

1 **Historical impact of water infrastructure on water levels of**
2 **the Mekong River and the Tonle Sap System.**

3 **T. A. Cochrane¹, M.E. Arias^{1,3}, and T. Piman²**

5 [1] {Dept. of Civil and Natural Resources Engineering, University of Canterbury,
6 Christchurch, New Zealand}

7 [2] {Climate Change and Adaptation Initiative, Mekong River Commission, Vientiane, Lao
8 PDR}

9 [3] {Sustainability Science Program, Harvard University, Cambridge, USA}

10 Correspondence to: T. A. Cochrane (tom.cochrane@canterbury.ac.nz)

11

13 **Abstract**

14 The rapid rate of water infrastructure development in the Mekong basin is a cause for concern
15 due to its potential impact on fisheries and downstream natural ecosystems. In this paper we
16 analyse the historical water levels of the Mekong River and Tonle Sap system by comparing
17 pre and post 1991 daily observations from six stations along the Mekong mainstream from
18 Chiang Sean (northern Laos), to Stung Treng (Cambodia), and the Prek Kdam station on the
19 Tonle Sap River. Observed alterations in water level patterns along the Mekong are linked to
20 temporal and spatial trends in water infrastructure development from 1960 to 2010. We
21 argue that variations in historical climatic factors are important, but they are not the main
22 cause of observed changes in key hydrological indicators related to ecosystem productivity.

23 Our analysis shows that the development of mainstream dams in the upper Mekong basin in
24 the post-1991 period have resulted in a significant increase of 7-day minimum (+ 91.6%), fall
25 rates (+42 %), and the number of water level fluctuations (+75) observed in Chiang Sean.

26 This effect diminishes downstream until it becomes negligible at Mukdahan (northeast
27 Thailand), which represents a drainage area of over 50% of the total Mekong Basin. Further
28 downstream at Pakse (southern Laos), alterations to the number of fluctuations and rise rate

29 became strongly significant after 1991. The observed alterations slowly decrease
30 downstream, but modified rise rates, fall rates, and dry season water levels were still
31 quantifiable and significant as far as Prek Kdam. This paper provides the first set of evidence
32 of hydrological alterations in the Mekong beyond the Chinese dam cascade in the upper
33 Mekong. Given the evident alterations at Pakse and downstream, post-1991 changes can also
34 be directly attributed to water infrastructure development in the Chi and Mun basins of
35 Thailand. A reduction of 23% and 11% in the water raising and fall rates respectively at Prek
36 Kdam provides evidence of a diminished Tonle Sap flood pulse in the post-1991 period.
37 Given the observed water level alterations from 1991 to 2010 as a result of water
38 infrastructure development, we can extrapolate that future development in the mainstream
39 and the key transboundary Srepok, Sesan and Sekong subbasins will have an even greater
40 effect on the Tonle Sap flood regime, the lower Mekong floodplain, and the delta.

41

42 **1 Introduction**

43 The Mekong River is one of the great rivers in the world, originating in the Tibetan highlands
44 and draining into the South China Sea where it forms the Vietnam delta. It has a length of
45 over 4,180 km, drains an area of 795,000 km², and has a mean annual discharge flow of
46 14,500 m³/s (MRC, 2005). The Mekong's hydrology is driven by the Southeast Asian
47 monsoons, causing the river to have a distinct seasonal flood pulse. A unique feature of the
48 Mekong River is its interaction with Southeast Asia's largest lake, the Tonle Sap in
49 Cambodia. The Mekong River receives discharge water from the Tonle Sap Lake during the
50 dry season (November to May) via the Tonle Sap River; during the wet season (June to
51 October), the floodwaters of the Mekong reverse the direction of the Tonle Sap River and
52 flow into the lake, causing its surface area to expand from 2,600 km² to approximately 15,000
53 km². The Tonle Sap system, along with the Mekong River and its tributaries, are also

54 considered one of the world's most productive freshwater fisheries (Baran and Myschowoda,
55 2009). Fish catch in the Mekong and Tonle Sap provides over 50% of the protein consumed
56 by humans in the lower Mekong (Hortle, 2007). The natural seasonal flood pulse and
57 hydrological water level patterns of the Mekong are attributed as being principal features for
58 maintaining the system's high ecosystem productivity (Holtgrieve et al., 2013).

59 While the boom for hydropower development peaked in the 1970s around the world (WCD,
60 2000), civil conflict and political instability maintained the Mekong Basin untapped for
61 several decades. The lower Mekong has been recently described as an unregulated river near
62 natural conditions (Kummu et al., 2010; Grumbine and Xu, 2011; Piman et al. 2013a) and
63 global assessments show that the Mekong has low to moderate levels of fragmentation and
64 regulation comparable to large rivers such as the Amazon and Congo (Nilsson et al. 2005;
65 Lehner et al. 2011). This general perception of a *pristine Mekong* has been rapidly changing
66 as water infrastructure projects have materialized throughout the basin in recent years. Much
67 attention has focused on mainstream dams in China and proposed/under construction dams in
68 Laos. There are, however, a large number of dams in the Mekong tributaries that have been
69 built since the early 1990s with undocumented hydrological alterations and environmental
70 impacts. Furthermore, there are over a hundred dams being proposed for development
71 throughout the basin, most of which are planned in the tributaries (MRC, 2014); thus,
72 quantifying and understanding the level of hydrological alterations from historical
73 development is critical information needed in the Mekong to be able to know what to expect
74 in upcoming decades.

75 Evidence of how dams and irrigation affect natural river regimes have been widely
76 documented throughout the world (Nilsson et al. 2005; Lehner et al. 2011). Dam operations,
77 for example, can affect rivers by redistributing and homogenizing flows, which is reflected in
78 decreased seasonal and inter-annual variability (Poff et al. 2007). These temporal trends,

79 however, can also be affected by other factors such as climate, making the distinction of dam-
80 driven vs. climate-driven alterations troublesome at times. To overcome this issue, it is
81 necessary to identify specific hydrological parameters that are solely associated to water
82 infrastructure development.

83 Ritcher et al. (1996) proposed the use of 32 hydrological parameters as indicators of
84 hydrological alteration. These indicators are broadly grouped into five classes: (1) Mean
85 monthly values, (2) magnitude and duration of extreme water conditions, (3) timing of
86 extreme water conditions, (4) frequency and duration of high/low pulses, and (5) rate and
87 frequency of water condition changes (Ritcher et al., 1996). Even though some indicators in
88 the first two classes have also been used to assess alterations associated with climate change
89 (e.g., Döll and Zhang, 2010), the cumulative alteration to multiple of these classes have been
90 primarily associated with river regulation by dams (Poff et al. 1997; Ritcher et al. 1997, Gao
91 et al. 2009).

92 Localized evidence of dam-related hydrological alterations has been documented in the
93 Mekong, but it is generally accepted that system-wide disruptions are not yet readily evident
94 (Adamson et al., 2009). For the Yali Falls dam in Sesan River in Vietnam, significant
95 downstream water level fluctuations and increases in dry season water levels have been
96 directly attributed to the operation of the dam, which have causes adverse ecological and
97 social impacts including bank erosion, adverse effects on sand bar nesting birds, disruptions
98 on fishing, shellfish collection and others (Wyatt and Baird, 2007). A number of studies have
99 analysed the localized impact of the Lancang-Jiang hydropower cascade in the upper Mekong
100 in China. For instance, Li and He (2008) studied linear trends in multiyear mean water levels
101 and concluded that no major alterations occurred as a result of the first two dams in China's
102 cascade. On the other hand, Lu and Siew (2006) found a significant decrease in dry season
103 water levels and an increase in water level fluctuations in 1993-2000 at Chiang Sean,

104 immediately downstream of the Chinese dam cascade. More recently, Lu et al. (2014)
105 assessed alterations to monthly water discharge at that same station up to 2010 and found
106 moderate alterations during March and April. The effect of the Chinese dams has also been
107 investigated through modelling studies by Räsänen et al. (2012) and Piman et al. (2013a) who
108 reported potential increases in dry season water discharge as far downstream as Kratie in
109 Central Cambodia. To the best of our knowledge, no study has documented hydrological
110 alterations in the Mekong caused by dams or other water infrastructure beyond the Chinese
111 dam cascade.

112 Contemporary basin-wide hydrological shifts have been documented in the Mekong, but they
113 have been primarily attributed to climatic patterns and not water infrastructure development.
114 In particular, a strong link between El Niño-Southern Oscillation (ENSO) and inter-decadal
115 patterns in wet season precipitation and river discharge of the Mekong has been suggested
116 (Delgado et al. 2012; Räsänen and Kummu, 2013). As 80-90% of the Mekong's discharge
117 occurs from May to October (Delgado et al. 2012), most of the research linking climate and
118 river discharge has focused on the distinct wet season months (typically June to October). In
119 general, strong El Niño periods have corresponded to years of lower than normal wet season
120 floods in the Mekong, whereas La Niña periods have corresponded to years of higher than
121 normal floods. The strong shift in the North Pacific was also detectable in the Lower Mekong
122 wet season discharge (Delgado et al., 2012), and overall, interannual variability in flood
123 levels have significantly increased during the Twentieth Century (Delgado et al., 2010;
124 Räsänen et al. 2013). With regards to the dry season, Cook et al. (2012) studied relationships
125 between lower Mekong water discharge during March-May with snow cover and local
126 precipitation. With opposite trends in snow cover (decrease) and precipitation (increase),
127 Cook et al. (2012) estimated negligible effects of these two factors in the lower Mekong
128 discharge during contemporary decades. How climate-driven shifts have interacted with

129 historical water infrastructure development has not been studied, although modelling studies
130 of the Mekong's future indicate that dam-driven alterations could be more noticeable and less
131 uncertain than climate change alterations (Lauri et al., 2012).

132 The purpose of this study is to quantify and reveal observed alterations to water levels along
133 the Mekong River and Tonle Sap system and determine their link to spatial and temporal
134 patterns of water infrastructure development in the basin. We analysed historical records of
135 daily water levels in seven stations along the Mekong and Tonle Sap and compute indicators
136 of hydrological alterations that have been shown to respond most strongly to water
137 infrastructure development (Ritcher et al., 1996). We also use of the most comprehensive and
138 up to date database of dam development in the Mekong to determine when and where dams
139 were built and how that could have affected water levels in the Mekong and Tonle Sap
140 mainstreams. We hypothesised that although decadal and multi-year climatic variability is
141 responsible for some of the observed wet season changes in past decades, there has been
142 sufficient development through the basin since the 1990s to have caused observable
143 hydrological alterations along the Mekong and Tonle Sap.

