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Abstract 14 

The Pacific-Andean region in western South-America suffers from rainfall data scarcity, as is the case 15 

for many regions in the south. An important research question is whether the latest satellite-based and 16 

Numerical Weather Prediction (NWP) model outputs capture well the temporal and spatial patterns of 17 

rainfall over the region, hence have the potential to compensate for the data scarcity. Based on an 18 

interpolated gauge-based rainfall dataset, the performance of the Tropical Rainfall Measuring Mission 19 

(TRMM) 3B42V7 and its predecessor V6, and the North Western South America Retrospective 20 

Simulation (OA-NOSA30) are evaluated over 21 sub-catchments in the Pacific-Andean region of 21 

Ecuador and Peru (PAEP).  22 

In general, precipitation estimates from TRMM and OA-NOSA30 capture the seasonal features of 23 

precipitation in the study area. Quantitatively, only the Southern sub-catchments of Ecuador and 24 

Northern Peru (3.6-6ºS) are relatively well estimated by both products. The accuracy is considerably 25 

less in the northern and central basins of Ecuador (0-3.6ºS). It is shown that the probability of 26 

detection (POD) is better for light precipitation (POD decreases from 0.6 for rates less than 5 mm day
-27 

1
 to 0.2 for rates higher than 20 mm day

-1
). Compared to its predecessor 3B42V7 shows modest 28 

region-wide improvements in reducing biases. The improvement is specific to the coastal and open 29 

ocean sub-catchments. In view of hydrological applications, the correlation of TRMM and OA-30 

NOSA30 estimates with observations increases with time aggregation. The correlation is higher for the 31 

monthly time aggregation in comparison with the daily, weekly and 15-daily time scales. Furthermore, 32 

it is found that TRMM performs better than OA-NOSA30 in generating the spatial distribution of 33 

mean annual precipitation. 34 

Keywords: TRMM, WRF, KED, PAEP, Ecuador, Peru. 35 
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1 Introduction 36 

Precipitation is the primary driver of the hydrologic cycle and the main input of most 37 

hydrologic studies. Accurate estimation of precipitation is therefore essential. The availability 38 

of rainfall data, in particular in developing countries, is hampered by the scarcity of accurate 39 

high-resolution precipitation. Since its inception, rainfall measurement principles remained 40 

unchanged; non-recording and recording rain gauges are still the standard equipment for 41 

ground-based measuring precipitation notwithstanding that they only provide point 42 

measurements. Rainfall amounts measured at different locations are traditionally extrapolated 43 

to obtain areal averaged rainfall estimates. These estimates from point gauge measurements 44 

will only improve, if over time the rain gauge network density increases. The latter is not 45 

always the case in developing countries. In fact, in many regions gauge densities are 46 

decreasing (Becker et al. 2013). One potential way to overcome the limitations of rain gauge 47 

based networks and weather radar systems in estimating areal rainfall is by using satellite-48 

based global climate information and Numerical Weather Prediction (NWP) products. 49 

Compared with rain gauge observations satellite rainfall data provide observations in 50 

otherwise data sparse areas but their disadvantage is that they are indirect estimates of rainfall. 51 

On the other hand, increased computational power and improvement of NWP models have 52 

resulted into a considerable advancement in the ability to estimate rainfall. However, the main 53 

limitation for NWP models is that they cannot resolve weather features that occur within a 54 

single model grid box. To improve the accuracy of satellite rainfall estimation and NWP 55 

models, and facilitate their intake over data sparse areas, the evaluation of both products 56 

needs to be region specific and user-oriented.  57 

A wide range of satellite derived precipitation products emerged the last decade and their 58 

performance over different regions of the world has been evaluated. Several studies have been 59 

conducted to assess the accuracy of three of the most widely used satellite based methods 60 

producing global precipitation estimates, such as the Climate Prediction Centre morphing 61 

method (CMORPH), Precipitation Estimation from Remotely Sensed Information Using 62 

Neural Networks (PERSIANN) and the Tropical Rainfall Measuring Mission (TRMM) 63 

Multisatellite Precipitation Analysis (TMPA) 3B42 (Romilly and Gebremichael, 2011). 64 

TMPA 3B42V6 version performance has been evaluated over the tropical Andes of South 65 

America at high-altitude regions (> 3000 m a.s.l.) by Scheel et al. (2011) with focus on the 66 

Cuzco and La Paz regions in the Central Andes. Ward et al. (2011) conducted similar 67 

investigation in the Paute region (> 1684 m a.s.l.) situated in the southern Ecuadorian Andes 68 
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and Arias-Hidalgo et al. (2013) explored its applicability as input for hydrologic studies on a  69 

catchment in the Pacific-Andean region in central Ecuador. They all concluded that 70 

disregarding the limitations at small temporal scale (daily) the performance of this product 71 

increases with time aggregation and highlighted the potential to use TMPA 3B42V6 at large-72 

scale basins. Dinku et al. (2010) conducted a wider evaluation covering different 73 

climatological regions and altitudinal ranges of the Colombian territory. Results showed good 74 

performance when the temporal scale increases (10-days), however they are region distinct 75 

yielding the best performance over the eastern Colombian plain. The availability of the 76 

improved version, the TMPA 3B42V7, opens a new question concerning its usefulness on 77 

South-American regions. Recently, Zulkafli et al. (2014) assessed the improvement of the V7 78 

over the V6 and reported a lower bias and an improved representation of the rainfall 79 

distribution over the northern Peruvian Andes and the Amazon watershed.    The diversity of 80 

South-American environments demands new comparisons over regions with different 81 

precipitation regimens and mechanisms.  82 

On the other hand, NWP models capabilities keep evolving and providing precipitation fields 83 

at high spatio-temporal resolutions. In general, NWP models are not only valuable tools for 84 

weather forecasting but also for climate reconstruction. NWP can be initialized and bounded 85 

by assimilated observational data describing the large-scale atmospheric conditions 86 

throughout the reconstructed period. Periods of years to decades can be retrieved using NWP 87 

models, commonly known as “regional atmospheric reanalysis”. Although, this technique is 88 

still in its early stages, in tropical South America, some NWP model applications were 89 

conducted by Muñoz et al. (2010). Their study follows a three-level hierarchical approach. 90 

Global-scale analysis and/or GCM outputs are generated and then used as boundary 91 

conditions for the meso-scale meteorological models, which in turn provide information for 92 

tailored applications. In a “regional atmospheric reanalysis” setting, the Weather Research 93 

and Forecasting model (WRF, Skamarock et al., 2005) was forced by applying boundary 94 

conditions of the NCEP/NCAR Reanalysis project (NNRP, Kistler et al., 2001) to retrieve for 95 

the first time meteorological data for North Western South America in the so-called OA-96 

