Manuscript prepared for Hydrol. Earth Syst. Sci. with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls. Date: 20 September 2014

Assimilation of satellite data to optimize large scale hydrological model parameters : A case study for the SWOT mission.

V. Pedinotti^{1,2}, A. Boone¹, S. Ricci³, S. Biancamaria⁴, and N. Mognard⁵

¹CNRM/GAME, Météo-France, CNRS, URA 1357, Toulouse, France

²Centre National d'études spatiales (CNES), Toulouse, France

³CERFACS/URA 1875, 42 Avenue Gaspard Coriolis, 31057 Toulouse cedex, France

⁴CNRS, LEGOS, UMR5566 CNRS-CNES-IRD-Université Toulouse III, France

⁵CNES, LEGOS, UMR5566 CNRS-CNES-IRD-Université Toulouse III, France

Correspondence to: V. Pedinotti (vanessa.pedinotti@gmail.com)

Abstract. During the last few decades, satellite measurements have been widely used to study the continental water cycle, especially in regions where in situ measurements are ³⁵ not readily available. The future Surface Water and Ocean

- ⁵ Topography (SWOT) satellite mission will deliver maps of water surface elevation (WSE) with an unprecedented resolution and provide observation of rivers wider than 100 m and water surface areas greater than approximately 250 x 250 m ⁴⁰ over continental surfaces between 78 S and 78 N. This study
- ¹⁰ aims to investigate the potential of SWOT data for parameter optimization for large scale river routing models. The method consists in applying a data assimilation approach, the Extended Kalman Filter (EKF) algorithm, to correct the ⁴⁵ Manning roughness coefficients of the ISBA-TRIP Conti-
- ¹⁵ nental Hydrologic System. Parameters such as the Manning coefficient, used within such models to describe water basin characteristics, are generally derived from geomorphological relationships, which leads to significant errors at reach and large scale. The current study focuses on the Niger basin, a
- trans-boundary river. Since the SWOT observations are not available yet and also to assess the proposed assimilation method, the study is carried out under the framework of an Observing System Simulation Experiment (OSSE). It is assumed that modeling errors are only due to uncertainties in
- the Manning coefficient. The true Manning coefficients are then supposed to be known and are used to generate synthetic SWOT observations over the period 2002-2003. The impact of the assimilation system on the Niger basin hydrological cycle is then quantified. The optimization of the Man-
- ning coefficient using the EKF algorithm over an 18 month period led to a significant improvement of the river water levels. The relative bias of the water level is globally improved ⁶⁰

(a 30% reduction). The relative bias of the Manning coefficient is also reduced (40% reduction) and it converges towards an optimal value. Discharge is also improved by the assimilation, but to a lesser extent than for the water levels (7%). Moreover, the method allows a better simulation of the occurrence and intensity of flood events in the inner delta and shows skill in simulating the maxima and minima of water storage anomalies, especially in the groundwater and the aquifer reservoirs. The application of the assimilation method in the framework of an Observing System Simulation Experiment allows to evaluate the skill of the EKF alogorithm to improve hydrological model parameters and to demonstrate SWOT promising potential for global hydrology issues. However, further studies (e.g. considering multiple error sources and difference between synthetic and real observations) are needed to achieve the evaluation of the method.

Keywords. data assimilation, SWOT, large scale modelling, Manning coefficient, Niger river basin, ISBA, TRIP

1 Introduction

The impact of climate variability on land water storage is becoming an increasingly crucial issue for the development of future water resource management strategies. In order to investigate this impact, Continental Hydrologic Systems (CHSs) can be used to simulate water dynamics above and below the land surface as a response to environmental forcing. CHSs are generally made of a Land Surface Model (LSMs) which computes the water and energy budget at the surface-atmosphere interface, coupled with a River Routing Model (RRM) which distributes the runoff to the river and dynamic processes is very challenging and requires the use of computationally efficient, easily parameterized, compar-

- atively simple and physically based routing methodologies. ¹²⁰ However, land surface hydrologic processes are highly heterogeneous in space and time and are therefore difficult to parameterize given the huge dimensions of Atmospheric Gen-
- ⁷⁰ eral Circulation Model (AGCM) grid areas. Observational data describing the water dynamics and storage variations are ¹²⁵ required to evaluate CHS-simulated diagnostics, and to calibrate these models. In-situ data have been extensively used, but they are limited by their temporal and spatial coverage.
- ⁷⁵ In addition to the information provided by in-situ measurements, satellite remote sensing instruments have been developed and continually improved. These instruments generally provide a large spatial coverage which is more appropriate for global applications, especially in areas where in-situ data
- are scarce. Such areas are generally sparsely inhabited, with reduced infrastructures and possible geopolitical issues, such ¹³⁵ as large portions of the African continent or part of the Arctic (Alsdorf et al., 2007). Applications using satellite remote sensing techniques lead to many promising perspectives for
 ⁸⁵ improving the observation of land surface and hydrological

variables and processes. Hydrological models require information about continen-

tal water dynamics and storage variations above and below the surface for calibration and evaluation of the simu-

⁹⁰ lated water budget. To this end, diverse types of monitoring data are needed. In situ discharge data, for example, ¹⁴⁵ give 1-spatial-dimension information which quantifies water fluxes in a specific river channel, but do not give any direct information about runoff or lateral inflow. Yet, hydro-

- ⁹⁵ logically complex areas, such as wetlands and floodplains which are three-spatial-dimension processes, cannot be ad- ¹⁵⁰ equately resolved using one-spatial-dimension observations (Alsdorf et al., 2007). Spatially distributed observations are required, such as those provided by satellites which give 2-
- dimensional information about surface water dynamics. Recently, efforts have been made to build global maps of flood- 155 plains variability and extent, providing an additional metric for CHSs evaluation (Papa et al., 2010). Nadir altimetry has also constituted a valuable progress for the monitoring of surface water dynamics and elevation (TOPEX-POSEIDON,

ENVISAT, JASON 1 and 2; Baup et al., 2007; Santos Da ₁₆₀ Silva et al., 2012).

Although useful, current satellite altumetry spatial resolution does not resolve small scale land water dynamics thereby limiting our understanding of large scale hydrologic and hydrodynamic processes. The future NASA-CNES-CSA Sur-

face Water and Ocean Topography (SWOT) satellite mission will be launched in 2020 and will deliver maps of water surface elevation (WSE), slope and extent with an unprecedented resolution of 100m. For continental hydrology, the SWOT mission has the potential to help dealing with critical issues, such as monitoring trans-boundary basins and the development of management strategies in a changing world. It is necessary to determine how the SWOT data can be used to improve hydrological simulations and to better predict continental water storage.

Data assimilation (DA) has been shown to be a promising technique for improving river modelling (Andreadis et al., 2007; Durand et al., 2008; Biancamaria et al., 2011; Yoon et al., 2012). Commonly used in operational meteorology and oceanography, DA combines data coming from various sources, such as numerical models or observations, while taking into account measurement errors and model uncertainties for a better description and prediction of the system. However, these methods are not yet extensively used in hydrology and related works are rare, especially for large scale applications. Drusch et al. (2009) used observations of 2m air temperature and soil moisture to evaluate a Kalman filter based soil moisture analysis system and its impact on the operational ECMWF (European Centre for Medium-Range Weather Forecasts) integrated forecast system. They showed that the impact of EKF on the forecast skill of the operational weather forecast model was neutral in terms of forecast score but gave the promising possibility to better constrain the soil water content with more accurate soil moisture estimates. Pereira- Cardenal et al. (2011), investigated the potential of using ENVISAT water levels observations in a real time or near real time by applying an Ensemble Kalman Filter in order to update semi-distributed hydrological model state variables. The method was applied to the Syr Darya River Basin, a complex mountainous region covering approximately 7000 km². They showed that data assimilation allowed a better real time estimation of reservoir levels over the region. However, because of the state updating procedure used in this study, which consisted in adding or abstracting water from reservoirs, the method is limited to medium-range forecasting. It is not suitable for long-term water resources scenario calculations, where mass balance has to be maintained. More recently, Michailovsky et al. (2013) used radar altimetry data from the ENVISAT mission for updating the storage of a routing model of the main reach of the Brahmaputra River driven by the outputs of a calibrated rainfall runoff model showing the potential for the use of altimetric data in combination with hydrological models for flow modeling in large rivers. However in situ flow data was required for the calibration of the rainfall runoff model which may still be a limitation in some areas with poor data availability such as the Niger river. Salamon and Feyen (2009) used the residual re-sampling particle filter to assess parameter, precipitation and predictive uncertainty in the distributed rainfall-runoff hydrological model LISFLOOD for the Meuse catchment using discharge measurements. They showed that the equifinality hypothesis (several different parameter sets can lead to a good estimation of the discharge) was a limitation to the correction of a distributed hydrological parameter even in a

170

140

physically based hydrologic model. Moreover, they emphasized the strong effect of rainfall uncertainties on the analysis. Finally, the results showed that accounting for parameter uncertainty only during a calibration phase was not sufficient

to properly predict uncertainty, limiting the application of the 230 175 method for hydrologic forecasting over longer time periods. The aforementioned applications of DA in hydrological modeling have shown the potential of using remote sensing data in order to improve the model states or the parameters. However, they also showed the limitations due to the generally 235 180 low spatial and temporal resolutions of these data sets.

