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Abstract

During the last few decades, satellite measurements have been widely used to study
the continental water cycle, especially in regions where in situ measurements are not
readily available. The future Surface Water and Ocean Topography (SWOT) satellite
mission will deliver maps of water surface elevation (WSE) with an unprecedented res-5

olution and provide observation of rivers wider than 100 m and water surface areas
greater than approximately 250 m×250 m over continental surfaces between 78◦ S
and 78◦ N. This study aims to investigate the potential of SWOT data for parameter
optimization for large scale river routing models which are typically employed in Land
Surface Models (LSM) for global scale applications. The method consists in applying10

a data assimilation approach, the Extended Kalman Filter (EKF) algorithm, to correct
the Manning roughness coefficients of the ISBA-TRIP Continental Hydrologic System.
Indeed, parameters such as the Manning coefficient, used within such models to de-
scribe water basin characteristics, are generally derived from geomorphological rela-
tionships, which might have locally significant errors. The current study focuses on the15

Niger basin, a trans-boundary river, which is the main source of fresh water for all the ri-
parian countries. In addition, geopolitical issues in this region can restrict the exchange
of hydrological data, so that SWOT should help improve this situation by making hydro-
logical data freely available. In a previous study, the model was first evaluated against
in-situ and satellite derived data sets within the framework of the international African20

Monsoon Multi-disciplinary Analysis (AMMA) project. Since the SWOT observations
are not available yet and also to assess the proposed assimilation method, the study
is carried out under the framework of an Observing System Simulation Experiment
(OSSE). It is assumed that modeling errors are only due to uncertainties in the Man-
ning coefficient. The true Manning coefficients are then supposed to be known and are25

used to generate synthetic SWOT observations over the period 2002–2003. The im-
pact of the assimilation system on the Niger basin hydrological cycle is then quantified.
The optimization of the Manning coefficient using the EKF algorithm over an 18 month
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period leads to a significant improvement of the river water levels. The relative bias of
the water level is globally improved (a 30 % reduction). The relative bias of the Man-
ning coefficient is also reduced (40 % reduction) and it converges towards an optimal
value despite potential problems related to equifinality. Discharge is also improved by
the assimilation, but to a lesser extent than for the water levels (7 %). Moreover, the5

method allows a better prediction of the occurrence and intensity of flood events in
the inner delta and shows skill in simulating the maxima and minima of water storage
anomalies in several continental reservoirs, especially the groundwater and the aquifer
reservoirs. Results obtained in this preliminary study demonstrate SWOT potential for
global hydrologic modeling, especially to improve model parameters.10

1 Introduction

The impact of climate variability on land water storage is becoming an increasingly cru-
cial issue for the development of future water resource management strategies. In order
to do such impact studies, Continental Hydrologic Systems (CHSs) can be used to sim-
ulate water dynamics over and under the land surface as a response to environmental15

forcing. At regional or global scales, realistic representation of major surface hydrologic
and hydrodynamic processes is very challenging using computationally efficient, eas-
ily parameterized, comparatively simple and physically based routing methodologies.
However, land surface hydrologic processes are highly heterogeneous in space and
time and are therefore difficult to parameterize given huge dimensions of Atmospheric20

General Circulation Model (AGCM) grid areas. Observational data describing the water
dynamics and storage variations are required to evaluate CHS-simulated diagnostics,
but also to calibrate these models. In-situ data have been extensively used, but they are
limited by their temporal and spatial coverage. In addition to the information provided
by in-situ measurements, satellite remote sensing instruments have been developed25

and continually improved. These instruments generally provide a large spatial cover-
age which is more appropriate for global applications, especially in areas where in-situ
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data are scarce. Such areas are generally sparsely inhabited, with reduced infrastruc-
tures and possible geopolitical issues, such as large portions of the African continent
or part of the Arctic (Alsdorf et al., 2007). Applications using satellite remote sensing
techniques lead to many promising perspectives for improving the observation of land
surface and hydrological variables and processes.5

Hydrologic modeling applications require information about continental water dynam-
ics and storage variations over and under the surface. In situ discharge data, for ex-
ample, give 1-dimensional information which quantifies water fluxes in a specific river
channel, but such data do not give any information about runoff and lateral inflow. How-
ever, in more hydrologically complex areas, such as wetlands and floodplains which10

are better represented as three-spatial-dimension processes, cannot be adequately
resolved using one-spatial-dimension observations (Alsdorf et al., 2007). Spatially dis-
tributed observations, such as those provided by satellites, give 2-dimensional infor-
mation about surface water dynamics. Recently, efforts have been made to build global
maps of floodplain variability and extent, providing an additional metric for CHSs eval-15

uation (Papa et al., 2012). Nadir altimetry has also constituted a valuable progress
for the monitoring of surface water dynamics and elevation (TOPEX-POSEIDON, EN-
VISAT, JASON 1 and 2; Baup et al., 2007; Santos Da Silva et al., 2012).

Although useful, current remote sensing technology spatial resolution does not re-
solve small scale land water dynamics thereby limiting our understanding of large scale20

hydrologic and hydrodynamic processes. The future NASA-CNES-CSA Surface Water
and Ocean Topography (SWOT) satellite mission will be launched in 2020 and will de-
liver maps of water surface elevation (WSE), slope and extent with an unprecedented
resolution of 100 m.

Concerning continental hydrology, the SWOT mission has the potential to help deal-25

ing with critical issues, such as monitoring trans-boundary basins and the development
of management strategies in a changing world. It is thus necessary to determine how
the SWOT data can be used to improve hydrological simulations and to better pre-
dict continental water storage. Several studies are thus currently being performed over
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geographically diverse basins to propose efficient approaches to use SWOT observa-
tions for a variety of climates and geomorphology.

Data assimilation (DA) has been shown to be a promising technique for improv-
ing river modelling (Andreadis et al., 2007; Durand et al., 2008; Biancamaria et al.,
2011; Yoon et al., 2012). Commonly used in operational meteorology and oceanog-5

raphy, DA combines data coming from various sources, such as numerical models or
observations, while taking into account measurement errors and model uncertainties
for a better description and prediction of the system. However, these methods are not
yet extensively used in hydrology and related works are rare, especially for large scale
applications. Drusch et al. (2009) used observations of 2 m air temperature and soil10

moisture to evaluate a Kalman filter based soil moisture analysis system and its im-
pact on the operational ECMWF integrated forecast system. They showed that the
impact of EKF on the forecast skill of the operational weather forecast model was neu-
tral in terms of forecast score but gave the promising possibility to better constrain
the soil water content with more accurate soil moisture estimates. Pereira-Cardenal15

et al. (2011), investigated the potential of using ENVISAT water levels observations
in a real time or near real time by applying an Ensemble Kalman Filter in order to
update semi-distributed hydrological model state variables. The method was applied
to the Syr Darya River Basin, a complex mountainous region covering approximately
7000 km2. They showed that data assimilation allowed a better real time estimation20

of reservoir levels over the region. However, because of the state updating procedure
used in this study, which consisted in adding or abstracting water from reservoirs, the
method is limited to medium-range forecasting. It is not suitable for long-term water
resources scenario calculations, where mass balance has to be maintained. More re-
cently, Michailovsky et al. (2013) used radar altimetry data from the ENVISAT mission25

for updating the storage of a routing model of the main reach of the Brahmaputra river
driven by the outputs of a calibrated rainfall runoff model showing the potential for
the use of altimetric data in combination with hydrological models for flow modeling in
large rivers. However in situ flow data was required for the calibration of the rainfall
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runoff model which may still be a limitation in some areas with poor data availabil-
ity such as the Niger river. Salamon and Feyen (2009) used the residual re-sampling
particle filter to assess parameter, precipitation and predictive uncertainty in the dis-
tributed rainfall–runoff hydrological model LISFLOOD for the Meuse catchment using
discharge measurements. They showed that the equifinality hypothesis (several differ-5

ent parameter sets can lead to a good estimation of the discharge) was a limitation to
the correction of a distributed hydrological parameter even in a physically based hy-
drologic model. Moreover, he emphasized the strong effect of rainfall uncertainties on
the analysis. Finally, the results showed that accounting for parameter uncertainty only
during a calibration phase was not sufficient to properly predict uncertainty, limiting10

the application of the method for hydrologic forecasting over longer time periods. The
aforementioned applications of DA in hydrological qmodeling have shown the potential
of using remote sensing data in order to improve the model states or the parameters.
However, they also showed the limitations due to the generally low spatial and temporal
resolutions of these data sets.15