NOSA30 product. The aim of the retrospective simulation was to provide input data for 97 

hydrologic and health-epidemiological models with the hypothesis that the WRF retrospective 98 

simulation may add skill to GCMs in countries where the Andes provides complex 99 

disturbances that global models cannot solve. 100 
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The westernmost N-S axis of South America, which embraces the Pacific-Andean region of 101 

Ecuador and northern Peru (PAEP), is a region with below average density and unevenly 102 

distribution of meteorological stations. Because of its location, contrasting landscapes and 103 

complex topography, that includes humid regions of the western Andean foothills and arid 104 

areas offshore the coastal line. The PAEP region provides a unique case to evaluate the 105 

potentials and drawbacks of satellite and numerical model rainfall estimates. In consequence, 106 

the objective of this study is to provide an evaluation of the performance of the TMPA V7 107 

and its predecessor the TMPAV6 version and the OA-NOSA30 products versus regionalized 108 

ground data over the PAEP region. Specifically, emphasis is given to determine whether there 109 

are regions and time aggregation scales on which precipitation estimates may be considered 110 

as an alternative and/or complementary information source for poorly gauged basins. 111 

 112 

2 Materials and Methods 113 

 114 

2.1 Study area 115 

The western coast of South America is a region with contrasting landscapes and a rather 116 

complex orography. Near to the equator the coastal area of Ecuador is characterized by a high 117 

precipitation regimen and supports dense vegetation down to the shore. However, at the 118 

southern margin and along the northern Peruvian littoral, the coast is almost devoid of 119 

vegetation. The PAEP region (ca. 100800 km
2
) is located along the N-S axis between 0°-6°S 120 

and drains the westernmost slope of the Andes Cordillera (Figure 1a). The various steep 121 

Andean ridges down to the coast together with the Cordillera ‘Costanera’ shapes  thirteen 122 

Pacific-Andean valleys from north to south: Chone (1), Portoviejo (2), Guayas (3), Taura (4), 123 

Cañar (5), Naranjal-Pagua (6), Jubones (7), Santa Rosa (8), Arenillas (9), Zarumilla (10), 124 

Puyango-Tumbes (11), Catamayo-Chira (12), and Piura (13) (Figure 1b) each one with 125 

particular geomorphological and climatological features. The proximity of the Andes to the 126 

coastal line is the main influence on the basin‘s relief and climatology. Short and steep basins, 127 

i.e. Puyango (10), descend from nearly 4000 meters of altitude in less than 240 km of river 128 

length. On the other hand, large basins host the largest plains and low land valleys in the 129 

Ecuadorian littoral with roughly 70% of its area below an elevation of 200 m. The Guayas (3), 130 

which is one the most important fluvial system in the western coast of South America, is such 131 

large basin. 132 
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 133 

2.2 Climate 134 

The coastal region of Ecuador has a seasonal rainfall distribution characterized by a single 135 

rainy period, with 75-90% of the rainfall occurring between December and May. Overall, in 136 

the PAEP region the rainy season starts around late November and ends in June, with a peak 137 

between February and March. Over the humid Andean foothills in the coastal plain a 2-3 138 

month dry period separates the rainy seasons. On top of this seasonal rainfall pattern the 139 

distribution of precipitation is affected by the seasonal latitudinal migration of the Inter-140 

Tropical Convergence Zone (ITCZ) and eastern tropical Pacific Sea Surface Temperature 141 

(SST) variations. The north-southern seasonal ITCZ displacement and SST variations bring to 142 

the area air masses of different humidity and temperature. When the ITCZ and the equatorial 143 

front are in their southernmost position near the equator, Ecuador’s coastal regions are under 144 

the influence of warm moist air masses, originating from the northwest, bringing significant 145 

rainfall and rising air temperatures. The latter mainly defines the rainy season. Inversely, the 146 

northernmost ITCZ displacement and the equatorial front result in the presence of cooler and 147 

dryer air masses descending from upwelling regions in the south-west, influencing the dry 148 

season (Rossel and Cadier, 2009). 149 

The most important feature of the rainfall variability in the PAEP region is the occurrence of 150 

inter-annual anomalies as related to the large-scale circulation phenomena such as El Niño-151 

Southern Oscillation (ENSO). The PAEP region is bounded by the limit of the strong ENSO 152 

influence defined by Rossel et al. (1999) as the region where the increase in mean annual 153 

precipitation is greater than 40%. Therefore, in ENSO years abrupt changes in the mean 154 

annual rainfall conditions are considerable with a coefficient of variation reaching 0.40 155 

(Rossel and Cadier, 2009). Such increase is not region-wide uniform, there are important 156 

regional differences in heavy rainfall formation during El Niño (EN) events (Bendix and 157 

Bendix, 2006)  and the EN influence on rainfall variability may change substantially in short 158 

distances in the same Pacific-Andean hydrological unit (Pineda et al., 2013). Futhermore, 159 

since 2000 an atypical meteorological response to EN and La Niña (LN) conditions is 160 

reported over the coastal plains and the western Andean highlands (Bendix et al., 2011). All 161 

this results in a very complex spatio-temporal distribution of rainfall patterns during ENSO 162 

and non ENSO years. These considerations are of paramount interest when dealing with data 163 

quality control of unevenly distributed rain gauges in the PAEP region.  164 
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 165 

2.3 Data  166 

2.3.1 Rain gauge data 167 

A ground precipitation network of 131 rain gauges with daily data (~1964-2010) in the PAEP 168 

region was provided by the Ecuadorian and Peruvian Meteorological and Hydrological 169 

Services, INAMHI and SENAMHI, respectively (Figure 1b). Records with gaps higher than 170 

20% were excluded resulting in 107 locations with long-term daily rainfall time series.  171 

In a first step, a regionalization analysis was conducted on the long-term records to group 172 

spatially homogeneous stations. A station was considered as spatially homogenous if it 173 

showed proportionality in the cumulative monthly volumes as referred to a control station in 174 

the same sub-catchment. The most reliable records were identified by selecting records with 175 

no changes in location and instrument type and then set as control stations for a double mass 176 

analysis (Wilson, 1983). In the double mass analysis, the hierarchical criteria to check 177 

proportionality between the control and the candidate station involves: i) neighbouring, ii) 178 

similarity in altitude, and iii) exposure to the same meso/synoptic climatological feature (e.g. 179 

ENSO). 180 

Next, the temporal homogeneity of each record was checked against error measurements. A 181 

record was considered as temporally homogenous if the record showed no step changes (shifts 182 

in the means) or if the detected step changes were attributed only to climatic processes. The 183 

R-based RHtests_dlyPrcp software package, developed by the Climate Research Division of 184 

the Meteorological Service of Canada and which is available from the Expert Team on 185 

Climate Change Detection, Monitoring and Indices (ETCCDMI) website (Wang and Feng, 186 