Hydrological model uncertainties can come from several sources, such as model structure, input parameters or input data (mostly precipitation), leading to the development of

- different DA methodologies. Depending on the study, DA 240 185 either aims at optimizing the model input parameters or at directly correcting the model state (generally done in operational forecast applications for example). The current study investigates benefits of assimilating SWOT virtual water lev-
- els in order to improve input parameters of a large scale hy-245 190 drological model within the context of a pre-launch study. The domain study area is the trans-boundary Niger basin (Fig. 1) which crosses a large part of the Sahel and is a critical source of water in this semi arid region. The West
- African region is also characterized by an increasing popu- 250 195 lation, putting larger pressure on the already limited freshwater resources. The hydrology of this basin is modulated by the West African Monsoon (WAM) seasonal and inter annual variability which is characterized by extreme events such as
- droughts and floods which can have dramatic impacts on so- 255 200 ciety and the regional economy. However, the lack of field measurements limits the understanding of the salient hydrological processes in the Niger basin. For these reasons, it is an ideal test-bed for studying global hydrological issues. In
- a previous study, a Niger basin hydrological model applica- 260 205 tion was set up using the ISBA (Interaction Sol-Atmosphere-Biosphere)-TRIP (Total Runoff Integrating Pathways) distributed hydrological model. Along with river routing, this model includes a flooding scheme and a linear unconfined
- aquifer reservoir (Pedinotti et al., 2012). The model param-265 210 eters were estimated using geomorphologic relationships to characterize the river characteristics. The modelling evaluation showed that the model was able to reasonably reproduce the major hydrologic and hydrodynamic processes. The
- model outputs were compared to in-situ discharge as well as 270 215 satellite derived flood extent, total continental water storage changes and river height changes. The importance of floodplains was also demonstrated, since they have a considerable impact on discharge downstream of the inland Niger Delta.
- The confined aquifer improves the recession law ie the curve 275 220 of the decreasing flow and the simulation of low flows. However, some model deficiencies remain which can be due to forcing or model uncertainties, among these sources of errors are the uncertainties of TRIP hydrological parameters.

Indeed, these distributed parameters are defined by empirical 280

relationships using available observations which are adapted towards obtaining the best results over the entire globe. However, such relationships might not give the best results locally (for a particular basin). Studies showed that empirical equation does not work well even within one basin and significant error can be found at sub-basin scale or reach scale (e.g. Miller et al., 2014, Yamazaki et al., 2014). These relationships thus lead to non-negligible errors which could be reduced using satellite data. Such data can potentially be used to estimate spatial parameters for each particular basin and then contribute to the development of a global database describing major river characteristics. Pedinotti et al. (2012) performed sensitivity tests to determine the main sources of uncertainty among the TRIP parameters. These tests have shown that the model was sensitive to modifications of some key river parameters (river height and depth as well as Manning coefficient) and that a good estimation of those parameters was required to optimize the simulation errors.

The aim of the current study is to investigate how SWOT water level products can be used to optimize the Manning coefficient. Unlike river depth and width, which can be estimated through direct measurements, Manning coefficient can be estimated only indirectly, using bathymetry and flow velocity measurements. Several studies discussed the importance and difficulty to estimate the Manning coefficient (Ven Te Chow et al., 1988; Argement et al., 1989; Bates and de Roo, 2000). The sensitivity of the Manning equation to several river parameters including the roughness coefficient was investigated by Pistocchi and Pennington (2006). In addition to the concern about estimating accurately the Manning coefficient value, they highlighted the importance of considering its spatial distribution instead of a unique value as it is done in some hydrological models (Arora and Boer, 1999). Moreover, the Manning coefficient is often used as an adjustement variable for models calibration which can lead to additionnal errors (e. g. Biancamaria et al., 2009). Hunter et al. (2007) indicated that very frequently in models errors on topography and roughness dominate errors from equation approximation. The estimation of the Manning coefficient is thus considered by litterature as one of the major issues limiting the performance of hydrological models and, to the authors knowledge, there have been very few attempt to evaluate the potential of satellite data to correct it. Therefore, it was chosen as the main parameter to be investigated in the DA study presented in this study. Since SWOT observations are not yet available and to assess the usefulness of data assimilation, this study is carried out within the framework of an Observing System Simulation Experiment (OSSE) using the TRIP model for the simulation of the Niger hydrodynamics. SWOT virtual measurements are produced using a reference ISBA-TRIP simulation. Here, it is assumed that modeling errors are only due to one key parameter which can't be directly estimated via observational data : the Manning roughness coefficient (the other sources of modeling errors are not considered here, and the reasons will be explained in Section 4.1). The impact of

4

the assimilation system on the Niger River modeling is then quantified. First, a brief presentation of the study domain and the model is made in Section 2. In this section, the Manning coefficient is also defined and its spatial distribution used for the true simulation is shown. Then, the production of SWOT 335

the true simulation is shown. Then, the production of SWOT 335 virtual water level is described in Section 3. The methodology used to build the assimilation scheme is explained, and the main variables of the assimilation problem are described in Section 4. Finally, the impact of the assimilation on the main hydrological variables of the Niger basin are discussed 340 in Section 5.

2 Study domain and model description

2.1 The Niger River Basin

Originating in the Guinean highlands within the *Haute Guinée* and *Guinée Forestière* regions located in the *Fouta Djallon Massif* mountain range, the Niger River is the third longest river in Africa (4,200 kilometers), after the Nile³⁵⁰ and the Congo. Its outlet is located in Nigeria, discharging through a massive delta into the Gulf of Guinea. On its way

- through Mali, it crosses a vast floodplain region called the Inland Delta. The Inland Delta has an average surface area of 73,000 km², and it dissipates a significant proportion of ³⁵⁵ the flow of the river through absorption and evaporation (it is estimated that about 40% of water is lost through the in-
- ³⁰⁵ land delta by evaporation and/or infiltration, Andersen et al., 2005). From the headwaters to the Niger Delta (taking into account the hydrologically active area), the basin has an aver-³⁶ age area of about 1.5 million km². The Niger river is shared by 9 countries and is the main source of water for about 100
- ³¹⁰ million people living principally from agriculture and farming. During the 1970s and 1980s, West Africa faced extreme climate variations with extended drought conditions followed ³⁶⁵ by floods and there is a need to better understand the functioning of this basin for water management purposes. The
- ³¹⁵ complexity of modelling the Niger basin is mainly due to the fact that it crosses very different climatic zones, from the tropical humid Guinean coast where it generally rains every ³⁷⁰ month of the year, to the desertic Saharan region. The main source of water over the basin is due to the West African
- Monsoon (WAM) which is characterized by a marked annual cycle and significant inter annual variability, leading to the succession of extreme events such as droughts and floods. In addition to modelling issues due to rainfall uncertainties, the 375 representation of processes such as infiltration and evaporation from floodplain is also very important for modelling the

Niger River.

330

2.2 Review of the ISBA-TRIP model

ISBA is a state-of-the-art land surface model which calculates the time evolution of the surface energy and water budgets (Noilhan and Planton, 1989). It represents the natural

land surface component of the SURface-EXternalized (SUR-FEX) coupling platform at Météo-France (Masson et al., 2013). In the current study, we use the 3-layer force-restore soil hydrology option (Boone et al., 1999). The options are also activated for a comprehensive representation of sub-grid hydrology in order to account for the heterogeneity of precipitation, topography and vegetation in each grid cell. A TOP-MODEL approach (Beven and Kirkby, 1979) has been used to simulate a saturated fraction, f_{sat} , over which precipitation is entirely converted into surface runoff (Decharme et al., 2006). Infiltration is computed via two sub-grid exponential distributions of rainfall intensity and soil maximum infiltration capacity (Decharme and Douville, 2006). The TRIP original River Routing Model (RRM) was developed by Oki and Sud (1998) at University of Tokyo. It was first used at Météo-France to convert the model simulated runoff into river discharge using a global river channel network at a 1° resolution. More recently, a 0.5° resolution global river network has been developed which is used for this study. The TRIP schematic concept is presented on Fig. 2 and more details can be found in Pedinotti et al., 2012. The ISBA-TRIP CHS was recently improved to take into account a simple groundwater reservoir, which can be seen as a simple soil-water storage, and a variable stream flow velocity computed via the Mannings equation (Decharme et al., 2010). In addition, ISBA-TRIP includes a two-way flood scheme in which a flooded fraction of the grid cell can be determined (Decharme et al., 2008, 2011). The flood dynamics are described through the daily coupling between ISBA land surface model and TRIP RRM, including a prognostic flood reservoir. This reservoir fills when the river height exceeds the critical river bank full height (Fig. 3.a), h_c (m). The flood interacts with the soil hydrology through infiltration, with the overlying atmosphere through precipitation interception and through free water surface evaporation. For the Niger application, Pedinotti et al. (2012) added a simple linear confined aquifer reservoir to account for the long term water storage in deep and more or less confined aguifers. This reservoir was built on the example of the groundwater reservoir, but with a significantly longer time delay factor. The confined aquifer is supplied by a fraction $(1-\alpha)$ of the drainage from ISBA, the remaining fraction (α) going to the groundwater reservoir.