Hydrological model uncertainties can come from several sources, such as model
structure or input parameters, leading to the development of different DA methodolo-
gies. Indeed, depending on the study, DA either aims at optimizing the model input
parameters or at directly correcting the model state (generally done in operational fore-
cast applications for example). The current study investigates benefits of assimilating20

SWOT virtual water levels in order to improve input parameters of a large scale hy-
drological model within the context of a pre-launch study. The domain study area is
the trans-boundary Niger basin (Fig. 1) which crosses a large part of the Sahel and
is a critical source of water in this semi arid region which is characterized by an in-
creasing population which is putting larger pressure on the already limited freshwater25

resources. The hydrology of this basin is modulated by the West African Monsoon
(WAM) seasonal and inter annual variability which is characterized by extreme events
such as droughts and floods which can have dramatic impacts on society and the re-
gional economy. However, the lack of field measurements limits the understanding of
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the salient hydrological processes in the Niger basin. For these reasons, it is an ideal
test-bed for studying global hydrological issues. In a previous study, a Niger basin hy-
drological model application was set up and evaluated using the ISBA-TRIP distributed
hydrological model. Along with river routing, this model includes a flooding scheme
and a linear unconfined aquifer reservoir (Pedinotti et al., 2012). The modelling eval-5

uation showed that the model was able to reasonably reproduce the major hydrologic
and hydrodynamic processes. The importance of floodplains was also demonstrated,
since they have a considerable impact on discharge downstream of the inland Niger
delta. The confined aquifer improves the recession law and the simulation of low flows.
However, some model deficiencies remain which can be due to forcing or model uncer-10

tainties. Among these sources of errors are the uncertainties of TRIP hydrological pa-
rameters. Indeed, these distributed parameters are defined by empirical relationships
using available observations which are adapted towards obtaining the best results over
the entire globe. However, such relationships might not give the best results locally (for
a particular basin). These relationships thus lead to non-negligible errors which could15

be reduced using satellite data. Indeed, such data can potentially be used to spatially
distribute parameters for each particular basin and then contribute to the development
of a global database describing major river characteristics. Pedinotti et al. (2012) per-
formed sensitivity tests to determine the main sources of uncertainty among the TRIP
parameters.20

The aim of the current study is to investigate how SWOT water level products can
be used to optimize the Manning coefficient. Since SWOT observations are not yet
available and to assess the usefulness of data assimilation, this study is carried out
within the framework of an Observing System Simulation Experiment (OSSE) using
the TRIP model for the simulation of the Niger hydrodynamics. SWOT virtual measure-25

ments are produced using a reference ISBA-TRIP simulation. Here, it is assumed that
modeling errors are only due to one key parameter which can not be directly estimated
via observational data: the Manning roughness coefficient (the other sources of mod-
eling errors are not considered here, and the reasons will be explained). The impact
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of the assimilation system on the Niger river modeling is then quantified. First, a brief
presentation of the study domain and the model is made in Sect. 2. In this section, the
Manning coefficient is also defined and its spatial distribution used for the true simula-
tion is shown. Then, the production of SWOT virtual water level is described in Sect. 3.
The methodology used to build the assimilation scheme is explained, and the main5

variables of the assimilation problem are described in Sect. 4. Finally, the impact of
the assimilation on the main hydrological variables of the Niger basin are discussed in
Sect. 5.

2 Study domain and model description

2.1 The Niger river basin10

Originating in the Guinean highlands within the Haute Guinée and Guinée Forestière
regions located in the Fouta Djallon Massif mountain range, the Niger river is the third
longest river in Africa (4200 kilometers), after the Nile and the Congo. Its outlet is lo-
cated in Nigeria, discharging through a massive delta into the Gulf of Guinea. On its
way through Mali, it crosses a vast floodplain region called the Inland Delta. The Inland15

Delta has an average surface area of 73 000 km2, and it dissipates a significant pro-
portion of the flow of the river through absorption and evaporation (it is estimated that
about 40% of water is lost through the inland delta by evaporation and/or infiltration,
Andersen et al., 2005). From the headwaters to the Niger delta (taking into account the
hydrologically active area), the Basin has an average area of about 1.5 million km2.20

The Niger river is shared by 9 countries and is the main source of water for about
100 million people living principally from agriculture and farming. During the 1970s and
1980s, West Africa faced extreme climate variations with extended drought conditions
followed by floods, thus there is a need to better understand the functioning of this
basin for water management purposes. The complexity of modelling the Niger basin25

is mainly due to the fact that it crosses very different climatic zones, from the tropical
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humid Guinean coast where it generally rains every month of the year, to the desertic
Saharan region. The main source of water over the basin is due to the West African
Monsoon (WAM) which is characterized by a marked annual cycle and significant inter
annual variability, leading to the succession of extreme events such as droughts and
floods. The modelling of the Niger basin by CHSs thus requires a good description of5

climate conditions, especially of rainfall, and the knowledge of some key hydrological
parameters which must be spatially distributed to account for their heterogeneity over
the domain.

2.2 Review of the ISBA-TRIP model

ISBA is a state-of-the-art land surface model which calculates the time evolution of the10

surface energy and water budgets (Noilhan and Planton, 1989). It represents the natu-
ral land surface component of the SURface-EXternalized (SURFEX) coupling platform
at Météo-France (Masson et al., 2013). In the current study, we use the 3-layer force-
restore soil hydrology option (Boone et al., 1999). The options are also activated for
a comprehensive representation of sub-grid hydrology in order to account for the het-15

erogeneity of precipitation, topography and vegetation in each grid cell. A TOPMODEL
approach (Beven and Kirkby, 1979) has been used to simulate a saturated fraction,
fsat, over which precipitation is entirely converted into surface runoff (Decharme et al.,
2006). Infiltration is computed via two sub-grid exponential distributions of rainfall inten-
sity and soil maximum infiltration capacity (Decharme and Douville, 2006). The TRIP20

original River Routing Model (RRM) was developed by Oki and Sud (1998) at Univer-
sity of Tokyo. It was first used at Météo-France to convert the model simulated runoff
into river discharge using a global river channel network at a 1◦. A more recent a 0.5◦

resolution global river network has been developed which is used for this study. The
ISBA-TRIP CHS was recently improved to take into account a simple groundwater25

reservoir, G (kg), which can be seen as a simple soil-water storage, and a variable
stream flow velocity computed via the Mannings equation (Decharme et al., 2010). In
addition, ISBA-TRIP includes a two-way flood scheme in which a flooded fraction of
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the grid cell can be determined (Decharme et al., 2008, 2011). The flood dynamics are
described through the daily coupling between ISBA land surface model and TRIP RIM,
including a prognostic flood reservoir, F (kg). This reservoir fills when the river height
exceeds the critical river bank full height (Fig. 3a), hc (m). The flood interacts with
the soil hydrology through infiltration, with the overlying atmosphere through precipita-5

tion interception and through free water surface evaporation. For the Niger application,
Pedinotti et al. (2012) added a simple linear confined aquifer reservoir, Aq (kg), to ac-
count for the long term water storage in deep and more or less confined aquifers. This
reservoir was built on the example of the groundwater reservoir, G, but with a signif-
icantly longer time delay factor, τaq (s). The confined aquifer is supplied by a fraction10

(1−α) of the drainage from ISBA, the remaining fraction (α) going to the groundwater
reservoir. The TRIP schematic concept is presented on Fig. 2 and more details can be
found in Pedinotti et al. (2012).