2012), was used to identify multiple step changes at documented or undocumented change 187 

points. It is based on the integration of a Box-Cox power transformation into a common trend 188 

two-phase regression model suitable for non-Gaussians series such as non-zero daily 189 

precipitation (Wang et al., 2010). Documented changes (EN driven) are referred as those 190 

defined by Rossel and Cadier (2009) and are the sequence of at least three consecutive 191 

months where the monthly SST anomalies are above 23°C and exhibit a positive anomaly 192 

equal or greater than 1°C. Such events occurred in the years 1965, 1972-1973, 1976, 1982-193 

1983, 1987, 1992 and 1997-1998. For LN driven-changes the year 2008 was also considered.  194 

Non-homogeneous periods were considered as modifications in the field during data 195 

http://www.msc-smc.ec.gc.ca/crb/home_e.cfm
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collection and set as Not Available (NA) and then retested to verify whether they are 196 

homogeneous with the disregarded period(s).  197 

2.3.2 Gridded rainfall dataset 198 

In this study we compare basin station-gridded precipitation fields against basin averaged 199 

precipitation products. Rather than rescaling the products to an arbitrary resolution the 200 

products were evaluated at sub-catchment scale identified during the regionalization analysis. 201 

Namely, instead of a punctual comparison, spatial averages were calculated for the 202 

precipitation products using the proportional coverage of each grid cell. The analysis was 203 

performed for the 1998-2008 11yr period. This period was chosen as common between the 204 

TMPA products and the WRF retrospective simulation. All data-quality checked records were 205 

interpolated to obtain spatial averages in each sub-catchment, except the few whose data is 206 

available through the Global Telecommunication System (GTS). Data from these stations 207 

may have been used for adjusting TRMM estimates. Three GTS stations were identified in 208 

our dataset and excluded. The locations of the GTS stations (five) are shown in Figure 1b.   209 

Using the kriging approach for spatial interpolation of daily rainfall over complex terrains, the 210 

incorporation of correlation with topography/altitude has been suggested to improve 211 

performance; see Buytaert et al. (2006) for highlands ~3500 m a.s.l. and Cedeño and Cornejo 212 

(2008) for the coastal region below 1350 masl in Ecuador. Also, in a climatological study for 213 

Ecuador and North Peru, Bendix and Bendix (1998) showed that the inclusion of the altitude 214 

increases significantly the performance of kriging.  215 

In parallel, several interpolation techniques of increasing complexity have been developed 216 

and evaluated using the gstat R package (Edzer Pebesma, 2011). Inverse distance weighting 217 

(IDW) and ordinary kriging (OK) are fairly similar; both take into account the distance 218 

between stations, but OK has a more complex formulation and therefore expected to be more 219 

accurate. Linear regression (LR) is supposed to perform similar to kriging with external drift 220 

(KED) since they both implement regression with altitude. KED is, however, more accurate 221 

accounting for kriging of residuals, which means that distance between stations influences 222 

interpolation as well.  KED was applied on daily basis, the variogram analysis was performed 223 

at each time step to determine the spatial variability function of precipitation, then,  224 

parameters were estimated from regression residuals for each time step (zero values were 225 

included in the semi-variogram fitting). To discern among different interpolation techniques 226 

Li and Heap (2008) recommends assessing the performance by cross validation methods. 227 
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A key issue in this study is whether the change of spatial support provides a sound reference 228 

for comparison with TMPA’s and WRF products. In general, errors and uncertainty in a 229 

gridded dataset arise from many sources, including errors in the different steps of the data 230 

supply chain (measurements, collection, homogeneity) and in the interpolation technique. It 231 

would be ideal to split and quantify all of them. This is, however, not possible without the 232 

possibility to track them back. Kriging provides a measure of the expected mean value and its 233 

variance at an interpolated point. Several climate studies have used the kriging variance as a 234 

proxy of uncertainty. However, it is acknowledged that kriging variance is not a true estimate 235 

of uncertainty (Yamamoto, 2000 and Haylock et al., 2008). A solution would be to perform 236 

an ensemble of stochastic simulations from which uncertainty can be estimated at the expense 237 

of highly computational resources. Such detailed analysis is out of the scope of this work.  238 

We therefore adopted the alternative method by Yamamoto (2000) for assessing kriging 239 

uncertainty using just the data provided by a single realization. We quantify the total residual 240 

variance and split it up in its main contributing residual variance sources (input (data) and 241 

kriging interpolation (geo-statistical model)) based on a variance decomposition technique 242 

(Willems, 2008, 2012) in order to estimate the fraction of each contributing source. The total 243 

residual variance is assessed based on statistical analysis of the residuals between each 244 

precipitation product (YPP) and KED estimates (YKED). The underlying assumption of the 245 

variance decomposition is that the (causes of the) errors on the YPP and YKED precipitation 246 

estimates are highly different, hence that they can be assumed independent. The residuals are 247 

converted into homoscedastic residuals by means of a Box-Cox (BC) transformation (Box & 248 

Cox, 1964). After this conversion, the total YPP residual variance (S
2
BC(YPP,Residual)) is 249 

decomposed into the precipitation product error variance, hereafter called model error 250 

variance (S
2

BC(YPP,Model)), and the KED error variance (S
2

BC(KED)) (Equation 1).  251 

The KED uncertainty is evaluated using just the random field provided by a single realization 252 

with prescribed parameters (i.e. mean structure, residual variogram) (Yamamoto, 2000). We 253 

estimate the total (YPP) residual variance at every tile (PP – KED).  By subtracting the KED error 254 

variance from the total residual variance of YPP based on Equation (1), we obtain indirect 255 

estimates of the model error variance and map its spatial distribution. 256 

                 
                

          

                     (1) 257 

 258 
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2.3.3 TMPA TRMM 3B42 products 259 

The TMPA 3B42 V7 and its predecessor version V6 version are used in this study. The 260 

TMPA 3B42V6 consists of hourly rainfall rates (mm h
-1

) at surface level with a global 261 

coverage between 50° N and S since 1998. This method combined precipitation estimates of 262 

four passive microwave (PMW) sensors, namely TRMM Microwave Imager (TMI), Special 263 

Sensor Microwave/Imager (SSM/I) F13, F14 and F15, Advanced Microwave Scanning 264 

Radiometer-EOS (AMSR-E) and Advanced Microwave Sounding Unit-B (AMSU-B). The 265 

TMPA V6 algorithm is described in Huffman et al. (2007). The improved version, the 3B42 266 

V7, includes consistently reprocessed versions for the data sources used in 3B42V6 and 267 

introduces additional datasets, including the Special Sensor Microwave Imager/Sounder 268 

