conceptual point of view, the conductance model permits to better understand the
hydrological processes occurring at the stream–aquifer interface (Delfs et al., 2012; Ebel et al.,10

2009; Liggett et al., 2012; Nemeth and Solo-Gabriele, 2003) and is equivalent to the continuity
one in the case of a highly conductive interface. Moreover, it has the advantage of simplifying
the definition of structural heterogeneities in models. While the conductance model is able
to simulate connected or disconnected systems (Brunner et al., 2009a), Brunner et al. (2010)
showed that the conductance model remains appropriate for disconnecting streams, but only if15

an unsaturated flow formulation is chosen. Otherwise the model leads to estimation errors for
disconnecting systems.

3.3 Temperature as a tracer of the flow – The local scale

The study of heat propagation is a powerful tool for assessing stream–aquifer exchanges (An-
derson, 2005; Constantz, 2008; Mouhri et al., 2013) based on the temperature used as a tracer of20

the flow. Coupled with in situ measurements, two methods, based on heat transport governing
equations, are used to quantify stream–aquifer exchanges (Anderson, 2005):

1. Analytical models (Stallman, 1965; Anderson, 2005) are widely used to invert tempera-
ture measurements solving the 1-D heat transport equation analytically under simplifying
assumptions (sinusoidal or steady boundary conditions and homogeneity of hydraulic and25

thermal properties) (Anibas et al., 2009, 2012; Becker et al., 2004; Hatch et al., 2006;
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Jensen and Engesgaard, 2011; Keery et al., 2007; Lautz et al., 2010; Luce et al., 2013;
Rau et al., 2010; Schmidt et al., 2007; Swanson and Cardenas, 2011).

2. Numerical models which couple water flow equation in porous media with the heat trans-
port equation in 2-D or 3-D. These models are divided in two categories based on the
numerical scheme: finite differences (Anderson et al., 2011; Anibas et al., 2009; Con-5

stantz et al., 2002, 2013; Constantz, 2008; Ebrahim et al., 2013; Lewandowski et al.,
2011; Mutiti and Levy, 2010; Rühaak et al., 2008; Schornberg et al., 2010) or finite el-
ements (Kalbus et al., 2009; Mouhri et al., 2013). These models have the advantage of
calculating spatio-temporal stream–aquifer exchanges with the capability of accounting
for the heterogeneities under transient hydrodynamical and thermal conditions.10

Eventually, the two approaches provide estimates of the conductance coefficient that best
represents the stream–aquifer interface at the local scale.

3.4 The conductance model at the regional scale

Although the usage of DPBM covers a broad range of spatial scales, only 19 publications among
183 (Flipo, 2013) concern large river basins (> 10 000 km2) (Abu-El-Sha’s and Rihani, 2007;15

Andersen et al., 2001; Arnold et al., 1999; Bauer et al., 2006; Carroll et al., 2009; Christiaens
et al., 1995; Etchevers et al., 2001; Golaz-Cavazzi et al., 2001; Gomez et al., 2003; Habets
et al., 1999; Hanson et al., 2010; Henriksen et al., 2008; Kolditz et al., 2012; Ledoux et al.,
2007; Lemieux and Sudicky, 2010; Monteil, 2011; Park et al., 2009; Saleh et al., 2011; Scibek
et al., 2007). In addition to these publications, many regional scale models were developed with20

MODFLOW in the United States and China for integrated water management purposes (Ross-
man and Zlotnik, 2013; Zhou and Li, 2011). Except for Monteil (2011) and Pryet et al. (Sub.),
none of these explicitly focus on distributed stream–aquifer exchanged water flux. Moreover,
among DPBMs dedicated to stream–aquifer exchanges, only Monteil (2011) and Pryet et al.
(Sub.) performed distributed estimations of stream–aquifer exchanges at the regional scale.25

These applications exclusively use the conductance model, for which the longitudinal distri-
bution of the conductance along the stream network has to be calibrated (Pryet et al., Sub.).
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The conductance model historically assumes vertical fluxes at the stream–aquifer interface
(Krause et al., 2012a; Rushton and Tomlinson, 1979; Sophocleous, 2002). The hypothesis of
vertical fluxes is discussed by Rushton (2007) based on numerical experiments that showed its
limit. Indeed, at the regional scale, stream–aquifer exchanges seem to be more controlled by the
horizontal permeability of the aquifer unit, than by the equivalent vertical permeabilities of both5

the river bed and the aquifer unit. Recently, this formulation of the conductance model proved
to be suitable for the calibration of a regional modelling of stream–aquifer exchanges (Pryet
et al., Sub.). As formulated by Rushton (2007), Pryet et al. (Sub.) calibrated a correction factor
(Fcor, eq.1) :