2.3 TRIP specific parameters

380

The Manning coefficient characterizes the roughness so that it modulates the surface water velocity and thus water levels and discharge, via the Manning formula. However, it is difficult to estimate via in-situ measurements or remote sensing techniques. In ISBA-TRIP, the Manning friction coefficient, n_{riv} , varies linearly and proportionally to the river width, W(m), from 0.04 near the river mouth to 0.1 (Decharme et al., 2011) in the upstream grid cells (Fig. 3.b):

$$n_{\rm riv} = n_{\rm min} + (n_{\rm max} - n_{\rm min}) \left(\frac{W_{\rm mouth} - W}{W_{\rm mouth} - W_{\rm min}}\right) (1)$$

385

where n_{riv} represents the grid cell average Manning coefficient, n_{max} and n_{min} the maximum and minimum values of the Manning friction coefficient (equal to 0.1 and 0.04, ⁴³⁵ respectively), $W_{min}(m)$ the minimum river width value and $W_{mouth}(m)$ is the width of the mouth in each basin of the TRIP network ($W_{mouth} = 2000$ for the Niger basin). The river width, W, is an important parameter because it con-

trols both the river flow speed and the floodplain dynamics.
It is computed over the entire TRIP network via an empirical mathematical formulation that describes a simple geo- 440 morphological relationship between W and the mean annual discharge at each river cross section (Knighton, 1998; Arora and Boer, 1999; Decharme et al., 2011):

$$W = \max\left(30, \beta \times Q_{\rm yr}^{1/2}\right) \tag{2}_{_{445}}$$

where $Q_{yr}(m^3.s^{-1})$ is the annual mean discharge in each grid cell estimated using the global runoff database from Cogley (1979). As discussed in Decharme et al. (2011), the

- ⁴⁰⁰ β coefficient can vary drastically from one basin to another. β is equal to 20 for the branch of the river going from the ⁴⁵⁰ river mouth (5 N) to 12 N and is fixed to 10 for the remaining river branch. The spatial distribution of the river width is shown in Fig. 3.c. Another critical parameter is the river
- bankfull critical height, h_c , which is computed according to the river width via a simple power function (Decharme et al., 2011) :

$$h_c = W^{1/3}.$$
 (3)

The spatial distribution of h_c is shown in Fig.3.a. These relationships are found to work well at the global scale but can lead to significant errors for a specific basin at the regional scale (see the sensitivity tests in Pedinotti et al., 2012). Indeed, the asumption that the river width is proportional to the annual mean discharge can lead to significant errors in 465

- flooded areas where the river bed enlarges but the discharge is reduced through the flooding process. Moreover, it is assumed that the Manning coefficient is only dependant on the river width while other factors should be considered, such as the presence of vegetation, debris, soil type etc... Finally,
- these parameters are defined as constant in time which is a significant asumption, especially in a region with a marked seasonal climate variability such as the Niger basin. Remote sensing opens the possibility of estimating the river width by direct measurements and the critical bankfull height by indi-
- rect algorithms (Pavelski and Smith, 2008; Yamazaki et al., 2014; Durand et al., 2010). However, the Manning coefficient will still be difficult to estimate even using remote sensing.
 This study focuses on finding a methodology to estimate this critical parameter via DA.

430 3 Satellite observations

The aim of this work is to estimate the potential benefits of using SWOT satellite measurements to provide spatially dis-

480

tributed estimates of the Manning coefficient over the Niger river basin. This section describes this future satellite mission and how virtual SWOT observations have been generated in this study.

3.1 The SWOT mission

SWOT will provide high-resolution images of water surface elevations over the oceans and continental surface water bodies. It will therefore observe continental surface waters at an unprecedented resolution, providing information for a better understanding of surface water dynamics and storage variations. The mission is currently planned to be launched around 2020.

The satellite main payload will be the Ka-band Radar Interferometer (KaRIN), a wide swath SAR (Synthetic Aperture Radar) interferometer. KaRIN will have two antennas separated by a 10 m boom, which will observe two ground swaths of 60 km on each side of the satellite nadir, separated by a 20 km gap. The intrinsic pixel resolution will vary from 60 m (near range) to 10 m (far range) across-track and will be at best around 5 m along-track (however, this value is also dependent upon decorrelation time). Yet, for these intrinsic pixels, water elevation measurements have metric errors, which increase along the swath (depending on the look angle). To increase vertical accuracy, pixels have to be aggregated: over a 1 km^2 area inside the river mask, water elevation has a 10 cm or lower error (Rodríguez, 2012). River slopes will be measured with a 1 cm km⁻¹ resolution, after processing elevations over 10 km river reaches (Rodríguez, 2012). SWOT will be able to observe rivers wider than 100 m (mission requirement) and should be able to observe rivers wider than 50 m (goal). The chosen orbit will be a Low Earth Orbit with a 78° inclination, in order to observe almost all of the continental surfaces (Rodríguez, 2012).

3.2 Observing System Simulation Experiment (OSSE) and virtual SWOT data.

The OSSE framework consists in simulating data that would be observed by the future measurement platform using a numerical model, in order to use them as virtual observations for DA experiments. The main objective of an OSSE is to validate the DA method by using ideal conditions. It is assumed that the state of the system as well as the error statistics of the model and observations are known and correctly described which is not the case in real conditions. This method is useful within the framework of the SWOT satellite mission preparation, since it allows a quantification of the satellite data contribution to improve large scale river modeling (such as for the Niger basin) before the launch of the satellite. First, a realistic modeling of the studied basin is needed for the OSSE. The model must be able to simulate the major hydrodynamic processes of the basin so that the simulated observations will reasonably represent the reality. The ISBA-TRIP set-up evaluated in Pedinotti et al. (2012), with the inclusion of the flooding scheme and aquifer reservoir, is 540

- used to represent the true state of the hydrological system, also refered to as the *reference simulation*. For this so-called "truth", the model and its parameters are assumed to be perfect. An error is then added to this true state to build virtual
- ⁴⁹⁰ observations. The background simulation results from the in- ⁵⁴⁵ tegration of the same model in a different configuration, for instance with a different set of parameters (also called per-tubed or background parameters). It gives an a priori description of the system that is an approximation of the truth. In the
- ⁴⁹⁵ present study focussed on parameter estimation, the purpose ⁵⁵⁰ of the DA algorithm is to retrieve an optimal set of model parameters starting with the background parameters, by assimilating the virtual observations. It is important to note that in the present study, the error between the true Manning co-
- 500 efficients and the background Manning coefficients doesn't 555 vary in time.

Within the framework of this SWOT-dedicated study, the true simulation is used to generate the SWOT observations, with the help of a relatively simple simulator developped by

- Biancamaria et al. (2011). Based on the prescribed orbit and 560 swath, the simulator provides an ensemble of SWOT tracks and related dates. The SWOT tracks are provided for the orbital period and then repeated over the years 2002-2003 (assuming the satellite started its first orbit on January, 1st
- 510 2002). The virtual data are the sum of the ISBA-TRIP water 565 levels at the corresponding grid points and an instrumental error which is added to partially account for the SWOT observation errors (see Section 4.2.1 for details). A river mask for the Niger comprinsing grid cells with a river width above
- ⁵¹⁵ 200m is defined as illustrated in Fig. 4 which displays the ⁵⁷⁰ Manning coefficient for the unmasked 110 pixels. It should be noted that the SWOT satellite will not measure water depth but free surface water elevation. For DA applications in real conditions, the direct comparison between SWOT and
- ISBA-TRIP water levels will not be straightforward and will need further investigation. Indeed, the SWOT satellite measures free surface water elevation which can not be directly compared to the ISBA-TRIP outputs which are stream water absolute depths in the river channel. The assimilation then re-575
- quires to find a way to compare these two different variables in order to perform the DA. For example, they can be compared in terms of anomalies relative to a mean value over a long period of time instead of absolute water elevations. This method allows to remove the bias due to different reference 580
- values of the level where the water elevation is zero. However, in the framework of an OSSE, the same model is used to generate the apriori and observed water levels and this issue can be evaded.

