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Abstract. During the last few decades, satellite measure-
ments have been widely used to study the continental water
cycle, especially in regions where in situ measurements are
not readily available. The future Surface Water and Ocean
Topography (SWOT) satellite mission will deliver maps of5

water surface elevation (WSE) with an unprecedented reso-
lution and provide observation of rivers wider than 100 m and
water surface areas greater than approximately 250 x 250 m
over continental surfaces between 78 S and 78 N. This study
aims to investigate the potential of SWOT data for param-10

eter optimization for large scale river routing models. The
method consists in applying a data assimilation approach,
the Extended Kalman Filter (EKF) algorithm, to correct the
Manning roughness coefficients of the ISBA-TRIP Conti-
nental Hydrologic System. Parameters such as the Manning15

coefficient, used within such models to describe water basin
characteristics, are generally derived from geomorphological
relationships, which leads to significant errors at reach and
large scale. The current study focuses on the Niger basin, a
trans-boundary river. Since the SWOT observations are not20

available yet and also to assess the proposed assimilation
method, the study is carried out under the framework of an
Observing System Simulation Experiment (OSSE). It is as-
sumed that modeling errors are only due to uncertainties in
the Manning coefficient. The true Manning coefficients are25

then supposed to be known and are used to generate syn-
thetic SWOT observations over the period 2002-2003. The
impact of the assimilation system on the Niger basin hydro-
logical cycle is then quantified. The optimization of the Man-
ning coefficient using the EKF algorithm over an 18 month30

period led to a significant improvement of the river water lev-
els. The relative bias of the water level is globally improved

(a 30% reduction). The relative bias of the Manning coef-
ficient is also reduced (40% reduction) and it converges to-
wards an optimal value. Discharge is also improved by the35

assimilation, but to a lesser extent than for the water lev-
els (7%). Moreover, the method allows a better simulation
of the occurrence and intensity of flood events in the inner
delta and shows skill in simulating the maxima and minima
of water storage anomalies, especially in the groundwater40

and the aquifer reservoirs. The application of the assimila-
tion method in the framework of an Observing System Sim-
ulation Experiment allows to evaluate the skill of the EKF
alogorithm to improve hydrological model parameters and to
demonstrate SWOT promising potential for global hydrology45

issues. However, further studies (e.g. considering multiple er-
ror sources and difference between synthetic and real obser-
vations) are needed to achieve the evaluation of the method.

Keywords. data assimilation, SWOT, large scale modelling,
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1 Introduction

The impact of climate variability on land water storage is
becoming an increasingly crucial issue for the development
of future water resource management strategies. In order
to investigate this impact, Continental Hydrologic Systems55

(CHSs) can be used to simulate water dynamics above and
below the land surface as a response to environmental forc-
ing. CHSs are generally made of a Land Surface Model
(LSMs) which computes the water and energy budget at the
surface-atmosphere interface, coupled with a River Routing60

Model (RRM) which distributes the runoff to the river and
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the soil storage components. At regional or global scales, re-
alistic representation of major surface hydrologic and hydro-
dynamic processes is very challenging and requires the use
of computationally efficient, easily parameterized, compar-65

atively simple and physically based routing methodologies.
However, land surface hydrologic processes are highly het-
erogeneous in space and time and are therefore difficult to pa-
rameterize given the huge dimensions of Atmospheric Gen-
eral Circulation Model (AGCM) grid areas. Observational70

data describing the water dynamics and storage variations are
required to evaluate CHS-simulated diagnostics, and to cali-
brate these models. In-situ data have been extensively used,
but they are limited by their temporal and spatial coverage.
In addition to the information provided by in-situ measure-75

ments, satellite remote sensing instruments have been devel-
oped and continually improved. These instruments generally
provide a large spatial coverage which is more appropriate
for global applications, especially in areas where in-situ data
are scarce. Such areas are generally sparsely inhabited, with80

reduced infrastructures and possible geopolitical issues, such
as large portions of the African continent or part of the Arc-
tic (Alsdorf et al., 2007). Applications using satellite remote
sensing techniques lead to many promising perspectives for
improving the observation of land surface and hydrological85

variables and processes.
Hydrological models require information about continen-

tal water dynamics and storage variations above and be-
low the surface for calibration and evaluation of the simu-
lated water budget. To this end, diverse types of monitor-90

ing data are needed. In situ discharge data, for example,
give 1-spatial-dimension information which quantifies wa-
ter fluxes in a specific river channel, but do not give any di-
rect information about runoff or lateral inflow. Yet, hydro-
logically complex areas, such as wetlands and floodplains95

which are three-spatial-dimension processes, cannot be ad-
equately resolved using one-spatial-dimension observations
(Alsdorf et al., 2007). Spatially distributed observations are
required, such as those provided by satellites which give 2-
dimensional information about surface water dynamics. Re-100

cently, efforts have been made to build global maps of flood-
plains variability and extent, providing an additional metric
for CHSs evaluation (Papa et al., 2010). Nadir altimetry has
also constituted a valuable progress for the monitoring of
surface water dynamics and elevation (TOPEX-POSEIDON,105

ENVISAT, JASON 1 and 2; Baup et al., 2007; Santos Da
Silva et al., 2012).

Although useful, current satellite altumetry spatial resolu-
tion does not resolve small scale land water dynamics thereby
limiting our understanding of large scale hydrologic and hy-110

drodynamic processes. The future NASA-CNES-CSA Sur-
face Water and Ocean Topography (SWOT) satellite mis-
sion will be launched in 2020 and will deliver maps of water
surface elevation (WSE), slope and extent with an unprece-
dented resolution of 100m.115

For continental hydrology, the SWOT mission has the po-
tential to help dealing with critical issues, such as monitoring
trans-boundary basins and the development of management
strategies in a changing world. It is necessary to determine
how the SWOT data can be used to improve hydrological120

simulations and to better predict continental water storage.
Data assimilation (DA) has been shown to be a promising

technique for improving river modelling (Andreadis et al.,
2007; Durand et al., 2008; Biancamaria et al., 2011; Yoon
et al., 2012). Commonly used in operational meteorology125

and oceanography, DA combines data coming from various
sources, such as numerical models or observations, while
taking into account measurement errors and model uncer-
tainties for a better description and prediction of the system.
However, these methods are not yet extensively used in hy-130

drology and related works are rare, especially for large scale
applications. Drusch et al. (2009) used observations of 2m
air temperature and soil moisture to evaluate a Kalman fil-
ter based soil moisture analysis system and its impact on the
operational ECMWF (European Centre for Medium-Range135

Weather Forecasts) integrated forecast system. They showed
that the impact of EKF on the forecast skill of the operational
weather forecast model was neutral in terms of forecast score
but gave the promising possibility to better constrain the soil
water content with more accurate soil moisture estimates.140

