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Abstract

Fluxes of the three main greenhouse gases (GHG) CO,, CH, and N,O from peat and
other organic soils are strongly controlled by water table depth. Information about the
spatial distribution of water level is thus a crucial input parameter when upscaling GHG
emissions to large scales. Here, we investigate the potential of statistical modeling for
the regionalization of water levels in organic soils when data covers only a small fraction
of the peatlands of the final map. Our study area is Germany. Phreatic water level data
from 53 peatlands in Germany were compiled in a new dataset comprising 1094 dip
wells and 7155 years of data. For each dip well, numerous possible predictor variables
were determined using nationally available data sources, which included information
about land cover, ditch network, protected areas, topography, peatland characteristics
and climatic boundary conditions. We applied boosted regression trees to identify de-
pendencies between predictor variables and dip well specific long-term annual mean
water level (WL) as well as a transformed form of it (WL;). The latter was obtained by
assuming a hypothetical GHG transfer function and is linearly related to GHG emis-
sions. Our results demonstrate that model calibration on WL, is superior. It increases
the explained variance of the water level in the sensitive range for GHG emissions and
avoids model bias in subsequent GHG upscaling. The final model explained 45 % of
WL, variance and was built on nine predictor variables that are based on information
about land cover, peatland characteristics, drainage network, topography and climatic
boundary conditions. Their individual effects on WL, and the observed parameter in-
teractions provide insights into natural and anthropogenic boundary conditions that
control water levels in organic soils. Our study also demonstrates that a large frac-
tion of the observed WL, variance cannot be explained by nationally available predictor
variables and that predictors with stronger WL, indication, relying e.g. on detailed water
management maps and remote sensing products, are needed to substantially improve
model predictive performance.
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1 Introduction

Greenhouse gas (GHG) emissions from organic soils can be high compared to mineral
soils. In Germany, the fraction of organic soils classified as peatlands covers only 5%
of the land surface, but does account for 40 % of GHG emissions in the reporting cate-
gories “agriculture” and “land use, land use change and forestry” of the UN Framework
Convention on Climate Change (UNFCCC) (UBA, 2012). Also other organic soils with
a lower soil organic carbon content (SOC) but still meeting the definition of organic soils
according to IPCC (2006) are important sources of persistently high GHG emissions
(Leiber-Sauheitl et al., 2014). In our study, we also consider these soils. For simplifi-
cation, we will refer in the following to the total of peatlands and “other organic soils”
as organic soils. Current estimates of GHG emissions from organic soils are fairly un-
certain and reporting of most countries relies on IPCC default emission factors (EF) for
CO, emissions which are stratified for land use and climatic region, e.qg. 10tCha™" yr'1
for arable land in the warm temperate zone.

Artificial drainage turned the function of former natural peatlands from a C sink into
a C source. Experimental work with organic soils during the last two decades showed
that the aerated soil pore space above the water level is one of the key variables ex-
plaining the amount of CO, emissions (Moore and Dalva, 1993). Frequently, the wa-
ter level relative to soil surface (further simply referred to as “water level”, with neg-
ative values below ground) is used as proxy for air-filled porosity, given the simplicity
and availability of water level measurements. Additionally, low water levels and oxy-
gen availability are also key drivers of nitrous oxide (N,O) production in organic soils
(Regina et al., 1996), which increases the relevance of organic soils for climate change
mitigation policy. During anaerobic conditions when water levels are at or above the
land surface, substantial methane (CH,) emissions can occur (Levy et al., 2012).

It is postulated that the GHG-budget — the sum of the CO,-equivalents of the three
main greenhouse gases (CO,, N,O, CH,) —is at minimum for annual mean water lev-
els (annual mean further defined by the variable name WL) at about —0.05 to —-0.1m
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(Drosler et al., 2011). Following atmospheric sign convention, a positive budget stands
for net emissions, while a negative sign indicates a net uptake of GHGs. Other pa-
rameters, as physical and chemical soil properties and vegetation, also influence the
amount of the emissions, and thus weaken the relation between total GHG budget and
WL.

If available, information about the spatial distribution of WL can identify GHG hot spot
regions and improve the accuracy of total GHG budgets at large scales. The application
of transfer functions that relate GHG emissions to WL and potential other influencing
site characteristics can refine the estimates derived from simple application of IPCC
default EFs. However, in many countries and regions, as e.g. Germany and Europe,
a map of WL in organic soils does not exist. The spatial availability of measured WL is
much higher than of measured GHG fluxes, which suggests the use of WL as scaling
parameter for upscaling GHG emissions.