2.3 TRIP specific parameters

The Manning coefficient characterizes the roughness so that it modulates the surface15

water velocity and thus water levels and discharge, via the Manning formula. However,
it is difficult to estimate via in-situ measurements or remote sensing techniques. In
ISBA-TRIP, the Manning friction coefficient, nriv, varies linearly and proportionally to
the river width, W (m), from 0.04 near the river mouth to 0.1 (Decharme et al., 2011) in
the upstream grid cells (Fig. 3b):20

nriv = nmin + (nmax −nmin)
(

Wmouth −W

Wmouth −Wmin

)
(1)

where nriv represents the grid cell average Manning coefficient, nmax and nmin the max-
imum and minimum values of the Manning friction coefficient (equal to 0.1 and 0.04,
respectively), Wmin (m) the minimum river width value and Wmouth (m) is the width of the25

mouth in each basin of the TRIP network (Wmouth = 2000 for the Niger basin). The river
width, W , is an important parameter because it controls both the river flow speed and
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the floodplain dynamics. It is computed over the entire TRIP network via an empirical
mathematical formulation that describes a simple geomorphological relationship be-
tween W and the mean annual discharge at each river cross section (Knighton, 1998;
Arora and Boer, 1999; Decharme et al., 2011):

W = max
(

30,β×Q1/2
yr

)
(2)5

where Qyr (m3 s−1) is the annual mean discharge in each grid cell estimated using the
global runoff database from Cogley (1979). As discussed in Decharme et al. (2011),
this coefficient can vary drastically from one basin to another. β is equal to 20 for the
branch of the river going from the river mouth (5◦ N) to 12◦ N and is fixed to 10 for the10

remaining river branch. The spatial distribution of the river width is shown in Fig. 3c.
Another critical parameter is the river bankfull critical height, hc, which is computed
according to the river width via a simple power function (Decharme et al., 2011):

hc =W 1/3. (3)
15

The spatial distribution of hc is shown in Fig. 3a. These relationships are found to work
well at the global scale but can lead to significant errors for a specific basin at the re-
gional scale (see the sensitivity tests in Pedinotti et al., 2012). Indeed, the asumption
that the river width is proportional to the annual mean discharge can lead to signifi-
cant errors in flooded areas where the river bed enlarges but the discharge is reduced20

through the flooding process. Moreover, it is assumed that the Manning coefficient is
only dependant on the river width while other factors could be considered, such as the
presence of vegetation, debris, soil type etc... Finally, these parameters are defined as
constant in time which is a significant asumption, especially in a region with a marked
seasonal climate variability such as the Niger basin. Remote sensing opens the pos-25

sibility of estimating the river width by direct measurements and the critical bankfull
height by indirect algorithms. However, the Manning coefficient will still be difficult to
estimate even using remote sensing. This study focuses on finding a methodology to
estimate this critical parameter via DA.
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3 Satellite observations

The aim of this work is to estimate the potential benefits of using SWOT satellite mea-
surements to provide spatially distributed estimates of the Manning coefficient over the
Niger river basin. This section describes this future satellite mission and how virtual
SWOT observations have been generated in this study.5

3.1 The SWOT mission

SWOT will provide high-resolution images of water surface elevations over the oceans
and continental surface water bodies. It will therefore observe continental surface wa-
ters at an unprecedented resolution, providing information for a better understanding
of surface water dynamics and storage variations. The mission is currently planned to10

be launched around 2020.
The satellite main payload will be the Ka-band Radar Interferometer (KaRIN), a wide

swath SAR (Synthetic Aperture Radar) interferometer. KaRIN will have two antennas
separated by a 10 m boom, which will observe two ground swaths of 60 km on each
side of the satellite nadir, separated by a 20 km gap. The intrinsic pixel resolution will15

vary from 60 m (near range) to 10 m (far range) across-track and will be at best around
5 m along-track (however, this value is also dependent upon decorrelation time). Yet,
for these intrinsic pixels, water elevation measurements have metric errors, which in-
crease along the swath (depending on the look angle). To increase vertical accuracy,
pixels have to be aggregated: over a 1 km2 area inside the river mask, water ele-20

vation has a 10 cm or lower error (Rodríguez, 2012). River slopes will be measured
with a 1 cmkm−1 resolution, after processing elevations over 10 km river reaches (Ro-
dríguez, 2012). SWOT will be able to observe rivers wider than 100 m (requirement)
and should be able to observe rivers wider than 50 m (goal). The chosen orbit will be
a Low Earth Orbit with a 78◦ inclination, in order to observe almost all of the continental25

surfaces (Rodríguez, 2012).
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3.2 Observing System Simulation Experiment (OSSE) and virtual SWOT data

The OSSE framework consists in simulating data that would be observed by the fu-
ture measurement platform using a numerical model, in order to use them as virtual
observations for DA experiments. The main objective of an OSSE is to validate the DA
method by using ideal conditions. Indeed, here it is assumed that the real state of the5

system is known. Also, the error statistics of the model state or parameters and in the
observations are assumed to be known and correctly described which is not the case
in real conditions. Also, this method is useful within the framework of the SWOT satel-
lite mission preparation, since it allows, before launch, a quantification of the satellite
data contribution to improve large scale river modeling (such as for the Niger basin).10

First, a realistic modeling of the studied basin in needed for the OSSE. Indeed, the
model must be able to simulate the major hydrodynamic processes of the basin so
that the simulated observations will reasonably represent the reality. The ISBA-TRIP
set-up evaluated in Pedinotti et al. (2012), with the inclusion of the flooding scheme
and aquifer reservoir, is used to represent the true state of the hydrological system,15

also refered to as the reference simulation. For this so-called “truth”, the model and
its parameters are assumed to be perfect. An error is then added to this true state to
build virtual observations. The background simulation results from the integration of
the same model in a different configuration, for instance with a different set of param-
eters (also called pertubed or background parameters). It gives an a priori description20

of the system that is an approximation of the truth. In the present study focussed on
parameter estimation, the purpose of the DA algorithm is to retrieve an optimal set of
model parameters starting with the background parameters, assimilating the virtual ob-
servations. It is important to note that in the present study, the error between the true
Manning coefficients and the background Manning coefficients does not vary in time.25

Within the framework of this SWOT-dedicated study, the true simulation is used to
generate the SWOT observations, with the help of a relatively simple simulator de-
velopped by Biancamaria et al. (2011). Based on the prescribed orbit and swath, the
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simulator provides an ensemble of SWOT tracks and related dates. The SWOT tracks
are provided for the orbital period and then repeated over the years 2002–2003 (as-
suming the satellite starts its first orbit on 1 January 2002). The virtual data are the
sum of the ISBA-TRIP water levels at the corresponding grid points, in addition to an
instrumental error which is added to partialy account for the SWOT observation er-5

rors (see Sect. 4.2.1 for details). A river mask for the Niger comprinsing grid cells with
a river width above 200 m is defined as illustrated in Fig. 4 which displays the Manning
coefficient for the unmasked 110 pixels. It should be noted that the SWOT satellite will
not measure absolute water level but free surface water elevation. Thus, in real-time
DA applications, the direct comparison between SWOT and ISBA-TRIP water levels10

will not be straightforward and will need further investigation. However, this issue is
beyond the scope of an OSSE framework.