Pereira- Cardenal et al. (2011), investigated the potential of
using ENVISAT water levels observations in a real time or
near real time by applying an Ensemble Kalman Filter in or-
der to update semi-distributed hydrological model state vari-
ables. The method was applied to the Syr Darya River Basin,145

a complex mountainous region covering approximately 7000
km2. They showed that data assimilation allowed a better real
time estimation of reservoir levels over the region. However,
because of the state updating procedure used in this study,
which consisted in adding or abstracting water from reser-150

voirs, the method is limited to medium-range forecasting. It
is not suitable for long-term water resources scenario calcu-
lations, where mass balance has to be maintained. More re-
cently, Michailovsky et al. (2013) used radar altimetry data
from the ENVISAT mission for updating the storage of a155

routing model of the main reach of the Brahmaputra River
driven by the outputs of a calibrated rainfall runoff model
showing the potential for the use of altimetric data in combi-
nation with hydrological models for flow modeling in large
rivers. However in situ flow data was required for the cal-160

ibration of the rainfall runoff model which may still be a
limitation in some areas with poor data availability such as
the Niger river. Salamon and Feyen (2009) used the residual
re-sampling particle filter to assess parameter, precipitation
and predictive uncertainty in the distributed rainfall-runoff165

hydrological model LISFLOOD for the Meuse catchment us-
ing discharge measurements. They showed that the equifinal-
ity hypothesis (several different parameter sets can lead to
a good estimation of the discharge) was a limitation to the
correction of a distributed hydrological parameter even in a170
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physically based hydrologic model. Moreover, they empha-
sized the strong effect of rainfall uncertainties on the analy-
sis. Finally, the results showed that accounting for parameter
uncertainty only during a calibration phase was not sufficient
to properly predict uncertainty, limiting the application of the175

method for hydrologic forecasting over longer time periods.
The aforementioned applications of DA in hydrological mod-
eling have shown the potential of using remote sensing data
in order to improve the model states or the parameters. How-
ever, they also showed the limitations due to the generally180

low spatial and temporal resolutions of these data sets.
Hydrological model uncertainties can come from several

sources, such as model structure, input parameters or input
data (mostly precipitation), leading to the development of
different DA methodologies. Depending on the study, DA185

either aims at optimizing the model input parameters or at
directly correcting the model state (generally done in opera-
tional forecast applications for example). The current study
investigates benefits of assimilating SWOT virtual water lev-
els in order to improve input parameters of a large scale hy-190

drological model within the context of a pre-launch study.
The domain study area is the trans-boundary Niger basin
(Fig. 1) which crosses a large part of the Sahel and is a
critical source of water in this semi arid region. The West
African region is also characterized by an increasing popu-195

lation, putting larger pressure on the already limited fresh-
water resources. The hydrology of this basin is modulated by
the West African Monsoon (WAM) seasonal and inter annual
variability which is characterized by extreme events such as
droughts and floods which can have dramatic impacts on so-200

ciety and the regional economy. However, the lack of field
measurements limits the understanding of the salient hydro-
logical processes in the Niger basin. For these reasons, it is
an ideal test-bed for studying global hydrological issues. In
a previous study, a Niger basin hydrological model applica-205

tion was set up using the ISBA (Interaction Sol-Atmosphere-
Biosphere)-TRIP (Total Runoff Integrating Pathways) dis-
tributed hydrological model. Along with river routing, this
model includes a flooding scheme and a linear unconfined
aquifer reservoir (Pedinotti et al., 2012). The model param-210

eters were estimated using geomorphologic relationships to
characterize the river characteristics. The modelling evalu-
ation showed that the model was able to reasonably repro-
duce the major hydrologic and hydrodynamic processes. The
model outputs were compared to in-situ discharge as well as215

satellite derived flood extent, total continental water storage
changes and river height changes. The importance of flood-
plains was also demonstrated, since they have a considerable
impact on discharge downstream of the inland Niger Delta.
The confined aquifer improves the recession law ie the curve220

of the decreasing flow and the simulation of low flows. How-
ever, some model deficiencies remain which can be due to
forcing or model uncertainties, among these sources of er-
rors are the uncertainties of TRIP hydrological parameters.
Indeed, these distributed parameters are defined by empirical225

relationships using available observations which are adapted
towards obtaining the best results over the entire globe. How-
ever, such relationships might not give the best results lo-
cally (for a particular basin). Studies showed that empirical
equation does not work well even within one basin and sig-230

nificant error can be found at sub-basin scale or reach scale
(e.g. Miller et al., 2014, Yamazaki et al., 2014). These re-
lationships thus lead to non-negligible errors which could
be reduced using satellite data. Such data can potentially be
used to estimate spatial parameters for each particular basin235

and then contribute to the development of a global database
describing major river characteristics. Pedinotti et al. (2012)
performed sensitivity tests to determine the main sources of
uncertainty among the TRIP parameters. These tests have
shown that the model was sensitive to modifications of some240

key river parameters (river height and depth as well as Man-
ning coefficient) and that a good estimation of those param-
eters was required to optimize the simulation errors.

The aim of the current study is to investigate how SWOT
water level products can be used to optimize the Manning245

coefficient. Unlike river depth and width, which can be es-
timated through direct measurements, Manning coefficient
can be estimated only indirectly, using bathymetry and flow
velocity measurements. Several studies discussed the impor-
tance and difficulty to estimate the Manning coefficient (Ven250

Te Chow et al., 1988; Argement et al., 1989; Bates and de
Roo, 2000). The sensitivity of the Manning equation to sev-
eral river parameters including the roughness coefficient was
investigated by Pistocchi and Pennington (2006). In addition
to the concern about estimating accurately the Manning coef-255

ficient value, they highlighted the importance of considering
its spatial distribution instead of a unique value as it is done
in some hydrological models (Arora and Boer, 1999). More-
over, the Manning coefficient is often used as an adjustement
variable for models calibration which can lead to additionnal260

errors (e. g. Biancamaria et al., 2009). Hunter et al. (2007) in-
dicated that very frequently in models errors on topography
and roughness dominate errors from equation approximation.
The estimation of the Manning coefficient is thus considered
by litterature as one of the major issues limiting the perfor-265

mance of hydrological models and, to the authors knowledge,
there have been very few attempt to evaluate the potential of
satellite data to correct it. Therefore, it was chosen as the
main parameter to be investigated in the DA study presented
in this study. Since SWOT observations are not yet available270

and to assess the usefulness of data assimilation, this study
is carried out within the framework of an Observing System
Simulation Experiment (OSSE) using the TRIP model for the
simulation of the Niger hydrodynamics. SWOT virtual mea-
surements are produced using a reference ISBA-TRIP simu-275

lation. Here, it is assumed that modeling errors are only due
to one key parameter which can’t be directly estimated via
observational data : the Manning roughness coefficient (the
other sources of modeling errors are not considered here, and
the reasons will be explained in Section 4.1). The impact of280
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the assimilation system on the Niger River modeling is then
quantified. First, a brief presentation of the study domain and
the model is made in Section 2. In this section, the Manning
coefficient is also defined and its spatial distribution used for
the true simulation is shown. Then, the production of SWOT285

virtual water level is described in Section 3. The methodol-
ogy used to build the assimilation scheme is explained, and
the main variables of the assimilation problem are described
in Section 4. Finally, the impact of the assimilation on the
main hydrological variables of the Niger basin are discussed290

in Section 5.

2 Study domain and model description

2.1 The Niger River Basin

Originating in the Guinean highlands within the Haute
Guinée and Guinée Forestière regions located in the Fouta295

Djallon Massif mountain range, the Niger River is the third
longest river in Africa (4,200 kilometers), after the Nile
and the Congo. Its outlet is located in Nigeria, discharging
through a massive delta into the Gulf of Guinea. On its way
through Mali, it crosses a vast floodplain region called the300

Inland Delta. The Inland Delta has an average surface area
of 73,000 km2, and it dissipates a significant proportion of
the flow of the river through absorption and evaporation (it
is estimated that about 40% of water is lost through the in-
land delta by evaporation and/or infiltration, Andersen et al.,305

2005). From the headwaters to the Niger Delta (taking into
account the hydrologically active area), the basin has an aver-
age area of about 1.5 million km2. The Niger river is shared
by 9 countries and is the main source of water for about 100
million people living principally from agriculture and farm-310

ing. During the 1970s and 1980s, West Africa faced extreme
climate variations with extended drought conditions followed
by floods and there is a need to better understand the func-
tioning of this basin for water management purposes. The
complexity of modelling the Niger basin is mainly due to315

the fact that it crosses very different climatic zones, from the
tropical humid Guinean coast where it generally rains every
month of the year, to the desertic Saharan region. The main
source of water over the basin is due to the West African
Monsoon (WAM) which is characterized by a marked annual320

cycle and significant inter annual variability, leading to the
succession of extreme events such as droughts and floods. In
addition to modelling issues due to rainfall uncertainties, the
representation of processes such as infiltration and evapora-
tion from floodplain is also very important for modelling the325

Niger River.