144

145 **2 Materials and methods**

146 Recorded daily water levels from 1960 to 2010 were obtained for monitoring stations in
147 Chiang Sean, Luang Prabang, Vientiane, Mukdahan, Pakse, and Prek Kdam (Figure 1 and
148 Table 1) from the Mekong River Commission (MRC). These stations provide the longest and
149 most accurate records of water levels in the Mekong. An extended series of records from
150 1910 to 2010 was obtained for the Stung Treng monitoring station in Cambodia. The data
151 were quality checked by the MRC for consistency and accuracy (MRC, 2014). Changes in
152 monitoring location throughout the study period were accounted for, resulting in a consistent
153 and continuous water level data set (MRC, 2014). Parts of this same data set have been

154 reported in multiple publications featuring climate change, sediment analyses, and water
155 infrastructure development in the Mekong (e.g., Arias et al., 2012; Delgado et al., 2010;
156 Delgado et al., 2012; Lu and Siew, 2006; Räsänen and Kummu, 2012, Räsänen et al. 2013;
157 Lu et al. 2014).

158 Hydropower reservoir volumes and dates of initial operation were gathered from MRC's
159 hydropower database (MRC, 2014). This is an active database that was initially compiled in
160 2009 and the version used for this study was updated in 2013. This database has also been
161 reported in recent publications (Xue et al., 2011, Kummu, et al., 2010; Lauri et al., 2012;
162 Piman et al., 2013b). Irrigation schemes and related reservoir information were obtained
163 from MRC's Irrigation database (MRC, 2014) and from information provided by the Royal
164 Irrigation Department (Thailand), Electricity Generating Authority of Thailand (EGAT), and
165 Department of Energy Development and Promotion (DEDP) for the Chi-Mun River Basin as
166 complied by Floch and Molle (2007).

167 Daily water level records for each station were analysed using the Indicators of Hydrologic
168 Alteration (IHA) software (The Nature Conservancy, 2009), which permits the calculation
169 of up to 32 statistical hydrological parameters and the level of alteration in post-development
170 scenarios. A detail analysis of all parameters is presented at Chiang Sean in order to compare
171 our analysis with previous ones at this station (Lu and Siew, 2006; Lu et al. 2014). The
172 analysis at the further downstream stations, however, focused on a selected set of parameters
173 that have been demonstrated to be most related to hydropower operations in the Mekong
174 (Kummu and Sarkkula, 2008; Lauri et al., 2012; Lu and Siew, 2006; Piman et al., 2013b; Lu
175 et al., 2014; Wyatt and Baird, 2007), namely daily water level fluctuations, rise rates, fall
176 rates, and 7 day minimum water levels (Figure 1). To our knowledge, none of these four
177 indicators have been significantly associated with other factors of hydrological alterations in
178 the lower Mekong.

179 To analyse the effect of water resources development on temporal and spatial water levels in
180 the Mekong River, the time series were divided into two periods and compared using a
181 parametric analysis of deviation from means, deviations of the coefficient of variation, a
182 range of variability approach (RVA; Ritcher et al., 1997), and analysis of variance
183 (ANOVA). The division of the datasets had to represent a period of low water infrastructure
184 development and a period of accelerated development in the basin. Furthermore, the division
185 had to ensure that an adequate number of hydrological years were available for each period to
186 enable statistical comparisons. Given these criteria, the data sets were divided into pre- and
187 post- 31 December 1990. A similar timeframe has also been used by other researchers in
188 defining the period where water infrastructure development in the Mekong gained significant
189 importance initiated by the construction of the first dam in the Chinese cascade, Manwan (Lu
190 and Siew, 2006; Räsänen et al., 2012; Lu et al. 2014).

191

192 **3 Results**

193 **3.1 Hydropower and irrigation development in the Mekong basin**

194 The locations and commissioning period of hydropower dams in the Mekong Basin up to the
195 end of 2010 is presented in Figure 2, and a time series of the cumulative active storage at
196 Pakse is presented in Figure 3. Reservoir active storage, total storage, and the number of
197 dams commissioned before 1991 and in 5 year intervals between 1991 and 2010 above each
198 monitoring station are presented in Table 2. Total and active storage in the basin before the
199 end of 1991 was 11,609 and 7,854 Mm³ respectively, with a total of 9 dams, three of which
200 have active storage larger than 1,000 Mm³ (Table S1 in supplementary material). There were
201 no dams in the mainstream of the Mekong prior to 1991. A significant increase in
202 hydropower development in the upper Mekong basin above Chiang Sean occurred after 1991,
203 which can be quantified in terms of reservoir volume (18,216 Mm³) and active storage

204 (10,773 Mm³) of the 4 dams developed on the mainstream in China. Between the end of
205 1991 and 2010 there was minimal development between Chiang Sean and Vientiane with
206 only 3 small dams being built in tributaries (Table S1); however, a significant increase in
207 development occurred in tributaries between Vientiane and Mukdahan resulting in a near
208 doubling of both active (23,117 Mm³) and total storage (37,624 Mm³) above Mukdahan by
209 2010. A number of tributary dams were also built between Mukdahan and Stung Treng
210 resulting in a total basin active storage of 29,913 Mm³ and total reservoir volume of 48,700
211 Mm³. After 1991 hydropower development in the upper tributaries of the Sesan, Srepok, and
212 Sekong (3S) basin in Vietnam and Lao PDR accounted for an increase in 3,374 Mm³ of the
213 total active storage. Seventeen out of the 39 dams in the Mekong basin became operational
214 between 2006 and 2010, accounting for a 65 % of the total active storage and 67 % of the
215 total reservoir volume in the Mekong basin up to 2010.

216 The largest irrigation scheme in the Mekong basin is located in the Chi–Mun subbasin in
217 Thailand. The Chi-Mun subbasin is the largest tributary to the Mekong in terms of area, with
218 the Mun and Chi River basins covering 67,000 km² and 49,477 km², respectively. The
219 combined Chi and Mun Rivers contribute an average annual flow of 32,280 Mm³ which
220 discharges immediately above Pakse (MRC, 2005). These subbasins are highly developed,
221 low-relief, with low runoff potential and significant reservoir storage for dry season
222 irrigation, supporting a population of over 18 million people. The irrigated area is close to
223 1,266,000 ha with an annual water demand of 8,963 Mm³ and a foreseeable demand of over
224 12,000 Mm³ (Floch and Molle, 2007). The basins also include numerous flood prevention
225 works, and most reservoirs are actually managed for joint irrigation, hydropower, and flood
226 control. A summary of the largest multi-use reservoirs in the basin is provided in Table S2.
227 The two largest reservoirs in the basin are Ubol Rattana (2,263 Mm³) and Sirindhorn (Lam
228 Dom Noi; 1966 Mm³) located in the upper watershed areas. However, the most influential

229 reservoir in terms of controlling flows out of the basin is the Pak Mun dam. Although this
230 reservoir is small (225 Mm³), it was built in 1994 close to the outlet of the basin and controls
231 the flow from 117,000 km² of drainage area. Further development of hydropower and
232 reservoirs is highly unlikely in the basin, but construction of additional electricity generating
233 plants in current multi-user reservoirs is possible (Floch and Molle, 2007).

234

235 **3.2 Parametric statistical analysis of hydrological alterations**

236 A parametric statistical analysis of multiple hydrological alteration indicators was done for
237 each site. Detailed results of the analysis are first provided for the Chiang Sean site (Table 3),
238 which is the main monitoring station below the four upper Mekong mainstream dams
239 developed in China after 1991; thus, we assume there are a number of parameters with
240 significant alterations at this station which are strongly linked to water infrastructure
241 development, although some may be linked to climatic variability. Pre- and post- 1991 mean
242 monthly and extreme water levels, coefficients of variation, RVA low and high boundaries
243 (representing 1 standard deviation from the mean), hydrological alteration factors (that is, the
244 fraction of years in the post-development period in which a parameter falls out of a pre-
245 development range of variability), and ANOVA significance levels ($p \leq 0.001, 0.01, \text{ or } 0.1$)
246 are shown for 32 hydrological alteration indicators. Results show high hydrological alteration
247 factors (> -0.7) and statistically significant ($p \leq 0.001$) increases in water levels during the
248 dry season months (January to May), the 7 to 90 day minimum levels, low pulse counts, fall
249 rates, and fluctuations. Analyses from other sites also show significant differences in rise
250 rates. Given these findings we focus our reporting on the analysis of multiple stations on
251 seasonal water levels, 7-day minimum levels, rise rates, fall rates, and water level
252 fluctuations.

253

254 **3.3 Seasonal changes in water levels**

255 An analysis of pre- and post- 1991 water levels for Chiang Sean from 1960 to 2010 indicates
256 that a significant increase ($p \leq 0.001$) in mean water levels has occurred for the dry season
257 month of April and a non-significant increase is observed for the wet season month of
258 October (Figure 4). A similar analysis was conducted for the Stung Treng station in the
259 Lower Mekong using an extended data set between 1910 and 2010 (Figure 4). Results
260 indicate an increase of 2 standard deviations in the April (dry season) mean monthly water
261 levels post-1991, but no significant alterations for the month of October (wet season).

262 A comparison of percent mean monthly alterations between pre- and post-1991 water levels
263 for the Chiang Sean, Vientiane, Pakse, and Prek Kdam monitoring stations is presented in
264 Figure 5. Results indicate that mean water levels for Chiang Sean have increased in excess of
265 80% for the dry season months of March and April, but monthly increases between June and
266 November were less than 20 %. Monthly mean water levels for Vientiane have increased by
267 40 % for the month of April, but alterations between June and December were lower than
268 10%. For Pakse there was an increase of 30 % in April, but relatively no alterations in the
269 months from June to January. For the Prek Kdam water level station in the Tonle Sap, there
270 is an observed mean water level increase of 10-20 % for the months from November to May
271 and a decrease in June and July of ~10 % or under. Changes in percent standard deviations
272 were within the same magnitudes as observed changes in mean water levels for most data
273 sets.

274

275 **3.4 Minimum water levels**

276 Seven-day minimum water levels were used to characterize alterations to extreme low water
277 conditions. In general, greatest and most significant alterations were observed in the stations
278 furthest upstream and downstream (Table 4). Changes to this parameter were large and

279 significant at Chiang Sean (+91.6%, $p \leq 0.001$), but became negligible at Luang Prabang and
280 Mukdahan. Alterations became again significant at Stung Treng (+11.6%, $p \leq 0.001$) and
281 Prek Kdam (+19.5%, $p \leq 0.01$).