Several methods were applied in the past to produce WL maps. Their suitability is
strongly related to data availability, which very often decreases in quality and spatial
density with increasing scale of the study area. Spatially-distributed process-based
modeling (Thompson et al., 2009) and semi-physical statistical approaches (Bierkens
and Stroet, 2007), are well able to reproduce water level dynamics in wetlands envi-
ronments, including peatlands. However, they heavily rely on spatial information about
the system’s physical properties and boundary conditions (peat hydraulic properties,
hydraulic conductivity of peat base, drainage system); data that is often only available
with sufficient detail at a regional scale (Limpens et al., 2008). Despite this difficulty
there are studies in which process-based models were applied to model peatland wa-
ter level at large scale (national or continental). Gong et al. (2012) adopted a common
SVAT model to account for the differing hydrological processes in pristine fens, pristine
bogs and drained peatlands, and modeled water level fluctuations in boreal peatlands
for whole Finland. However, calibration and validation with data from only three mires
does not allow conclusions about the accuracy and general applicability of the model.
Numerous large scale hydrological wetland models are often developed with a focus
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on delineating wetland extent (Melton et al., 2013). TOPMODEL-based schemes (Ju
et al., 2006) and more advanced large scale hydrologic frameworks (Fan and Miguez-
Macho, 2011) are suited to model WL, but do not account for anthropogenic drainage
and thus are only applicable to pristine (or nearly-pristine) peatland systems.

When detailed physical model input that is needed for a physically-based approach
is lacking, statistical or machine learning tools represent a promising alternative (Finke
et al., 2004). Potential predictor variables that are available at the final map scale are
determined for each location with water level data and the algorithm identifies depen-
dencies between potential predictors and target variables, as WL or other statistical
values that describe water level dynamics. For areas rich in water level data, e.g. the
Netherlands, residuals of the statistical model can afterwards be analyzed for spatial
correlation. If this is present, it can be used to correct for spatially correlated model bias
by kriging. This scheme has been applied to agricultural areas by Finke et al. (2004)
and to nature conservation areas by Hoogland et al. (2010). Spatial interpolation ap-
proaches can include ancillary data like mapped geophysical parameters (Buchanan
and Triantafilis, 2009). Statistical approaches strongly rely on both quantity and quality
of the data on the target variable itself, i.e. the water level data. An important quality
criterion for water level data from organic soils is the measurement depth. It is cru-
cial that there is little or no hydraulic resistance by a low conductive layer between the
perforated part of the monitoring well and the fluctuating water level. If the hydraulic re-
sistance is too high, the monitoring well acts as a piezometer and water levels may sub-
stantially differ from the actual phreatic level as shown for peatlands by van der Gaast
et al. (2009). If such piezometer data is part of a dataset and interpreted as phreatic
water level data during model calibration, this can lead to an under- or overestimation
of predicted water levels in organic soils. An underestimation of water level predictions
(too dry) is discussed for Dutch modeling studies in van der Gaast et al. (2009).

At present, in Germany a map on water levels in organic soils that could be used
for GHG upscaling is missing. This and current efforts on improving GHG emission
estimates for German organic soils were the main drivers for our study. Thus, the major
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goal of this study was the development of a model concept that produces a water level
map at the scale of all organic soils in Germany that is specifically optimized for water
level ranges to which GHG emissions react sensitively. In a first step, we compiled
a new dataset of phreatic water level time series of organic soils with contributions from
numerous data providers. Based on this data, we developed a modeling approach for
the annual mean water level that follows the basic idea of the statistical regionalization
presented in Finke et al. (2004). However, the data situation of our study substantially
differed from their study. Our data covers only a small fraction of the peatlands of the
final map and spatial interpolation of residuals was not possible. We thus extended
their approach by:

— including additional possible predictor variables,

— using boosted regression trees as modeling tool to identify the influence of both
numerical and categorical variables simultaneously,

— applying an objective weighting scheme that balances out heterogeneous water
level datasets with highly variable spatial data density,

— transforming the annual mean water level, WL, into a transformed annual mean
water level, WL, that shows a linear relationship with the GHG budget and opti-
mizes model calibration for the WL range relevant for GHG emissions, and by

— restricting the water level regionalization to phreatic water levels of organic soils.