(SSMIS) F16-17 and Microwave Humidity Sounder (MHS) (N18 and N19), the 269 

Meteorological Operational satellite programme (MetOp) and the 0.07° Grisat-B1 infrared 270 

data. The changes in the V7 algorithm at various processing levels are described in Huffman 271 

et al. (2010) and Huffman and Bolvin (2012).  272 

It is useful to review some of the efforts in validating TMPA V6 and/or comparing V6 and V7 273 

at low and high altitudes in the tropical Pacific because it has a bearing on the choice of the 274 

satellite products used in our study. While evaluating several precipitation products, Dinku et 275 

al. (2010) reported that V6 outperforms other satellite products (i.e. CMORPH) at 10-daily 276 

accumulation over the dry northern Colombian littoral. The converse was found over the wet 277 

western Pacific coast where CMORPH was slightly better especially at daily scale. In an 278 

evaluation of V7 daily rainfall estimates to analyze tropical cyclone rainfall, Cheng et al. 279 

(2013) found improved skill scores over coastal and island sites in the tropical Pacific. Also, 280 

Zulkafli et al. (2014) reported that the improvement of V7 against V6 is a reduction of the 281 

bias especially in the Peruvian Pacific lowlands. To assess whether such improvements are 282 

seen in the PAEP region, we use both TMPA versions. TMPA 3B42V6 and 3B42V7 283 

precipitation estimates having 3-hourly, 0.25x0.25 degrees resolution were aggregated to 284 

daily data for the 11yr period.  285 

 286 

2.3.4 WRF retrospective simulation 287 

The Scientific Modelling Centre from Venezuela (CMC) and the National Institute of 288 

Hydrology and Meteorology from Ecuador (INAMHI) developed a North Western South 289 

America Retrospective simulation. The dataset, called OA-NOSA30, is available online at the 290 
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International Research Institute for Climate and Society (IRI) web page (Muñoz and Recalde, 291 

2010). The simulation provides numerous climate variables with a 30 km spatial and 6-hour 292 

temporal resolution for the period January 1996 to December 2008 and a global coverage 293 

between 11ºS to 17ºN and 98ºW to 50ºE. The accumulated precipitation was extracted on a 294 

daily basis for the 11-year common period. 295 

OA-NOSA30 is the simulation result from the Weather Research and Forecasting (WRF) 296 

model, a Regional Climate Model (RCM) herein used to downscale the meteorological data 297 

from the NCEP/NCAR Reanalysis Project (NNRP or R1, details at Kistler et al., 2001). 298 

NNRP stands for the combination of global climate model outputs and observations. The 299 

WRF configuration for the Microphysics Parameterization, governing the outputs, was 300 

applied. Muñoz and Recalde (2010) explained that the microphysics were modelled by the 301 

Kessler scheme (RRTM), the Dudhia schemes were used for the modelling of the longwave 302 

and shortwave radiation, respectively; the Monin-Obukhov (Janjic) scheme for modelling of 303 

the surface-layer; and the thermal diffusion with 5 soil levels for modelling the land-surface 304 

physics. Finally the Mellor-Yamada-Janjic TKE scheme was applied for describing the 305 

boundary-layer option, in which the SST update option was selected. 306 

 307 

2.4 Rainfall products evaluation 308 

Bias, root mean square error (RMSE) and Pearson’s correlation (   ) were applied to analyse 309 

the accuracy of the TMPA’s and OA-NOSA30 estimates comparing them with rain-gauge 310 

interpolated estimates at sub-catchment scale (Equations 1 to 3). RMSE includes both 311 

systematic (bias) and non-systematic (random) errors. 312 

      
 

  
     

    
      

     
  (2) 313 

       
 

 
     

         
    

 
     (3) 314 

     
               

                      
 (4) 315 

 316 

Where, P
pp

 is the precipitation products value, P
gauge

 the interpolation estimate from rain 317 

gauge values, and n the number of observations.  318 

Additionally, skill scores were calculated to quantify the products accuracy in detecting daily 319 

accumulation at different precipitation thresholds and they were calculated based on average 320 
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sub-catchment precipitation. The Probability of Detection (POD) gives the fraction of rain 321 

occurrences that were correctly detected; it ranges from 0 to a perfect score of 1. The 322 

Equitable Threat Score (ETS) measures the fraction of observed and/or detected rain that was 323 

correctly detected and adjusted for the number of hits that could be expected due purely to 324 

random chance. A perfect score for the ETS is 1. The Frequency Bias Index (FBI) is the ratio 325 

of the number of estimated to observed rain events; it can indicate whether there is a tendency 326 

to underestimate or overestimate rainy events. It ranges from 0 to infinity with a perfect score 327 

of 1. The False Alarm Rate (FAR) measures the fraction of rain detections that were actually 328 

false alarms. It ranges from 0 to 1 with a perfect score of 0 (Su et al., 2008). 329 

The ETS is commonly used as an overall skill measure by the numerical weather prediction 330 

community, whereas the FBI, FAR, and POD provide complementary information about bias, 331 

false alarms, and misses. To evaluate the performance of the products for light and heavy 332 

precipitation events they were calculated for each sub-catchment and for several thresholds: 333 

0.1, 0.5, 1, 2, 5, 10, and 20 mm day
-1

 (Schaefer, 1990; Su et al., 2008). 334 

Seasonality accuracy at sub-catchment level was evaluated confronting precipitation estimates 335 

against interpolated average monthly rainfall depths. Furthermore, in order to evaluate 336 

precipitation products on increasing time scales, daily, weekly, 15-daily and monthly 337 

estimates were accumulated deriving Pearson’s correlation (Equation 3) and relative bias. The 338 

relative bias was calculated for daily/weekly/15days/monthly time aggregations by 339 

normalizing the Bias (Equation 1) in order to compare different time resolutions. Finally, 340 

annual mean precipitation was calculated for interpolated rain gauges and precipitation 341 

products and depicted spatially. 342 

 343 

3 Results 344 

3.1 Data quality verification, interpolation and uncertainty 345 

The double mass analysis discriminated 21sub-catchments within which rainfall is spatially 346 

correlated. The proportionality is strong in the coastal areas where the altitude range is narrow 347 

but is less marked at higher altitudes. Four stations do not have significant correlation with 348 

any other station, and the sub-catchments in which they are situated were ranked as 349 

independent.  350 

The temporal homogeneity check for each station reported several change-points, with a 351 

statistical significance of 5%. However, most of them were attributed to EN regional 352 
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variations and therefore rejected as artificial change-points. Besides the documented changes, 353 

several change-points appeared repeatedly in nearby locations. They were interpreted as a 354 

common modification in the local climate and therefore disregarded as change-points. Despite 355 

of these considerations, non-homogeneous periods significant at 5% were found in 30 356 

stations. Those periods were discarded and the stations tested again for homogeneity. Nine 357 

stations did not pass the test. Therefore they were no longer taken into account, resulting into 358 

a quality checked set of 98 time series. From this dataset the 11yr period, January 1998 to 359 

December 2008, was taken for the comparison between OA-NOSA30 and the TMPA’s 360 

estimates, and rain gauge precipitation data. The 98 homogeneous stations together with the 361 

21 homogenous sub-catchments are shown in Figure 1b. The area and the density of the rain 362 

gauge stations per sub-catchment are listed in Table 1. The highest density is found in Quiroz, 363 