Q= Fcor ×Kh×W × (Hriv −H∗A) (1)10

Where Q [m3 s−1] is the stream-aquifer flux, Hriv and H∗A [m] are the hydraulic heads in the
river and the calculated piezometric head, respectively, andW [m] the mesh size. The expression
Fcor×Kh×W represents the conductance coefficient and Kh [m.s−1] is the aquifer horizontal
permeability and Fcor [−] an adjustable, lumped parameter called correction factor.

This model defines the conductance parameter at the regional scale based on regional proper-15

ties of the aquifer system. Even if it does not allow a proper simulation of water fluxes for dis-
connecting systems (Brunner et al., 2009a,b), it allows the simulation of disconnected systems
using a maximum infiltrated flux (Pryet et al., Sub.; Saleh et al., 2011). Indeed, stream-aquifer
disconnection does not necessary occur when the water table is beneath the clogging layer rep-
resenting the stream bed (as expressed in MODFLOW, Brunner et al. (2010)), but when the20

pressure gradient in the unsaturated zone is negligible leading to a minimum pressure at the
stream bed interface and a constant stream to aquifer flux (Brunner et al., 2009a). To improve
the assessment of the water flux through the unsaturated zone, which develops below the stream
bed in case of a disconnected system, the maximal stream to aquifer flux could be defined as a
function of both the stream bed properties and the underlying regional aquifer properties. This25

implies to better understand the implications of heterogeneity and clogging processes in the
stream bed on disconnection (Brunner et al., 2011).
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To provide accurate estimates, the conductance model has to be constrained by the piezomet-
ric head below the river and the surface water elevation. Former applications used a fixed water
level throughout the simulation period (Arnold et al., 1999; Chung et al., 2010; Flipo et al.,
2007b; Gomez et al., 2003; Ke, 2014; Kim et al., 2008; Monteil, 2011; Perkins and Sopho-
cleous, 1999; Ramireddygari et al., 2000; Thierion et al., 2012). Saleh et al. (2011) showed that5

this methodology not only leads to biased assessments of stream–aquifer exchanges, but also to
biased estimates of the near river piezometric head distributions. In addition, Diem et al. (2014)
recently showed that groundwater residence times are also strongly affected by the estimation
of in-stream longitudinal water level distributions. These results are due to the fact that stream–
aquifer exchange rates adapt very quickly to changes in surface water levels (Koussis et al.,10

2007; Maier and Howard, 2011; Rosenberry et al., 2013).
Consequently, the simulation of variable surface water levels is of primary importance for the

estimation of distributed stream–aquifer exchanges along the stream network at regional scale
(Pryet et al., Sub.; Saleh et al., 2011). Saleh et al. (2013) recommend the usage of local 1-D
Saint-Venant based hydraulic models to build rating curves for every cell of a coarser regional15

model (Saleh et al., 2011) that uses simpler in-stream water routing models as RAPID (David
et al., 2011). Such models are then coupled with the conductance model to simulate stream–
aquifer exchanges at the regional scale along thousands of kilometres of river networks with
a 1 km spatial discretisation (see for instance Pryet et al. (Sub.) for such an application along
3250 km of the Paris basin river network).20

3.5 Conceptual requirements at the continental scale

Russell and Miller (1990) achieved the first global distributed runoff calculation based on a 4◦×
5◦ grid mesh coupled with a Land Surface Model (LSM) and an Atmospheric Global Circulation
Model (AGCM). It appears that even at this scale the river networks play an important role in
the circulation models and water transfer time. Since then, few models have been developed to25

simulate the main river basins in the AGCMs with a grid mesh of ∼ 1◦× 1◦, which roughly
corresponds to a 100km× 100km resolution (Oki and Sud, 1998). Geographical Information
Systems (GISs) were used to derive the river networks from Digital Elevation Models (Oki and
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Sud, 1998). Jointly RRMs (River Routing Models) have been developed with simple transfer
approaches, assuming either a steady uniform water velocity at the global scale or a variable
water velocity based on simple geomorphological laws and the Manning Formula (Arora and
Boer, 1999).