282

283 **3.5 Water level rise and fall rate changes**

284 Water level variations were quantified by calculating the rise and fall rate. Rise rates are
285 defined as the mean of all positive differences between consecutive daily water level values
286 and fall rates are the mean of all negative differences between consecutive daily water level
287 values. Water level rise and fall rates (m/day) for pre- and post-1991 for all stations are
288 presented in Table 4. At the Chiang Sean, Luang Prabang, Vientiane, and Mukdahan
289 monitoring stations, the mean differences between pre- and post-1991 rise rates were less
290 than +/- 10%. The mean rise rate at Pakse changed by -21% and then fell again to under -8 %
291 at Stung Treng. The mean fall rate changes, however, ranged from over 42% at Chiang Sean
292 to just over 5% in Pakse. At Stung Treng, mean fall rates increase by over 12% ($p \leq 0.01$).
293 At Prek Kdam in the Tonle Sap, rise and fall rates changed significantly by approximately -
294 23 % ($p \leq 0.001$) and -11 % ($p \leq 0.01$), respectively.

295

296 **3.6 Number of water level fluctuations**

297 The difference in the number of water level changes (fluctuations) was calculated for each
298 site. Water level fluctuations represent the number of times per year water levels have
299 reversed from rising to falling or from falling to rising. Mean yearly values and coefficients
300 of variations are reported for pre- and post-1991 periods for each of the monitoring sites
301 (Table 4). Results indicate a significant increase in the number of fluctuations for all stations
302 along the Mekong in the post-1991 period. The percent increase in the mean number of

303 yearly fluctuations in Chiang Sean is 75.3 %, but this value decreases steadily downstream to
304 16.5 % at Mukdahan. An increase in the mean number of fluctuations was observed at Pakse
305 with a mean increase of 26 fluctuations per year representing a 48.8 % increase after 1991.
306 The percent increase in post-1991 fluctuations decreases in the downstream Stung Treng and
307 Prek Kdam stations to 26 and 4 %, respectively.
308 Changes in the number of fluctuations per year between pre- and post-1991 for all stations
309 are presented in Figure 6. The number of fluctuations per year increase steadily after 1991
310 for all stations, but at different rates. An abrupt increase in yearly fluctuations after 1991 is
311 evident between Mukdahan and Pakse, as well as a diminishing rate of post-1991 increases in
312 fluctuations downstream of Chiang Sean to Mukdahan and from Pakse to Prek Kdam.

313 **4 Discussion**

314 Understanding and quantifying historical alterations influenced by water infrastructure
315 development is important as a benchmark for monitoring and to analyse the impacts of future
316 water infrastructure development in terms of ecological, economic, and social effects.
317 Alterations to all reported hydrological parameters are important as they are indicators of
318 wetland and river ecosystem habitat disruption, fish life histories, bank erosion, and sediment
319 redistribution. Rise/fall water level rates and water level fluctuations influence drought stress
320 on aquatic vegetation, entrapment of organisms on waterway islands or floodplains as well as
321 desiccation stress on low-mobility stream edge organisms (Poff et al. 1997). Above all,
322 changes to these hydrological factors could have subsequent impact on ecosystem
323 productivity in the Tonle Sap (Arias et al. 2014a), the major driver of fish production and
324 catches that are the largest source of protein consumed in the region (Hortle, 2007).

325

326 **4.1 Impacts of reservoir and irrigation operations on downstream water levels**

327 The hydrological alterations observed in the post-1991 period have a rational explanation
328 within the context of water infrastructure development in the Mekong. The key hydrological
329 alteration indicators (dry season, rise/fall rates, and fluctuations) quantified in the analysis of
330 pre- and post-1991 water level monitoring data can be linked to temporal and spatial patterns
331 of water resources development in the basin.

332

333 **Dry Season Water Levels**

334 To optimize electricity generation throughout the year, hydropower operations aim to fill
335 reservoirs during the wet monsoon season and release water at higher volumes than natural
336 flows in the dry season to extend the generation capacity. Operations of large reservoirs in the
337 Mekong basin were thus expected to increase downstream dry season water levels and
338 marginally reduce wet season water levels (e.g. Lu et al, 2014). The development of the four
339 mainstream hydropower dams in the upper Mekong in China was observed to have an impact
340 on seasonal water level changes, resulting in a large increase in dry season water levels in the
341 stations closer to the dams, but with diminishing effects further downstream. Irrigation
342 operations, on the other hand, would likely result in a reduction of downstream water levels
343 or the rise rate during the dry season as water demand for agriculture increases (Floch and
344 Molle, 2007).

345

346 **Water Level Rise and Fall Rates**

347 Irrigation will decrease downstream rise rates because water is abstracted during the growing
348 season, preventing downstream river water levels from rising at their normal rates.
349 Hydropower operations were not expected to increase downstream water level rise rates
350 during normal operations; however, during reservoir flood control operations, rise rates

351 would be reduced as water is held in reservoirs and slowly released thereafter. A significant
352 change of -21% water level rise rate was observed at Pakse post 1991, which can be
353 attributed to the level of irrigation in the Chi Mun basin during the growing (dry) season and
354 flood control operations (wet and dry) in the basin. A post-1991 near doubling of total
355 reservoir storage in the upper tributaries between Vientiane and Mukdahan (Table 2) can also
356 help explain an increase in rise rates downstream from Mukdahan due to increased irrigation
357 operations and flood control.

358 Retention of water in reservoirs during regular filling operations would increase water level
359 fall rates downstream. Observed post-1991 high fall rates with minimal alterations in rise
360 rates are indicative of hydropower reservoir filling and storage operations in the upper
361 Mekong up to Vientiane. On the other hand, downstream water retention would decrease fall
362 rates. For example, higher water levels in the Mekong River during the dry season will result
363 in lower water level fall rates in the Tonle Sap as water is discharged slower into the Mekong.
364

365 **Water Level Fluctuations**

366 Arguably the most evident indicator of hydrological alteration related to hydropower
367 reservoir operations is the number of downstream water level fluctuations (Wyatt and Baird,
368 2007). Even though this indicator is not a reflection of the volume of water being regulated, it
369 is indeed indicative of the frequency and intensity of water regulation along a river. In a
370 pristine large river water level fluctuations are minimal and typically reflect seasonal
371 changes; thus, an increase of this indicator in a large river is most likely a direct function of
372 reservoir fill and release operations. Lu and Siew (2006) had already shown had this indicator
373 increased at Chiang Sean once the Marwan dam was built. We have shown that this trend has
374 continued to increase not only at Chiang Sean but at stations further downstream.

375 We suggest that the post-1991 regulation of water in the Chi-Mun basin as a result of
376 reservoir and irrigation schemes is a major cause of the large number of water level
377 fluctuations observed at Pakse. The individual upstream dams in Chi-Mun may have limited
378 impact on water levels at the outlet; however, irrigation operations during the growing (dry)
379 season and the small (225 Mm³) Pak Mun dam at the basin outlet, which controls
380 hourly/daily flows to the greater Mekong, can directly alter downstream water level
381 fluctuations. Although this subbasin only contributes 5-10% of the total Mekong's discharge
382 at Pakse (MRC, 2005), it is not the quantity of water over the year, but rather the intensity
383 and frequency of water management operations that is reflected in the large increase of water
384 fluctuations at Pakse. In a similar manner, albeit at a lesser magnitude, the current regulation
385 of waters in the 3S may have contributed to water level fluctuations in Stung Treng. The
386 impact of the 3S tributary dams has been small up to 2010 because the dams are located in
387 the highlands of these subbasins (Piman et al. 2013b). The Chi-Mun basin, however, will not
388 experience further significant hydropower development, whereas the 3S basin has the
389 potential for large reservoir storage projects in the near future (Piman et al. 2013b). Thus, we
390 expect hydrological alterations (fluctuations, fall/rise rates, and seasonality) to increase
391 beyond levels observed currently in Pakse and as far down as the Tonle Sap floodplain as it
392 has been predicted to some extent with numerical models (Arias et al. 2014b). Water
393 infrastructure development for agriculture and hydropower is accelerating in other tributaries
394 throughout Laos, and this could further impact water levels in Mukdahan and downstream in
395 the near future. Furthermore, the development and operations of other dams in the
396 mainstream of the lower Mekong, such as the Xayabury dam in Laos, will undoubtedly have
397 an immediate effect on rise/fall rates and fluctuations, potentially affecting critical fisheries
398 and habitats in the lower Mekong.

399

400 **Impact on Water Levels of the Tonle Sap**

401 Because of the flow reversal phenomena in the Tonle Sap River, fall rates, rise rates, and
402 fluctuations for the Prek Kdam station are affected both by Mekong river inflows/outflows
403 and by contributing flows from the Tonle Sap catchment, which accounts for approximately
404 34% of yearly flows (Kummu, et al., 2014). Alterations to rise and fall rates can affect the
405 reversal of water flows in the Tonle Sap River. Of significant importance is that Prek Kdam
406 exhibited a post 1991 decrease of 23 and 11 % of rise and fall rates, respectively, and a
407 decrease of 65 and 71 % in the deviation of the coefficient of variation. The decrease in rise
408 rates in the Tonle Sap river (Table 4) is likely a result of the increase in dry season water
409 levels in the Mekong resulting in a milder slope in the water level rise rate during the filling
410 phase of the Tonle Sap. Rise and fall rates, as well as a significant decrease in the coefficient
411 of variation for both parameters, indicates a modified flood pulse regime and more stable
412 water levels in the Tonle Sap system as a result of upstream water infrastructure
413 development. Most impact assessments of hydropower on the Tonle Sap have focused on
414 seasonal water levels and spatial inundations patterns (see Kummu and Sarkkula, 2008; Arias
415 et al., 2012; Arias et al., 2014a; Piman et al., 2013a), but alterations to the magnitude of
416 fall/rise rates have been dismissed for the most part. Given the strong synchronicity between
417 water flows, fish migrations, and fish catches in the Tonle Sap, it is probable that such
418 hydrological alterations had an undocumented effect on the fish ecology of this important
419 ecosystem. To the extent of our knowledge, however, there are no reliable fish catch records
420 or any ecological information pre-1991 that could be used to prove and quantify ecological
421 shifts in past decades.