2.2 Review of the ISBA-TRIP model

ISBA is a state-of-the-art land surface model which calcu-
lates the time evolution of the surface energy and water bud-
gets (Noilhan and Planton, 1989). It represents the natural330

land surface component of the SURface-EXternalized (SUR-
FEX) coupling platform at Météo-France (Masson et al.,
2013). In the current study, we use the 3-layer force-restore
soil hydrology option (Boone et al., 1999). The options are
also activated for a comprehensive representation of sub-grid335

hydrology in order to account for the heterogeneity of precip-
itation, topography and vegetation in each grid cell. A TOP-
MODEL approach (Beven and Kirkby, 1979) has been used
to simulate a saturated fraction, fsat , over which precipi-
tation is entirely converted into surface runoff (Decharme340

et al., 2006). Infiltration is computed via two sub-grid ex-
ponential distributions of rainfall intensity and soil maxi-
mum infiltration capacity (Decharme and Douville, 2006).
The TRIP original River Routing Model (RRM) was devel-
oped by Oki and Sud (1998) at University of Tokyo. It was345

first used at Météo-France to convert the model simulated
runoff into river discharge using a global river channel net-
work at a 1◦ resolution. More recently, a 0.5◦ resolution
global river network has been developed which is used for
this study. The TRIP schematic concept is presented on Fig.350

2 and more details can be found in Pedinotti et al., 2012.
The ISBA-TRIP CHS was recently improved to take into ac-
count a simple groundwater reservoir, which can be seen as
a simple soil-water storage, and a variable stream flow ve-
locity computed via the Mannings equation (Decharme et355

al., 2010). In addition, ISBA-TRIP includes a two-way flood
scheme in which a flooded fraction of the grid cell can be de-
termined (Decharme et al., 2008, 2011). The flood dynamics
are described through the daily coupling between ISBA land
surface model and TRIP RRM, including a prognostic flood360

reservoir. This reservoir fills when the river height exceeds
the critical river bank full height (Fig. 3.a), hc (m). The flood
interacts with the soil hydrology through infiltration, with the
overlying atmosphere through precipitation interception and
through free water surface evaporation. For the Niger appli-365

cation, Pedinotti et al. (2012) added a simple linear confined
aquifer reservoir to account for the long term water storage in
deep and more or less confined aquifers. This reservoir was
built on the example of the groundwater reservoir, but with a
significantly longer time delay factor. The confined aquifer is370

supplied by a fraction (1−α) of the drainage from ISBA, the
remaining fraction (α) going to the groundwater reservoir.

2.3 TRIP specific parameters

The Manning coefficient characterizes the roughness so that
it modulates the surface water velocity and thus water levels375

and discharge, via the Manning formula. However, it is dif-
ficult to estimate via in-situ measurements or remote sensing
techniques. In ISBA-TRIP, the Manning friction coefficient,
nriv , varies linearly and proportionally to the river width,
W (m), from 0.04 near the river mouth to 0.1 (Decharme et380

al., 2011) in the upstream grid cells (Fig. 3.b):

nriv = nmin + (nmax − nmin)
(

Wmouth − W

Wmouth − Wmin

)
(1)
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where nriv represents the grid cell average Manning coef-
ficient, nmax and nmin the maximum and minimum values
of the Manning friction coefficient (equal to 0.1 and 0.04,385

respectively), Wmin(m) the minimum river width value and
Wmouth(m) is the width of the mouth in each basin of the
TRIP network (Wmouth = 2000 for the Niger basin). The
river width, W , is an important parameter because it con-
trols both the river flow speed and the floodplain dynamics.390

It is computed over the entire TRIP network via an empir-
ical mathematical formulation that describes a simple geo-
morphological relationship between W and the mean annual
discharge at each river cross section (Knighton, 1998; Arora
and Boer, 1999; Decharme et al., 2011):395

W = max
(
30, β × Q1/2

yr

)
(2)

where Qyr(m3.s−1) is the annual mean discharge in each
grid cell estimated using the global runoff database from
Cogley (1979). As discussed in Decharme et al. (2011), the
β coeffiient can vary drastically from one basin to another.400

β is equal to 20 for the branch of the river going from the
river mouth (5 N) to 12 N and is fixed to 10 for the remain-
ing river branch. The spatial distribution of the river width
is shown in Fig. 3.c. Another critical parameter is the river
bankfull critical height, hc, which is computed according to405

the river width via a simple power function (Decharme et al.,
2011) :

hc = W 1/3. (3)

The spatial distribution of hc is shown in Fig.3.a. These re-
lationships are found to work well at the global scale but can410

lead to significant errors for a specific basin at the regional
scale (see the sensitivity tests in Pedinotti et al., 2012). In-
deed, the asumption that the river width is proportional to
the annual mean discharge can lead to significant errors in
flooded areas where the river bed enlarges but the discharge415

is reduced through the flooding process. Moreover, it is as-
sumed that the Manning coefficient is only dependant on the
river width while other factors should be considered, such
as the presence of vegetation, debris, soil type etc... Finally,
these parameters are defined as constant in time which is a420

significant asumption, especially in a region with a marked
seasonal climate variability such as the Niger basin. Remote
sensing opens the possibility of estimating the river width by
direct measurements and the critical bankfull height by indi-
rect algorithms (Pavelski and Smith, 2008; Yamazaki et al.,425

2014; Durand et al., 2010). However, the Manning coefficient
will still be difficult to estimate even using remote sensing.
This study focuses on finding a methodology to estimate this
critical parameter via DA.

3 Satellite observations430

The aim of this work is to estimate the potential benefits of
using SWOT satellite measurements to provide spatially dis-

tributed estimates of the Manning coefficient over the Niger
river basin. This section describes this future satellite mission
and how virtual SWOT observations have been generated in435

this study.

3.1 The SWOT mission

SWOT will provide high-resolution images of water surface
elevations over the oceans and continental surface water bod-
ies. It will therefore observe continental surface waters at an440

unprecedented resolution, providing information for a better
understanding of surface water dynamics and storage varia-
tions. The mission is currently planned to be launched around
2020.
The satellite main payload will be the Ka-band Radar Inter-445

ferometer (KaRIN), a wide swath SAR (Synthetic Aperture
Radar) interferometer. KaRIN will have two antennas sepa-
rated by a 10 m boom, which will observe two ground swaths
of 60 km on each side of the satellite nadir, separated by a 20
km gap. The intrinsic pixel resolution will vary from 60 m450

(near range) to 10 m (far range) across-track and will be at
best around 5 m along-track (however, this value is also de-
pendent upon decorrelation time). Yet, for these intrinsic pix-
els, water elevation measurements have metric errors, which
increase along the swath (depending on the look angle). To455

increase vertical accuracy, pixels have to be aggregated: over
a 1 km2 area inside the river mask, water elevation has a 10
cm or lower error (Rodríguez, 2012). River slopes will be
measured with a 1 cm km−1 resolution, after processing ele-
vations over 10 km river reaches (Rodríguez, 2012). SWOT460

will be able to observe rivers wider than 100 m (mission re-
quirement) and should be able to observe rivers wider than
50 m (goal). The chosen orbit will be a Low Earth Orbit with
a 78◦ inclination, in order to observe almost all of the conti-
nental surfaces (Rodríguez, 2012).465