Upper Guayas, Alamor, Chipillico and the lowest in Naranjal-Pagua, Lower Guayas and Piura 364 

and Tumbes. 365 

Table 2 reports the mean cross validation results of the four investigated techniques to grid 366 

daily precipitation in the period 1998-2008. Correlation for KED (0.49) is twice the value 367 

than for IDW, LR, and OK techniques (0.26, 0.28, and 0.21, respectively). Not only its mean 368 

is higher but correlation on almost every day was better than for any other technique. The 369 

Mean Square Error (MSE) for KED is less than for LR and slightly less for OK. The 370 

performance values explain how well the technique represents the variability of the 371 

precipitation assessed by the squared of the residuals and it was found better for KED. 372 

Overall, KED performed better in all statistics and LR was the second best. Finally, the KED 373 

technique, which includes variogram analysis and the use of a 92x92m Digital Elevation 374 

Model (DEM) from the Shuttle Radar Topography Mission (SRTM) as external drift, was 375 

chosen to interpolate station precipitation. The result is a daily gridded dataset (4018 time 376 

steps) with 92x92m resolution, which captures the horizontal and vertical gradients as well as 377 

the most prominent orographic features. We first discuss the gridded dataset constraints and 378 

related uncertainty when applying this dataset for comparison with the precipitation products. 379 

Figure 2a, 2b and 2c present results of the uncertainty analysis for the comparison of OA-380 

NOSA30, TMPAV6 and V7 with KED estimates, based on the variance decomposition 381 

technique of one-day single random realization. Figure 2a shows that the OA-NOSA30 382 

estimates are subject to the largest model residual variance, which strongly correlates with the 383 

high topographic precipitation gradients as seen over the inner-sierra foothills (i.e. Upper-384 

Guayas (5), Cañar (7) and Jubones (9)), and to a lesser extent over the moderate slopes of the 385 
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Cordillera Costanera (i.e. Chone (1)). The KED uncertainty has the highest contribution to the 386 

total residual variance in these regions whereas in the remaining stations the contribution of 387 

the KED uncertainty is more or less proportional to the total residual variance. In the 388 

comparison of TMPAV6-V7 (Figures 2b and 2c) with KED estimates the spatial trends are 389 

less evident. Correlation with elevation still takes place in the V6 analysis but the largest total 390 

residual variance does not show clear distinction between middle (~500 masl) and high 391 

altitudes (~3000 masl). For the V7 analysis the uncertainty mapping shows a more scattered 392 

distribution with almost no spatial trends. In both the V6 and V7 cases, the KED contribution 393 

to the total uncertainty remains slightly larger than the precipitation product error variance. 394 

All results together suggests that when comparing precipitation products against KED 395 

estimates, the TMPAV7 based product, in the first place, followed by the V6 product, offer 396 

the best precipitation estimates since the precipitation uncertainty is less affected by the 397 

topographic setting that provides the basis for our proposed gridded dataset.  The largest 398 

errors are encountered in the comparison between OA-NOSA30 and KED estimates at high 399 

altitudes. This has implications for our catchment-averaged analysis.  These limitations are 400 

relevant for the results presented in the following sections.  401 

 402 

3.2 Daily verification 403 

Figure 3a, 3b, 3c shows the bias, RMSE and Pearson’s correlation between precipitation 404 

products and daily KED estimates accumulated over each sub-catchment unit and ranked 405 

from N-S within the period 1998-2008. These statistics reveal a strong spatial variation; for 406 

3B42V6 and OA-NOSA30 bias and RMSE decrease from North to South while correlation 407 

increases, whereas for TMPA V7 significant bias reduction and increase in correlation seems 408 

sub-catchment and precipitation regimen dependent.  409 

TMPA V7 and V6 overestimate precipitation in all sub-catchments, with an average range 410 

between 0 to ~2 mm day
-1

. Conversely, OA-NOSA30 underestimates precipitation, except in 411 

Quiroz (17) and Chipillico (19), the range of over/under estimation is within ~0.5 to -1.5 mm 412 

day
-1

 (Figure 3a). The RMSE ranges from 4 to 9 mm day
-1

 for both TMPA estimates. The 413 

RMSE gives more weight to the extremes because residuals are squared and they are typically 414 

higher for precipitation extremes. Given that, particularly for TMPA V6, the bias is very high 415 

in wet seasons RMSE values are higher for TMPA V6 estimates than for OA-NOSA30 416 

(Figure 3b).   417 
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Figure 3c shows that the Pearson correlation is very similar between TMPA V6 and OA-418 

NOSA30 oscillating between 0.3 and 0.6 except in Arenillas (11) where OA-NOSA30’s 419 

detection fails. In the Northern region the highest correlation (0.5) is found at Lower/ Middle 420 

Guayas (3)/(4) and the rest of the northern sub-catchments record  correlations ~0.3. In the 421 

Central region, average correlation is about 0.35. In the southern region, correlation 422 

consistently rises to 0.5 in a large area (Catamayo-Chira and Piura catchments). TMPA V7 423 

shows a very modest region-wide improvement over TMPA V6 only with a notable 424 

correlation increase on Chone (1), Upper Guayas (5), Taura (6), Jubones (9) and Zarumilla 425 

(12).  426 

OA-NOSA30 presents almost no region-wide bias on precipitation rates less than 1 mm day
-1

. 427 

For the southern sub-catchment: Alamor (15), Macará (16), Quiroz (17), Chira (18) and Piura 428 

(21) this is up to 10 mm day
-1

; over such a threshold precipitation is systematically 429 

underestimated. TMPA V7 and V6 overestimate precipitation amounts smaller than 10 mm 430 

day
-1

 in sub-catchments in the central and southern regions. For lowland areas in the north this 431 

threshold changes to 20 mm day
-1

. As well as for OA-NOSA30, precipitations over 20 mm 432 

day
-1

 are systematically underestimated. 433 

Figure 4a, 4b and 4c shows categorical scores POD, ETS, FBI and FAR for representative 434 

sub-catchments distributed in the Northern, Central and Southern region corresponding to the 435 

TMPA V7, V6 and OA-NOSA30 estimates. The four sub-catchments shown in Figure 3 were 436 

chosen as representative according to their location and dominant precipitation regime. In the 437 

humid northern part, Chone (1), a coastal and ocean exposed sub-catchment, and Middle 438 

Guayas (4) in the inner core and greatly influenced by the continental climate divide, were 439 

selected. In the Central region, Jubones (9) with a pronounced leeward effect; and Chira (18) 440 

in the southern arid coast, were considered. Their indexes lead to conclusions which can also 441 

describe the situation of the surrounding sub-catchments in each region. The difference 442 

between scores of TMPA V7 (4a) and V6 (4b) is almost undistinguished, both estimates 443 

shows a POD value of 0.6, on average, for precipitation rates less than 5 mm day
-1