The 22 day repeat orbit and the 140 km swath used in this simulator allowed a global
coverage of the study domain within 22 days. Among available orbits, two orbits have
been pre-selected by the NASA-CNES project team, for various scientific and techni-15

cal reasons (mainly to seek a compromise between both the hydrological and oceano-
graphic scientific communities). These two orbits have the same repeat period, but
different altitudes, meaning different subcycles. The repeat period corresponds to the
minimum time taken by the satellite to fly over exactly the same ground location. Given
the orbit parameters and the earth rotational speed, it requires a fixed number of satel-20

lite revolutions. For all of these revolutions, the part of the orbit that goes from North to
South corresponds to the descending track and the one that goes from South to North
corresponds to the ascending track. These ascending and descending tracks cross
the equator at different times during one repeat period. The difference between these
crossing times for two adjacent ascending (or descending) tracks during a repeat pe-25

riod is the orbit subcycle. The 970 km altitude orbit has a 3 day subcycle, whereas the
873 km altitude orbit has a 1 day subcycle. These two orbits both have global coverage
but with a different time and spatial spread of the satellite tracks during one repeat pe-
riod. The 1 day subcycle orbit has two adjacent swaths every day, meaning that each
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river basin will be well sampled in few days, but then there will be no observations for
several days (Fig. 5) with the risk of missing short term events. The 3 day subcycle
orbit has two adjacent swaths every 3 days on average, meaning ground tracks will be
more regularly distributed in space and time. Yet, there will be no tracks close in time
at any point during the cycle (Fig. 6). Thus, due to their spatial and temporal cover-5

age over the domain, these two orbits present specific advantages and disadvantages
that will be investigated in the framework of the DA framework. The OSSE is run over
2 years starting from the beginning of the monsoon season, on 1 June 2002. During
each SWOT 22 day repeat, there are about 53 satellite overpasses on the Niger bassin
for the 3 day subcycle orbit and 50 for the 1 day subcycle orbit.10

4 Data assimilation schemes

4.1 Choice of the control variable.

The goal of using assimilation in this study is to correct the TRIP routing input param-
eters which are associated with uncertainties. The contribution of such corrections are
estimated by comparing model outputs (water level, discharge, water storage...) with15

and without DA. Sensitivity tests in Pedinotti et al. (2012) determined the most sensitive
TRIP parameters which impact the major hydrological processes of the Niger basin. It
was shown that a modification of the Manning roughness coefficient, nriv, has a signifi-
cant impact on the hydrological variables over the Niger basin. Indeed, the Manning co-
efficient, is used for flow calculations in the river stream, via the Manning formula. Due20

to its close relationship with water levels and discharge, it is one of the most important
empirical parameters in the field of hydrology and hydraulics. Thus, a good estimation
of this coefficient in the river bed leads to a better reproduction of surface water dynam-
ics. There is a tendancy to regard the selection of Manning coefficient as an arbitrary
or intuitive process. Indeed, hydrodynamic models usually determine the value of the25

Manning coefficient manually, often using estimations based on visual interpretation of
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the land cover. The roughness can also be described by geomorphologic relationships,
which are related to another parameter for which more information is known (river width
for example). In ISBA-TRIP, the Manning coefficient, nriv, is assumed to vary linearly
with the river width, W , from 0.04 near the river mouth to 0.10 in the upstream grid
cells (Eq. 1). These geomorphologic relationships are used to obtain the spatially dis-5

tributed Manning coefficient which provides a “global” fit or best estimate, but might not
be realistic at finer scales due to the potentially significant heterogeneity of the river
and land properties. Thus, both approaches can lead to significant errors over a large
computational domain which is characterized by multiple land use/cover classes. Al-
though progress in remote sensing will probably improve our estimates of the Manning10

coefficient (using the two aforementioned approaches), this parameter will not be esti-
mated directly via remote sensing and therefore will remain dependant on the physical
relevance of the geomorphologic relationships. Thus, DA appears to be an appealing
option for estimating the Manning coefficient using remote sensing data.

In reality, the temporal variability of the error on the Manning coefficient is related to15

the flow dynamics as the river bed morphology can be significantly modified by flood
events. Even though this temporal variability is not accounted for in our OSSE frame-
work, the DA analysis is performed sequentially over a 2 day time window which allows
a high variability of the correction on the Manning coefficient. It should be noted that
in a real case study where sources of uncertainty are multiple (contrary to our OSSE20

framework where errors are only due to Manning coefficient perturbations), correcting
the Manning could be interpreted as a way to account for other uncertainties (which
are possibly characterized by errors with a higher temporal variability than that of the
Manning coefficient). The choice of the time window length could be revisited in further
studies. However, a longer assimilation window also requires a bigger storage capac-25

ity and this must be considered when selecting the length of the assimilation window.
In the following section, along track virtual SWOT data over 2 days are assimilated to
correct the Manning coefficient for the unmasked nt = 110 ISBA-TRIP grid points. For
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each analysis at time t (also called cycle), the control vector is thus a vector of 110
elements noted xt.

4.2 The Extended Kalman Filter (EKF).

The assimilation algorithm used for the calculation of the analysis is the Extended
Kalman Filter (EKF) which is presented in this section within the framework of param-5

eter optimization. The true Manning coefficients (known in the framework on an OSSE
but unknown in reality) are gathered in the vector x

true
t of size nt. The vector of the

a priori parameters x
b
t for the hydrological models are presecribed by geomorphologic

relationships which induce an error εb
t = x

true
t −x

b
t of which statistics are described in

the background error covariance matrix B. Here, these statistics are assumed to be10

constant over the assimilation cycles and to follow a Gaussian distribution, centered in
0 with a standard deviation, σb

t of 20% of the average value of the Manning coefficient
over the river.

The observation vector y0
t of dimension pt contains all the SWOT observations col-

lected during the 2 day assimilation window. The observation operator H projects the15

control vector onto the observation space. This operator is non-linear as it is the com-
position of the hydrological model M and of a selection operator S that simply extracts
or interpolates the simulated water levels (over the whole gridded domain) at the ob-
servation points. Here, H =SoM where S represents the SWOT simulator and M is
the integration of the hydrological model over the assimilation window. The relation20

yt = H(xt) allows to describe the true water level vector ytrue
t at the observation points

when x
true
t is used and the background hydrological water level vector ybck

t at the ob-
servation points when x

b
t is used. In OSSE, an observation error ε0

t , is added to y
true
t

to account for instrumental and representativeness errors. The observation errors are
assumed to be decorrelated in space and time, and the observation error standard de-25

viation (σo
t )2 is set equal to (σb

t )2. The observation error covariance matrix Rt is thus
assumed to be diagonal. Further work should focus on a complete estimation of the
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observation error statistics in order to allow for along track correlation of the instrumen-
tal errors (Lion, 2012).

The EKF analysis vector x
a
t is defined as a correction to the background vector,

where the the innovation vector d t = y
0
t −Ht(x

b
t ) is muliplied by the gain matrix Kt:

xa
t = xb

t +Ktd t. (4)5

where Kt reads:

Kt = BtH
T
t

(
HtBtHt

T +Rt

)−1
(5)

where Ht is the tangent linear of H with respect to xt. The statistics of the analysis10

error εa
t are determined by the analysis covariance matrix At = (I−KtHt)Bt (Bouttier

and Courtier, 1999). The analysis vectors provide the corrected Manning coefficient
values, which can then can be used to integrate the hydrological model and simulate
the analyzed water levels over the whole domain. A schematic diagram of the assimi-
lation process is shown in Fig. 7, and the key variables are represented in Eqs. (4) and15

(5) and listed in Table 1.

4.3 Jacobian matrix calculation

The EKF algorithm relies on the computation of a local approximation of the tangent
linear of the observation operator that describes the relationship between the control
vector and the observation space, with respect to the control vector. As the size of the20

control space is limited in this study, a finite difference scheme can be used to per-
form this approximation, in the vicinity of the background vector. Since the observation
operator H includes the model propagation, the calculation of the Jacobian matrix Ht
requires the computation of nt independent integrations of the hydrological model with
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a perturbed element for each component of xt.

Ht,i j =
∂H
∂x |t,i j

=
(H(xt +∆x)−H(xt −∆x))i

∆xt,j
=

∆y+
t,i −∆y−

t,i

∆x+
t,j +∆x−

t,j

. (6)

In Eq. (6), H translates the variations of water levels at the observation points induced
by the variation of Manning coefficients. ∆y+

t,i and ∆y−
t,i represent the water level vari-5

ations at the gridded pixel i related to variations ∆x+
t,j and ∆x−

t,j of the Manning co-
efficient at the gridded pixel j . A centered finite difference scheme was favoured over
a one-sided scheme as it reduces noise on the evaluation of the local derivative. The
computation of Ht thus requires 2×nt integrations of ISBA-TRIP over the assimilation
window using elementary perturbed Manning coefficients at the unmasked observation10

point. The computational cost of H could be optimized as only perturbations on Man-
ning coefficients at the grid points located upstream of each observation point have an
impact on water level at the observation point. In the present work, the 2×nt integra-
tions of ISBA-TRIP are achieved sequentially.