The 22-day repeat orbit and the 140 km swath used in 585 535 this simulator allowed a global coverage of the study domain within 22 days. Among available orbits, two orbits have been pre-selected by the NASA-CNES project team, for various scientific and technical reasons (mainly to seek a compro-

mise between both the hydrological and oceanographic scientific communities). These two orbits have the same repeat period, but different altitudes, meaning different subcycles. The repeat period corresponds to the minimum time taken by the satellite to fly over exactly the same ground location. Given the orbit parameters and the earth's rotational speed, it requires a fixed number of satellite revolutions. For all of these revolutions, the part of the orbit that goes from North to South corresponds to the descending track and the one that goes from South to North corresponds to the ascending track. These ascending and descending tracks cross the equator at different times during one repeat period. The difference between these crossing times for two adjacent ascending (or descending) tracks during a repeat period is the orbit subcycle. The 970 km altitude orbit has a 3 day subcycle, whereas the 873 km altitude orbit has a 1 day subcycle. These two orbits both have global coverage but with a different time and spatial spread of the satellite tracks during one repeat period. The 1-day subcycle orbit has two adjacent swaths every day, meaning that each river basin will be well sampled in few days, but then there will be no observations for several days (Fig. 5) with the risk of missing short term events. The 3day subcycle orbit has two adjacent swaths every 3 days on average, meaning ground tracks will be more regularly distributed in space and time. Yet, there will be no tracks close in time at any point during the cycle (Fig.6). Thus, due to their spatial and temporal coverage over the domain, these two orbits present specific advantages and disadvantages that will be investigated within of the DA framework. The OSSE is run over 2 years starting from the beginning of the monsoon season, on June 1st 2002. During each SWOT 22-day repeat, there are about 53 satellite overpasses on the Niger bassin for the 3-day subcycle orbit and 50 for the 1-day subcycle orbit.

4 Data assimilation schemes

4.1 Choice of the control variable.

The goal of using assimilation in this study is to correct the TRIP routing input parameters which are associated with uncertainties. The contribution of such corrections are estimated by comparing model outputs (water level, discharge, water storage ...) with and without DA. Sensitivity tests in Pedinotti et al. (2012) determined the most sensitive TRIP parameters which impact the major hydrological processes of the Niger basin. It was shown that a modification of the Manning roughness coefficient, n_{riv} , has a significant impact on the simulated hydrological variables over the Niger basin which can be expected since the Manning coefficient is used for flow calculations in the river stream, via the Manning formula. Due to its close relationship with water levels and discharge, it is one of the most important empirical parameters in the field of hydrology and hydraulics. Thus, a good estimation of this coefficient in the river bed leads to

- ⁵⁹⁰ a better reproduction of surface water dynamics. There is a tendancy to regard the selection of Manning coefficient as an arbitrary or intuitive process. Hydrodynamic modelers usually determine the value of the Manning coefficient manually, often using estimations based on visual interpretation of the
- ⁵⁹⁵ land cover. The roughness can also be described by geomorphologic relationships, which are related to another parameter for which more information is known (river width for ⁶⁵⁰ example). In ISBA-TRIP, the Manning coefficient, n_{riv} , is assumed to vary linearly with the river width, W, from 0.04 near the river mouth to 0.10 in the upstream grid cells (Eq. 1).
- 600 near the river mouth to 0.10 in the upstream grid cells (Eq. 1). These geomorphologic relationships are used to obtain the spatially distributed Manning coefficient which provides a ⁶⁵⁵ 'global' fit or best estimate. However, the accuracy of these relations can be very uncertain due to the significant hetero-
- geneity of the river and land properties, especially in uncalibrated models. Both approaches can lead to significant errors over a large computational domain which is characterized by 660 multiple land use/cover classes. Although progress in remote sensing will probably improve our estimates of the Manning
- ⁶¹⁰ coefficient (using the two aforementioned approaches), this parameter will not be estimated directly via remote sensing and therefore will remain dependant on the physical rel ⁶⁶⁵ evance of the geomorphologic relationships. Thus, DA appears to be an appealing option for estimating the Manning
 ⁶¹⁵ coefficient using remote sensing data.

In reality, the temporal variability of the error on the Manning coefficient is related to the flow dynamics as the ⁶⁷⁰ river bed morphology can be significantly modified by flood events. Even though this temporal variability is not ac-

- ⁶²⁰ counted for in our OSSE framework, the DA analysis is performed sequentially over a 2-day time window which allows a high variability of the correction on the Manning coef- ⁶⁷⁵ ficient. It should be noted that in a real case study where sources of uncertainty are multiple (contrary to our OSSE
- ⁶²⁵ framework where errors are only due to Manning coefficient perturbations), correcting the Manning could be interpreted as a way to account for other uncertainties (which are possibly characterized by errors with a higher temporal variability than that of the Manning coefficient). The choice of the time
- ⁶³⁰ window length could be revisited in further studies. However, a longer assimilation window also requires a bigger disc storage capacity and this must be considered when selecting the length of the assimilation window. In the following section, along track virtual SWOT data over 2 days are assim-
- ilated to correct the Manning coefficient for the unmasked $n_t = 110$ ISBA-TRIP grid points. For each analysis at time t (also called cycle), the control vector is thus a vector of 110 elements noted \mathbf{x}_t . The framework of the OSSE does not guarantee the physical representativeness of the modeled val-
- 640 ues, specifically because of the lack of monitoring data. Here, 690 the values have therefore simply been bounded to be within a reasonable range (based on rivers similar to the Niger and the scale of TRIP).

7

4.2 The Extended Kalman Filter (EKF).

The assimilation algorithm used for the calculation of the analysis is the Extended Kalman Filter (EKF) which is presented in this section within the framework of parameter optimization. The true Manning coefficients (known in the framework on an OSSE but unknown in reality) are gathered in the vector \mathbf{x}_t^{true} of size n_t . The vector of the a priori parameters \mathbf{x}_t^b for the hydrological models are presecribed by geomorphologic relationships which induce an error $\epsilon_t^b = \mathbf{x}_t^{true} - \mathbf{x}_t^b$ of which statistics are described in the background error covariance matrix **B**. Here, these statistics are assumed to be constant over the assimilation cycles and to follow a Gaussian distribution, centered in 0 with a standard deviation, σ_t^b of 20% of the average value of the Manning coefficient over the river.

The observation vector y_t^0 of dimension p_t contains all the SWOT observations collected during the 2-day assimilation window. The observation operator H projects the control vector onto the observation space. This operator is nonlinear as it is the composition of the hydrological model Mand of a selection operator S that simply extracts or interpolates the simulated water levels (over the whole gridded domain) at the observation points. Here, H = SoM where S represents the SWOT simulator and M is the integration of the hydrological model over the assimilation window. The relation $\mathbf{y}_t = H(\mathbf{x}_t)$ allows to describe the true water level vector \mathbf{y}_{t}^{true} at the observation points when \mathbf{x}_{t}^{true} is used and the background hydrological water level vector \mathbf{y}_t^{bck} at the observation points when \mathbf{x}_t^b is used. In OSSE, an observation error ϵ_t^0 , is added to \mathbf{y}_t^{true} to account for instrumental and representativeness errors. The observation errors are assumed to be decorrelated in space and time, and the observation error standard deviation $(\sigma_t^o)^2$ is set equal to $(\sigma_t^b)^2$. The observation error covariance matrix $\mathbf{R_t}$ is thus assumed to be diagonal. Further work should focus on a complete estimation of the observation error statistics in order to allow for along track correlation of the instrumental errors (Lion, 2012).

The EKF analysis vector \mathbf{x}_t^a is defined as a correction to the background vector, where the the innovation vector $\mathbf{d}_t = \mathbf{y}_t^0 - H_t(\mathbf{x}_t^b)$ is muliplied by the gain matrix \mathbf{K}_t :

$$\mathbf{x}_t^a = \mathbf{x}_t^b + \mathbf{K}_t \mathbf{d}_t. \tag{4}$$

where \mathbf{K}_t reads:

$$\mathbf{K}_{t} = \mathbf{B}_{t} \mathbf{H}_{t}^{T} (\mathbf{H}_{t} \mathbf{B}_{t} \mathbf{H}_{t}^{T} + \mathbf{R}_{t})^{-1}$$
(5)

where \mathbf{H}_t is the tangent linear of H with respect to \mathbf{x}_t . The statistics of the analysis error ϵ_t^a are determined by the analysis covariance matrix $\mathbf{A}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}_t) \mathbf{B}_t$ (Bouttier and Courtier, 1999). The analysis vectors provide the corrected Manning coefficient values, which can then can be used to integrate the hydrological model and simulate the analyzed water levels over the whole domain. A schematic diagram of the assimilation process is shown in Fig. 7, and the key variables are represented in Eq.s 4 and 5 and listed in Table 740 1.

4.3 Jacobian matrix calculation

The EKF algorithm relies on the computation of a local ap-⁷⁴⁵ proximation of the tangent linear of the observation operator that describes the relationship between the control vector and the observation space, with respect to the control vector. As the size of the control space is limited in this study, a finite difference scheme can be used to perform this approx-⁷⁵⁵ imation, in the vicinity of the background vector. Since the observation operator *H* includes the model propagation, the calculation of the Jacobian matrix **H**_t requires the computation of n_t independent integrations of the hydrological model with a perturbed element for each component of \mathbf{x}_t .