. It 444 

gradually decreases to ~0.2 when the threshold is higher than 20 mm day
-1

. A close inspection 445 

reveals a marginal improvement of V7 over V6 only evident in Middle Guayas (4) at higher 446 

thresholds.  ETS scores, for precipitation estimates equal or lower than 5 mm day
-1

, are on 447 

average 0.25. ETS, a summary score that penalizes for hits that could occur due to 448 

randomness, can be used to compare performance across regimes. A slight improvement of 449 

V7 across all threshold is restricted to Chone (1).  FAR and FBI increase with higher 450 
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thresholds. This means that overestimation exists over 1 or 2 mm day
-1

 and false alarms are 451 

then also present. In general, TMPA products detect amounts of precipitation higher than 5 452 

mm day
-1

 but it overestimates them; while amounts of precipitation less than 2 mm day
-1

 are 453 

detected with a low fraction of FAR, although bias is present. TMPA’s scores are better in the 454 

Southern region, Chira (1).  455 

Figure 4c show the same categorical scores for OA-NOSA30. In all sub-catchment, POD 456 

decreases when the threshold increases, indicating that the NWP estimates better small 457 

precipitation events. POD decreases abruptly to 0 when considering thresholds of 5 and 10 458 

mm day
-1

 thresholds. The behaviour of ETS scores is the same as for POD but the average 459 

scores are half the amount of POD. For small amounts of precipitation, i.e. less than 3 mm 460 

day
-1

, OA-NOSA30’s POD scores are around 0.6 while ETS scores are 0.3. The FBI plot 461 

shows underestimation. False alarms increase with higher thresholds with FAR values 462 

typically in the range 0.2 to 0.5. There are no FAR values given for thresholds over 5- 10 mm 463 

day
-1

 since the POD of OA-NOSA30 is zero for those precipitation depths. Spatially, POD 464 

and ETS show a better probability of detection in the Southern region and FBI shows lower 465 

bias in that region compared to the Northern and Central regions; however FAR is lower in 466 

the Northern region Middle Guayas (4). 467 

 468 

3.3 Monthly verification 469 

Although Figure 5a, 5b and 5c shows the mean monthly precipitation within the period 1998-470 

2008 for KED estimates against TMPA V7, V6 and OA-NOSA30 for the four selected sub-471 

catchments, the analysis below corresponds to all 21 sub-catchments. In general, Figure 5c 472 

reveals that the three approaches yield comparable results for the Southern region, which 473 

includes the sub-catchments Alamor (15), Macará (16), Quiroz (17), Chira (18), and 474 

Chipillico (19). In most of the sub-catchments, all datasets depict well seasonality showing 475 

wet conditions within the period January-May. In the Northern and Central regions, during 476 

the wet season, TMPA V7 and V6 overestimate while OA-NOSA30 underestimates 477 

precipitation (Figures 5a, 5b). The pattern of over- and underestimation is not that clear in all 478 

datasets during the dry season. Maussion et al. (2011) showed that the WRF and TRMM well 479 

estimated the precipitation distribution, but depths and positions of maxima do not match. 480 

Additionally, they showed that WRF usually predicts more rainfall over larger areas, 481 

notwithstanding WRF may be closer to reality than TRMM.  482 
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The density of rain gauges in the Catamayo-Chira catchment is higher and also the quality of 483 

data is better (fewer missing gaps and change-points). This might indicate that KED estimates 484 

are better for this area. However, in most of the Southern region TMPA and OA-NOSA30 485 

estimates are similar to KED estimates even in the high altitude sub-catchment i.e. Quiroz 486 

(17), which is not the case for the rest of the sub-catchments.  Also, there are other sub-487 

catchments such as Catamayo (14) and Upper Guayas (5) where the precipitation estimates 488 

are neither similar between them nor to KED estimates, despite the high quality of data. Thus, 489 

KED estimates prove to be a good reference and the dependence of the interpolation 490 

technique on the rain-gauge density (Table 1) as well as the error seen at high altitudes when 491 

comparing OA-NOS30 and KED is not affecting substantially the analysis. This is a very 492 

important issue, given that the density of rain gauges is relatively low and building up a 493 

gridded rainfall dataset that is the least influenced by this fact is crucial. Notice that the 494 

success of KED technique may differ for areas with lower gauge densities, which was not 495 

tested in this study. TMPA’s overestimation occurs for any precipitation amount when 496 

aggregated per month (Figure 5); unlike daily aggregation where over-underestimation occurs 497 

according to the amount of precipitation (see FBI scores in the Figures 4a and 4b). 498 

 499 

3.4 Verification on multi-temporal resolutions 500 

The Pearson correlation (Figure 6a) and bias (Figure 6b) were calculated on daily, weekly, 501 

15-daily and monthly time scales for TMPAV7, V6 and OA-NOSA30. In general, correlation 502 

increases with time scale, and is higher for monthly than 15-daily and weekly time aggregated 503 

periods. Bias seems to accumulate when time aggregation increases as found for WRF in 504 

other regions (Cheng and Steenburgh, 2005; Ruiz et al., 2010). The purpose of finding the 505 

relative bias in the estimates is to quantify respectively the over-underestimation of the 506 

precipitation depth. The relative bias is consistent with the correlation coefficient, decreasing 507 

as the time aggregation increases. Although the daily bias is high in Jubones (9) (~1000% for 508 

V7 and ~1200% for V6) and in Middle Guayas (4), higher for V7 than V6; on a weekly to 509 

monthly scale the bias percentage decreases. The worst performance of both TMPA estimates 510 

was found in Jubones, where  correlation is lowest and bias percentage is highest.  For OA-511 

NOSA30 that is the case for Chone (1) and Jubones (9). The results found for TMPA, i.e. that 512 

correlation increases and bias reduces as time aggregation increases, are in agreement with 513 

previous studies (Scheel et al., 2011; Habib et al., 2009; among others).   514 
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Aggregation of the mean annual rainfall was performed to compare the spatial performance of 515 

the three approaches (OA-NOSA30, TMPAV6 and V7) against KED estimates in the study 516 

area (Figure 7). Comparison shows that the TMPA estimates are closer to the spatial pattern 517 

of the mean annual rainfall, though mean annual rainfall in the north and south-east are 518 

overestimated. OA-NOSA30 presents a huge underestimation and does not reflect spatial 519 

variability, except over the Southern region. Over the latter region, OA-NOSA30 bias is small 520 

enough to represent a spatial pattern approaching the one based on TMPA estimates. 521 

4 Discussion 522 

Our analysis shows that both TMPA products overestimate precipitation in the 21-523 

subcatchments of the heterogeneous PAEP region. Key challenges in the estimation of 524 

precipitation from satellite estimates arise from the processing scheme for MW and IR data. 525 