422

423 **4.2 Climate versus water infrastructure development**

424 The impacts of climate change are temporally complex and spatially varied and there is no
425 consensus as to what the potential climate-driven water level alterations might be throughout
426 the Mekong basin despite multiple discussions on the subject (e.g., Kingston et al. 2011,
427 Lauri et al., 2012, Thompson et al., 2013). Specific climate change factors, such as an
428 increase in glacial melting, could theoretically contribute to increased water levels during the
429 dry season as it has occurred in other large rivers with headwater in the Himalayas (Xu et al.
430 2009); however, to date there is no consensus as to the extent of alterations in Mekong flows
431 might be associated with the Himalaya's melting (Xu et al. 2009). Cook et al. (2012) found a
432 significant relationship between Himalaya's snow cover and dry season flows as far south as
433 Kratie, but they concluded that contemporary and future changes in lower Mekong flows
434 between March and May are negligible as a result of the conflicting effect of melting snow
435 cover and increasing local precipitation . To our knowledge, there is no evidence of climate
436 induced alterations to indicators other than interannual and wet season extremes; besides,
437 most of the previous studies highlighting the correlation between climate and river discharge
438 patterns have only demonstrated contemporary alterations during the wet season months
439 (Delgado et al., 2010; Räsänen and Kummu, 2013; Räsänen et al., 2013). The link between
440 infrastructure development and water levels presented in this paper have largely excluded
441 those indicators representing alterations during the wet season; thus, we argue that it is more
442 likely that the increased number of water level fluctuations, 7-day minimum levels, as well as
443 alterations to rise/fall rates observed in the post-1991 measurements at the various monitoring
444 stations are evidence of the increasing impact of infrastructure development through the
445 Mekong basin. Furthermore, hydropower simulations in the 3S basin demonstrate that
446 changes to downstream water levels from various scenarios of climate change are minimal
447 compared to the ability of hydropower operations to alter water levels (Piman et al., 2014).

449 **5 Conclusions**

450 This paper clarifies that the perception of a *Pristine Mekong* may have been outdated for over
451 two decades. We have shown that hydropower operations and irrigation development in the
452 Mekong may have already caused observable alterations to natural water levels along the
453 Mekong mainstream and the Tonle Sap river beginning as early as 1991. Significant
454 increases in water levels during the dry season (March, April and May) of 80% to 20% post-
455 1991 in Chiang Sean downstream to StungTreng were documented, and such alterations are
456 most likely caused by water infrastructure development in the basin. The effect of the upper
457 Mekong hydropower development tributary operations is clearly observable up to Mukdahan
458 station in terms of water level fluctuations and fall rates. Alterations observed in Pakse and
459 downstream are likely a result of irrigation development, flood control, and hydropower
460 hourly/daily operations (at Pak Mun dam in particular) in the Chi-Mun basin. Alterations
461 observed downstream from Stung Treng will be exacerbated by the ongoing development in
462 the 3S basin. Previous studies have highlighted climate shifts occurring downstream of Pakse
463 as the factor responsible for long term hydrological alterations to wet season floods; however,
464 alterations to extreme dry season levels, water level rise/fall rates and fluctuations has not
465 been related to climate variability, and as we have demonstrated in this paper they were most
466 likely caused by water infrastructure development in China and Thailand during the 1990s
467 and 2000s.

468 Ongoing and proposed hydropower development will continue to increase the magnitude of
469 water level alterations throughout the Mekong. Given the numerous water infrastructure
470 development proposals which will significantly increase the basin's total active storage,
471 drastic alterations to the hydrological pulse and subsequent ecological features in the Tonle
472 Sap (Kummu and Sarkkula, 2008, Arias et al. 2012; Arias et al. 2014a) and the rest of the

473 Mekong floodplains do not seem unrealistic. In particular, development in catchments such as
474 the 3S basin is occurring at a fast pace in a poorly coordinated fashion. Recent estimates with
475 detail modelling of the 3S dams have shown considerably higher levels of alterations in the
476 Tonle Sap than what has been observed or simulated before (Arias et al. 2014b), which
477 highlights the potentially confounding impacts of these dams. Moreover, indicators of
478 hydrological alterations in the Mekong highlighted in this paper, in particular rise rates, fall
479 rates, and water level fluctuations, have been dismissed for the most part from modelling
480 studies. Future research should explicitly simulate and analyse daily and even hourly water
481 levels in order to capture these key indicators of change. Given the historical alterations we
482 have documented and the expected future development in the Mekong, research is also
483 necessary to examine ecological indicators linked to the system's hydrology in order to
484 quantify past, current, and future alterations before they become a threat to the integrity,
485 biodiversity, and food security of the Mekong.

486

487 **Acknowledgments**

488 The authors wish to thank the Mekong River Commission for providing the databases used in
489 this paper. Funding was provided by John D. and Catherine T. MacArthur Foundation
490 through a project entitled "Critical Basin at Risk: Assessing and managing ecosystem
491 pressures from development and climate change in the 3S basin".

492

493 **References**

494 Arias, M. E., Cochrane, T. A., Kummu, M., Killeen, T. J., Piman, T. and Caruso, B. S.:
495 Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by
496 water infrastructure development and climate change in the Mekong Basin, *Journal of*
497 *Environmental Management*, 112, 53–66, 2012.

498

499 Arias, M. E., Cochrane, T. A., Kummu, M., Lauri, H., Koponen, J., Holtgrieve, G. W. and
500 Piman, T.: Impacts of hydropower and climate change on drivers of ecological productivity
501 of Southeast Asia's most important wetland, *Ecological Modelling*, 272, 252–263, 2014a.

502

503 Arias, M. E., Piman, T., Lauri, H., Cochrane, T. A. and Kummu, M.: Dams on Mekong
504 tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain
505 in Cambodia, *Hydrology and Earth System Sciences Discussions*, 11(2), 2177–2209,
506 doi:10.5194/hessd-11-2177-2014, 2014b.

507

508 Baran, E. and Myschowoda, C.: Dams and fisheries in the Mekong Basin, *Aquatic Ecosystem*
509 *Health & Management*, 12(3), 227–234, 2009.

510

511 Cook, B.I., Bell, A.R., Anchukaitis, K.J., and Buckley, B.M.: Snow cover and precipitation
512 impacts on dry season streamflow in the Lower Mekong Basin, *J Geophys Res-Atmos*, 117:
513 16116-16116, 2012.

514

515 Delgado, J.M., Apel, H., and Merz, B.: Flood trends and variability in the Mekong River,
516 *Hydrology and Earth System Sciences*, 14(3): 407-418, 2010.

517

518 Delgado, J.M., Merz, B., and Apel, H.: A climate-flood link for the lower Mekong River.
519 *Hydrology and Earth System Sciences*, 16(5): 1533-1541, 2012.

520

521 Döll, P. and Zhang, J.: Impact of climate change on freshwater ecosystems: a global-scale
522 analysis of ecologically relevant river flow alterations, *Hydrol. Earth Syst. Sci.*, 14(5), 783–
523 799, doi:10.5194/hess-14-783-2010, 2010.

524

525 Floch, P. and Molle, F.: Marshalling water resources: A chronology of irrigation development
526 in the Chi-Mun River Basin Northeast Thailand, Colombo, Sri Lanka: CGIAR Challenge
527 Program on Water and Food, 2007.

528

529 Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L. and Olden, J. D.: Development of
530 representative indicators of hydrologic alteration, *Journal of Hydrology*, 374(1–2), 136–147,
531 doi:10.1016/j.jhydrol.2009.06.009, 2009.

532

533 Grumbine, R.E., and Xu, J.C.: Mekong Hydropower Development, *Science*, 332(6026): 178–
534 179, 2011.

535

536 Hapuarachchi, H.A.P. et al. : Investigation of the Mekong River basin hydrology for 1980–
537 2000 using the YHyM, *Hydrological Processes*, 22(9): 1246-1256, 2008.

538

539 Holtgrieve, G. W., Arias, M. E., Irvine, K. N., Ward, E. J., Kummu, M., Koponen, J., Richey,
540 J. E. and Lamberts, D.: Ecosystem metabolism and support of freshwater capture fisheries in

541 the Tonle Sap Lake, Cambodia., PLoS ONE, 8(8), e71395,
542 doi:10.1371/journal.pone.0071395, 2013.

543

544 Hortle, K. G.: Consumption and the yield of fish and other aquatic animals from the Lower
545 Mekong Basin, Mekong River Commission, Vientiane, Lao PDR., 2007.

546

547 Johnston, R., and Kummu, M.: Water Resource Models in the Mekong Basin: A Review,
548 Water Resources Management, 26(2): 429-455, 2012.

549

550 Kingston, D., Thompson, J. and Kite, G.: Uncertainty in climate change projections of
551 discharge for the Mekong River Basin, *Hydrol. Earth Syst. Sci.*, 15, 1459–1471, 2011.

552

553 Kummu, M. and Sarkkula, J.: Impact of the Mekong River flow alteration on the Tonle Sap
554 flood pulse, *Ambio*, 37(3), 185–192, 2008.

555

556 Kummu, M., Lu, X. X., Wang, J. J. and Varis, O.: Basin-wide sediment trapping efficiency of
557 emerging reservoirs along the Mekong, *Geomorphology*, 119(3-4), 181–197,
558 doi:10.1016/j.geomorph.2010.03.018, 2010.

559

560 Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., Richey, J. and J.
561 Sarkkula, J.: Water balance analysis for the Tonle Sap Lake–floodplain system, *Hydrological
562 Processes* 28, 1722–1733, doi: 10.1002/hyp.9718, 2014.

563

564 Landberg, S.: Sustainable Development of Water Resources in the Mekong River Basin:
565 Legal and Policy Implications of Dams in the Regional Context. *J E Asia Int Law*, 5(1): 235–
566 259, 2012.

567

568 Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M. and Kummu, M.: Future
569 changes in Mekong River hydrology: impact of climate change and reservoir operation on
570 discharge, *Hydrol. Earth Syst. Sci.*, 16, 4603–4619, doi:10.5194/hess-16-4603-2012, 2012.

571

572 Li, S. J. and He, D. M.: Water level response to hydropower development in the upper
573 Mekong River, *Ambio*, 37(3), 170–177, 2008.

574

575 Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P.,
576 Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N.
577 and Wisser, D.: High-resolution mapping of the world’s reservoirs and dams for sustainable
578 river-flow management, *Frontiers in Ecology and the Environment*, 9(9), 494–502,
579 doi:10.1890/100125, 2011.

580

581 Lu, X.X., and Siew, R.Y.: Water discharge and sediment flux changes over the past decades
582 in the Lower Mekong River: possible impacts of the Chinese dams, *Hydrology and Earth
583 System Sciences*, 10(2): 181-195, 2006.