5 Results15

The impact of DA on the hydrological processes is analysed using the relative error.
For any variable v , the relative error is expressed as:

errv =
v − vtruth

vtruth
(7)

where vtruth refers to the variable v as described in the true simulation.20

5.1 Impact of assimilation on Manning coefficient

The truth simulation is made using Manning coefficients which are constant in time,
meaning that there is no temporal variation of the error on the model parameters,
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thus it is expected that the DA analysis leads to a constant value of the corrected
Manning close to the “true” values. However, since the Manning coefficient is spatially
distributed, several spatial combinations of these parameters might resolve the assim-
ilation problem which is generally referred to as the equifinality hypothesis. Figure 8
shows the Manning coefficient relative error (averaged over the river) time series for5

the two orbits. The average relative error of the Manning coefficient is significantly im-
proved during the assimilation period and tends to converge to a stable value (about
0.19 for the 1 day subcycle orbit and 0.17 for the 3 day subcycle orbit), since the error
is not significantly changed from January 2003 until the end of the assimilation exper-
iment. The convergence towards the minimum value of the spatially averaged relative10

error to the true averaged Manning coefficient is slightly faster for the 3 day subcycle
orbit than for the 1 day subcycle.

The Manning coefficient temporal evolution at the 8 gage locations is shown in Fig. 9.
It should be noted that in some places and for both subcycles, the “real” Manning
coefficient value is only approached and not found through the assimilation cycles,15

which can be related to the equifinality problem. The 1 day subcycle and 3 day subcycle
orbit assimilations converge to the same value in 5 locations out of 8. In Banankoro,
Kandadji and Malanville, however, the coefficnet values for the two orbits converge to
different values. Banankoro is located upstream of the river, so this difference can be
explained by the lack of data uptream of this location for obtaining a robust estimate20

of the Manning coefficient at this site. Also, the impact of the Manning coefficient on
the simulation depends on the rain amount over the observed locations. According to
the considered subcycle, the satellite will see different zones and a different number
of observations corresponding to different rain events which can lead to the different
values obtained for the optimal Manning coefficient in some locations. Also, a noise with25

a frequency of about 20 days is observed in every location and for the two subcycles
and might be related to the orbit repetitivity.
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5.2 Impact of assimilation on water levels

Table 2 gives water level mean relative error computed with respect to the true water
levels, first averaged over the entire river for the 2 year period and then at each of
the 8 observing stations shown in Fig. 1. Figures 10 and 11 display the water level
relative error averaged over the river and at the 8 observing stations as a function5

of time when (i) there is no assimilation (black curve), (ii) after a 1 day subcycle orbit
SWOT-observation assimilation (green curve) and (iii) the 3 day subcycle orbit SWOT-
observation assimilation (blue curve).

These results show that the DA analysis leads to a significant reduction of the water
level relative error over the whole river (the averaged relative error is reduced by more10

than a factor of three with DA) and at the 8 gages. Indeed, in most of the 8 locations,
there is an improvement of several meters reaching up to 9 m at Lokoja (for an 8 m
averaged river depth). As for the Manning coefficient, a noise with a repeat period of
20 days is observed and can be directly related to the noise observed on the Manning
coefficient. Also, even in the locations where the analysed Manning coefficient defers15

for both subcycles, the same water levels are retrieved for both subcycles which con-
firms the equifinality hypothesis.

A great improvement in the water level is achieved with the first assimilation cycles
since the background Manning parameters and thus the background water levels ini-
tially differ significantly from the true parameter values and water levels. For the follow-20

ing cycles, as the background parameters are set equal to the analysis parameters, the
sequential correction results in a convergence towards the optimal Manning coefficients
leading to water levels that are coherent with the true water levels. The improvement is
larger for stations that are located downstream of the river, possibly because the Man-
ning coefficient has a greater impact when the river width is larger. These results are25

similar for both orbits as illustrated in Fig. 12 that shows the spatially distributed relative
error of water levels averaged over the period from June 2002 to December 2003 for
the run with (a) no assimilation, (b) for a 3 day subcycle assimilation and (c) for a 1 day
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subcycle assimilation. Without assimilation, the relative error over the river ranges be-
tween 0 and 1.2. With assimilation, more than 90% of the river pixels have a relative
error smaller than 0.2 for both subcycles, and no pixel has a relative error higher than
0.5.

5.3 Impact of assimilation on river discharge5

Table 3 presents discharge mean relative error computed with respect to the true dis-
charge, first averaged over the entire river for the 2 year period and then at each of
the 8 observing stations shown in Fig. 1. Figures 13 and 14 display the discharge
relative error averaged over the river and at the 8 observing stations as a function
of time when (i) there is no assimilation (black curve), (ii) after a 1 day subcycle orbit10

SWOT-observation assimilation (green curve) and (iii) the 3 day subcycle orbit SWOT-
observation assimilation (blue curve). First, these results show that the assimilation
also contributes to an improvement of the river discharge over the whole basin and
at the 8 locations, although this improvement is smaller than for water levels. More-
over, the impact of assimilation on discharge has a seasonal variability which was not15

present for water levels.
Discharge improvement, even if less significant than for water levels, can represent

several hundreds of m3 s−1 globally and up to 3000m3 s−1 in Lokoja. Discharge ob-
tained after assimilation is somewhat “noisy”, for both orbits during the wet season.
This is likely due to a higher discharge sensitivity to Manning coefficient change dur-20

ing this period. Discharge is improved, in particular, at Lokoja, i.e. the location situated
the most downstream of the river which is a promising result for coupled land-ocean
applications since it shows that the RRM can provide a reasonable estimation of dis-
charge at the river mouth. Similar to what was found for water levels, there is almost no
discharge sensitivity to the considered orbit.25

Figure 15 shows spatially distributed relative error of discharge averaged over the
period June 2002–December 2003 for the run without assimilation (a), for a 1 day sub-
cycle assimilation (b) and for a 3 day subcycle assimilation (c). The discharge relative
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error is globally improved with better results over the inner delta for the 1 day subcy-
cle orbit. Otherwise, there is no significant difference in results between the two orbits.
Without assimilation, the relative error range over the river goes from 0 to 0.4. With
assimilation, all pixels have a relative error smaller than 0.2, with 80% of them having
errors less than 0.1.5

To better understand the relationship between the water levels and the discharge, the
flooded fraction time series at 2 locations (KeMacina and Lokoja) is shown on Fig. 16.
In KeMacina, there was no flooded fraction before the assimilation while there was
about 15% to 20% for the “truth”. At this location, DA leads to a water level increase
that generates flooding for both orbits, in agreement with the true run. The amplitude of10

the flooded fraction simulated with the assimilation for a 3 day subcycle is close to that
of the true run while the flooded fraction simulated with assimilation for a 1 day cycle
is overestimated. This results because the water level and discharge results slightly
overestimate the results from the true run for the 1 day orbit.

Another interesting case is observed in Lokoja, where the model simulates flood-15

plains (25%) with no assimilation, which is not observed for the “truth”. Here again,
by reducing water levels, the assimilation considerably reduces flooded fraction for the
1 day subcycle orbit and even prevents it from occuring for the 3 day subcycle orbit.
No floods are modeled at the other sites for the truth, the run with no assimilation
or the runs with assimilation, so these sites are not shown in Fig. 16. These results20

are valuable since they show that the use of DA corrects the flood prediction for two
major sites of the Niger basin. Indeed, Ke Macina is located just upstream to the en-
trance of the inner delta region, while Lokoja is the last in-situ station upstream of the
river outlet. It should be noted that the discharge response to water level modification
depends on whether or not there are floods. For example, at Ke Macina during the25

monsoon period, water level is increased via assimilation, which results in a better fit
with the truth simulation and to a discharge decrease. This is coherent with the results
of Pedinotti et al. (2012), in which the introduction of floodplains leads to a reduction of
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the discharge. However, in regions without floodplains, a water level increase leads to
a discharge increase (see Kandadji for example).