Decharme and Douville (2007) implemented the approach with a constant in-river water5

velocity (assumed to be 0.5 ms−1) within the LSM, today referred to as SURFEX (Masson
et al., 2013). Step by step the description of stream–aquifer exchanges was improved by:

– The introduction of a variable in-river water velocity (Decharme et al., 2008).

– A transfer time delay due to the stream–aquifer interface (Decharme et al., 2012).

– The explicit simulation with a DPBM of the worldwide largest aquifer systems cou-10

pled with the explicit simulation of the river networks draining surface basins larger than
50 000–100 000 km2 (Vergnes and Decharme, 2012).

– The explicit simulation of stream–aquifer exchanges based on the conductance model on
a 0.5◦×0.5◦ grid mesh (Vergnes et al., 2012; Vergnes and Decharme, 2012) in agreement
with the continental scale transfer time delay of 30 days introduced by Decharme et al.15

(2012).

As expected given the numerical experiments of Maxwell and Miller (2005), accounting for
groundwater kinetics improves the global hydrological mass balance (Decharme et al., 2010;
Alkama et al., 2010; Yeh and Eltahir, 2005). Although the explicit simulation of stream–aquifer
exchanges with the conductance model slightly improves the models’ performances in terms20

of spatio-temporal discharge and real evapotranspiration assessments (Vergnes et al., 2012;
Vergnes and Decharme, 2012), the global calibration of the conductance parameter has to take
into account the multi-scale structure of the stream–aquifer interfaces. It means that a better
assessment, not only of simple DEM derived river networks, but also of the transfer time in
the stream–aquifer interfaces is required, as well as the sub grid definition of dendritic river25

networks. Coupled with proper scaling procedures (see next section) these approaches seem to
be less computationally demanding than the one proposed by Wood et al. (2011) and slightly
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less over parametrised, which should permit to better solve the estimation of stream–aquifer
exchanges at the continental scale.

3.6 Up and downscaling stream–aquifer exchanges

At the regional scale, most of the hydrogeological models are limited to take into account local
processes as the effect of near river pumping, or storage in the hyporheic zone, because they5

require a very fine spatial discretisation, which can be incompatible with the resolution of the
model or, at most, drastically decreases the efficiency of the model. Furthermore, the usage of
regional models for solving local issues, as well as the reverse, leads to equifinality problems
(Beven, 1989; Beven et al., 2011; Ebel and Loague, 2006; Klemes, 1983; Polus et al., 2011),
boundary conditions inconsistencies (Noto et al., 2008), or computational burdens (Jolly and10

Rassam, 2009). The usage of local models for solving regional issues entails the same effects
(Aral and Gunduz, 2003, 2006; Wondzell et al., 2009). Therefore, alternative ways of modelling
are needed to simulate the behaviour of stream–aquifer interfaces at the regional scale properly
(Werner et al., 2006), especially that for a given reach of river the direction of stream–aquifer
exchanges can vary longitudinally (Bencala et al., 2011). The concept of nested stream–aquifer15

interface led to the identification of the river network, and by extension the hyporheic corri-
dor, as the location where to scale models for the accurate simulation of hydrological processes
(Sect. 2.6). On the one hand, regional surface-subsurface models allow the simulation of the hy-
porheic corridor and the regional aquifer. On the other hand, intermediate scale models permit
the simulation of hydrological spiralling. It therefore seems relevant to explicitly simulate the20

alluvial plains in regional model, either with an explicit layer in pseudo 3D models as MOD-
FLOW, or with specific parameters for 3D models based on Richards equations (Sect. 3.1). In
this way, regional and intermediate models can be configured in a nested set-up, allowing the
identification of model parameters using the regional model for large scale geological hetero-
geneities and the intermediate scale model for the smaller alluvial plain heterogeneities. This25

set-up is in agreement with the nested heterogeneities defined by Refsgaard et al. (2012). The
coupling between a regional scale model and an intermediate scale model of the alluvial plain
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requires to ensure the conservation of the mass between the two models. An iterative procedure
is developed to achieve this objective (Fig. 2). At each iteration j, the procedure consists of:

1. Run the regional model.

2. Define the boundary conditions of the intermediate model with the outputs of the regional
model.5

3. Downscale the regional piezometric head distribution.

4. Run the intermediate model.

5. Upscale the conductance parameter at the regional scale.

The final objective of the procedure is to equalize the stream–aquifer exchanges estimated at
both the regional and the intermediate scales. A pre-requisite for the application of this iterative10

procedure is the definition of the conductance parameter at the intermediate scale.