The problem with IR data processing is that global algorithms do not consider the altitude of 526 

the hydrometeor. Dinku et al. (2011) suggest that overestimation over dry areas may be 527 

attributed to sub-cloud evaporation. While this mechanism may have implications on the 528 

overestimation of TMPA onshore the coastal plain, especially in the arid Peruvian littoral 529 

where a dry low-atmosphere is common all year-round; the attribution of TMPA 530 

overestimation to sub-cloud evaporation on the middle/high altitude sub-catchments is 531 

inconclusive. Bendix et al. (2006) showed that, over the Ecuadorian territory and 532 

surroundings, average cloud-top height increases from W-E showing a more stratiform cloud 533 

dynamics in the Pacific area and the coastal plains, and, that the western Cordillera is a true 534 

division for the Pacific influence.  These authors describe the seasonal spatial pattern of 535 

cloud-top height distribution within December-May (wet season), possessing a well-defined 536 

blocking height (~4.5 < 5.0 km) between 0-3ºS, but less marked southward. Given that IR 537 

data processing scheme infers precipitation from the IR brightness temperature at the cloud 538 

top (implicitly cloud height) it would be expected that overestimation follows the same spatial 539 

pattern. However, our analysis showed that even though TMPA overestimation matches the 540 

increasing W-E cloud-top gradient it does not explain the large overestimation in the Northern 541 

bottom valleys (i.e. Lower Guayas and Chone catchment). The regional differences in cloud 542 

properties between the Northern and Southern catchments help to explain the differences in 543 

TMPA overestimation. Over the northern region ~0º (Quito-transect), (Bendix et al. 2006), 544 

cloud frequency is substantially higher than the reduced cloudiness at ~4ºS (Loja-transect).  545 

To illustrate these differences Figure 8a, 8b, 8c show cloud density patterns using anomalies 546 

of interpolated Outgoing Longwave Radiation (OLR) (Liebmann and Smith, 1996) as proxy 547 
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for cloudiness (negative anomalies imply increased cloudiness) during the rainy season within 548 

1998-2008. During December-January (8a) symmetrical patterns of cloudiness are observed 549 

over northern and southern sub-catchment, followed by increased cloudiness which 550 

concentrates over the north-western edge during January February (8b).  Then, cloudiness 551 

exhibits a marked north-southeast gradient in April-May (8c). This suggests that in addition to 552 

the error introduced by the estimation of the cloud-top, the TMPA overestimation on the 553 

Northern catchments may also be influenced by frequent occurrence of low stratiform clouds 554 

(typical on the coastal area) which under stable conditions are detached from precipitation 555 

patterns (Bendix, et al., 2006).  This high density of non-rain producing clouds would affect 556 

the IR data retrieval resulting into overestimation.  557 

The largest deficiencies of TMPA’s estimates are encountered in separating the 558 

windward/leeward effect of the Andean ridges on orographic rainfall which is particularly 559 

witnessed in Jubones where the leeward effect is dominant.  West of the climate divide there 560 

is no typical precipitation gradient. Through blocking at the ridges and through re-561 

evaporation, rainfall of any origin affects more frequently higher elevations than valley floors 562 

(Emck, 2007).  563 

TMPA V7 and V6 estimates show different region-wide skills on daily basis but they yield 564 

comparable results particularly in the Southern region (3.6-6ºS) in weekly to monthly time 565 

aggregations. TMPA V7 shows localized skill that is higher than V6 on short-steep coastal 566 

and ocean exposed sub-catchments but similar or lower skills on large inland basins. The 567 

improvement is seen in the detection capacity of light orographic precipitation on coastal 568 

ocean exposed sub-catchments, where the spatial sampling seems to capture small 569 

precipitation gradients. Over coastal areas the orographic enhancement is a small spatial scale 570 

event (Minder et al., 2008, Cheng et al., 2013). In the inner-most sub-catchments where 571 

gradients on annual precipitation may reach i.e.700 mm / 100 m at 3400 masl (Emck, 2007) 572 

the temporal sampling of V7 cannot capture the rapid evolution of orographic rainfall and the 573 

overestimation is similar to that of the V6 version. Notice that inland the total residual variance 574 

and the KED uncertainty increase with elevation (especially for V6). This could influence the 575 

apparent decrease of the V6 performance seen on the inner-most sub-catchments. This is, 576 

however, restricted to very few sub-catchments where the spatial average is dominated by the 577 

weight of high altitude stations.   578 

OA-NOSA30 product only shows reasonable skills in the Southern region (3.6-6ºS) where 579 

amount and occurrence are relatively well represented. The greatest NWP limitations  are 580 
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encountered in representing the fast enhancement of rain rates due to the effect of the coastal 581 

mountains as premier barrier for moisture transport in short-steep coastal sub-catchments (3-582 

3.6 ºS). The nearly null NWP detection capability is likely related to the unique rainfall rates 583 

that occur on the ocean facing foothills of the Cordillera “Costanera”. Unlike in most tropical 584 

mountains where convective rainfall dominates in Southeast Ecuador  585 

vigorous advection shape a monotonic increasing precipitation gradient with altitude. In the 586 

core of the southern region, Emck (2007) reported that rainfall originates from an equal-587 

balance of advective-topographic (light) and convective (heavier) genesis. Such a 588 

characteristic, over the Southern region, suggests that the NWP parameterization for OA-589 

NOSA30 is particularly suited to solve this type of precipitation.  For the Northern regions, 590 

which are more affected by the annual movement of the ITCZ, the influence of the continental 591 

climate divide and the occurrence of more stratiform cloud, deep convection (likely the 592 

dominant mechanism) is not emulated by the NWP model. A complete description of the 593 

errors in the NWP implementation is out of the scope of this study, we therefore only 594 

highlight some of the major sources. The lateral boundary conditions (reanalysis dataset) have 595 

presumably a major role on the degradation of WRF product quality. The poor representation 596 

of the Andes in the reanalysis model has showed to contribute to a modest simulation of 597 

meteorological fields such as wind (Schafer et al., 2003). Maussion et al. (2011) found that 598 

some undesired numerical effects and, eventually, inadequate input data can affect the 599 

operational output of the WRF model, in particular for extreme events; probably by 600 

overstressing certain physical processes. Jankov et al. (2005) found that the greatest 601 

variability in rainfall estimates from the WRF model originates from changes in the choice of 602 

the convective scheme, although notable impacts were observed from changes in the 603 

microphysics and planetary boundary layer (PBL) schemes.  However, Ruiz et al. (2010) 604 

found that rainfall estimates only vary slightly among different configurations, but biases 605 

increase with time aggregation. Those findings agree with previous studies (Blázquez and 606 

Nuñez, 2009; Pessacg, 2008) and suggest that there is a common deficiency in the convective 607 

schemes used for this model.  608 

 609 

5 Conclusions  610 

In general, TRMM V7, V6 and OA-NOSA30 estimates capture the most prominent seasonal 611 

features of precipitation in the study area. Quantitatively, only the Southern sub-catchments of 612 
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Ecuador and Northern Peru are well estimated by both satellite and NWP estimates. There is 613 

low accuracy of both approaches in the Northern and Central regions where TMPA V7 and 614 