584

585 Lu, X.X., Li, S., Kummu, M., Padawangi, R., Wang, J.J.:Observed changes in the water flow
586 at Chiang Saen in the lower Mekong: Impacts of Chinese dams? *Quaternary International*, In
587 Press. doi:10.1016/j.quaint.2014.02.006, 2014.

588

589 Mainuddin, M., and Kirby, M.: Spatial and temporal trends of water productivity in the lower
590 Mekong River Basin. *Agricultural Water Management*, 96(11): 1567-1578, 2009.

591
592 MRC:Overview of the Hydrology of the Mekong River Basin, Mekong River Commission,
593 Vientiane. p 73, 2005
594
595 MRC: State of the Basin Report 2010, Mekong River Commission, Vientiane, Lao PDR. 232
596 pp, 2010.
597
598 MRC: Mekong River Commission Data Information Services Master Catalogue, [online]
599 Available from: <http://portal.mrcmekong.org/master-catalogue> (Accessed 21 February 2014),
600 2014.
601
602 Nilsson, C., Reidy, C. A., Dynesius, M. and Revenga, C.: Fragmentation and Flow
603 Regulation of the World's Large River Systems, *Science*, 308(5720), 405–408,
604 doi:10.1126/science.1107887, 2005.
605
606 Orr, S., Pittock, J., Chapagain, A., and Dumaresq, D.: Dams on the Mekong River: Lost fish
607 protein and the implications for land and water resources, *Global Environmental Change*,
608 22(4): 925-932, 2012.
609
610 Pearce, F.: China drains life from Mekong river. *New Sci*, 182(2441): 14-14, 2004.
611
612 Piman, T., Lennaerts, T. and Southalack, P.: Assessment of hydrological changes in the lower
613 Mekong basin from basin-wide development scenarios, *Hydrological Processes*, 27, 2115–
614 2125, doi:10.1002/hyp.9764, 2013a.
615
616 Piman, T., Cochrane, T. A., Arias, M. E., Green, A. and Dat, N. D.: Assessment of Flow
617 Changes from Hydropower Development and Operations in Sekong, Sesan and Srepok
618 Rivers of the Mekong Basin, *Journal of Water Resources Planning and Management*, 139(6),
619 723–732, doi:10.1061/(ASCE)WR.1943-5452.0000286, 2013b.
620
621 Piman, T., Cochrane, T.A., Arias, M.E., Dat, N.D. and Vonnarart, O.: Managing Hydropower
622 under Climate Change in the Mekong Tributaries. Chapter 11 in S. Shrestha et al. (Ed.),
623 Managing Water Resources under Climate Uncertainty: Examples from Asia, Europe, Latin
624 America, and Australia, In Press, Springer, 2014.
625
626 Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks,
627 R. E. and Stromberg, J. C.: The Natural Flow Regime, *BioScience*, 47(11), 769–784,
628 doi:10.2307/1313099, 1997.
629
630 Poff, N. L., Olden, J. D., Merritt, D. M. and Pepin, D. M.: Homogenization of regional river
631 dynamics by dams and global biodiversity implications, *Proceedings of the National
632 Academy of Sciences*, 104(14), 5732–5737, doi:10.1073/pnas.0609812104, 2007.
633
634 Räsänen, T. A. and Kummu, M.: Spatiotemporal influences of ENSO on precipitation and
635 flood pulse in the Mekong River Basin, *Journal of Hydrology*, 476, 154–168,
636 doi:10.1016/j.jhydrol.2012.10.028, 2013.
637
638 Räsänen, T. A., Lehr, C., Mellin, I., Ward, P. J. and Kummu, M.: Palaeoclimatological
639 perspective on river basin hydrometeorology: case of the Mekong Basin, *Hydrol. Earth Syst.
640 Sci.*, 17(5), 2069–2081, 2013.

641
642 Richter, B. D., Baumgartner, J. V., Powell, J. and Braun, D. P.: A Method for Assessing
643 Hydrologic Alteration within Ecosystems, *Conservation Biology*, 10(4), 1163–1174,
644 doi:10.1046/j.1523-1739.1996.10041163.x, 1996.

645
646 Richter, B. D., Baumgartner, J., Wigington, R. and Braun, D.: How much water does a river
647 need?, *Freshwater Biology*, 37(1), 231–249, doi:10.1046/j.1365-2427.1997.00153.x, 1997.

648
649 Stone, R.: Mayhem on The Mekong, *Science*, 333(6044): 814-818, 2011.

650
651 The Nature Conservancy: Indicators of Hydrologic Alteration Version 7.1, User's Manual,
652 2009.

653
654 Thompson, J. R., Green, A. J., Kingston, D. G. and Gosling, S. N.: Assessment of uncertainty
655 in river flow projections for the Mekong River using multiple GCMs and hydrological
656 models, *Journal of Hydrology*, 486(0), 1–30, doi:10.1016/j.jhydrol.2013.01.029, 2013.

657
658 Vaidyanathan, G.: Remaking the Mekong, *Nature*, 478(7369): 305-307, 2011.

659
660 Wyatt, A.B. and Baird, I.G.: Transboundary Impact Assessment in the Sesan River Basin:
661 The Case of the Yali Falls Dam, *International Journal of Water Resources Development* 23,
662 427 – 442, 2007.

663
664 Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. and Wilkes, A.: The
665 Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and
666 Livelihoods, *Conservation Biology*, 23(3), 520–530, doi:10.1111/j.1523-1739.2009.01237.x,
667 2009.

668
669 Xue, Z., Liu, J.P., and Ge, Q.A.: Changes in hydrology and sediment delivery of the Mekong
670 River in the last 50 years: connection to damming, monsoon, and ENSO, *Earth Surface
671 Processes and Landforms*, 36(3): 296-308, 2011.

672
673

674 Table 1. Catchment areas and average historical seasonal flows (1960-2004) above each
675 monitoring station. Source: MRC (2010) and verified with flow records.

Monitoring station	Catchment area in km ²	Mean dry season (Dec. - May) flows in m ³ /s	Mean wet season (Jun. - Nov.) flows in m ³ /s	Mean annual flows in m ³ /s
Chiang Sean (CS)	189,000 (25%)	1,120 (5%)	4,250 (14%)	2,700 (19%)
Luang Prabang (LP)	268,000 (35%)	1,520 (6%)	6,330 (21%)	3,900 (27%)
Vientiane (VT)	299,000 (39%)	1,630 (7%)	7,190 (23%)	4,400 (30%)
Mukdahan (MH)	391,000 (51%)	2,200 (9%)	12,950 (43%)	7,600 (52%)
Pakse (PS)	545,000 (72%)	2,620 (10%)	16,850 (57%)	9,700 (67%)
Stung Treng (ST)	635,000 (84%)	3,310 (13%)	22,940 (77%)	13,100 (90%)
Total basin	760,000 (100%)			14,500 (100%)

676

677

678

679

680

681

682

683

684

685

686 Table 2. Hydropower reservoir active and total storage (Mm³) above monitoring stations in
 687 operation by 2010.

Year	Chiang Sean (CS)			Luang Prabang (LP)			Vientiane (VT)		
	No.	Active	Total	No.	Active	Total	No.	Active	Total
Pre-1991	0	0.00	0.00	0	0.00	0.00	1	0.02	0.03
1991-1995	1	257.00	920.00	2	257.00	920.01	2	257.00	920.01
1996-2000	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
2001-2005	1	367.00	933.00	2	367.67	933.70	2	367.67	933.70
2006-2010	2	10,149.00	16,363.00	2	10,149.00	16,363.00	2	10,149.00	16,363.00
Total	4	10,773.00	18,216.00	6	10,773.68	18,216.71	7	10,773.69	18,216.73

Year	Mukdahan (MH)			Pakse (PS)			Stung Treng (ST)		
	No.	Active	Total	No.	Active	Total	No.	Active	Total
Pre-1991	3	4856.82	7165.53	8	7852.12	11,606.33	9	7853.62	11,609.23
1991-1995	2	257.00	920.01	4	382.30	1,147.34	5	382.42	1,147.49
1996-2000	2	243.20	375.40	2	243.20	375.40	3	892.20	1,049.50
2001-2005	3	412.67	1,038.43	4	702.67	1,348.43	5	1,481.69	2,387.14
2006-2010	5	17,347.40	28,124.99	6	17,356.70	28,134.86	17	19,302.83	32,476.44
Total	15	23,117.09	37,624.35	24	26,536.99	42,612.35	39	29,912.76	48,669.79

688

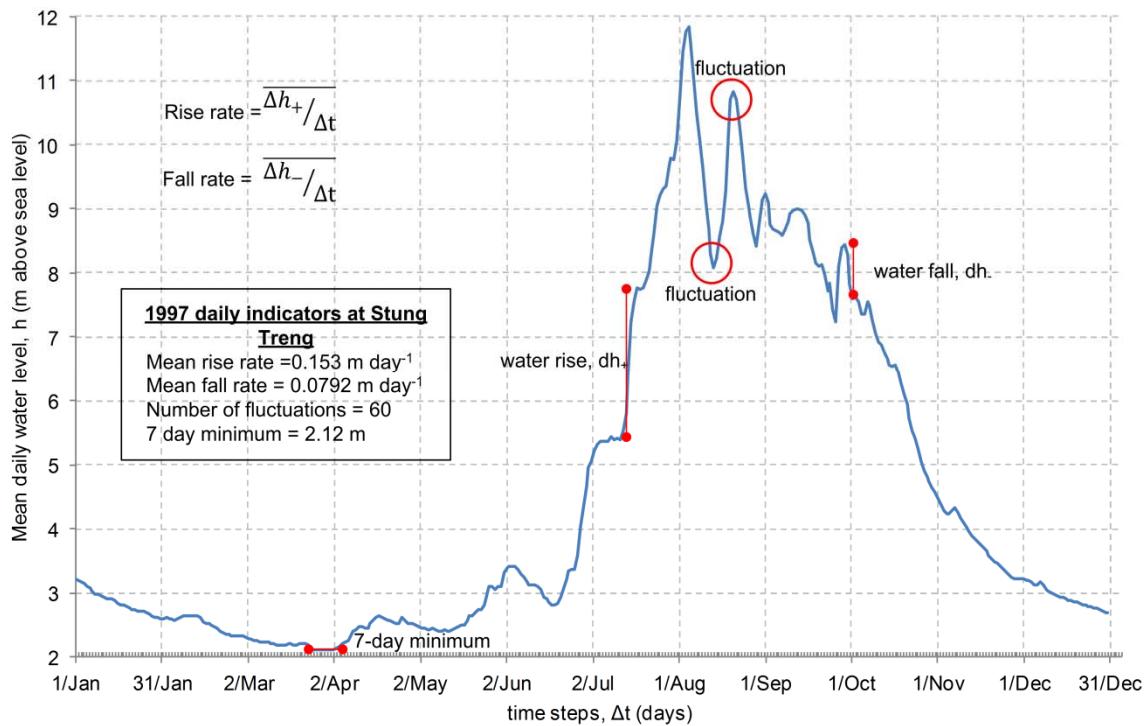
689

690

691 Table 3. Indicators of hydrological alterations and alteration factors (within 1 standard
 692 deviation) at Chiang Sean.