3.6.1 The conductance model at the intermediate scale

To scale the conductance model at the regional scale properly, the correction factor, Fcor in
eq. 1, must be defined at the intermediate scale analytically. The conductance model histori-
cally assumes vertical fluxes at the stream–aquifer interface (Krause et al., 2012a; Rushton and15

Tomlinson, 1979; Sophocleous, 2002), so that it seems to be a proper framework for determin-
ing up and down scaling properties of stream–aquifer interfaces (Boano et al., 2009; Engdahl
et al., 2010). However, this hypothesis becomes less valid for a coarse grid mesh (Mehl and
Hill, 2010; Rushton, 2007). In such a case, Brunner et al. (2010) point out that the calculated
piezometric head at the stream–aquifer interface does not represent the piezometric head in the20

hyporheic zone, but the near stream aquifer piezometric head (Fig. 3). This is due to the fact that
state variables are discrete values associated to an area by a an averaging over the cell (finite
differences and volumes), or over the surface around the node (finite elements). Stream–aquifer
exchanges are then calculated across a surface, which encompasses the river. As a consequence,
the averaging induces uncertainties in the assessment of head below the river. The conductance25
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parameter hence is scale dependent (Vermeulen et al., 2006). Morel-Seytoux (2009) proposed
to relate the exchange flux to the near-river piezometric head, hc, (eq. 2), for which it can be
assumed that the distance, d, from the river is long enough to reach the validity domain of the
Dupuit-Forchheimer approximation. Using the mass conservation between the local flux at the
interface and the regional flux, Morel-Seytoux (2009) expresses the flux as follows:5

Q= kiw
1

1
αRwksb

[(2αki− ksb)esb + ksbeaq] + d
eaq

× (hriv −hc) (2)

Where ki and ksb [m.s−1] are the horizontal aquifer permeability and vertical stream bed
permeability, respectively. eaq and esb [m] are the aquifer and stream-bed thicknesses. α [−] is
the aquifer anisotropy factor. Rw [m] is the river width, w the intermediate mesh size.

Citing Bouwer (1969) and Haitjema (1987), Morel-Seytoux (2009) indicates that d ranges10

between twice the thickness of the underlying aquifer unit and ten times the river width. This
formulation thus refers to the intermediate scale, where the cell sizes have to be adapted to d
and to the averaging of the piezometric head to ensure that the cell head value, h∗A, corresponds
to hc.

Assuming that hc ≈ h∗A, which can be substituted in eq. 2, the correcting factor becomes15

dependent on the mesh size, w:

fcor(w) =
1

1

αRwksb
[(2αki− ksb)esb + ksbeaq] +

f(w)

eaq

(3)

Where f denotes the mathematical scaling function of the ith cell size, which links d and w.
Under simplifying assumptions, f may be a linear function (Bouwer, 1969; Haitjema, 1987).
A proper simulation of stream–aquifer exchanges therefore implies an adaptive mesh to scale20

the river cells to the river network from small upstream tributaries to large downstream rivers.
The mesh can be derived from a DEM, which is a source of uncertainties for the assessment of
stream–aquifer exchanges (Käser et al., 2014).
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3.6.2 Downscaling the piezometric head

The downscaling procedure is adapted from Chen and Durlofsky (2006) and Mehl and Hill
(2002). Assuming that the regional discharge is homogeneously distributed along the regional
cells border, the intermediate piezometric head can be linearly interpolated based on the local
properties of the cell coupled with the regional gradient (eq. 4):5

hn = h1 +
Keq

keq,n

xn−X1

X2−X1
(H2−H1),X1 ≤ xn ≤X2 (4)

Where X denotes the coordinate of the regional mesh, and x the one of the intermediate one.
Keq [m.s−1] is the regional equivalent permeability, keq,n the equivalent permeability of the n
intermediate cells between X1 and xn. Hn [m] is the regional piezometric head at point Xn,
and hn [m] the intermediate piezometric heads at point xn. Assuming that h1=H1, the local10

piezometric head at point xn becomes a function of regional heads. However, due to the as-
sumptions, the downscaling procedure becomes less accurate when the dimensional difference
between regional and intermediate mesh grid is high (W � w).