The frequency of events as a function of the flooded fraction value (ratio of flooded
area over pixel area) are shown in Fig. 17 for the truth (a), without assimilation (b),
with assimilation for a 1 day subcycle (c) and with a 3 day subcycle (d). Only the pixels5

with a flooded fraction greater than 10% (0.1 on horizontal axis) are considered. It is
shown that without assimilation, the model does not simulate flooded fractions above
0.5, which represents about 8% of the flood events for the truth simulation. Moreover,
without assimilation, the model tends to overestimate the occurence of smaller events.
This is corrected by the assimilation, with a slight tendancy to over-estimate flood in-10

tensity for the assimilation with the 3 day subcycle orbit, while the 1 day subcycle orbits
leads to an excessive occurence of flooded fractions contained in the [0.2–0.3] range.
According to these results, DA allows a better simulation of the water storage variations
and it leads to better estimate flood events occurence and intensity in the inner delta
area.15

5.4 Water storage variations

Ideally, for water resource management applications and for making reliable future wa-
ter resource projections, global hydrologic models should be able to reasonably simu-
late water storage variations in regional to large scale continental reservoirs. It is then
of interest to see if DA can improve the simulation of these water variations. Figure 1820

shows the relative water storage variations in 4 continental reservoirs (river, floodplains,
aquifer and soil) for the truth (red), without assimilation (black), with a 1 day subcycle
(blue) and with a 3 day subcycle (green). For each reservoir, the 20 day running aver-
age water storage variations are divided by the averaged water storage over the period
of assimilation. The maximum relative water storage variations ranges from 6% in the25

river reservoir to about 30% in the floodplain reservoir which is not negligible. In the
4 reservoirs, the simulations with assimilation better represent the amplitude and the
phase of the water storage variations. From these results, the assimilation seems to be
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useful for better representing anomalies in continental reservoirs, which are subject to
many uncertainties due to the lack of data.

6 Discussion

Optimization of the Manning coefficient using a DA methodology leads to a significant
improvement of the water levels over the Niger river, and also at the 8 locations with5

gages. Indeed, the relative error of the water level is globally improved (a 30% re-
duction) and the amplitude of the water level is closer to the truth with assimilation
than without assimilation. The relative error of the Manning coefficient is also reduced
(40% reduction) and it globally converges towards an optimal value despite potential
problems related to equifinality. Discharge is also improved by the assimilation, but to10

a lesser extent than for the water levels (7%). Moreover, the proposed methodology
results in a better prediction of flood event occurence and intensity in the inner delta
and better simulates water storage anomaly maxima and minima in several reservoirs,
especially the groundwater and the aquifer reservoirs, for which the temporal evolu-
tion is difficult to observe. This study is promising since, to our knowledge, no large15

scale assimilation applications exist for the optimization of spatially distributed hydro-
logical parameters. It shows SWOT observations would be useful for the improvement
of CHSs. This method could lead to a better representation of the water cycle in climate
prediction applications, but could also be used for large scale water resource manage-
ment applications. Finally, there is no clear out advantage difference between the two20

subcycle orbits used for this study, each one having better skill for certain situations.
It should be noted that, this study has some limitations and several asumptions

should be noted. The assumption of white noise error for SWOT observations is prob-
ably too optimistic. Furthermore, no correlation of the measurement errors along the
swath has been assumed. Estimating satellite observation error sources has been the25

subject of several studies at the French space agency (CNES) in recent years. Ini-
tially, a white noise was introduced within the SWOT water level along track altimetric
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estimate in order to represent the error due to satellite observations (Biancamaria et al.,
2011). Lion (2012) presents methods to simulate, in a more realistic manner, different
sources of SWOT satellite observation errors. These errors are generally due to sev-
eral factors such as satellite attitude, baseline error, phase unwrapping errors, etc....
These errors are not always Gaussian and do not always have a mean value of 0.5

A perspective for improvement of the assimilation methodology proposed in this study
is to introduce these errors into the assimilation system in order to get a more realistic
estimation of SWOT observation errors and of the error covariance matrix R. However,
their introduction in the system is not obvious and could lead to a degradation of the
error estimates due to the aforementionned Gaussian issue. Indeed, the Gaussian er-10

ror distribution along SWOT tracks does not ensure that the error of the observation
vector, y0, is Gaussian. Yet, the Gaussian nature of the observation error is a strong
asumption of the EKF and possible solutions to get around this limitation exist, such as
the use of an ensemble Kalman filter or a particle filter.

The hypothesis that the Manning coefficient uncertainties are the only source of15

model errors is obviously a rather simple assumption since other errors, such as those
related to precipitation forcing uncertainties, river bankfull depth error or the relatively
simple ISBA-TRIP physics, can also be the sources of significant modeling errors.
Within the framework of a real-data experiment, accounting for various sources of
errors via Manning control will lead to improved Manning values that should not be20

interpreted as physical values. Modeling asumptions also put a limitation on the DA
performance in the context of real-data experiments. For example, it is assumed in the
TRIP model that geomorphological parameters such as the Manning coefficient are
constant in time which is a significant asumption, especially in a region with a strong
seasonal climate variability, such as the Niger basin. Hopefully, SWOT observations25

will help to correct this problem, for example, using this method to build seasonal cli-
matologies of key parameters. To exploit this possibility, a further OSSE study could be
done, in which the “true” Manning coefficient varies seasonnally.
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Additionally, this study was done within the context of OSSE, in which the truth
was issued from a reference ISBA-TRIP simulation. This allowed an evaluation of the
methodology, but its performance will need to be re-evaluated with real observations.
Indeed, in the study presented here, the truth and the perturbation are based on the
same physical parameterizations: this is not true when real data are used. Therefore,5

the assimilation should be applied using either real observations of water level, or wa-
ter level issued from a different model, such as hydrodynamic model. In further studies,
longer assimilation windows could be exploited but also require a bigger storage ca-
pacity which must be considered for the choice of the assimilation window size.

Finally, this method must be applied to other ISBA-TRIP parameters and for other10

large-scale basins to evaluate its global application capability. Indeed, it is not guar-
anteed that a methodolgy, which works for a specific basin could be used for all other
major basins (with different climates, geoology, etc.). Ongoing work is focused on ap-
plying the methodology herein to other basins. These proposed improvements aim at
ensuring the assimilation methodology will be applicable when real SWOT data will be15

available.
Finally, it could be potentially interesting to perform the assimilation on an ensem-

ble of perturbed runs in order to take into account several uncertainty scenarii. Thus,
the estimation of the background modeling matrix could be done using an ensemble
method (Evensen et al., 2004).20

7 Conclusions

This study presents a simple method for assimilating SWOT virtual water level into
a large-scale coupled land-surface hydrology model (TRIP-ISBA) in order to improve
estimates of the required global hydrological model input parameters. Based on the
sensitivity tests performed in a previous study from Pedinotti et al. (2012), it was de-25

cided to apply the assimilation method in order to correct the Manning coefficient. In-
deed, this coefficient is a key parameter which impacts surface water dynamics and
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thus water level and discharge. However, its estimation is difficult and it is generally
derived from geomorphologic relationships in global scale models. It is still possible to
“tune” model parameters in order to fit observations for some basins. Yet, at the global
scale, this type of approach is limited by the lack of observed data. This study showed
that SWOT satellite data offer an alternative to better calibrate large scale hydrologic5

models through assimilation. To accomplish this, an Observing System Simulation Ex-
periment (OSSE) was performed, using virtual SWOT observations of water levels.
SWOT virtual observations have been generated using a reference ISBA-TRIP run.
Two orbits, with different subcycles but with the same 22 days repeat period, have been
considered to generate the observations (1 day and 3 day subcycles), each one provid-10

ing a specific spatial and temporal coverage of the domain. Then, a perturbed run was
created considering only modeling uncertainties due to errors on Manning coefficient.
The Extended Kalman Filter (EKF) algorithm has then been applied every 2 days (the
length of the assimilation window) to compute a corrected Manning coefficient (analy-
sis). The analysis has then been considered as the new control vector for the following15

assimilation cycle. Using this method, the estimation of an optimal spatially distributed
Manning coefficient was possible. This Manning coefficient globally converged for two
orbital subcycles to the same average value, the convergence being faster for the 3 day
subcycle orbit. The optimal distribution of the Manning coefficient was closer to the true
distribution than the perturbed one, showing that, in this experiment, equifinality was20

not a limitation. This method gives a promising perspective for global scale applica-
tions, and it could be extended to other large basins. However, several relatively simple
hypotheses have been made, and these should be addressed and refined in future
studies. For example, in this study, only uncertainties related to the Manning coefficient
were considered. Other sources of uncertainties should be assumed for the assimila-25

tion, such as rainfall errors and/or river bankfull depth. Moreover, other modeling errors
such as those from the ISBA land surface parameterisation could be considered, such
as that pertaining to runoff. It was also considered that observation and modeling errors
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were not correlated in space and time which might not be realistic. The use of more
realistic errors simulated by Lion (2012) will be considered in future studies.