710

$$\mathbf{H}_{t,ij} = \frac{\partial H}{\partial x}\Big|_{t,ij} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}} = \frac{\Delta y_{t,i}^+ - \Delta y_{t,i}^{\text{eff}}}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}} = \frac{(H(x_t + \Delta x) - H(x_t - \Delta x))_i}{\Delta x_{t,j}^+ + \Delta x_{t,j}^{\text{eff}}}$$

In Eq.6, **H** translates the variations of water levels at the observation points induced by the variation of Manning coefficients. $\Delta y_{t,i}^+$ and $\Delta y_{t,i}^-$ represent the water level variations at the gridded pixel *i* related to variations $\Delta x_{t,j}^+$ and $\Delta x_{t,j}^-$ of the Manning coefficient at the gridded pixel *j*. A centered finite difference scheme was favoured over a one-sided scheme as it reduces noise on the evaluation of the local derivative. The computation of **H**_t thus requires $2 \times n_t$ integrations of

ISBA-TRIP over the assimilation window using elementary perturbed Manning coefficients at the unmasked observation ⁷⁷⁰ point. The computational cost of **H** could be optimized as only perturbations on Manning coefficients at the grid points located upstream of each observation point have an impact on water level at the observation point. In the present work, the

water level at the observation point. In the present work, the $2 \times n_t$ integrations of ISBA-TRIP are achieved sequentially.⁷⁷⁵

5 Results

730

The impact of DA on the hydrological processes is analysed $_{780}$ using the relative error. For any variable v, the relative error is expressed as :

$$err_v = \frac{v - v_{truth}}{v_{truth}} \tag{7}_{785}$$

where v_{truth} refers to the variable v as described in the true simulation.

735 5.1 Impact of assimilation on Manning coefficient

The truth simulation is made using Manning coefficients which are constant in time, meaning that there is no tem-790 poral variation of the error on the model parameters, thus it

is expected that the DA analysis leads to a constant value of the corrected Manning close to the 'true' values. However, since the Manning coefficient is spatially distributed, several spatial combinations of these parameters might resolve the assimilation problem which is generally referred to as the equifinality hypothesis. Fig. 8 shows the Manning coefficient relative error (averaged over the river) time series for the two orbits. The average relative error of the Manning coefficient is significantly improved during the assimilation period and tends to converge to a stable value (about 0.19 for the 1-day subcycle orbit and 0.17 for the 3-day subcycle orbit), since the error is not significantly changed from January 2003 until the end of the assimilation experiment. The convergence towards the minimum value of the spatially averaged relative error to the true averaged Manning coefficient is slightly faster for the 3-day subcycle orbit than for the 1-day subcycle.

Fig. 9 displays the spatial distribution of the Manning co $y_{t,i}^{efficient}$ i) for the truth, ii) for the background simulation, $x_{t,i}^{i}$ for the 1-day subcycle assimilation at the end of the study period and iv) for the 3-day assimilation at the end of the study period. The general patterns of the Manning coefficient distribution are recovered through the DA, especially the extreme values of the background distribution are corrected. Also, the values downstream of be better corrected than upstream of the river which can be expected since the downstream gridcells take advantage of the cumulated corrections upstream.

The Manning coefficient temporal evolution at the 8 gage locations is shown in Fig. 10. It should be noted that in some places and for both subcycles, the 'real' Manning coefficient value is only approached and not found through the assimilation cycles, which can be related to the equifinality problem. The 1-day subcycle and 3-day subcycle orbit assimilations converge to the same value in 5 locations out of 8. In Banankoro, Kandadji and Malanville, however, the coefficnet values for the two orbits converge to different values. Banankoro is located upstream of the river, so this difference can be explained by the lack of data uptream of this location for obtaining a robust estimate of the Manning coefficient at this site. Also, the impact of the Manning coefficient on the simulation depends on the rain amount over the observed locations. According to the considered subcycle, the satellite will see different zones and a different number of observations corresponding to different rain events which can lead to the different values obtained for the optimal Manning coefficient in some locations. Also, a 'jump' with a frequency of about 20 days is observed in every location and for the two subcycles and might be related to the orbit repetitivity.

5.2 Impact of assimilation on water levels

Table 2 gives water level mean relative error computed with respect to the true water levels, first averaged over the entire river for the 2-year period and then at each of the 8 observ-

ing stations shown in Fig. 1. Fig.s 11 and Fig. 12 display the 845 water level relative error averaged over the river and at the 8 observing stations as a function of time when i) there is

- ⁷⁹⁵ no assimilation (black curve), ii) after a 1-day subcycle orbit SWOT-observation assimilation (green curve) and (iii) the 3-day subcycle orbit SWOT-observation assimilation (blue ⁸⁵⁰ curve).
- These results show that the DA analysis leads to a significant reduction of the water level relative error over the whole river (the averaged relative error is reduced by more than a factor of three with DA) and at the 8 gages. In most of the 8 855 locations, there is an improvement of several meters reaching up to 9m at Lokoja (for an 8m averaged river depth along the
- ⁸⁰⁵ river). As for the Manning coefficient, a noise with a repeat period of 20 days is observed and can be directly related to the noise observed on the Manning coefficient. Also, even in ⁸⁶⁰ the locations where the analysed Manning coefficient differs for both subcycles, the same water levels are retrieved for
 ⁸¹⁰ both subcycles which confirms the equifinality hypothesis.

A great improvement in the water level is achieved with the first assimilation cycles since the background Manning 865 parameters and thus the background water levels initially differ significantly from the true parameter values and water

- ⁸¹⁵ levels. For the following cycles, as the background parameters are set equal to the analysis parameters, the sequential correction results in a convergence towards the optimal ⁸⁷⁰ Manning coefficients leading to water levels that are coherent with the true water levels. The improvement is larger
- for stations that are located downstream of the river, possibly because of the cumulated corrections upstream of these stations. Moreover, the hypothesis of linear relation between ⁸⁷⁵ width and roughness means that the 20These results are similar for both orbits as illustrated in Fig. 13 that shows the spa-
- tially distributed relative error of water levels averaged over the period from June 2002 to December 2003 for the run with (a) no assimilation, (b) for a 3-day subcycle assimilation and 880 (c) for a 1-day subcycle assimilation. Without assimilation, the relative error over the river ranges between 0 and 1.2.
- With assimilation, more than 90% of the river pixels have a relative error smaller than 0.2 for both subcycles, and no pixel has a relative error higher than 0.5.

5.3 Impact of assimilation on river discharge

Tab. 3 presents discharge mean relative error computed with respect to the true discharge, first averaged over the entire ⁸⁹⁰ river for the 2-year period and then at each of the 8 observing stations shown in Fig. 1. Fig.s 14 the and Fig. 15 display the discharge relative error averaged over the river and the discharge evolution at the 8 observing stations as a function of

time when i) there is no assimilation (black curve), ii) after a 895 1-day subcycle orbit SWOT-observation assimilation (green curve) and (iii) the 3-day subcycle orbit SWOT-observation assimilation (blue curve). The assimilation contributes to an improvement of the river discharge over the whole basin and at the 8 locations, although this improvement is smaller than for water levels which can be expected since the Manning' roughness is updated through level measurements.

Discharge improvement, even if less significant than for water levels, can represent several hundreds of $m^3.s^{-1}$ globally and up to $3000m^3.s^{-1}$ in Lokoja. Discharge obtained after assimilation is somewhat 'noisy' (as observed for water level), for both orbits during the wet season. This is likely due to a higher discharge sensitivity to Manning coefficient change during this period. Discharge is improved, in particular, at Lokoja, i.e. the location situated the most downstream of the river which is a promising result for coupled land-ocean applications since it shows that the RRM can provide a reasonable estimation of discharge at the river mouth. Similar to what was found for water levels, there is almost no discharge sensitivity to the considered orbit.

Fig. 16 shows spatially distributed relative error of discharge averaged over the period June 2002-December 2003 for the run without assimilation (a), for a 1-day subcycle assimilation (b) and for a 3-day subcycle assimilation (c). The discharge relative error is globally improved with better results over the inner delta for the 1-day subcycle orbit. Otherwise, there is no significant difference in results between the two orbits. Without assimilation, the relative error range over the river goes from 0 to 0.4. With assimilation, all pixels have a relative error smaller than 0.2, with 80% of them having errors less than 0.1.

To better understand the relationship between the water levels and the discharge, the flooded fraction time series at 2 locations (KeMacina and Lokoja) is shown on Fig. 17. In KeMacina, there was no flooded fraction before the assimilation while there was about 15% to 20% for the 'truth'. At this location, DA leads to a water level increase that generates flooding for both orbits, in agreement with the true run. The amplitude of the flooded fraction simulated with the assimilation for a 3-day subcycle is close to that of the true run while the flooded fraction simulated with assimilation for a 1-day cycle is overestimated. This results because the water level and discharge results slightly overestimate the results from the true run for the 1-day orbit.