3.2 Observing System Simulation Experiment (OSSE)
and virtual SWOT data.

The OSSE framework consists in simulating data that would
be observed by the future measurement platform using a nu-
merical model, in order to use them as virtual observations470

for DA experiments. The main objective of an OSSE is to val-
idate the DA method by using ideal conditions. It is assumed
that the state of the system as well as the error statistics
of the model and observations are known and correctly de-
scribed which is not the case in real conditions. This method475

is useful within the framework of the SWOT satellite mis-
sion preparation, since it allows a quantification of the satel-
lite data contribution to improve large scale river modeling
(such as for the Niger basin) before the launch of the satel-
lite. First, a realistic modeling of the studied basin is needed480

for the OSSE. The model must be able to simulate the ma-
jor hydrodynamic processes of the basin so that the simu-
lated observations will reasonably represent the reality. The
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ISBA-TRIP set-up evaluated in Pedinotti et al. (2012), with
the inclusion of the flooding scheme and aquifer reservoir, is485

used to represent the true state of the hydrological system,
also refered to as the reference simulation. For this so-called
“truth”, the model and its parameters are assumed to be per-
fect. An error is then added to this true state to build virtual
observations. The background simulation results from the in-490

tegration of the same model in a different configuration, for
instance with a different set of parameters (also called per-
tubed or background parameters). It gives an a priori descrip-
tion of the system that is an approximation of the truth. In the
present study focussed on parameter estimation, the purpose495

of the DA algorithm is to retrieve an optimal set of model
parameters starting with the background parameters, by as-
similating the virtual observations. It is important to note that
in the present study, the error between the true Manning co-
efficients and the background Manning coefficients doesn’t500

vary in time.
Within the framework of this SWOT-dedicated study, the

true simulation is used to generate the SWOT observations,
with the help of a relatively simple simulator developped by
Biancamaria et al. (2011). Based on the prescribed orbit and505

swath, the simulator provides an ensemble of SWOT tracks
and related dates. The SWOT tracks are provided for the
orbital period and then repeated over the years 2002-2003
(assuming the satellite started its first orbit on January, 1st
2002). The virtual data are the sum of the ISBA-TRIP water510

levels at the corresponding grid points and an instrumental
error which is added to partialy account for the SWOT ob-
servation errors (see Section 4.2.1 for details). A river mask
for the Niger comprinsing grid cells with a river width above
200m is defined as illustrated in Fig. 4 which displays the515

Manning coefficient for the unmasked 110 pixels. It should
be noted that the SWOT satellite will not measure water
depth but free surface water elevation. For DA applications
in real conditions, the direct comparison between SWOT and
ISBA-TRIP water levels will not be straightforward and will520

need further investigation. Indeed, the SWOT satellite mea-
sures free surface water elevation which can not be directly
compared to the ISBA-TRIP outputs which are stream water
absolute depths in the river channel. The assimilation then re-
quires to find a way to compare these two different variables525

in order to perform the DA. For example, they can be com-
pared in terms of anomalies relative to a mean value over a
long period of time instead of absolute water elevations. This
method allows to remove the bias due to different reference
values of the level where the water elevation is zero. How-530

ever, in the framework of an OSSE, the same model is used
to generate the apriori and observed water levels and this is-
sue can be evaded.

The 22-day repeat orbit and the 140 km swath used in
this simulator allowed a global coverage of the study domain535

within 22 days. Among available orbits, two orbits have been
pre-selected by the NASA-CNES project team, for various
scientific and technical reasons (mainly to seek a compro-

mise between both the hydrological and oceanographic sci-
entific communities). These two orbits have the same repeat540

period, but different altitudes, meaning different subcycles.
The repeat period corresponds to the minimum time taken
by the satellite to fly over exactly the same ground location.
Given the orbit parameters and the earth’s rotational speed,
it requires a fixed number of satellite revolutions. For all of545

these revolutions, the part of the orbit that goes from North
to South corresponds to the descending track and the one that
goes from South to North corresponds to the ascending track.
These ascending and descending tracks cross the equator at
different times during one repeat period. The difference be-550

tween these crossing times for two adjacent ascending (or
descending) tracks during a repeat period is the orbit subcy-
cle. The 970 km altitude orbit has a 3 day subcycle, whereas
the 873 km altitude orbit has a 1 day subcycle. These two or-
bits both have global coverage but with a different time and555

spatial spread of the satellite tracks during one repeat period.
The 1-day subcycle orbit has two adjacent swaths every day,
meaning that each river basin will be well sampled in few
days, but then there will be no observations for several days
(Fig. 5) with the risk of missing short term events. The 3-560

day subcycle orbit has two adjacent swaths every 3 days on
average, meaning ground tracks will be more regularly dis-
tributed in space and time. Yet, there will be no tracks close in
time at any point during the cycle (Fig.6). Thus, due to their
spatial and temporal coverage over the domain, these two or-565

bits present specific advantages and disadvantages that will
be investigated within of the DA framework. The OSSE is
run over 2 years starting from the beginning of the monsoon
season, on June 1st 2002. During each SWOT 22-day repeat,
there are about 53 satellite overpasses on the Niger bassin for570

the 3-day subcycle orbit and 50 for the 1-day subcycle orbit.

4 Data assimilation schemes

4.1 Choice of the control variable.

The goal of using assimilation in this study is to correct the
TRIP routing input parameters which are associated with575

uncertainties. The contribution of such corrections are esti-
mated by comparing model outputs (water level, discharge,
water storage...) with and without DA. Sensitivity tests in
Pedinotti et al. (2012) determined the most sensitive TRIP
parameters which impact the major hydrological processes580

of the Niger basin. It was shown that a modification of the
Manning roughness coefficient, nriv , has a significant im-
pact on the simulated hydrological variables over the Niger
basin which can be expected since the Manning coefficient
is used for flow calculations in the river stream, via the Man-585

ning formula. Due to its close relationship with water levels
and discharge, it is one of the most important empirical pa-
rameters in the field of hydrology and hydraulics. Thus, a
good estimation of this coefficient in the river bed leads to
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a better reproduction of surface water dynamics. There is a590

tendancy to regard the selection of Manning coefficient as an
arbitrary or intuitive process. Hydrodynamic modelers usu-
ally determine the value of the Manning coefficient manually,
often using estimations based on visual interpretation of the
land cover. The roughness can also be described by geomor-595

phologic relationships, which are related to another param-
eter for which more information is known (river width for
example). In ISBA-TRIP, the Manning coefficient, nriv , is
assumed to vary linearly with the river width, W , from 0.04
near the river mouth to 0.10 in the upstream grid cells (Eq. 1).600

These geomorphologic relationships are used to obtain the
spatially distributed Manning coefficient which provides a
’global’ fit or best estimate. However, the accuracy of these
relations can be very uncertain due to the significant hetero-
geneity of the river and land properties, especially in uncali-605

brated models. Both approaches can lead to significant errors
over a large computational domain which is characterized by
multiple land use/cover classes. Although progress in remote
sensing will probably improve our estimates of the Manning
coefficient (using the two aforementioned approaches), this610

parameter will not be estimated directly via remote sens-
ing and therefore will remain dependant on the physical rel-
evance of the geomorphologic relationships. Thus, DA ap-
pears to be an appealing option for estimating the Manning
coefficient using remote sensing data.615

In reality, the temporal variability of the error on the
Manning coefficient is related to the flow dynamics as the
river bed morphology can be significantly modified by flood
events. Even though this temporal variability is not ac-
counted for in our OSSE framework, the DA analysis is per-620

formed sequentially over a 2-day time window which allows
a high variability of the correction on the Manning coef-
ficient. It should be noted that in a real case study where
sources of uncertainty are multiple (contrary to our OSSE
framework where errors are only due to Manning coefficient625

perturbations), correcting the Manning could be interpreted
as a way to account for other uncertainties (which are possi-
bly characterized by errors with a higher temporal variability
than that of the Manning coefficient). The choice of the time
window length could be revisited in further studies. How-630

ever, a longer assimilation window also requires a bigger disc
storage capacity and this must be considered when selecting
the length of the assimilation window. In the following sec-
tion, along track virtual SWOT data over 2 days are assim-
ilated to correct the Manning coefficient for the unmasked635

nt = 110 ISBA-TRIP grid points. For each analysis at time
t (also called cycle), the control vector is thus a vector of
110 elements noted xt. The framework of the OSSE does not
guarantee the physical representativeness of the modeled val-
ues, specifically because of the lack of monitoring data. Here,640

the values have therefore simply been bounded to be within
a reasonable range (based on rivers similar to the Niger and
the scale of TRIP).