These preliminary results show that the method leads to a global reduction of 40%
of the Manning coefficient error over the river. This correction significantly improved the
water levels (the error has been reduced by 30% for the river) and, to a lesser extent,5

discharge (7% of reduction of the error which can be significant for the Niger river in
terms of water resources considering that its mean annual discharge is 6000m3 s−1).
Moreover, the biggest improvements were observed downstream of the river (Lokoja),
which is a valuable result for climate applications which require estimation of the dis-
charge at large rivers mouths. Another perspective consists in the application of this10

method to other TRIP parameters, or several parameters at a time. Correction of ISBA
parameters, such as those controlling sub-grid runoff for example, is also planned but
must be considered carefully as the impact on the river is less direct. Before the satel-
lite launch, the AirSWOT airborne campaign will provide SWOT-like datasets of water
level, which will enable studies using a more realistic SWOT DA application, instead15

of the Observing Simulation System experiment presented here. Even if this airborne
campaign will not cover the Niger basin, it will potentially provide a better observation
error model. Yet, using more complex observations and model errors might require
a modification of the assimilation scheme to overcome extremely strigent EKF filter
asumptions of Gaussian unbiased errors. Possible assimilation techniques to test are20

the/run Ensemble Kalman Filter or the particle filter.
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Table 1. Principal variables, vectors and matrices used in the data assimilation of SWOT water
levels. The assimilation window length is N days. The number p of observed water levels during
the assimilation window changes for each cycle.

Symbol Variable Dimensions

y
0
t Observation vector, containing p (different for each

the SWOT WL observations during assimilation cycle)
the N day assimilation window

x
b
t Background vector, containing the n = 110

corrupted Manning coefficient
over the river mask

x
a
t Analysis vector, containing the n = 110

corrected values of the Manning
coefficient over the river mask

Mt ISBA-TRIP (non linear)

Ht(x
b
t ) ISBA-TRIP simulated water levels, p

using xb
t as an input parameter

Rt Observation error covariance matrix p×p
(related to water levels)

Bt Background error covariance matrix n×n
(related to the Manning coefficient)

At Analysis error covariance matrix n×n

Ht Jacobian matrix of H (sensitivity of n×p
ISBA-TRIP water levels
to the Manning coefficient)

Kt Gain matrix
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Table 2. Water level relative error averaged over the river and at the location of the 8 gages
along the river (each gage is defined by its number specified inside the orange rectangles in
Fig. 1). The relative error is calculated as the ratio ((hwith/without assi −htruth)/htruth where h is the
water level (m).

Location n◦ Riv Mean 1 2 3 4 5 6 7 8

No assi 0.45 0.35 0.17 0.36 0.55 0.16 0.69 0.68 1.1
3dsbc 0.12 0.09 0.25 0.11 0.17 0.12 0.12 0.1 0.09
1dsbc 0.12 0.19 0.1 0.11 0.12 0.13 0.07 0.12 0.18
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Table 3. Discharge relative error averaged over the river and at location of the 8 gages along the
river (each gage is defined by its number specified inside the orange rectangles on Fig. 1). The
relative error is calculated as the ratio ((qwith/without assi −qtruth)/qtruth where q is the discharge
(m3 s−1).

Location n◦ Riv Mean 1 2 3 4 5 6 7 8

No assi 0.14 0.06 0.1 0.18 0.22 0.2 0.2 0.15 0.14
3dsbc 0.08 0.04 0.04 0.11 0.14 0.14 0.14 0.09 0.06
1dsbc 0.07 0.03 0.03 0.09 0.13 0.13 0.11 0.08 0.06
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V. Pedinotti et al.: Assimilation of SWOT data 15

Fig. 1. The Niger river basin. The spatial resolution is 0.5◦×0.5◦. The red contour marks the boundary of the Niger basin. The squares
correspond to the following locations: (1) Banankoro, (2) Koulikoro, (3) Ke Macina, (4) Niamey, (5) Ansongo, (6) Kandadji, (7) Malanville
and (8) Lokoja. Terrain elevations come from ETOPO2 (m).

Fig. 1. The Niger river basin. The spatial resolution is 0.5◦ ×0.5◦. The red contour marks the
boundary of the Niger basin. The squares correspond to the following locations: (1) Banankoro,
(2) Koulikoro, (3) Ke Macina, (4) Niamey, (5) Ansongo, (6) Kandadji, (7) Malanville and (8)
Lokoja. Terrain elevations come from ETOPO2 (m).

4513

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/4477/2014/hessd-11-4477-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/4477/2014/hessd-11-4477-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 4477–4530, 2014

Assimilation of
SWOT data

V. Pedinotti et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

16 V. Pedinotti et al.: Assimilation of SWOT data

Fig. 2. The TRIP model.Fig. 2. The TRIP model.
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V. Pedinotti et al.: Assimilation of SWOT data 17

Fig. 3. The spatial distribution of river depth (m)[a], Manning co-
efficient [b] and river width (m)[c] parameters in ISBA-TRIP.

Fig. 4. Distribution of the ’true’ Manning coefficient over the river.
This distribution of Manning coefficients was used as an imput pa-
rameter to run the reference ISBA-TRIP modelling.

Fig. 3. The spatial distribution of river depth (m) (a), Manning coefficient (b) and river width (m)
(c) parameters in ISBA-TRIP.
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Fig. 3. The spatial distribution of river depth (m)[a], Manning co-
efficient [b] and river width (m)[c] parameters in ISBA-TRIP.

Fig. 4. Distribution of the ’true’ Manning coefficient over the river.
This distribution of Manning coefficients was used as an imput pa-
rameter to run the reference ISBA-TRIP modelling.

Fig. 4. Distribution of the “true” Manning coefficient over the river. This distribution of Manning
coefficients was used as an imput parameter to run the reference ISBA-TRIP modelling.
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Fig. 5. The 22 day repeat, 871 km altitude, 1 day subcycle orbit coverage, data issued from the
SWOT data simulator.
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Fig. 6. As in Fig. 5, except for a 22 day repeat, 970 km altitude, 3 day subcycle orbit average.
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20 V. Pedinotti et al.: Assimilation of SWOT data

Fig. 7. Schematic of the assimilation scheme used in this study.

Fig. 8. The Manning coefficient relative error averaged over
the river versus time with 1-day subcycle (straight line) and 3-
day subcycle (dashed line) orbit SWOT assimilation. The re-
lated error is calculated as the ratio: (nrivwith/withoutassi

−
nrivtruth)/nrivtruth , where nriv is the Manning coefficient.

Fig. 7. Schematic of the assimilation scheme used in this study.
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20 V. Pedinotti et al.: Assimilation of SWOT data

Fig. 7. Schematic of the assimilation scheme used in this study.

Fig. 8. The Manning coefficient relative error averaged over
the river versus time with 1-day subcycle (straight line) and 3-
day subcycle (dashed line) orbit SWOT assimilation. The re-
lated error is calculated as the ratio: (nrivwith/withoutassi

−
nrivtruth)/nrivtruth , where nriv is the Manning coefficient.