Another interesting case is observed in Lokoja, where the model simulates flooding in 25% of the grid area with no assimilation, which is not observed for the 'truth'. Here again, by reducing water levels, the assimilation considerably reduces flooded fraction for the 1-day subcycle orbit and even prevents it from occuring for the 3-day subcycle orbit. No floods are modeled at the other sites for the truth, the run with no assimilation or the runs with assimilation, so these sites are not shown in Fig 17. These results are valuable since they show that the use of DA corrects the flood prediction for two major sites of the Niger basin. Indeed, Ke Macina is located just upstream to the entrance of the inner delta region, while Lokoja is the last in-situ station upstream of the river outlet. It should be noted that the discharge response to wa-

- ter level modification depends on whether or not there are 950 floods. For example, at Ke Macina during the monsoon period, water level is increased via assimilation, which results in a better fit with the truth simulation and to a discharge decrease. This is coherent with the results of Pedinotti et al.
- 905 (2012), in which the introduction of floodplains leads to a reduction of the discharge. However, in regions without floodplains, a water level increase leads to a discharge increase 955 (see Kandadji for example).
- The frequency of events as a function of the flooded fraction value (ratio of flooded area over pixel area) are shown in Fig. 18 for the truth (a), without assimilation (b), with assimilation for a 1-day subcycle (c) and with a 3-day subcycle (d). 960 Only the pixels with a flooded fraction greater than 10% (0.1 on horizontal axis) are considered. It is shown that without
- assimilation, the model does not simulate flooded fractions above 0.5, which represents about 8% of the flood events for the truth simulation. Moreover, without assimilation, the 965 model tends to overestimate the occurence of smaller events. This is corrected by the assimilation, with a slight tendancy
- to over-estimate flood intensity for the assimilation with the 3-day subcycle orbit, while the 1-day subcycle orbits leads to an excessive occurence of flooded fractions contained in 970 the [0.2-0.3] range. According to these results, DA allows a better simulation of the water storage variations and it leads
- to better estimate flood events occurence and intensity in the inner delta area.

5.4 Water storage variations

Ideally, for water resource management applications and for making reliable future water resource projections, global hydrologic models should be able to reasonably simulate water storage variations in regional to large scale continental reservoirs including river, groundwater, aquifers and floodplains. 985 It is then of interest to see if DA can improve the simulation of these water variations. Fig. 19 shows the relative water storage variations in 4 continental reservoirs (river, floodplains, aquifer and soil) for the truth (red), without assimilation (black), with a 1-day subcycle (blue) and with a 3-day 990

- subcycle (green). For each reservoir, the 20 day running average water storage variations are divided by the averaged water storage over the period of assimilation. The maximum relative water storage variations ranges from 6% in the river reservoir to about 30% in the floodplain reservoir which is $_{995}$ not negligible. In the 4 reservoirs, the simulations with assimilation better represent the amplitude and the phase of the
- ⁹⁴⁵ water storage variations. The assimilation seems to be useful for better representing anomalies in continental reservoirs, which are subject to many uncertainties. However, it should₁₀₀₀ be noted that the physical representativeness of these storage values is not guaranted due to the lack of monitoring data.

6 Discussion

975

980

Optimization of the Manning coefficient using a DA methodology leads to a significant improvement of the water levels over the Niger river, and also at the 8 locations with gages. The relative error of the Manning coefficient is reduced (40%)reduction) and it globally converges towards an optimal value despite potential problems related to equifinality. The relative error of the water level is globally improved (a 30%reduction) and the amplitude of the water level is closer to the truth with assimilation than without assimilation. Discharge is also improved by the assimilation, but to a lesser extent than for the water levels (7%). Moreover, the proposed methodology results in a better prediction of flood event occurence and intensity in the inner delta and better simulates water storage anomaly maxima and minima in several reservoirs, especially the groundwater and the aquifer reservoirs, for which the temporal evolution is difficult to observe. This study is promising since, to our knowledge, no large scale assimilation applications exist for the optimization of spatially distributed hydrological parameters. It shows SWOT observations would be useful for the improvement of CHSs. This method could lead to a better representation of the water cycle in climate prediction applications, but could also be used for large scale water resource management applications. Finally, there is no clear out advantage difference between the two subcycle orbits used for this study, each one having better skill for certain situations.

It should be noted that, this study has some limitations and several asumptions should be noted. The assumption of white noise error for SWOT observations is probably too optimistic. Furthermore, no correlation of the measurement errors along the swath has been assumed. Estimating satellite observation error sources has been the subject of several studies at the French space agency (CNES) in recent years. Initially, a white noise was introduced within the SWOT water level along track altimetric estimate in order to represent the error due to satellite observations (Biancamaria et al., 2011). Lion (2012) presents methods to simulate, in a more realistic manner, different sources of SWOT satellite observation errors. These errors are generally due to several factors such as satellite attitude, baseline error, phase unwrapping errors, etc... . These errors are not always Gaussian and do not always have a mean value of 0. A perspective for improvement of the assimilation methodology proposed in this study is to introduce these errors into the assimilation system in order to get a more realistic estimation of SWOT observation errors and of the error covariance matrix **R**. However, their introduction in the system is not obvious and requires the use of a different assimilation filter due to the aforementionned Gaussian issue. Indeed, the Gaussian error distribution along SWOT tracks does not ensure that the error of the observation vector, y^0 , is Gaussian. Yet, the Gaussian nature of the observation error is a strong asumption of the EKF and possible solutions to get around this limitation exist, such as the use of an ensemble Kalman filter or a particle filter.

1005

1010

1050

The hypothesis that the Manning coefficient uncertainties are the only source of model errors is obviously a rather simple assumption since other errors, such as those related to precipitation forcing uncertainties, river bankfull depth error₁₀₆₀ or the relatively simple ISBA-TRIP physics, can also be the sources of significant modeling errors. It could be potentially interesting to perform the assimilation on an ensemble of perturbed runs in order to take into account several uncertainty scenarii and the estimation of the background modeling ma-₁₀₆₅ trix could be done using an ensemble method (Evensen et

- al., 2004). Within the framework of a real-data experiment, accounting for various sources of errors via Manning control will lead to improved Manning values that should not be interpreted as physical values. Modeling asumptions also put a¹⁰⁷⁰ limitation on the DA performance in the context of real-data
- ¹⁰²⁰ experiments. For example, it is assumed in the TRIP model that geomorphological parameters such as the Manning coefficient are constant in time which is a significant asumption, especially in a region with a strong seasonal climate vari-1075 ability, such as the Niger basin. Hopefully, SWOT observa-
- tions will help to correct this problem, for example, using this method to build seasonal climatologies of key parameters. To exploit this possibility, a further OSSE study could be done, in which the 'true' Manning coefficient varies seasonnally. 1080 Additionally, this study was done within the context of
- OSSE, in which the truth was issued from a reference ISBA-TRIP simulation. This allowed an evaluation of the methodology but makes the improvements on roughness, level, flow and storage highly correlated. Moreover, the OSSE does not₁₀₈₅ guarantee the physical representativeness of the corrected values of the Manning coefficient since the background and
- the observations are issued from the same model. For these reason, the performance of the DA will need to be reevaluated with real observations. In the study presented here,¹⁰⁹⁰ the truth and the perturbation are based on the same physical parameterizations : this is not true when real data are
- 1045 real parameterizations : this is not true when real data are used. Therefore, the assimilation should be applied using either real observations of water level, or water level issued from a different model, such as hydrodynamic model. In fur-1095 ther studies, longer assimilation windows could be exploited but also require a bigger storage capacity which must be con-
- sidered for the choice of the assimilation window size.

Finally, this method must be applied to other ISBA-TRIP parameters and for other large-scale basins to evaluate its₁₁₀₀ global application capability. It is not guaranteed that a methodolgy, which works for a specific basin could be used for all other major basins (with different climates, geoology, etc.). Ongoing work is focused on applying the methodology herein to other basins. These proposed improvements aim₁₁₀₅ at ensuring the assimilation methodology will be applicable when real SWOT data will be available.

7 Conclusions

This study presents a simple method for assimilating SWOT virtual water level into a large-scale coupled land-surface hydrology model (TRIP-ISBA) in order to improve estimates of the required global hydrological model input parameters. In this case, the assimilation is used for the correction of a single parameter which is the Manning coefficient. To accomplish this, an Observing System Simulation Experiment (OSSE) was performed, using virtual SWOT observations of water levels. Two orbits, with different subcycles but with the same 22 days repeat period, have been considered to generate the observations (1-day and 3-day subcycles), each one providing a specific spatial and temporal coverage of the domain. Uncertainties on the estimation of the Manning coefficient are assumed to be the only sources of modeling errors. The Extended Kalman Filter (EKF) algorithm was applied every 2 days (the length of the assimilation window) to compute an optimal Manning coefficient (analysis). The Manning coefficient globally converged for both orbital subcycles to the same average value, the convergence being faster for the 3day subcycle orbit. The method leads to a global reduction of 40% of the Manning coefficient error over the river. This correction significantly improved the water levels (the error has been reduced by 30% for the river) and, to a lesser extent, discharge (7% of reduction of the error which can be significant for the Niger river in terms of water resources considering that its mean annual discharge is $6000m^3.s^{-1}$). Moreover, the biggest improvements were observed downstream of the river (Lokoja), which is a valuable result for climate applications which require estimation of the discharge at large rivers mouths.