4.2 The Extended Kalman Filter (EKF).

The assimilation algorithm used for the calculation of the645

analysis is the Extended Kalman Filter (EKF) which is pre-
sented in this section within the framework of parameter
optimization. The true Manning coefficients (known in the
framework on an OSSE but unknown in reality ) are gath-
ered in the vector xtrue

t of size nt. The vector of the a650

priori parameters xb
t for the hydrological models are prese-

cribed by geomorphologic relationships which induce an er-
ror εb

t = xtrue
t − xb

t of which statistics are described in the
background error covariance matrix B. Here, these statistics
are assumed to be constant over the assimilation cycles and to655

follow a Gaussian distribution, centered in 0 with a standard
deviation, σb

t of 20% of the average value of the Manning
coefficient over the river.

The observation vector y0
t of dimension pt contains all

the SWOT observations collected during the 2-day assimi-660

lation window. The observation operator H projects the con-
trol vector onto the observation space. This operator is non-
linear as it is the composition of the hydrological model M
and of a selection operator S that simply extracts or inter-
polates the simulated water levels (over the whole gridded665

domain) at the observation points. Here, H = SoM where
S represents the SWOT simulator and M is the integration
of the hydrological model over the assimilation window. The
relation yt = H(xt) allows to describe the true water level
vector ytrue

t at the observation points when xtrue
t is used and670

the background hydrological water level vector ybck
t at the

observation points when xb
t is used. In OSSE, an observa-

tion error ε0t , is added to ytrue
t to account for instrumental

and representativeness errors. The observation errors are as-
sumed to be decorrelated in space and time, and the obser-675

vation error standard deviation (σo
t )2 is set equal to (σb

t )
2.

The observation error covariance matrix Rt is thus assumed
to be diagonal. Further work should focus on a complete es-
timation of the observation error statistics in order to allow
for along track correlation of the instrumental errors (Lion,680

2012).
The EKF analysis vector xa

t is defined as a correction to
the background vector, where the the innovation vector dt =
y0

t −Ht(xb
t) is muliplied by the gain matrix Kt:

xa
t = xb

t + Ktdt. (4)685

where Kt reads:

Kt = BtHT
t (HtBtHt

T + Rt)−1 (5)

where Ht is the tangent linear of H with respect to xt.
The statistics of the analysis error εa

t are determined by the
analysis covariance matrix At = (I−KtHt)Bt (Bouttier and690

Courtier, 1999). The analysis vectors provide the corrected
Manning coefficient values, which can then can be used to
integrate the hydrological model and simulate the analyzed
water levels over the whole domain. A schematic diagram
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of the assimilation process is shown in Fig. 7, and the key695

variables are represented in Eq.s 4 and 5 and listed in Table
1.

4.3 Jacobian matrix calculation

The EKF algorithm relies on the computation of a local ap-
proximation of the tangent linear of the observation opera-700

tor that describes the relationship between the control vector
and the observation space, with respect to the control vec-
tor. As the size of the control space is limited in this study, a
finite difference scheme can be used to perform this approx-
imation, in the vicinity of the background vector. Since the705

observation operator H includes the model propagation, the
calculation of the Jacobian matrix Ht requires the computa-
tion of nt independent integrations of the hydrological model
with a perturbed element for each component of xt.

710

Ht,ij =
∂H
∂x

∣∣∣∣
t,ij

=
(H(xt +∆x)−H(xt−∆x))i

∆xt,j
=

∆y+
t,i−∆y−t,i

∆x+
t,j +∆x−t,j

.

(6)

In Eq.6, H translates the variations of water levels at the
observation points induced by the variation of Manning co-
efficients. ∆y+

t,i and ∆y−t,i represent the water level variations
at the gridded pixel i related to variations ∆x+

t,j and ∆x−t,j of715

the Manning coefficient at the gridded pixel j. A centered fi-
nite difference scheme was favoured over a one-sided scheme
as it reduces noise on the evaluation of the local derivative.
The computation of Ht thus requires 2×nt integrations of
ISBA-TRIP over the assimilation window using elementary720

perturbed Manning coefficients at the unmasked observation
point. The computational cost of H could be optimized as
only perturbations on Manning coefficients at the grid points
located upstream of each observation point have an impact on
water level at the observation point. In the present work, the725

2×nt integrations of ISBA-TRIP are achieved sequentially.

5 Results

The impact of DA on the hydrological processes is analysed
using the relative error. For any variable v, the relative error
is expressed as :730

errv =
v− vtruth

vtruth
(7)

where vtruth refers to the variable v as described in the
true simulation.

5.1 Impact of assimilation on Manning coefficient735

The truth simulation is made using Manning coefficients
which are constant in time, meaning that there is no tem-
poral variation of the error on the model parameters, thus it

is expected that the DA analysis leads to a constant value of
the corrected Manning close to the ’true’ values. However,740

since the Manning coefficient is spatially distributed, several
spatial combinations of these parameters might resolve the
assimilation problem which is generally referred to as the
equifinality hypothesis. Fig. 8 shows the Manning coefficient
relative error (averaged over the river) time series for the two745

orbits. The average relative error of the Manning coefficient
is significantly improved during the assimilation period and
tends to converge to a stable value (about 0.19 for the 1-day
subcycle orbit and 0.17 for the 3-day subcycle orbit), since
the error is not significantly changed from January 2003 un-750

til the end of the assimilation experiment. The convergence
towards the minimum value of the spatially averaged rela-
tive error to the true averaged Manning coefficient is slightly
faster for the 3-day subcycle orbit than for the 1-day subcy-
cle.755

Fig. 9 displays the spatial distribution of the Manning co-
efficient i) for the truth, ii) for the background simulation,
iii) for the 1-day subcycle assimilation at the end of the study
period and iv) for the 3-day assimilation at the end of the
study period. The general patterns of the Manning coeffi-760

cient distribution are recovered through the DA, especially
the extreme values of the background distribution are cor-
rected. Also, the values downstream of be better corrected
than upstream of the river which can be expected since the
downstream gridcells take advantage of the cumulated cor-765

rections upstream.
The Manning coefficient temporal evolution at the 8 gage

locations is shown in Fig. 10. It should be noted that in some
places and for both subcycles, the ’real’ Manning coefficient
value is only approached and not found through the assimila-770

tion cycles, which can be related to the equifinality problem.
The 1-day subcycle and 3-day subcycle orbit assimilations
converge to the same value in 5 locations out of 8. In Ba-
nankoro, Kandadji and Malanville, however, the coefficnet
values for the two orbits converge to different values. Ba-775

nankoro is located upstream of the river, so this difference
can be explained by the lack of data uptream of this location
for obtaining a robust estimate of the Manning coefficient at
this site. Also, the impact of the Manning coefficient on the
simulation depends on the rain amount over the observed lo-780

cations. According to the considered subcycle, the satellite
will see different zones and a different number of observa-
tions corresponding to different rain events which can lead
to the different values obtained for the optimal Manning co-
efficient in some locations. Also, a ’jump’ with a frequency785

of about 20 days is observed in every location and for the two
subcycles and might be related to the orbit repetitivity.