V6 overestimate while OA-NOSA30 systematically underestimates precipitation. The 615 

improvement of V7 over V6 is not evident region-wide. It appears that V7 detects better light 616 

precipitation rates on coastal and ocean exposed basins. Inland the differences of the two 617 

versions of TRMM 3B42 are almost unnoticeable. The separation of the windward/leeward 618 

Andean effect on orographic precipitation appears as the main challenge for TMPA 619 

algorithms. It was found that the detection probability is better for small rainfall depths (less 620 

than 5 mm day
-1

) than for high amounts of precipitation. OA-NOSA30 showed the best skills 621 

in detecting a balanced advective/convective regime of precipitation in the Southern region.  622 

Analysis of daily, weekly, 15-daily and monthly time series revealed that the correlation with 623 

station observations increases and bias decreases with the time aggregation. Differences are 624 

considerably larger for daily than weekly aggregation. The correlation and bias values are 625 

similar in the Northern and Southern region but in the Central region correlation is smaller 626 

and bias is higher for all time aggregations. TMPA V7, V6 and OA-NOSA30 are able to 627 

capture relatively well the spatial pattern in the Southern region of the study area, but the 628 

performance of both approaches reduces in the Northern and Central region. In general the 629 

two TMPA versions perform better than OA-NOSA30.  630 

In view of hydrological and water resources management applications, it has been 631 

demonstrated that the potential intake of both satellite and NWP estimates in the PAEP region 632 

differs among catchments and precipitation regimes. Our analysis has shown that both 633 

approaches capture the mean spatial and temporal features of precipitation at weekly to 634 

monthly accumulations over a particular region of Southern Ecuador-Northern Peru. These 635 

findings are relevant for these poorly gauged regions where there is growing pool of 636 

modelling work that rely on the use of satellite-based rainfall estimates as forcing data. Also 637 

dynamical weather prediction becomes more frequently applied, but this prediction is still in 638 

an experimental stage. However, for operational applications such as flood warning, which 639 

demand high temporal resolution rainfall data, accurate depth and storm location estimates are 640 

mandatory. The usefulness of both estimates is less promising.            641 

  642 
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Table 1. Description of sub-catchments and rain gauge density of homogeneous stations 797 

Code Sub-catchments Catchment 
Altitudinal range 

(m) 

Area 

(km²) 

Stations 

density* 

1 Chone Chone 0 - 350 3259 0.80 

2 Portoviejo Portoviejo 0 - 600 3548 1.00 

3 Lower Guayas Guayas 0 - 680 14641 0.30 

4 Middle Guayas 

 

0 - 4100 21423 0.70 

5 Upper Guayas 

 

300 - 4000 3642 2.50 

6 Taura Taura 0 - 2600 2449 0.40 

7 Cañar Cañar 0 - 4300 2412 1.50 

8 Naranjal-Pagua Naranjal-Pagua 0 - 4000 3387 0.01 

9 Jubones Jubones 0 - 4000 4361 1.20 

10 Santa Rosa Santa Rosa 0 - 2200 1062 0.80 

11 Arenillas Arenillas 0 - 1400 653 1.40 

12 Zarumilla Zarumilla 0 - 800 810 1.10 

13 Puyango Puyango - Tumbes 300 - 3500 3662 0.50 

14 Catamayo Catamayo - Chira 300 - 3500 4173 1.70 

15 Alamor 

 

200 - 2300 1182 2.30 

16 Macará 

 

150 - 3600 3166 2.00 

17 Quiroz 

 

150 - 3500 3137 3.70 

18 Chira 

 

0 - 800 4931 0.70 

19 Chipillico 

 

100 - 3200 1179 2.30 

20 Tumbes Puyango - Tumbes 0 - 1200 8200 0.30 

21 Piura Piura 0 - 2500 9472 0.30 

    Total   100745   

* Stations per precipitation products grid cell (~900 km²) 

     

 798 

Table 2. Cross-validation results of daily rainfall interpolation for all stations over the period 799 

1998-2008 using inverse distance weighting (IDW), linear regression with altitude (LR), 800 

ordinary kriging (OK), and kriging with external drift (KED) techniques 801 

Method Correlation MSE Performance 

IDW 0.260 65.33 0.012 

LR 0.275 0.656 0.881 

OK 0.210 0.550 0.865 

KED 0.484 0.510 0.885 

 802 

 803 

 804 
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 805 

Figure 1. (a) Location of the study area. Topography and boundaries of the catchments (grey line) in 806 

the Pacific-Andean region of Ecuador and Peru. (b) Sub-catchment boundaries (grey line) and rain 807 

gauge stations (triangles) used for the evaluation. Dots indicate GTS stations. 808 

 809 
Figure 2. Spatial distribution of the total residual variance (graded orange circles) and the fractional  810 

contribution of the KED uncertainty in the total residual variance (graded red circles) based on the 811 

comparison  of one-single day random KED simulation against (a) OANOSA-30, (b) TMPA V6 and 812 

(c) TMPA V7. The size of the circles is proportional to the variance value.  813 
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 814 

Figure 3. Overall performance of the daily analysis for TMPA V7, V6 and OA-NOSA30 and 815 

precipitation estimates per sub-catchment, averaged over the period 1998-2008. Names of sub-816 

catchments corresponding to the numbers are detailed in Table 1. a) Bias b) RMSE and c) Pearson's 817 

correlation coefficient. 818 
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819 
       820 

Figure 4. Categorical scores (POD, ETS, FBI, and FAR) of daily rainfall average for a) TMPA V7, b) 821 

V6 and c) OA-NOSA30 outputs against KED interpolated station data averaged over the period 1998-822 

2008, applying different thresholds as precipitation upper limit. 823 

 824 

Figure 5. Mean monthly precipitation in sub-catchments from North to South: (a) Chone, (b) Middle 825 

Guayas, (c) Jubones, and (d) Chira over the period 1998-2008. 826 
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 827 

 828 

Figure 6. Overall performance analysis considered for daily, weekly, 15-daily and monthly time 829 

aggregations over the period 1998-2008. a) Pearson's correlation coefficient and b) relative bias (%) 830 

for TMPA V7, V6 and OANOSA-30 products calculated for a representative sub-catchment in the 831 

north, centre and south. 832 

 833 

Figure 7. Spatial distribution of mean annual precipitation over the period 1998-2008 according to the 834 

KED interpolation of 98 rain gauges (a), OA-NOSA30 (b), TMPA  V6 (c) and TMPA V7 (d).  835 
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 836 

Figure 8. Monthly anomalies of OLR (Watts/m
2
) during 1998-2008 within the rainy season  837 

December-January (left), February-March (centre),  April-May (right). 838 

 839 

 840 