This method gives a promising perspective for global scale applications, and it could be extended to other large basins. However, several relatively simple hypotheses have been made, and these should be addressed and refined in future studies. The context of the OSSE allows the evaluation of the model but does not guarantee the physical representativeness of the corrected values obtained in this study. Moreover, other sources of uncertainties should be assumed for the assimilation, such as rainfall errors and/or river bankfull depth. Modeling errors such as those from the ISBA land surface parameterisation should be considered, such as that pertaining to runoff. It was also considered in this work that observation and modeling errors were not correlated in space and time which might not be realistic. The use of more realistic errors simulated by Lion (2012) in the framework of the SWOT mission pre launch investigatiions will be considered in future studies.

Another perspective consists in the application of this method to other TRIP parameters, or several parameters at a time. Correction of ISBA parameters, such as those controlling sub-grid runoff for example, is also planned but must be considered carefully as the impact on the river is less direct. Before the satellite launch, the AirSWOT airborne campaign

- will provide SWOT-like datasets of water level, which will enable studies using a more realistic SWOT DA application, instead of the Observing Simulation System experiment presented here. Even if this airborne campaign will not cover the Niger basin, it will potentially provide a better observa-¹¹⁷⁰
- tion error model. Yet, using more complex observations and model errors might require a modification of the assimilation scheme to overcome extremely strigent EKF filter asumptions of Gaussian unbiased errors. Possible assimilation tech-1175 niques to test are the Ensemble Kalman Filter or the particle
 filter.

1125

References

Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width, 3.

1180

Alsdorf, D. E., Rodriguez, E., and Lettenmaier, D. P.: Measuring surface water from space, Reviews of Geophysics, 45,₁₁₈₅

- doi:10.1029/2006RG000197, 2007.Andersen, I., Dione, O., Jarosewich-Holder, M., and Olivry, J.-C.: The Niger river basin: A vision for sustainable management, World Bank, Washington, DC, 2005.
- Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Als-1130 dorf, D. E.: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a rasterbased hydrodynamics model, Geophysical Research Letters, 34, doi:10.1029/2007GL029721, 2007.
- Arora, V. K. and Boer, G. J.: A variable velocity flow routing₁₁₉₅ algorithm for GCMs, Journal of Geophysical Research, 104, doi:10.1029/1999JD900905, 1999.
 - Bates, P. and De Roo, A.: A simple raster-based model for flood inundation simulation, Journal of Hydrology, 236, 54–57, doi:10.1111/j.1752-1688.2001.tb05522.x, 2000.
- doi:10.1111/j.1752-1688.2001.tb05522.x, 2000.
 Baup, F., Mougin, E., de Rosnay, P., Timouk, F., and Chenerie, I.:
 Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data, Remote Sensing of Environment, 109, 473–481, doi:10.1016/j.rse.2007.01.015, 2007.
- Beven, K. and Kirkby, M.: A physically-based variable contributing₁₂₀₅ area model of basin hydrology, Hydrological Sciences Bulletin, 24, 43–69, 1979.
 - Biancamaria, S., Bates, P., Boone, A., and Mognard, N.: Largescale coupled hydrologic and hydraulic modelling of the
- ¹¹⁵⁰ Ob river in Siberia, Journal of Hydrology, 379, 136–150,₁₂₁₀ doi:10.1016/j.jhydrol.2009.09.054, 2009.
 - Biancamaria, S., Durand, M., Andreadis, K., Bates, P., Boone, A., Mognard, N., Rodriguez, E., Alsdorf, D., Lettenmaier, D., and Clark, E.: Assimilation of virtual wide swath altimetry to im-
- prove Arctic river modeling, Remote Sensing of Environment, 1155 115, 373–381, doi:10.1016/j.rse.2010.09.008, 2011.
 - Bircher, S., Skou, N., and Kerr, Y. H.: Validation of SMOS L1C and L2 Products and Important Parameters of the Retrieval Algorithm in the Skjern River Catchment, Western Denmark, Ieee
- ¹¹⁶⁰ Transactions on Geoscience and Remote Sensing, 51, 2969–₁₂₂₀ 2985, doi:10.1109/TGRS.2012.2215041, 2013.
 - Boone, A., Calvet, J.-C., and Noilhan, J.: Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force–Restore Method, Journal of Applied Meteorology, 38, 1611–1630, doi:10.1175/1520-0450, 1999.

V. Pedinotti et al.: Assimilation of SWOT data

- Bouttier, F. and Courtier, P.: Data assimilation concepts and methods, ECMWF, 1999.
- Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, MacGraw-Hill series in water resources and environmental engineering series, 1989.
- Cogley, J. G.: The Albedo of Water as a Function of Latitude, Monthly Weather Review, 107, 775–781, doi:10.1175/1520-0493(1979)107<0775:TAOWAA>2.0.CO;2, 1979.
- Dai, T. and Labadie, J. W.: River Basin Network Model for Integrated Water Quantity/Quality Management, Journal of Water Resources Planning and Management, 127, 295–305, doi:10.1061/(ASCE)0733-9496(2001)127:5(295), 2001.
- Decharme, B. and Douville, H.: Introduction of a sub-grid hydrology in the ISBA land surface model, Climate Dynamics, 26, 65– 78, doi:10.1007/s00382-005-0059-7, 2006.
- Decharme, B., Douville, H., Boone, A., Habets, F., and Noilhan, J.: Impact of an Exponential Profile of Saturated Hydraulic Conductivity within the ISBA LSM: Simulations over the Rhône Basin, Journal of Hydrometeorology, 7, 61–80, doi:10.1175/JHM469.1, 2006.
- Decharme, B., Douville, H., Prigent, C., Papa, F., and Aires, F.: A new river flooding scheme for global climate applications: Offline evaluation over South America, Journal of Geophysical Research, 113, doi:10.1029/2007JD009376, 2008.
- Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage, Journal of Hydrometeorology, 11, 601–617, doi:10.1175/2010JHM1212.1, 2010.
- Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.: Global off-line evaluation of the ISBA-TRIP flood model, Climate Dynamics, 38, 1389–1412, doi:10.1007/s00382-011-1054-9, 2011.
- Drusch, M., Scipal, K., de Rosnay, P., Balsamo, G., Andersson, E., Bougeault, and Viterbo, P.: Towards a Kalman Filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System, GEOPHYSICAL RESEARCH LETTERS, 36, doi:10.1029/2009GL037716, 2009.
- Durand, M., Andreadis, K., Alsdorf, D., Lettenmaier, D., Moller, D., and Wilson, M.: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model, Geophysical Research Letters, 35, doi:10.1029/2008GL034150, 2003.
- Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynamics, 54, 539–560, doi:10.1007/s10236-004-0099-2, 2004.
- Habets, F., Boone, A., Champeaux, J. L., Etchevers, P., Franchistéguy, L., Leblois, E., Ledoux, E., Le Moigne, P., Martin, E., Morel, S., Noilhan, J., Quintana Seguí, P., Rousset-Regimbeau, F., and Viennot, P.: The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, Journal of Geophysical Research, 113, doi:10.1029/2007JD008548, 2008.
- Hunter, N., Bates, P., Horritt, M., and Wilson, M.: Simple spatially-distributed models for predicting flood inundation : A review, Geomorphology, 90, 208–225, doi:10.1016/j.geomorph.2006.10.021, 2007.

1165

Kerr, Y., Wigneron, J., Ferrazzoli, P., and Waldteufel, P.: Soil

- moisture and vegetation biomass retrievals using L band, dual polarised and multi angular radiometric data in prepa-1285 ration of the SMOS mission, in: IGARSS 2000. IEEE 2000 International, vol. 3, pp. 1244–1246, IEEE, Honolulu, doi:10.1109/IGARSS.2000.858081, 2000.
- Kerr, Y., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., Gruhier, C.,1290 Juglea, S., Drinkwater, M., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle, Proceedings of the IEEE, 98, 666 –687, doi:10.1109/JPROC.2010.2043032, 2010.
- Lion, C.: Simulation des données SWOT haute résolution et appli-1295 cations à l'étude de l'estuaire de l'Amazone, Ph.D. thesis, Univ. Paul Sabatier - Toulouse III, 2012.
- Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A.,
- Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B.,1300 Delire, C., Donier, S., El Khatib, R., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafont, S., Lebeaupin, C., Lemonsu, A., Mah-
- fouf, J.-F., Marguinaud, P., Moktari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincen-1305 don, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 externalized platform for the simulation of Earth surface variables and fluxes, Geosci. Model Dev, 2013.
- Michailovsky, C., Milzow, C., and P., B.-G.: Assimilation of radar altimetry to a routing model of the Brahmaputra River, Water1310 Resources Research, 49, 1–10, doi:10.1002/wrcr.20345, 2013.
- Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface Processes for Meteorological Models, Monthly Weather Review, 117, 536–549, doi:10.1175/1520-0493(1989)1172.0.CO;2, 1989.
- Oki, T. Sud, Y. C.: Design of Total Runoff and (TRIP) Global River Integrating Pathways А Channel Network, Earth Interactions, 2, 1 - 37, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2, 1260 1998.
 - Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews, E.: Interannual variability of surface water extent at the global scale, 1993–2004, Journal of Geophysical Research, 115, doi:10.1029/2009JD012674, 2010.
- Pedinotti, V.: The SWOT satellite mission : Contribution of large swath altimetry to the improvement of hydrological and hydrodynamical processes in large scale models., Ph.D. thesis, INP Toulouse, 2013.