5.2 Impact of assimilation on water levels

Table 2 gives water level mean relative error computed with
respect to the true water levels, first averaged over the entire790

river for the 2-year period and then at each of the 8 observ-
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ing stations shown in Fig. 1. Fig.s 11 and Fig. 12 display the
water level relative error averaged over the river and at the
8 observing stations as a function of time when i) there is
no assimilation (black curve), ii) after a 1-day subcycle orbit795

SWOT-observation assimilation (green curve) and (iii) the
3-day subcycle orbit SWOT-observation assimilation (blue
curve).

These results show that the DA analysis leads to a signifi-
cant reduction of the water level relative error over the whole800

river (the averaged relative error is reduced by more than a
factor of three with DA) and at the 8 gages. In most of the 8
locations, there is an improvement of several meters reaching
up to 9m at Lokoja (for an 8m averaged river depth along the
river). As for the Manning coefficient, a noise with a repeat805

period of 20 days is observed and can be directly related to
the noise observed on the Manning coefficient. Also, even in
the locations where the analysed Manning coefficient differs
for both subcycles, the same water levels are retrieved for
both subcycles which confirms the equifinality hypothesis.810

A great improvement in the water level is achieved with
the first assimilation cycles since the background Manning
parameters and thus the background water levels initially dif-
fer significantly from the true parameter values and water
levels. For the following cycles, as the background param-815

eters are set equal to the analysis parameters, the sequen-
tial correction results in a convergence towards the optimal
Manning coefficients leading to water levels that are coher-
ent with the true water levels. The improvement is larger
for stations that are located downstream of the river, possi-820

bly because of the cumulated corrections upstream of these
stations. Moreover, the hypothesis of linear relation between
width and roughness means that the 20These results are sim-
ilar for both orbits as illustrated in Fig. 13 that shows the spa-
tially distributed relative error of water levels averaged over825

the period from June 2002 to December 2003 for the run with
(a) no assimilation, (b) for a 3-day subcycle assimilation and
(c) for a 1-day subcycle assimilation. Without assimilation,
the relative error over the river ranges between 0 and 1.2.
With assimilation, more than 90% of the river pixels have830

a relative error smaller than 0.2 for both subcycles, and no
pixel has a relative error higher than 0.5.

5.3 Impact of assimilation on river discharge

Tab. 3 presents discharge mean relative error computed with
respect to the true discharge, first averaged over the entire835

river for the 2-year period and then at each of the 8 observing
stations shown in Fig. 1. Fig.s 14 the and Fig. 15 display the
discharge relative error averaged over the river and the dis-
charge evolution at the 8 observing stations as a function of
time when i) there is no assimilation (black curve), ii) after a840

1-day subcycle orbit SWOT-observation assimilation (green
curve) and (iii) the 3-day subcycle orbit SWOT-observation
assimilation (blue curve). The assimilation contributes to an
improvement of the river discharge over the whole basin and

at the 8 locations, although this improvement is smaller than845

for water levels which can be expected since the Manning’
roughness is updated through level measurements.

Discharge improvement, even if less significant than for
water levels, can represent several hundreds of m3.s−1

globally and up to 3000m3.s−1 in Lokoja. Discharge850

obtained after assimilation is somewhat ’noisy’ (as observed
for water level) , for both orbits during the wet season. This
is likely due to a higher discharge sensitivity to Manning
coefficient change during this period. Discharge is improved,
in particular, at Lokoja, i.e. the location situated the most855

downstream of the river which is a promising result for
coupled land-ocean applications since it shows that the RRM
can provide a reasonable estimation of discharge at the river
mouth. Similar to what was found for water levels, there is
almost no discharge sensitivity to the considered orbit.860

Fig. 16 shows spatially distributed relative error of dis-
charge averaged over the period June 2002-December 2003
for the run without assimilation (a), for a 1-day subcycle as-
similation (b) and for a 3-day subcycle assimilation (c). The865

discharge relative error is globally improved with better re-
sults over the inner delta for the 1-day subcycle orbit. Oth-
erwise, there is no significant difference in results between
the two orbits. Without assimilation, the relative error range
over the river goes from 0 to 0.4. With assimilation, all pix-870

els have a relative error smaller than 0.2, with 80% of them
having errors less than 0.1.

To better understand the relationship between the water
levels and the discharge, the flooded fraction time series at
2 locations (KeMacina and Lokoja) is shown on Fig. 17. In875

KeMacina, there was no flooded fraction before the assimi-
lation while there was about 15% to 20% for the ’truth’. At
this location, DA leads to a water level increase that gener-
ates flooding for both orbits, in agreement with the true run.
The amplitude of the flooded fraction simulated with the as-880

similation for a 3-day subcycle is close to that of the true run
while the flooded fraction simulated with assimilation for a
1-day cycle is overestimated. This results because the water
level and discharge results slightly overestimate the results
from the true run for the 1-day orbit.885

Another interesting case is observed in Lokoja, where the
model simulates flooding in 25% of the grid area with no as-
similation, which is not observed for the ’truth’. Here again,
by reducing water levels, the assimilation considerably re-
duces flooded fraction for the 1-day subcycle orbit and even890

prevents it from occuring for the 3-day subcycle orbit. No
floods are modeled at the other sites for the truth, the run
with no assimilation or the runs with assimilation, so these
sites are not shown in Fig 17. These results are valuable since
they show that the use of DA corrects the flood prediction for895

two major sites of the Niger basin. Indeed, Ke Macina is lo-
cated just upstream to the entrance of the inner delta region,
while Lokoja is the last in-situ station upstream of the river
outlet. It should be noted that the discharge response to wa-
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ter level modification depends on whether or not there are900

floods. For example, at Ke Macina during the monsoon pe-
riod, water level is increased via assimilation, which results
in a better fit with the truth simulation and to a discharge
decrease. This is coherent with the results of Pedinotti et al.
(2012), in which the introduction of floodplains leads to a re-905

duction of the discharge. However, in regions without flood-
plains, a water level increase leads to a discharge increase
(see Kandadji for example).

The frequency of events as a function of the flooded frac-
tion value (ratio of flooded area over pixel area) are shown in910

Fig. 18 for the truth (a), without assimilation (b), with assim-
ilation for a 1-day subcycle (c) and with a 3-day subcycle (d).
Only the pixels with a flooded fraction greater than 10% (0.1
on horizontal axis) are considered. It is shown that without
assimilation, the model does not simulate flooded fractions915

above 0.5, which represents about 8% of the flood events
for the truth simulation. Moreover, without assimilation, the
model tends to overestimate the occurence of smaller events.
This is corrected by the assimilation, with a slight tendancy
to over-estimate flood intensity for the assimilation with the920

3-day subcycle orbit, while the 1-day subcycle orbits leads
to an excessive occurence of flooded fractions contained in
the [0.2-0.3] range. According to these results, DA allows a
better simulation of the water storage variations and it leads
to better estimate flood events occurence and intensity in the925

inner delta area.