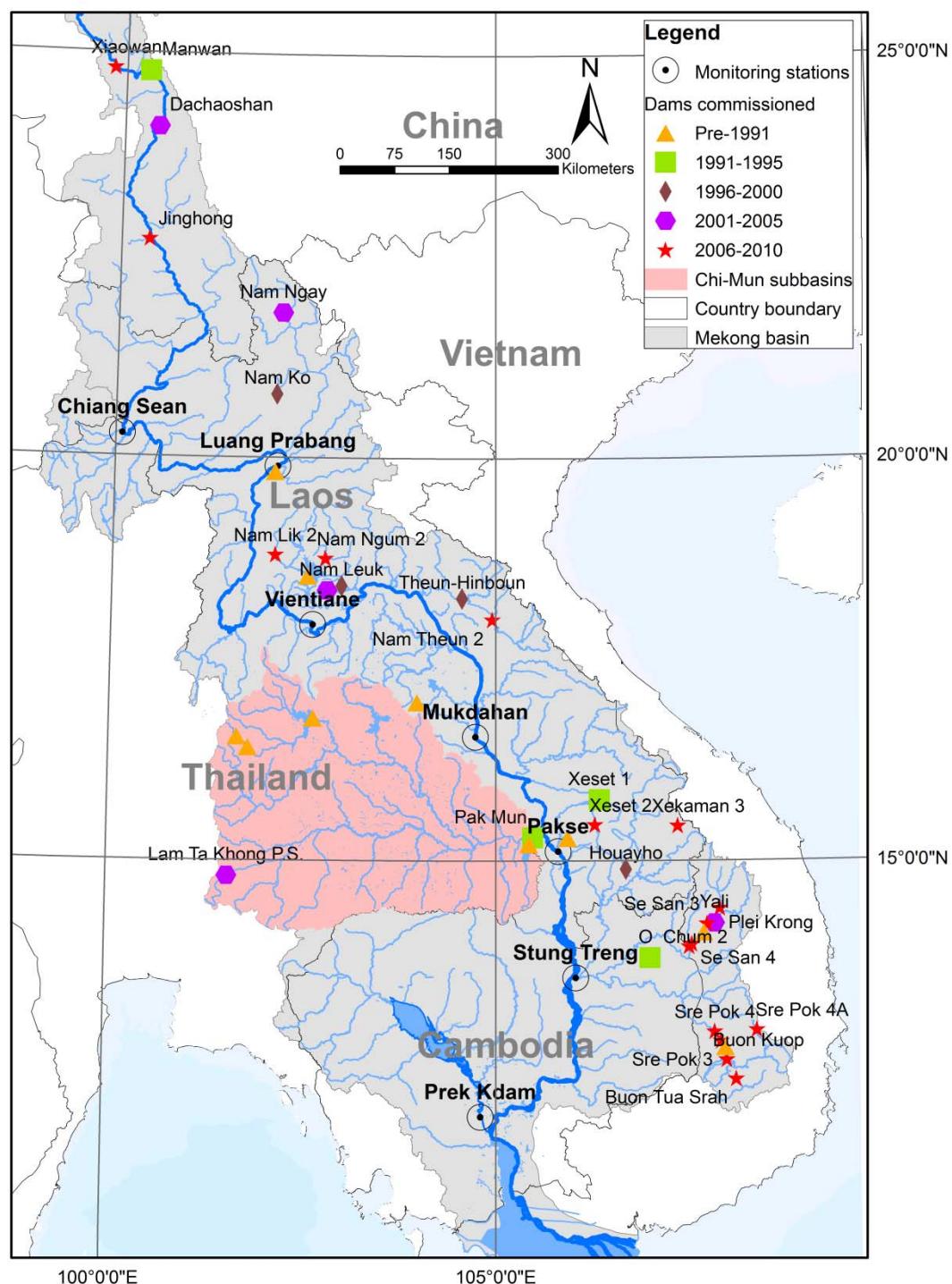
Indicators of hydrological alterations	Pre-impact period: 1960-1990				Post-impact period: 1991-2010				ANOVA Signif. level ^c	
	Means	Coeff. of var.	RVA Boundaries ^a		Means	Coeff. of var.	Hydrologic alteration factor ^b			
			Low	High						
Mean monthly values (m)										
January	1.396	0.206	1.108	1.683	2.047	0.181	-0.857	***		
February	1.010	0.215	0.794	1.227	1.683	0.200	-0.857	***		
March	0.796	0.262	0.587	1.004	1.565	0.214	-0.833	***		
April	0.954	0.237	0.728	1.180	1.712	0.242	-0.786	***		
May	1.557	0.300	1.090	2.025	2.426	0.233	-0.727	***		
June	2.948	0.201	2.357	3.539	3.477	0.228	-0.348	**		
July	4.639	0.168	3.860	5.417	5.445	0.176	-0.250	**		
August	5.912	0.160	4.969	6.855	6.238	0.166	-0.045			
September	5.262	0.158	4.430	6.094	5.828	0.161	-0.340	*		
October	4.180	0.126	3.652	4.708	4.642	0.113	-0.357	**		
November	3.023	0.163	2.530	3.515	3.502	0.187	-0.250	**		
December	1.998	0.178	1.644	2.353	2.571	0.148	-0.714	***		
Extreme water conditions (m)										
1-day minimum	0.623	0.315	0.427	0.819	1.114	0.356	-0.929	***		
3-day minimum	0.631	0.313	0.434	0.829	1.164	0.361	-0.929	***		
7-day minimum	0.650	0.304	0.452	0.847	1.245	0.293	-0.850	***		
30-day minimum	0.734	0.274	0.533	0.935	1.410	0.229	-0.850	***		
90-day minimum	0.895	0.230	0.689	1.102	1.623	0.193	-0.850	***		
1-day maximum	8.204	0.179	6.733	9.675	8.486	0.166	-0.152			
3-day maximum	8.000	0.186	6.514	9.486	8.265	0.167	-0.063			
7-day maximum	7.556	0.194	6.091	9.020	7.827	0.164	-0.125			
30-day maximum	6.376	0.160	5.355	7.397	6.773	0.154	-0.217			
90-day maximum	5.430	0.118	4.787	6.072	5.953	0.139	-0.520	*		
Timing of extreme water conditions										
Date of minimum	87.2	0.039	72.8	101.5	91.9	0.065	-0.217			
Date of maximum	233.1	0.069	207.6	258.5	242.8	0.063	-0.063			
Pulses Frequency/duration (days)										
Low pulse count	2.3	0.595	0.9	3.7	0.6	2.382	-0.9	***		
Low pulse duration	26.5	0.863	10.4	49.3	7.4	0.630	-0.9			
High pulse count	5.3	0.407	3.2	7.5	5.2	0.317	0.2			
High pulse duration	15.7	0.692	4.8	26.6	20.1	0.575	-0.1			
Water condition changes										
Rise rate (m/day)	0.186	0.155	0.157	0.214	0.189	0.157	-0.143			
Fall rate (m/day)	-0.102	-0.128	-0.115	-0.089	-0.145	-0.202	-0.850	***		
Number of fluctuations	73.9	0.115	65.4	82.4	129.5	0.186	-0.929	***		

693 ^a Range of Variability Approach Boundaries represent the values within one standard deviation from the pre-
 694 impact period mean


695 ^b Hydrological alteration factor represents the percentage of years in the post-impact period in which values fall
 696 outside the RVA boundaries

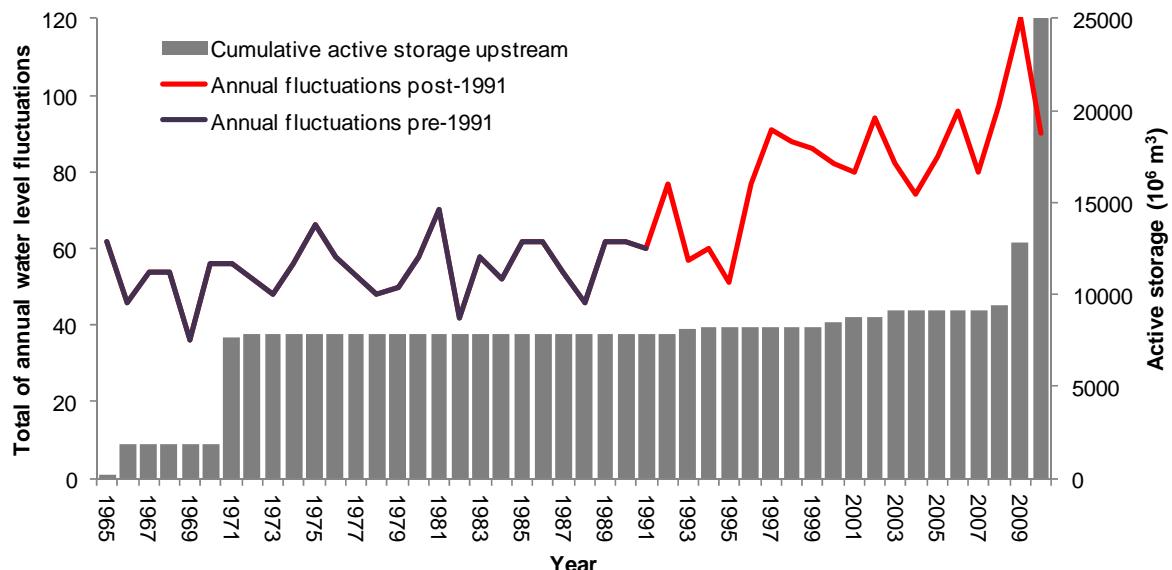
697 ^c Significance level codes: ***: $p \leq 0.001$; **: $p \leq 0.01$; *: $p \leq 0.05$; .: $p \leq 0.1$