Fig. 8. The Manning coefficient relative error averaged over the river vs. time with 1 day subcy-
cle (straight line) and 3 day subcycle (dashed line) orbit SWOT assimilation. The related error
is calculated as the ratio: (nrivwith/withoutassi

−nrivtruth
)/nrivtruth

, where nriv is the Manning coefficient.
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Fig. 9. Manning coefficient versus assimilation cycle at 8 locations
(Fig. 1) for the 3 day subcycle (blue) and 1 day subcycle (green)
orbits. The value of the true coefficient is in red.

Fig. 10. Water level relative error averaged over the river versus
time with no assimilation (black), with a 1-day subcycle (green) and
a 3-day subcycle (blue) orbits SWOT assimilation. The relative er-
ror is calculated as the ratio: (hwith/withoutassi−htruth)/htruth,
where h is the water level(m).

Fig. 9. Manning coefficient vs. assimilation cycle at 8 locations (Fig. 1) for the 3 day subcycle
(blue) and 1 day subcycle (green) orbits. The value of the true coefficient is in red.
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Fig. 9. Manning coefficient versus assimilation cycle at 8 locations
(Fig. 1) for the 3 day subcycle (blue) and 1 day subcycle (green)
orbits. The value of the true coefficient is in red.

Fig. 10. Water level relative error averaged over the river versus
time with no assimilation (black), with a 1-day subcycle (green) and
a 3-day subcycle (blue) orbits SWOT assimilation. The relative er-
ror is calculated as the ratio: (hwith/withoutassi−htruth)/htruth,
where h is the water level(m).

Fig. 10. Water level relative error averaged over the river vs. time with no assimilation (black),
with a 1 day subcycle (green) and a 3 day subcycle (blue) orbits SWOT assimilation. The relative
error is calculated as the ratio: (hwith/without assi −htruth)/htruth, where h is the water level (m).
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Fig. 11. Time evolution of water levels at the 8 locations shown
on Fig. 1 for the ”truth” (red curves), with no assimilation (black
curves) and with assimilation of SWOT 1-day subcycle (green) and
3-day subcycle (blue) orbit observations.

Fig. 12. Relative error of water levels averaged over the period of
assimilation.

Fig. 13. Discharge relative error averaged over the river versus time
with no assimilation (black), with a 1-day subcycle (orange) and a
3-day subcycle (blue) orbits SWOT assimilation. The relative er-
ror is calculated as the ratio: ((qwith/withoutassi−qtruth)/qtruth,
where q is the water level(m3.s−1).

Fig. 11. Time evolution of water levels at the 8 locations shown on Fig. 1 for the “truth” (red
curves), with no assimilation (black curves) and with assimilation of SWOT 1 day subcycle
(green) and 3 day subcycle (blue) orbit observations.
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Fig. 11. Time evolution of water levels at the 8 locations shown
on Fig. 1 for the ”truth” (red curves), with no assimilation (black
curves) and with assimilation of SWOT 1-day subcycle (green) and
3-day subcycle (blue) orbit observations.

Fig. 12. Relative error of water levels averaged over the period of
assimilation.

Fig. 13. Discharge relative error averaged over the river versus time
with no assimilation (black), with a 1-day subcycle (orange) and a
3-day subcycle (blue) orbits SWOT assimilation. The relative er-
ror is calculated as the ratio: ((qwith/withoutassi−qtruth)/qtruth,
where q is the water level(m3.s−1).

Fig. 12. Relative error of water levels averaged over the period of assimilation.
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Fig. 11. Time evolution of water levels at the 8 locations shown
on Fig. 1 for the ”truth” (red curves), with no assimilation (black
curves) and with assimilation of SWOT 1-day subcycle (green) and
3-day subcycle (blue) orbit observations.

Fig. 12. Relative error of water levels averaged over the period of
assimilation.

Fig. 13. Discharge relative error averaged over the river versus time
with no assimilation (black), with a 1-day subcycle (orange) and a
3-day subcycle (blue) orbits SWOT assimilation. The relative er-
ror is calculated as the ratio: ((qwith/withoutassi−qtruth)/qtruth,
where q is the water level(m3.s−1).

Fig. 13. Discharge relative error averaged over the river vs. time with no assimilation (black),
with a 1 day subcycle (orange) and a 3 day subcycle (blue) orbits SWOT assimilation. The
relative error is calculated as the ratio: ((qwith/without assi −qtruth)/qtruth, where q is the discharge
(m3 s−1)).
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Fig. 14. Time evolution of discharge at the location of the 8 lo-
cations (Fig. 1) for the ”truth” (red curves), with no assimila-
tion (black curves) and with assimilation of SWOT 1-day subcycle
(green) and 3-day subcycle (blue) orbit observations.

Fig. 15. Relative error of dicharge averaged over the period of as-
similation.

Fig. 14. Time evolution of discharge at the location of the 8 locations (Fig. 1) for the “truth”
(red curves), with no assimilation (black curves) and with assimilation of SWOT 1 day subcycle
(green) and 3 day subcycle (blue) orbit observations.
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Fig. 14. Time evolution of discharge at the location of the 8 lo-
cations (Fig. 1) for the ”truth” (red curves), with no assimila-
tion (black curves) and with assimilation of SWOT 1-day subcycle
(green) and 3-day subcycle (blue) orbit observations.

Fig. 15. Relative error of dicharge averaged over the period of as-
similation.

Fig. 15. Relative error of dicharge averaged over the period of assimilation.
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Fig. 16. Flooded fraction versus time at Ke Macina and Lokoja, for
the truth (red), with no assimilation (black), with assimilation for
3dsbc(blue) and 1dsbc (green).

Fig. 17. Frequency of flood events over the delta classified by in-
tensity (flooded fraction). Only the pixels with a flooded fraction
higher than 10% are considered for the calculation.

Fig. 18. Relative water storage variations in the river, the flood, the
aquifer and the soil reservoirs for the truth (red), with no assimila-
tion (black), with assimilation for the 1-day orbit subcycle (green)
and for the 3-day subcycle (blue). For each reservoir, the 20 day
running average water variations are divided by the averaged water
storage over the period of assimilation (from June 2002 to Decem-
ber 2003).

Fig. 16. Flooded fraction vs. time at Ke Macina and Lokoja, for the truth (red), with no assimila-
tion (black), with assimilation for 3dsbc (blue) and 1dsbc (green).
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Fig. 16. Flooded fraction versus time at Ke Macina and Lokoja, for
the truth (red), with no assimilation (black), with assimilation for
3dsbc(blue) and 1dsbc (green).

Fig. 17. Frequency of flood events over the delta classified by in-
tensity (flooded fraction). Only the pixels with a flooded fraction
higher than 10% are considered for the calculation.

Fig. 18. Relative water storage variations in the river, the flood, the
aquifer and the soil reservoirs for the truth (red), with no assimila-
tion (black), with assimilation for the 1-day orbit subcycle (green)
and for the 3-day subcycle (blue). For each reservoir, the 20 day
running average water variations are divided by the averaged water
storage over the period of assimilation (from June 2002 to Decem-
ber 2003).

Fig. 17. Frequency of flood events over the delta classified by intensity (flooded fraction). Only
the pixels with a flooded fraction higher than 10% are considered for the calculation.
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Fig. 16. Flooded fraction versus time at Ke Macina and Lokoja, for
the truth (red), with no assimilation (black), with assimilation for
3dsbc(blue) and 1dsbc (green).

Fig. 17. Frequency of flood events over the delta classified by in-
tensity (flooded fraction). Only the pixels with a flooded fraction
higher than 10% are considered for the calculation.

Fig. 18. Relative water storage variations in the river, the flood, the
aquifer and the soil reservoirs for the truth (red), with no assimila-
tion (black), with assimilation for the 1-day orbit subcycle (green)
and for the 3-day subcycle (blue). For each reservoir, the 20 day
running average water variations are divided by the averaged water
storage over the period of assimilation (from June 2002 to Decem-
ber 2003).

Fig. 18. Relative water storage variations in the river, the flood, the aquifer and the soil reser-
voirs for the truth (red), with no assimilation (black), with assimilation for the 1 day orbit subcycle
(green) and for the 3 day subcycle (blue). For each reservoir, the 20 day running average wa-
ter variations are divided by the averaged water storage over the period of assimilation (from
June 2002 to December 2003).
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