3.6.3 Upscaling the conductance at the regional scale

While methodologies for the upscaling of permeability distributions already exist (Renard,15

1997), it remains unclear how to upscale the conductance parameter. In order to study the scal-
ing effects on Fcor (see eq. 1) an iterative modelling procedure is proposed (Fig. 2). At iteration
j, the consistency of fluxes between scales is defined as follows:

Qjr =
∑
i∈Ωr

qji (5)

Where i denotes the intermediate cells, Ωr a regional cell, Qj+1
r the regional stream-aquifer20

flow resulting from the upscaling of iteration j and qji the intermediate stream-aquifer flow at
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iteraton j. For
∣∣∣Qj+1

r −Qjr
∣∣∣< ε, the procedure converges, ε being the convergence criterium.

Otherwise, new regional conductance values are calculated using eq. 5:

∀ Ωr ∈ Ω, F j+1
cor,r =

∑
i∈Ωr

qi

Kj
eq,r ·W · (Hriv,r −H∗,jr )

(6)

Where Ω is the regional mesh, Ωr the rth regional cell, Kj
eq,r [m3 s−1] the estimated equiv-

alent permeability of the rth cell at iteration j, W [m] the mesh size, Hriv,r and H∗,jr [m] the5

river and piezometric heads of the rth cell at the jth iteration. The equivalent permeability can
be updated as follows:

∀ Ωr ∈ Ω, Kj+1
eq,r =−

∫
Sr
ujidS

∇( 1
Vr

∫
Vr
h∗,ji dV )

(7)

Where Sr and Vr are the cross section and volume of the rth regional cell, and∇ denotes the
gradient.10

The study of the evolution of both Fcor and permeabilities under various hydrological condi-
tions should be very informative concerning the feasibility of the conductance parameter scaling
laws.

4 The MIM methodology: from concepts to practice

The methodology of Mouhri et al. (2013) is hereby graphically developed, scaling in space15

the three pools of methods (measurements-interpolation-modelling) needed to fully understand
stream–aquifer interfaces at various scales. The outcome is the MIM (Measurement-Interpolation-
Modelling) methodological tool, which localises in space the type of stream–aquifer interface
that can be studied by a given approach (see the five scales of interest in Fig. 4: local, reach,
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watershed, regional and continental scales). From Fig. 5, it clearly appears that a better under-
standing of the functioning of nested stream–aquifer interfaces relies on the combination of
models, in-situ networks, space borne data and interpolation techniques. MIM has the ability to
clearly display the representativeness of a specific research within an holistic framework ded-
icated to the study of nested stream–aquifer interactions at all scales. It is a valuable tool for5

the definition of combined field measurements and modelling approaches. It permits the deter-
mination of the dimension of the objects, that need to be studied, to scale processes. This is
illustrated in Sect. 4.1, where the size of a river reach relevant for testing up and downscaling
strategies is identified. Space borne data coupled with models can also be displayed in the MIM
space (Sect. 4.2), without identifying methodologies to scale processes from the watershed to10

the regional and continental scales (Sect. 4.3).

4.1 Coupled in situ-modelling approaches: from local to watershed scale

Fig. 5 displays the types of stream–aquifer interfaces that can be studied by the multi-scale sam-
pling system developed by Mouhri et al. (2013), based on LOcal MOnitoring Stations (LOMOS)
distributed along a 6 km river network covering a 40 km2 watershed. As illustrated in Fig. 5,15

a single LOMOS allows the monitoring, based on water pressure and temperature measure-
ments, of stream cross-sections ranging from 0.1–∼ 10 m. LOMOS data are used with coupled
thermo-hydro models to determine the properties of the aquifer units and the river beds (Mouhri
et al., 2013), which can be used to assess the value of the conductance at the watershed scale
(Mehl and Hill, 2002; Morel-Seytoux, 2009; Vermeulen et al., 2006; Rushton, 2007). Assuming20

that it is possible to distribute multiple LOMOS data, and the associated conductance values,
along a stream network (for instance using FO-DTS – Fibre Optic Distributed Thermal Sensors),
local in situ data become the basis of a broader surface–subsurface modelling at the watershed
scale. The upscaling is hence structured around stream cross-sections of ∼ 1–10m with a rep-
resentative reach length in the order of magnitude of 10-100 m (Fig. 5). The next experiment,25

aiming at determining the upscaling law for the conductance coefficient at the watershed scale,
will thus be designed based on the specificities of a river stretch at this scale (i.e., the study of
a riffle-pool sequence). In this specific case, the spatial rationale behind the new experiment is
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an outcome of the MIM analysis, which defines the size of the objects to be studied. Identifying
the size of the objects of interest also provides guidances for the determination of a relevant
mesh size, which in return imposes locations where interpolations need to be performed.