698 Table 4. Hydrological alterations of selected indicators for pre- and post- 1991 periods along
 699 the lower Mekong


Monitoring station	Indicators of hydrological alteration	Pre-impact (1960-1990)		Post-impact (1991-2010)		ANOVA signif. level ^a
		mean	coeff. of var.	mean (% diff.)	coeff. of var. (% diff.)	
Chiang Sean	Rise rate (m/day)	0.186	0.155	0.189 (+2)	0.157 (+2)	
	Fall rate (m/day)	-0.102	-0.128	-0.145 (+42)	-0.2023 (+58)	***
	Number of fluctuations	73.9	0.115	129.5 (+75)	0.186 (+61)	***
	7-day minimum	0.6	0.304	1.25 (+92)	0.293 (-4)	***
Luang Prabang	Rise rate (m/day)	0.261	0.133	0.252 (-3)	0.174 (+31)	
	Fall rate (m/day)	-0.138	-0.114	-0.164 (+18)	-0.156 (+37)	***
	Number of fluctuations	66.8	0.123	92.8 (+39)	0.136 (+11)	***
	7-day minimum	3.1	0.068	3.025 (-2)	0.111 (+64)	
Vientiane	Rise rate (m/day)	0.196	0.103	0.190 (-3)	0.136 (+32)	
	Fall rate (m/day)	-0.104	-0.115	-0.120 (+15)	-0.1301 (13)	***
	Number of fluctuations	56.1	0.135	69.4 (+24)	0.137 (+1)	***
	7-day minimum	0.4	0.467	0.558 (+28)	0.531 (+14)	.
Mukdahan	Rise rate (m/day)	0.171	0.138	0.157 (-8)	0.131 (-5)	*
	Fall rate (m/day)	-0.091	-0.086	-0.0951 (+5)	-0.112 (+31)	.
	Number of fluctuations	45.6	0.159	53.2 (+17)	0.149 (-6)	**
	7-day minimum	1.1	0.097	1.16 (+2)	0.173 (+79)	
Pakse	Rise rate (m/day)	0.207	0.171	0.163 (-21)	0.124 (-28)	***
	Fall rate (m/day)	-0.100	-0.128	-0.105 (+5)	-0.0924 (-28)	
	Number of fluctuations	54.6	0.148	81.3 (+49)	0.197 (+33)	***
	7-day minimum	0.6	0.220	0.666 (+16)	0.313 (+42)	.
Stung Treng	Rise rate (m/day)	0.156	0.189	0.144 (-8)	0.167 (-11)	
	Fall rate (m/day)	-0.078	-0.131	-0.0871 (+12)	-0.136 (+4)	**
	Number of fluctuations	57.7	0.140	72.7 (+26)	0.144 (+3)	***
	7-day minimum	1.8	0.090	2.04 (+12)	0.103 (+14)	***
Prek Kdam	Rise rate (m/day)	0.104	0.265	0.0800 (-23)	0.119 (-55)	***
	Fall rate (m/day)	-0.060	-0.183	-0.0536 (-11)	-0.0696 (-62)	*
	Number of fluctuations	47.7	0.186	50 (+5)	0.178 (-4)	
	7-day minimum	0.7	0.172	0.862 (+20)	0.186 (+8)	**

700 ^aSignificance level codes: ***: $p \leq 0.001$; **: $p \leq 0.01$; *: $p \leq 0.05$; .: $p \leq 0.1$

701


702 Figure 1. Illustration of hydrological alteration indicators most sensitive to reservoir
 703 operations. Hydrograph represents mean daily water levels during 1997 at Stung Treng.

704

705 Figure 2. Operating dams and key hydrological monitoring stations in the Mekong Basin up
 706 to December 2010.

707

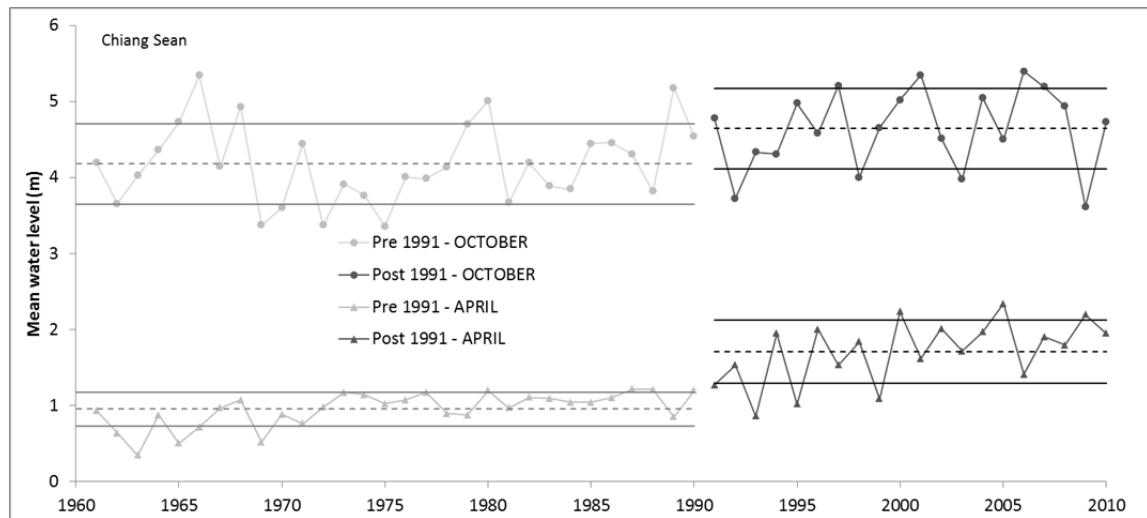
708

709 Figure 3. Temporal trend in water level fluctuations and cumulative active storage upstream
710 of Pakse.

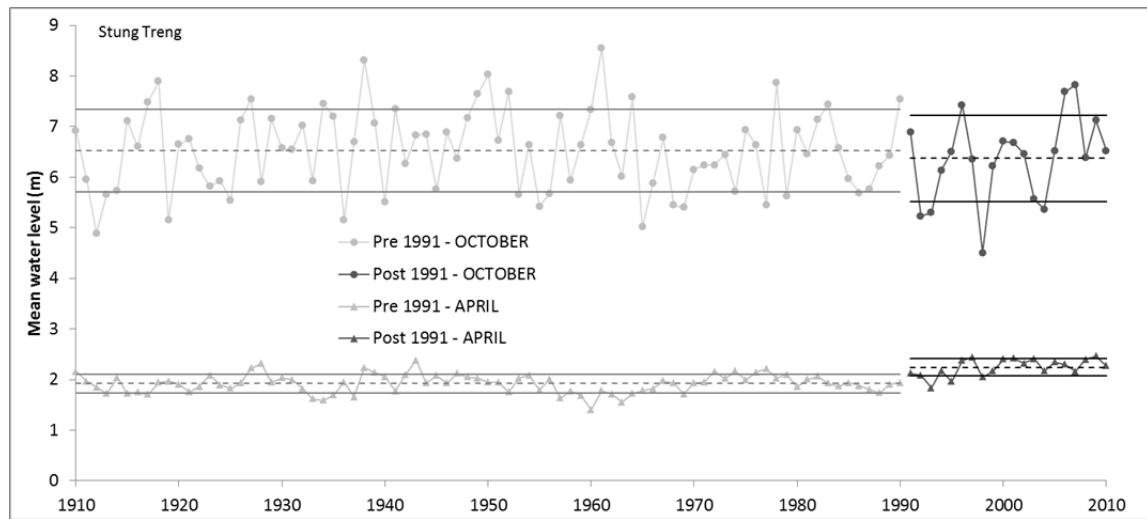
711

712

713


714

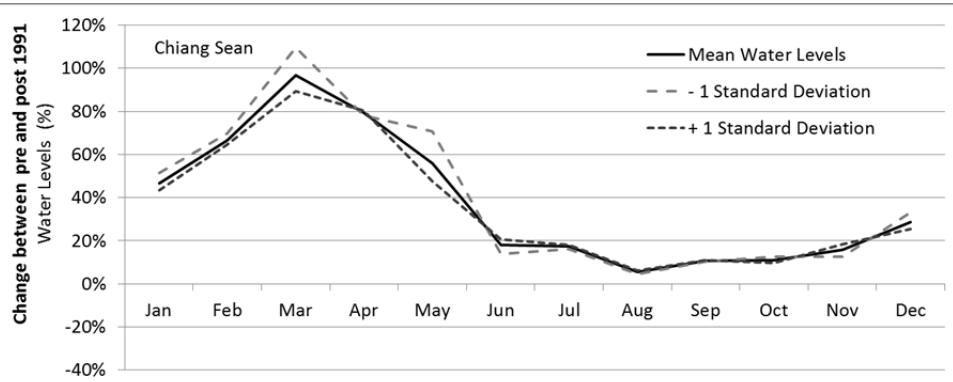
715


716

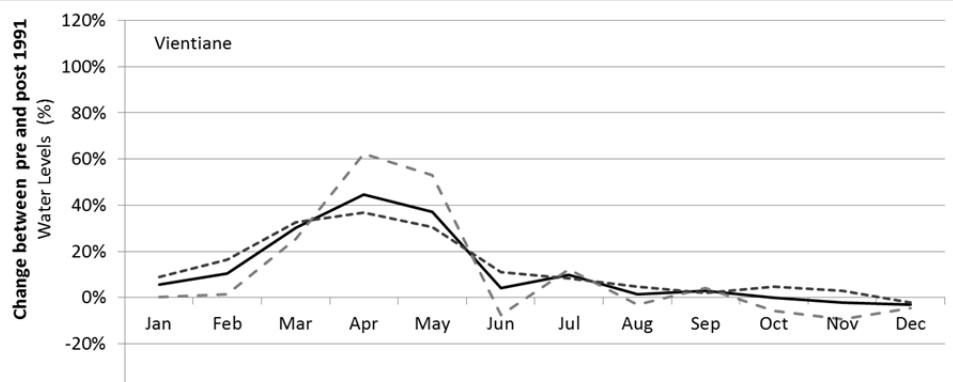
717

718

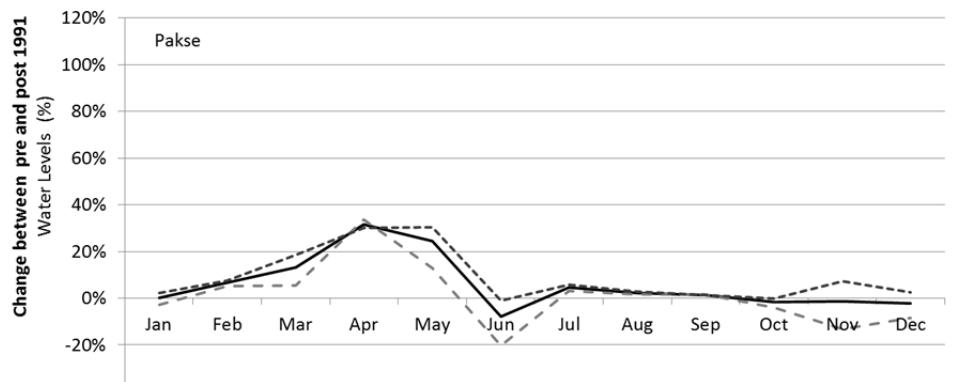
719


720 Figure 4. Mean measured water levels at Chiang Sean (1960-2010) and Stung Treng (1910 to
 721 2010) for the months of April and October. Dashed lines indicate mean water levels for
 722 periods before and after 1991 and parallel solid lines indicate +/- 1 standard deviations
 723 around the mean for each period.