5.4 Water storage variations

Ideally, for water resource management applications and for
making reliable future water resource projections, global hy-
drologic models should be able to reasonably simulate water930

storage variations in regional to large scale continental reser-
voirs including river, groundwater, aquifers and floodplains.
It is then of interest to see if DA can improve the simula-
tion of these water variations. Fig. 19 shows the relative wa-
ter storage variations in 4 continental reservoirs (river, flood-935

plains, aquifer and soil) for the truth (red), without assimila-
tion (black), with a 1-day subcycle (blue) and with a 3-day
subcycle (green). For each reservoir, the 20 day running av-
erage water storage variations are divided by the averaged
water storage over the period of assimilation. The maximum940

relative water storage variations ranges from 6% in the river
reservoir to about 30% in the floodplain reservoir which is
not negligible. In the 4 reservoirs, the simulations with as-
similation better represent the amplitude and the phase of the
water storage variations. The assimilation seems to be useful945

for better representing anomalies in continental reservoirs,
which are subject to many uncertainties. However, it should
be noted that the physical representativeness of these storage
values is not guaranted due to the lack of monitoring data.

6 Discussion950

Optimization of the Manning coefficient using a DA method-
ology leads to a significant improvement of the water levels
over the Niger river, and also at the 8 locations with gages.
The relative error of the Manning coefficient is reduced (40%
reduction) and it globally converges towards an optimal value955

despite potential problems related to equifinality. The rela-
tive error of the water level is globally improved ( a 30%
reduction) and the amplitude of the water level is closer to
the truth with assimilation than without assimilation. Dis-
charge is also improved by the assimilation, but to a lesser960

extent than for the water levels (7%). Moreover, the proposed
methodology results in a better prediction of flood event oc-
curence and intensity in the inner delta and better simulates
water storage anomaly maxima and minima in several reser-
voirs, especially the groundwater and the aquifer reservoirs,965

for which the temporal evolution is difficult to observe. This
study is promising since, to our knowledge, no large scale as-
similation applications exist for the optimization of spatially
distributed hydrological parameters. It shows SWOT obser-
vations would be useful for the improvement of CHSs. This970

method could lead to a better representation of the water cy-
cle in climate prediction applications, but could also be used
for large scale water resource management applications. Fi-
nally, there is no clear out advantage difference between the
two subcycle orbits used for this study, each one having bet-975

ter skill for certain situations.
It should be noted that, this study has some limitations

and several asumptions should be noted. The assumption of
white noise error for SWOT observations is probably too
optimistic. Furthermore, no correlation of the measurement980

errors along the swath has been assumed. Estimating satel-
lite observation error sources has been the subject of several
studies at the French space agency (CNES) in recent years.
Initially, a white noise was introduced within the SWOT wa-
ter level along track altimetric estimate in order to represent985

the error due to satellite observations (Biancamaria et al.,
2011). Lion (2012) presents methods to simulate, in a more
realistic manner, different sources of SWOT satellite obser-
vation errors. These errors are generally due to several factors
such as satellite attitude, baseline error, phase unwrapping er-990

rors, etc... . These errors are not always Gaussian and do not
always have a mean value of 0. A perspective for improve-
ment of the assimilation methodology proposed in this study
is to introduce these errors into the assimilation system in or-
der to get a more realistic estimation of SWOT observation995

errors and of the error covariance matrix R. However, their
introduction in the system is not obvious and requires the use
of a different assimilation filter due to the aforementionned
Gaussian issue. Indeed, the Gaussian error distribution along
SWOT tracks does not ensure that the error of the observa-1000

tion vector, y0, is Gaussian. Yet, the Gaussian nature of the
observation error is a strong asumption of the EKF and pos-
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sible solutions to get around this limitation exist, such as the
use of an ensemble Kalman filter or a particle filter.

The hypothesis that the Manning coefficient uncertainties1005

are the only source of model errors is obviously a rather sim-
ple assumption since other errors, such as those related to
precipitation forcing uncertainties, river bankfull depth error
or the relatively simple ISBA-TRIP physics, can also be the
sources of significant modeling errors. It could be potentially1010

interesting to perform the assimilation on an ensemble of per-
turbed runs in order to take into account several uncertainty
scenarii and the estimation of the background modeling ma-
trix could be done using an ensemble method (Evensen et
al., 2004). Within the framework of a real-data experiment,1015

accounting for various sources of errors via Manning control
will lead to improved Manning values that should not be in-
terpreted as physical values. Modeling asumptions also put a
limitation on the DA performance in the context of real-data
experiments. For example, it is assumed in the TRIP model1020

that geomorphological parameters such as the Manning coef-
ficient are constant in time which is a significant asumption,
especially in a region with a strong seasonal climate vari-
ability, such as the Niger basin. Hopefully, SWOT observa-
tions will help to correct this problem, for example, using this1025

method to build seasonal climatologies of key parameters. To
exploit this possibility, a further OSSE study could be done,
in which the ’true’ Manning coefficient varies seasonnally.

Additionally, this study was done within the context of
OSSE, in which the truth was issued from a reference ISBA-1030

TRIP simulation. This allowed an evaluation of the method-
ology but makes the improvements on roughness, level, flow
and storage highly correlated. Moreover, the OSSE does not
guarantee the physical representativeness of the corrected
values of the Manning coefficient since the background and1035

the observations are issued from the same model. For these
reason, the performance of the DA will need to be re-
evaluated with real observations. In the study presented here,
the truth and the perturbation are based on the same phys-
ical parameterizations : this is not true when real data are1040

used. Therefore, the assimilation should be applied using ei-
ther real observations of water level, or water level issued
from a different model, such as hydrodynamic model. In fur-
ther studies, longer assimilation windows could be exploited
but also require a bigger storage capacity which must be con-1045

sidered for the choice of the assimilation window size.
Finally, this method must be applied to other ISBA-TRIP

parameters and for other large-scale basins to evaluate its
global application capability. It is not guaranteed that a
methodolgy, which works for a specific basin could be used1050

for all other major basins (with different climates, geoology,
etc.). Ongoing work is focused on applying the methodology
herein to other basins. These proposed improvements aim
at ensuring the assimilation methodology will be applicable
when real SWOT data will be available.1055

7 Conclusions

This study presents a simple method for assimilating SWOT
virtual water level into a large-scale coupled land-surface hy-
drology model (TRIP-ISBA) in order to improve estimates of
the required global hydrological model input parameters. In1060

this case, the assimilation is used for the correction of a single
parameter which is the Manning coefficient. To accomplish
this, an Observing System Simulation Experiment (OSSE)
was performed, using virtual SWOT observations of water
levels. Two orbits, with different subcycles but with the same1065

22 days repeat period, have been considered to generate the
observations (1-day and 3-day subcycles), each one provid-
ing a specific spatial and temporal coverage of the domain.
Uncertainties on the estimation of the Manning coefficient
are assumed to be the only sources of modeling errors. The1070

Extended Kalman Filter (EKF) algorithm was applied every
2 days (the length of the assimilation window) to compute
an optimal Manning coefficient (analysis). The Manning co-
efficient globally converged for both orbital subcycles to the
same average value, the convergence being faster for the 3-1075

day subcycle orbit. The method leads to a global reduction of
40% of the Manning coefficient error over the river. This cor-
rection significantly improved the water levels (the error has
been reduced by 30% for the river) and, to a lesser extent, dis-
charge (7% of reduction of the error which can be significant1080

for the Niger river in terms of water resources considering
that its mean annual discharge is 6000m3.s−1). Moreover,
the biggest improvements were observed downstream of the
river (Lokoja), which is a valuable result for climate applica-
tions which require estimation of the discharge at large rivers1085

mouths.
This method gives a promising perspective for global scale

applications, and it could be extended to other large basins.
However, several relatively simple hypotheses have been
made, and these should be addressed and refined in future1090

studies. The context of the OSSE allows the evaluation of
the model but does not guarantee the physical representative-
ness of the corrected values obtained in this study. Moreover,
other sources of uncertainties should be assumed for the as-
similation, such as rainfall errors and/or river bankfull depth.1095

Modeling errors such as those from the ISBA land surface
parameterisation should be considered, such as that pertain-
ing to runoff. It was also considered in this work that obser-
vation and modeling errors were not correlated in space and
time which might not be realistic. The use of more realis-1100

tic errors simulated by Lion (2012) in the framework of the
SWOT mission pre launch investigatiions will be considered
in future studies.