4.2 Space borne approaches: regional and continental scales

Current and future satellite data are used to observe the continental water cycle and better con-5

strain LSM (Sect. 3.5). They are thus located at the continental and regional scales on the mea-
surement axis of the MIM space (Fig. 5). Downscaling methods are also being developed to
refine current coarse optical imagery into finer resolution products, or to average data over a
spatial object (for instance a river reach) to improve their accuracy (Aires et al., 2013). These
methods are indicated on the interpolation axis in Fig. 5. Measurements and interpolated data10

can both be used in data assimilation frameworks.
Some attempts have been undertaken to force or assimilate satellite-based observations of dif-

ferent components of the water cycle to improve LSM water budget and river routing scheme:
over the Mississippi basin (Zaitchik et al., 2008), the Arkansas river basin (Pan et al., 2008), the
Amazon basin (Getirana et al., 2013), the Brahmaputra river (Michailovsky et al., 2013), and15

over 10 large river basins widely spread in latitude (Sahoo et al., 2011). Furtheron, Andreadis
et al. (2007), Durand et al. (2008) and Biancamaria et al. (2011) have developed different assim-
ilation schemes to correct hydrodynamic model parameters and variables using virtual SWOT
observations. They have shown the potential of this new kind of spatially distributed dataset to
better constrain hydraulic models.20

As, stream-aquifer exchanges are very responsive to in-river water level fluctuations (Diem
et al., 2014; Koussis et al., 2007; Maier and Howard, 2011; Saleh et al., 2011), the assimilation
of space borne data and data products in numerical models, like the ones used by Pryet et al.
(Sub.), Saleh et al. (2011) and Vergnes and Decharme (2012) (Fig. 5), should enable a better
understanding of stream–aquifer interaction at very large scale.25
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4.3 Further challenges

Albeit being a breakthrough in terms of surface coverage, SWOT requirements impose re-
strictions on observable stream–aquifer interfaces, which can be visualised in the MIM space
(Fig. 5). As SWOT will provide information for basins in average larger than 50 000 km2 (Sect.
2.5), it appears in the MIM space that SWOT applications do not completely overlap other5

methodologies as the one previously proposed to scale processes between the local and the wa-
tershed scales. To overcome this issue, a projected airborne campaign, called AirSWOT, with
a main payload similar to the one of SWOT, but with a higher spatial resolution (metric), will
(i) help to determine whether regular airborne campaigns can provide a valuable tool to connect
the watershed scale to the regional/continental one with the help of multi-scale modelling tools10

(cf. Sect. 3.6) and (ii) permit to design new in situ monitoring stations derived from the LOMOS
defined by Mouhri et al. (2013) but dedicated to the watershed/regional scale, which means for
river cross-sections larger than a few decametres, with a water depth of a few metres.

5 Conclusions

conclusions15

Based on a systemic approach of hydrosystems, we propose to consider the stream–aquifer
interface as a cascade of nested objects. These nested objects depend on the scale of interest.
At the watershed, regional and continental scales, they consist in alluvial plains, while within
the alluvial plain itself (intermediate-reach scale), they consist in hyporheic corridors including
riparian zones. Within the riparian zone (local scale), they consist in HZ, and so on until the20

water column–benthos interface within the river itself.
Estimating stream–aquifer exchanges therefore requires to combine the modelling of various

processes with different characteristic times. Stakeholders need more detailed information at the
regional scale, as it is the water resources management scale. However, depending on the desired
refinement of the modelling at the regional scale (i.e., number of processes taken into account),25

the estimation of stream–aquifer exchanges may vary significantly. It is thus crucial to develop
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modelling tools which can precisely simulate stream–aquifer exchanges at the reach scale within
a regional basin. These innovative modelling tools should be multi-scale modelling platforms,
which implement the concept of nested stream–aquifer interfaces as the core of the coupling
between regional and intermediate scale models: the former simulating the basin, the latter the
alluvial plains. To achieve this, it was shown that processes scaling should be performed around5

the river network.
To fully estimate stream–aquifer exchanges, this multi-scale modelling tool has to be coupled

with observation devices. The MIM methodology provides a powerful framework to jointly
develop observation infrastructures and modelling tools, allowing the localisation of the global
structure in the scale space. Although the scaling of processes was identify around the reach10

scale from the local to the watershed scale, airborne campaigns, as well as regional in situ
systems, will have to be rationalised to connect the watershed to the regional and continental
scales, which can be observed with a large diversity of satellite instruments.
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Oeurng, C., Sauvage, S., and Sánchez-Pérez, J.-M.: Temporal variability of nitrate10

transport through hydrological response during flood events within a large agricul-
tural catchment in south-west France, Sciences of Total Environment, 409, 140–149,
doi:http://dx.doi.org/10.1016/j.scitotenv.2010.09.00610.1016/j.scitotenv.2010.09.006, 2010.