We present a detailed analysis of the influence of the individual predictor variables on
water levels of organic soils as well as their interactions. Furthermore, the manuscript
includes the estimation of model uncertainty and possible paths of future model im-
provement. Finally, the calibrated model is used to derive a map of WL, for all organic
soils in Germany, and the regionalization results are presented.
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2 Dataset and methods
2.1 Dataset of phreatic water levels in organic soils

Available data of phreatic water levels in organic soils are scarce. In contrast to data
of rather deeply drilled observation wells of official groundwater monitoring networks,
short peatland observation wells of only one or two meter length that measure the
phreatic water level of the peat layer are currently not collected in central data manage-
ment systems in Germany or any of its Federal States. With a comprehensive ques-
tionnaire started in 2011, we collected water level time series of organic soils from
local agencies, non-governmental organizations, universities, consultants and other
sources, and combined this data with water level data from our projects. Time series
included manual and automatic measurements. Years with less than six measurements
or data gaps of more than three months were excluded. Water level time series of each
dip well were visually checked on plausible dynamics by comparing with data from
neighboring dip wells and weather data time series. Based on auxiliary data and local
knowledge, we further identified dip wells that reached down to the underlying aquifer.
If dip wells failed these quality checks, they were removed from the dataset.

The final dataset comprised 7155 years of data from 53 German peatlands and 1094
dip wells. On average time series ranged over 7 years. All time series were collected
at some period between the years 1988 to 2012. Data are well distributed over most of
the German peatland regions and cover the three major types of organic soils (Fig. 1).
Compared with the distribution of the types of organic soils in Germany, the fraction
of dip wells on bogs is overrepresented in the dataset by the factor of 2.5, while dip
wells on fens and other organic soils are slightly underrepresented. Data also cover
the common land use types (for data sources see Table 1). However, dip wells on or-
ganic soils that are neither used for agriculture, forestry or peat mining, further referred
to as “unused peatlands”, are overrepresented in the dataset by a factor of 6 as data
was collected more frequently and in higher spatial data density in the frame of con-
servation projects. The fraction of unused peatlands of the German organic soils is
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6 %, and the fraction in the dataset is 36 %. In contrast, dip wells on arable land are
underrepresented in the dataset by a factor of 6. The fraction of arable land on German
organic soils is 24 %, and the fraction in the dataset is 4 %. The other two key land use
types on organic soils in Germany, grassland and forest, are well represented in the
dataset. The misbalance of the land use types in the dataset is accounted for in the
weighting of data (see Sect. 2.3.3).

If land use changed within the measurement period of a dip well, the time series
was split at the moment when the land use record indicates the transition. For each
segment the annual mean water level, WL (here with negative values defined as wa-
ter levels below ground), was calculated as multi-year average value over the whole
measurement period of the specific land use.

The primary application of the WL map produced in this study is for the upscaling
of long-term GHG emissions as emission reporting may only reflect anthropogenic
effects, but no inter-annual climatic effects. As GHG transfer functions are developed on
annual data, their application requires both the long-term annual mean water level, as
well as its inter-annual variability. Due to the non-linear dependence of GHG emissions
on WL, single years with extreme water levels can strongly influence long-term average
GHG fluxes. This study is focused on the regionalization of the long-term annual mean
water levels. For this objective, model building should be based on long-term water
level time series to average out the effect of weather variation within a complete climatic
period (commonly 30 years). The existing nationally available data on water level time
series of organic soils, however, does not comprise a single time series with complete
data coverage over the last 30 years. Due to the lack of sufficient long-term water level
time series, we included all time series in the model building process. Average climatic
boundary conditions (precipitation, reference evapotranspiration, water balance) of the
specific measurement period of each dip well are part of the predictor variables (see
Sect. 2.2), and thus are supposed to partly account for the effect of specific weather
conditions on WL in case of short measurement periods.
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2.2 Predictor variables

Spatial coverage of phreatic water level data of organic soils is too low to obtain WL
maps by simple spatial interpolation (Fig. 1). Additional spatial data is needed as basis
for regionalization. Ancillary information that covers fully or at least most of the extent
of the final map is necessary as predictor variables. A comprehensive set of variables
(numerical and categorical) with potential indication for the hydrological condition of
an organic soil were determined for each dip well (Fig. 2 and Table 1). This ancillary
information does not necessarily need to fully cover the total map extent, as the ap-
plied machine learning algorithm in this study (boosted regression trees, see Sect. 2.3)
allows for data gaps. However, the contribution to the final model decreases with in-
creasing number of gaps in the predictor variable.