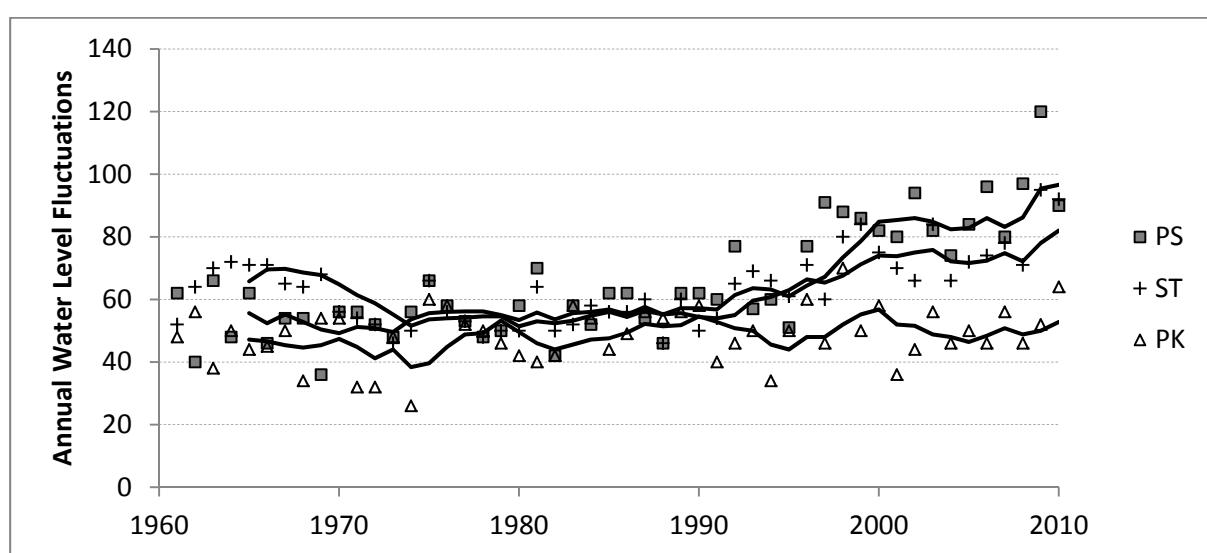
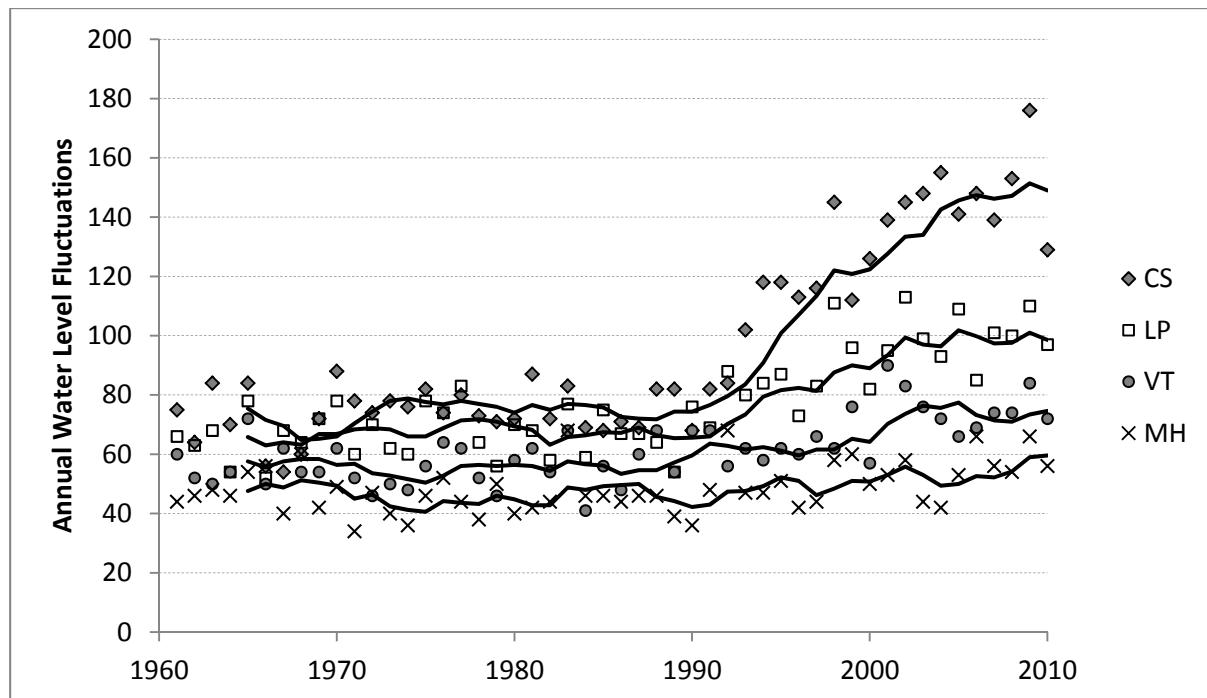
724


725

726


727

728



729

730

731
732

Figure 5. Change (%) in average mean and +/- 1 standard deviations for each month between pre and post 1991 water levels for Chiang Sean, Vientiane, Pakse, and Prek Kdam.

735 Figure 6. Number of annual water level fluctuations for each monitoring station between
 736 1961 and 2010. Solid lines indicate a 5 year moving average for each station: Chiang Sean
 737 (CS), Luang Prabang (LP), Vientiane (VT), Mukdahan (MH), Pakse (PS), Stung Treng (ST),
 738 and Prek Kdam (PK).

739

740

741 **Supplementary Material**

742 Table S1. Existing dams up to 2010 in Mekong River Commission hydropower database

743 (MRC, 2014).

Location	MRC dam code	Dam Name	Year Completed	Active storage (M m ³)	Total storage (M m ³)
Above CS	C001	Manwan	1993	257.000	920.000
	C002	Dachaoshan	2003	367.000	933.000
	C003	Jinghong	2008	249.000	1,233.000
	C004	Xiaowan	2010	9,900.000	15,130.000
CS-LP	L009	Nam Ko	1996	0.005	0.007
	L010	Nam Ngay	2002	0.674	0.700
LP-VT	L002	Nam Dong	1970	0.015	0.025
VT-MH	T003	Nam Pung	1965	156.800	165.500
	L001	Nam Ngum 1	1971	4,700.000	7,000.000
	L005	Theun-Hinboun	1998	15.000	30.000
	L007	Nam Leuk	2000	228.200	345.400
	L008	Nam Mang 3	2004	45.000	104.730
	L011	Nam Theun 2	2009	3,378.400	3,680.190
	L014	Nam Ngum 2	2010	2,994.000	6,740.000
	L015	Nam Lik 2	2010	826.000	1,341.800
	T006	Ubol Ratana	1966	1,695.000	2,263.000
	L003	Xelabam	1969	0.800	1.000
MH-PS	T005	Sirindhorn	1971	1,135.000	1,966.000
	T001	Chulabhorn	1972	144.500	188.000
	T002	Huai Kum	1982	20.000	22.800
	T004	Pak Mun	1994	125.000	225.000
	L004	Xeset 1	1994	0.300	2.330
	Lam Ta Khong P.S.		2001	290.000	310.000
	L013	Xeset 2	2009	9.300	9.870
	V014	Dray Hlinh 1	1990	1.500	2.900
	C001	O Chum 2	1992	0.120	0.150
	L006	Houayho	1999	649.000	674.100
PS-ST	V003	Yali	2001	779.020	1,038.710
	V004	Se San 3	2006	3.800	86.500
	V005	Se San 3A	2007	4.000	80.610
	V002	Plei Krong	2008	948.000	1,948.680
	V007	Se San 4A	2008	7.500	8.500
	L012	Xekaman 3	2009	108.540	163.860
	V006	Se San 4	2009	264.160	893.340
	V009	Buon Tua Srah	2009	522.600	752.280
	V010	Buon Kuop	2009	14.740	36.110
	V012	Sre Pok 3	2009	62.580	242.780
	V013	Sre Pok 4	2009	10.110	128.740
	V015	Sre Pok 4A	2009	0.100	0.180

744 Table S2. Multi-use reservoirs (hydropower and irrigation) in the Chi and Mun basins. Data
 745 from MRC (2014).

Project	Year completed	Agency	Location	Watershed area (km ²)	Storage capacity (10 ⁶ m ³)	Power generating capacity (MW)	Annual average power (GWh)
Ubol Rattana	1966	EGAT	Ubol Rattana District, Khon Kaen	12,000	2,263	25.2	54.73
Sirindhorn (Lam Dom Noi)	1971	EGAT	Piboon Mungsahan District, Ubon Ratchathani	2,097	1,966	36	90
Chulaphon	1972	EGAT	Konsan District, Chaiyaphum	545	188	40	94.84
Huey Koom	1982	EGAT	Kaset District, Chaiyaphum	262	22.8	1.06	2.91
Huey Patoa	1992	DEDE	Kang Kroh, Chaiyaphum	162	44 & 14.8	4.5	18.41
Pak Mun	1994	EGAT	Khong Jiem District, Ubon Ratchathani	117,000	225	136	280
Lam Takong	2001	EGAT	Sikiew District, Nakhon, Ratchasima	1,430	310	500	400

746 Source: Electricity Generating Authority of Thailand (EGAT), Department of Alternative
 747 Energy Development and Efficiency (DEDE)
 748

749