Oki, T. and Sud, Y.: Design of total runoff integrating pathways (TRIP). A global river channel network,
Earth Interact, 2, 1–36, 1998.15

O’Loughlin, F., Trigg, M., Schumann, G., and Bates, P.: Hydraulic characterization of the middle reach
of the Congo River, Water Resourses Research, 49, 5059–5070, 2013.

Osman, Y. and Bruen, M.: Modelling stream-aquifer seepage in an alluvial aquifer: an improved loosing-
stream package for MODFLOW, Journal of Hydrology, 264, 69–86, 2002.

O’Driscoll, M., Johnson, P., and Mallinson, D.: Geological controls and effects of floodplain asymmetry20

on river–groundwater interactions in the southeastern Coastal Plain, USA, Hydrogeology Journal, 18,
1265–1279, doi:http://dx.doi.org/10.1007/s10040-010-0595-z10.1007/s10040-010-0595-z, 2010.
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Table 1. Physically-based modelling of stream–aquifer exchanges.
table
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Ref exch Spec Resolution Scale CS

∆x ∆t

Brunner et al. (2009a,b) K 2-D V LAT [1–100] m · [≤ 0.05] m perm loc-int S
Brunner et al. (2010) K 2-D V LAT [1–10] m · [0.1–10] m perm loc-int S
Cardenas et al. (2004) K 3-D 0.25 m · 0.25 m · 0.04 m perm loc S
Cardenas and Wilson (2007b,c) P 2-D V LON 0.01 m · 0.01 m a perm loc S
Cardenas (2009a) P 2-D H NS (80 m · 45 m) perm loc S
Chen and Chen (2003) K 3-D [3–6] m · [3–6] m · [6.7–7.6] m min loc-int R
Derx et al. (2010) K 3-D [5–100] m · [5–100] m · [5–40] cm 30 min int R
Diem et al. (2014) K 3-D [1–10] m · [1–10] m · [1–10] m adapt int R
Discacciati et al. (2002) P 3-D [0.5–5] m · [0.5–5] m · [0.3–1.5] m a perm loc S
Doppler et al. (2007) K 2-D H [1–50] m · [1–50] m 1 d int R
Ebel et al. (2009) K 3-D [1–20] m · [1–20] m · [0.05–0.25] m adapt loc-int R
Engeler et al. (2011) K 3-D [1–50] m · [1–50] m · [1.6–40] m 900 s int R
Fleckenstein et al. (2006) K 3-D 200 m · 100 m · [5–40] m 3 h int R
Frei et al. (2009) P 3-D 20 m× 50 m× 0.5 m min int S
Frei et al. (2010) K 3-D 0.1 m× 0.1 m× 0.1 m adapt loc S
Gooseff et al. (2006) K 2-D V LON 0.20 m · [0.3–0.5] m perm loc S
Hester and Doyle (2008) K 2-D V LON 3 m · [0.1–0.25] m perm loc S
Irvine et al. (2012) K 3-D 0.5 m · [0.5–2.6] m · [0.03–0.7] m perm loc S
Janssen et al. (2012) P 2-D V LON 2 mm · 2 mm perm loc L
Kalbus et al. (2009) K 2-D V LON 1 m · [0.05–0.2] m perm loc S
Kasahara and Wondzell (2003) K 3-D [0.3–0.5] m · [0.3–0.5] m · [0.15–0.3] m perm loc-int R
Kasahara and Hill (2006) K 3-D [0.6–3.5] m · [0.2–0.5] m · 0.15 m perm loc R
Käser et al. (2013) P 2-D V LON 0.78 cm · [0.78-100] cm perm loc S
Koch et al. (2011) K 3-D NS (1.7 km · 200 m · 0.5 m) 1 h int R
Krause and Bronstert (2007) K 2-D H [25–50] m · [25–50] m 1 h int R
Krause et al. (2007) K 2-D H [25–250] m · [25–250] m 1 h int-reg R
Lautz and Siegel (2006) K 3-D 0.5 m · 0.5 m · [0.6–2] m perm loc-int R
Maier and Howard (2011) K 2-D H [1–7] m · [1–5] m · [0.1–10] m perm loc-int R
Marzadri et al. (2010) K 3-D [0.19–1.88] m · [0.06–0.5] m · [0.1] m perm loc-int S
Marzadri et al. (2011) K 3-D NS (16.9 m · 2.6 m · 1.6 m) perm loc S
Miglio et al. (2003) P 3-D [0.2–0.5] m · [0.2 · 0.5] m · [0.05–0.15] m a 600 s loc S
Mouhri et al. (2013) P 2-D V [0.01–0.1] m · [0.01 · 0.1] m min loc R
Munz et al. (2011) K 3-D 0.5 m · 0.5 m · [0.1–2.48] m 1 h † loc R
Osman and Bruen (2002) K 2-D V LAT NS (360 m · 21 m) perm loc S
Peyrard et al. (2008) P 2-D H [10–40] m · [10–40] m adapt int R
Pryet et al. (Sub.) K 2-D H 1 km · 1 km 1d reg R
Revelli et al. (2008) K 2-D H NS ([0.22–4.4] km · [0.19–3.8] km) perm int S
Rushton (2007) K 2-D V LAT 20 m · 0.2 m perm loc-int S
Saenger et al. (2005) K V LON 0.1 m · 0.02 m perm loc R
Saleh et al. (2011) K 2-D H [1–4] km · [1–4] km · [–] m 1 j reg R
Sawyer and Cardenas (2009) P 2-D V LON 0.01 m · 0.005 m‡ perm loc L
Storey et al. (2003) K 3-D [1–8] m · [1–8] m · [0.25–0.42] m perm loc R
Sulis et al. (2010) K,P 3-D [1–80] m · [1–80] m · [0.0125–0.5] m adapt loc-int S
Tonina and Buffington (2007) P 3-D 0.03 m · 0.03 m · 0.03 m perm loc L
Trauth et al. (2013) P 3-D 0.2 m · 0.2 m · 0.1 m perm loc S
Urquiza et al. (2008) P 2-D V LON 1 m · 1 m perm loc S
Vergnes et al. (2012) K 2-D H 0.5◦ · 0.5◦ 1 d reg R
Vergnes and Decharme (2012) K 2-D H 0.5◦ · 0.5◦ 1 d con R
Wondzell et al. (2009) K 3-D [0.125–2] m · [0.125–2] m · [0.16–0.4] m perm loc R