Another perspective consists in the application of this
method to other TRIP parameters, or several parameters at a1105

time. Correction of ISBA parameters, such as those control-
ling sub-grid runoff for example, is also planned but must be
considered carefully as the impact on the river is less direct.
Before the satellite launch, the AirSWOT airborne campaign



12 V. Pedinotti et al.: Assimilation of SWOT data

will provide SWOT-like datasets of water level, which will1110

enable studies using a more realistic SWOT DA application,
instead of the Observing Simulation System experiment pre-
sented here. Even if this airborne campaign will not cover
the Niger basin, it will potentially provide a better observa-
tion error model. Yet, using more complex observations and1115

model errors might require a modification of the assimilation
scheme to overcome extremely strigent EKF filter asump-
tions of Gaussian unbiased errors. Possible assimilation tech-
niques to test are the Ensemble Kalman Filter or the particle
filter.1120
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Figure 1. The Niger river basin. The spatial resolution is 0.5◦× 0.5◦. The red contour marks the boundary of the Niger basin. The squares
correspond to the following locations: (1) Banankoro, (2) Koulikoro, (3) Ke Macina, (4) Niamey, (5) Ansongo, (6) Kandadji, (7) Malanville
and (8) Lokoja. Terrain elevations come from ETOPO2 (m).
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Figure 2. The TRIP model configuration in ISBA.
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Figure 3. The spatial distribution of river depth (m)[a], Manning coefficient [b] and river width (m)[c] parameters in ISBA-TRIP.
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Figure 4. Distribution of the ’true’ Manning coefficient over the
river. This distribution of Manning coefficients was used as an input
parameter to run the reference ISBA-TRIP modelling.
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Figure 5. The 22-day repeat, 871km altitude, 1-day subcycle orbit coverage, data issued from the SWOT data simulator.
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Figure 6. As in Fig. 5, except for a 22-day repeat, 970 km altitude, 3-day subcycle orbit average.
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Figure 7. Schematic of the assimilation scheme used in this study. The black line represents the apriori or background trajectory and the blue
line is the posterior trajectory after data assimilation. After the DA step, the apriori trajectory is represented in dashed line to compare with
the new trajectory.
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Figure 8. The Manning coefficient relative error averaged over the
river versus time with 1-day subcycle (green) and 3-day subcycle
(blue) orbit SWOT assimilation. The related error is calculated as
the ratio: |nrivwith/withoutassi

−nrivtruth |/nrivtruth , where nriv

is the Manning coefficient.
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Figure 9. The Manning coefficient distribution a)for the truth, b)for the background, c)for the 1 day-subcycle assimilation at the end of the
assimilation period(after 289 assimilation cycles in December 2003) and d) for the 3 day-subcycle assimilation at the end of the assimilation
period (after 289 assimilation cycles in December 2003).
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Figure 10. Manning coefficient versus assimilation cycle at 8 locations (Fig. 1) for the 3 day subcycle (blue) and 1 day subcycle (green)
orbits. The value of the true coefficient is in red.
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Figure 11. Water level relative error averaged over the river versus time with no assimilation (black), with a 1-day subcycle (green) and a
3-day subcycle (blue) orbits SWOT assimilation. The relative error is calculated as the ratio: |hwith/withoutassi−htruth|/htruth, where h
is the water level(m).
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Figure 12. Time evolution of water levels at the 8 locations shown on Fig. 1 for the "truth" (red curves), with no assimilation (black curves)
and with assimilation of SWOT 1-day subcycle (green) and 3-day subcycle (blue) orbit observations.
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Figure 13. Relative error of water levels averaged over the period of assimilation.
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Figure 14. Discharge relative error averaged over the river versus time with no assimilation (black), with a 1-day subcycle (orange) and a
3-day subcycle (blue) orbits SWOT assimilation. The relative error is calculated as the ratio: (|qwith/withoutassi− qtruth|/qtruth, where q
is the water level(m3.s−1).
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Figure 15. Time evolution of discharge at the location of the 8 locations (Fig. 1) for the "truth" (red curves), with no assimilation (black
curves) and with assimilation of SWOT 1-day subcycle (green) and 3-day subcycle (blue) orbit observations.
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Figure 16. Relative error of dicharge averaged over the period of assimilation.
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Figure 17. Flooded fraction versus time at Ke Macina and Lokoja, for the truth (red), with no assimilation (black), with assimilation for
3dsbc(blue) and 1dsbc (green). Note that in Lokoja, no flooded fraction is reprensented for the truth and for the run with assimilation with a
3-day subcycle.
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Figure 18. Frequency of flood events over the delta classified by intensity (flooded fraction). Only the pixels with a flooded fraction higher
than 10% are considered for the calculation.
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Figure 19. Relative water storage variations in the river, the floodplains, the aquifer and the soil reservoirs for the truth (red), with no
assimilation (black), with assimilation for the 1-day orbit subcycle (green) and for the 3-day subcycle (blue). For each reservoir, the 20 day
running average water variations are divided by the averaged water storage over the period of assimilation (from June 2002 to December
2003).



V. Pedinotti et al.: Assimilation of SWOT data 33

Table 1. Principal variables, vectors and matrices used in the data
assimilation of SWOT water levels. The assimilation window length
is N days. The number p of observed water levels during the assim-
ilation window changes for each cycle.

Symbol Variable Dimensions
y0

t Observation vector, containing p (different for each
the SWOT WL observations during assimilation cycle)
the N day assimilation window

xb
t Background vector, containing the n = 110

corrupted Manning coefficient
over the river mask

xa
t Analysis vector, containing the n = 110

corrected values of the Manning
coefficient over the river mask

Mt ISBA-TRIP (non linear)
Ht(x

b
t ) ISBA-TRIP simulated water levels, p

using xb
t as an input parameter

Rt Observation error covariance matrix p× p
(related to water levels)

Bt Background error covariance matrix n×n
(related to the Manning coefficient)

At Analysis error covariance matrix n×n

Ht Jacobian matrix of H(sensitivity of n× p
ISBA-TRIP water levels
to the Manning coefficient)

Kt Gain matrix

Table 2. Water level relative error averaged over the river and at the
location of the 8 gages along the river (each gage is defined by its
number specified inside the orange rectangles in Fig.1). The relative
error is calculated as the ratio ((hwith/withoutassi−htruth)/htruth

where h is the water level(m).

Location n◦ Riv Mean 1 2 3 4 5 6 7 8
No assi 0.45 0.35 0.17 0.36 0.55 0.16 0.69 0.68 1.10
3dsbc 0.12 0.09 0.25 0.11 0.17 0.12 0.12 0.10 0.09
1dsbc 0.12 0.19 0.10 0.11 0.12 0.13 0.07 0.12 0.18

Table 3. Discharge relative error averaged over the river and at loca-
tion of the 8 gages along the river (each gage is defined by its num-
ber specified inside the orange rectangles on Fig.1). The relative
error is calculated as the ratio ((qwith/withoutassi−qtruth)/qtruth

where q is the discharge(m3.s−1).

Location n◦ Riv Mean 1 2 3 4 5 6 7 8
No assi 0.14 0.06 0.10 0.18 0.22 0.20 0.20 0.15 0.14
3dsbc 0.08 0.04 0.04 0.11 0.14 0.14 0.14 0.09 0.06
1dsbc 0.07 0.03 0.03 0.09 0.13 0.13 0.11 0.08 0.06