1265

- Pedinotti, V., Boone, A., Decharme, B., Crétaux, J. F., Mognard, N., Panthou, G., Papa, F., and Tanimoun, B. A.: Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets, Hydrology and Earth System Sciences, 16, 1745–1773, doi:10.5194/hess-16-1745-2012, 2012.
- Pereira-Cardenal, S., Riegels, N., Berry, P., Smith, R.G. Yakovlev, A., Siegfried, T., and Bauer-Gottwein, P.: Real-time remote sensing driven river basin modeling using radar altimetry, Hydrology and Earth System Sciences, 15, 241–254, doi:10.5194/hess-15-241-2011, 2011.
 - Pistocchi, A. and Pennington, D.: European hydraulic geometries for continental scale environmental modelling, Journal

of Hydrology, 329, 553–567, doi:10.1016/j.jhydrol.2006.03.009, 2006.

- Rodriguez, E.: SWOT Science Requirements Document, JPL Document, 11, 2012.
- Salamon, P. and Feyen, L.: Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, Journal of Hydrology, 376, 428–442, doi:10.1016/j.jhydrol.2009.07.051, 2009.
- Santos Da Silva, J. and Calmant, S.: Mapping of the extreme stage variations using ENVISAT altimetry in the Amazon Basin Rivers, International Water Technology Journal, 2, 2012.
- Stisen, S.: Geostationary Remote Sensing in Modelling of Land Surface Hydrology, Ph.D. thesis, Department of Geography and Geology, Faculty of Science, University of Copenhagen, 2007.
- Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503–505, doi:10.1126/science.1099192, 2004.
- Yoon, Y., Durand, M., Merry, C., Clark, E., Andreadis, K., and Alsdorf, D.: Estimating river bathymetry from data assimilation of synthetic SWOT measurements, Journal of Hydrology, 464, doi:10.1016/j.jhydrol.2012.07.028, 2012.
- Zagona, E. A., Fulp, T. J., Shane, R., Magee, T., and Goranflo, H. M.: Riverware: a Generalized Tool for Complex Reservoir System Modeling, JAWRA Journal of the American Water Resources Association, 37, 913–929, doi:10.1111/j.1752-1688.2001.tb05522.x, 2001.

Figure 1. The Niger river basin. The spatial resolution is $0.5^{\circ} \times 0.5^{\circ}$. The red contour marks the boundary of the Niger basin. The squares correspond to the following locations: (1) Banankoro, (2) Koulikoro, (3) Ke Macina, (4) Niamey, (5) Ansongo, (6) Kandadji, (7) Malanville and (8) Lokoja. Terrain elevations come from ETOPO2 (m).

Figure 2. The TRIP model configuration in ISBA.

Figure 3. The spatial distribution of river depth (m)[a], Manning coefficient [b] and river width (m)[c] parameters in ISBA-TRIP.

Figure 4. Distribution of the 'true' Manning coefficient over the river. This distribution of Manning coefficients was used as an input parameter to run the reference ISBA-TRIP modelling.

Figure 5. The 22-day repeat, 871km altitude, 1-day subcycle orbit coverage, data issued from the SWOT data simulator.

Figure 6. As in Fig. 5, except for a 22-day repeat, 970 km altitude, 3-day subcycle orbit average.

Figure 7. Schematic of the assimilation scheme used in this study. The black line represents the apriori or background trajectory and the blue line is the posterior trajectory after data assimilation. After the DA step, the apriori trajectory is represented in dashed line to compare with the new trajectory.

Figure 8. The Manning coefficient relative error averaged over the river versus time with 1-day subcycle (green) and 3-day subcycle (blue) orbit SWOT assimilation. The related error is calculated as the ratio: $|n_{riv_{with/withoutassi}} - n_{riv_{truth}}|/n_{riv_{truth}}$, where n_{riv} is the Manning coefficient.

Figure 9. The Manning coefficient distribution a)for the truth, b)for the background, c)for the 1 day-subcycle assimilation at the end of the assimilation period(after 289 assimilation cycles in December 2003) and d) for the 3 day-subcycle assimilation at the end of the assimilation period (after 289 assimilation cycles in December 2003).

Figure 10. Manning coefficient versus assimilation cycle at 8 locations (Fig. 1) for the 3 day subcycle (blue) and 1 day subcycle (green) orbits. The value of the true coefficient is in red.

Figure 11. Water level relative error averaged over the river versus time with no assimilation (black), with a 1-day subcycle (green) and a 3-day subcycle (blue) orbits SWOT assimilation. The relative error is calculated as the ratio: $|h_{with/withoutassi} - h_{truth}|/h_{truth}$, where *h* is the water level(*m*).

Figure 12. Time evolution of water levels at the 8 locations shown on Fig. 1 for the "truth" (red curves), with no assimilation (black curves) and with assimilation of SWOT 1-day subcycle (green) and 3-day subcycle (blue) orbit observations.

Figure 13. Relative error of water levels averaged over the period of assimilation.

Figure 14. Discharge relative error averaged over the river versus time with no assimilation (black), with a 1-day subcycle (orange) and a 3-day subcycle (blue) orbits SWOT assimilation. The relative error is calculated as the ratio: $(|q_{with/withoutassi} - q_{truth}|/q_{truth})$, where q is the water $level(m^3.s^{-1})$.

Figure 15. Time evolution of discharge at the location of the 8 locations (Fig. 1) for the "truth" (red curves), with no assimilation (black curves) and with assimilation of SWOT 1-day subcycle (green) and 3-day subcycle (blue) orbit observations.

Figure 16. Relative error of dicharge averaged over the period of assimilation.

Figure 17. Flooded fraction versus time at Ke Macina and Lokoja, for the truth (red), with no assimilation (black), with assimilation for 3dsbc(blue) and 1dsbc (green). Note that in Lokoja, no flooded fraction is represented for the truth and for the run with assimilation with a 3-day subcycle.

Figure 18. Frequency of flood events over the delta classified by intensity (flooded fraction). Only the pixels with a flooded fraction higher than 10% are considered for the calculation.

Figure 19. Relative water storage variations in the river, the floodplains, the aquifer and the soil reservoirs for the truth (red), with no assimilation (black), with assimilation for the 1-day orbit subcycle (green) and for the 3-day subcycle (blue). For each reservoir, the 20 day running average water variations are divided by the averaged water storage over the period of assimilation (from June 2002 to December 2003).

Table 1. Principal variables, vectors and matrices used in the data
assimilation of SWOT water levels. The assimilation window length
is N days. The number p of observed water levels during the assim-
ilation window changes for each cycle.

Symbol	Variable	Dimensions
y_t^0	Observation vector, containing	p (different for each
	the SWOT WL observations during	assimilation cycle)
	the N day assimilation window	
x_t^b	Background vector, containing the	n = 110
	corrupted Manning coefficient	
	over the river mask	
x_t^a	Analysis vector, containing the	n = 110
	corrected values of the Manning	
	coefficient over the river mask	
M_t	ISBA-TRIP (non linear)	
$H_t(x_t^b)$	ISBA-TRIP simulated water levels,	<i>p</i>
	using x_t^b as an input parameter	
R_t	Observation error covariance matrix	$p \times p$
	(related to water levels)	
B_t	Background error covariance matrix	$n \times n$
	(related to the Manning coefficient)	
A_t	Analysis error covariance matrix	$n \times n$
H_{t}	Jacobian matrix of <i>H</i> (sensitivity of	$n \times p$
	ISBA-TRIP water levels	
	to the Manning coefficient)	
K_t	Gain matrix	

Table 2. Water level relative error averaged over the river and at the location of the 8 gages along the river (each gage is defined by its number specified inside the orange rectangles in Fig.1). The relative error is calculated as the ratio $((h_{with/withoutassi} - h_{truth})/h_{truth}$ where *h* is the water level(m).

Location n°	Riv Mean	1	2	3	4	5	6	7	8
No assi	0.45	0.35	0.17	0.36	0.55	0.16	0.69	0.68	1.10
3dsbc	0.12	0.09	0.25	0.11	0.17	0.12	0.12	0.10	0.09
1dsbc	0.12	0.19	0.10	0.11	0.12	0.13	0.07	0.12	0.18

Table 3. Discharge relative error averaged over the river and at location of the 8 gages along the river (each gage is defined by its number specified inside the orange rectangles on Fig.1). The relative error is calculated as the ratio $((q_{with/withoutassi} - q_{truth})/q_{truth}$ where q is the discharge $(m^3.s^{-1})$.

Location n°	Riv Mean	1	2	3	4	5	6	7	8
No assi	0.14	0.06	0.10	0.18	0.22	0.20	0.20	0.15	0.14
3dsbc	0.08	0.04	0.04	0.11	0.14	0.14	0.14	0.09	0.06
1dsbc	0.07	0.03	0.03	0.09	0.13	0.13	0.11	0.08	0.06