Exch (stream–aquifer exchanges’ model): K: conductance model; P: Pressure continuity; V: vertical; LAT: lateral; LON: longitudinal;
H: horizontal.
Resolution: NS: not specified (total extension between parenthesis); a cell size not specified in the paper.
Spec (Specificities) ∆x (spatial); ∆t (temporal): perm: steady state; adapt: adaptative time step.
Scale: loc: local; int: intermediate; reg: regional; con: continental.
CS (Case Study): S: synthetical; L: lab experiment; R: real. 66



Fig. 1. Nested stream–aquifer interfaces: (a) watershed-basin scale (b) intermediate-reach scale in an
alluvial plain (c) cross section of the stream–aquifer interface (d) meandered reach scale (e) longitudinal
river-HZ exchanges (e) water column-sediment scale. Inspired by Stonedahl et al. (2010).
figure
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Fig. 2. Iterative modelling framework for coupling regional and intermediate scales. r and i indices are
related to regional and intermediate scales, respectively. Capital letters represent regional parameters and
variables, while lower case letters refer to intermediate ones. Ω is the regional mesh divided in r×Ωr

subdomains, Ωr being a regional cell. In the same way, ω is the intermediate model domain divided in
i×ωi subdomains,ωi being a intermediate cell. fcor is the conductance correcting factor to upscale and
k the horizontal permeability on which Keq is based. Sr and Vr are the cross section and volume of Ωr,
and∇ denotes the head gradient.
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Fig. 3. Scaling effects on averaged near river piezometric heads.
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Fig. 4. MIM methodological space. Axis in logarithmic scale.
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Fig. 5. Localisation of two approaches in the MIM methodological space. In yellow: upscaling method-
ology from the local to the watershed scale based on LOMOS coupled with DPBM. In blue: regional
to continental scales covered by satelitte data coupled to assimilation frameworks. Axis in logarithmic
scale. data assim: data assimilation.
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