The predictor variables, which can partly be fined also in Finke et al. (2004), can be
divided into seven groups:

2.2.1 Land cover

As certain land use and vegetation requires and reflects certain WL, such informa-
tion can be used as indicator for average drainage level around the dip well. Land use
and vegetation information was based on the German Digital Landscape Model (ATKIS
Basis-DLM), which is updated continuously by aerial photos as well as sporadic ground
mapping and has a temporal accuracy of 3 months to 5years. It is provided as fine-
scaled polygons and represents the best uniform land cover information available in
Germany. It contains information on primary land use type, few optional vegetation at-
tributes and whether “wet soil” has been observed during mapping. As we noticed that
the use of a large number of categorical variables lowers the performance of boosted
regression trees, we further aggregated the three information types (i) land use, (ii)
vegetation and (iii) wet soil into a set of nine combined land cover classes (Table 1).
These land cover classes were a trade-off between fine differentiation and the num-
ber of replicates in each class. For grasslands, a “wet grassland” class was separated,
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when grassland was overlaid with wet soil and/or tree or shrubs vegetation, which may
indicate a less intensive management. Forests overlaid with wet soil were separated
as “wet forest”. Further, unused peatlands overlaid with wet soil and showing no cov-
erage with any tree or shrubs attribute were characterized by higher water levels and
were thus separated as “wet unused peatland”. The very few dip wells classified as
open water (n=2) and peat cutting (7 =5) were merged to the reed and arable land
cover class, respectively. Land use type and land cover class were extracted at the dip
well (point extraction) and as fractions in various buffers around the dip well (Table 1).
As using too many weak predictor variables lowers model performance and increases
overfitting, the numerous land cover fractions were further aggregated into two classes:
the fraction of dry (arable and grassland, influence of the latter reduced by the factor
0.5) and wet (reed, wet grassland, wet forest, and wet unused peatland) land cover on
organic soils.

2.2.2 Drainage network

Locations of ditches that are included as lines in the Digital Landscape Model were
used to obtain information about the drainage network. The total length of ditches was
calculated for various buffer sizes. Further, the distance to the next ditch was calcu-
lated for each dip well. A short distance to the next ditch may indicate either lower or
higher water levels, depending on whether the ditches are used for drainage or already
blocked and used for rewetting measures. Similarly, the indication of total length of
ditches is not unique. Therefore, we defined two different sets of ditch variables. A first
set, for which we calculated values for all land cover classes and a second one, for
which we only calculated values for land cover classes for which ditches are undoubt-
edly used for drainage, i.e. arable and grassland.
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2.2.3 Peatland characteristics

The geological map of Germany (scale 1: 200 000) defined the area for which WL pre-
dictions were modeled. It is also the basis for topological peatland predictor variables,
i.e. the fraction of organic soils in different buffer sizes as well as the dip well distance
to the edge of the peatland. Information about the peatland type and the substrate at
the peat base is presented in more detail in a newly compiled raster map of organic
soils (Fell et al., 2014) and was thus extracted from this map. Peatland types were ag-
gregated into five classes: lowland bog (North German Plains and Alpine Forelands),
upland bog (Central Uplands and Alps), fen neighboring surface water, fen without
neighboring surface water, and a class of “other organic soils” that do not fulfill the C
content and thickness criteria to be classified as peatland.

2.2.4 Climatic boundary conditions

Climatic boundary conditions directly influence water level. On the one hand, the typ-
ical long-term climatic boundary conditions may indicate the general vulnerability of
peatlands in a specific region. On the other hand, given the different lengths of mea-
surement periods of the time series in this study, climatic boundary condition predictor
variables may account for the effect of a climatically wetter or drier measurement pe-
riod, compared to the long-term averages, on the water level. Climatic boundary condi-
tions were extracted from a 1 km x 1 km raster of the German Weather Service. Annual,
summer and winter precipitation, FAO56 Penman-Monteith reference evapotranspira-
tion, and climatic water balance (difference between precipitation and reference evap-
otranspiration) were determined for the individual measurement period of each dip well
and as long-term averages (30 years).

3867

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
11, 3857-3909, 2014

Large-scale
regionalization of
water table depth in
peatlands

M. Bechtold et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3857/2014/hessd-11-3857-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3857/2014/hessd-11-3857-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

2.2.5 Relative altitude

Relative altitude was calculated by subtracting the median altitude of various buffer
sizes from the absolute altitude at each dip well in the DEM. Relative altitude is ex-
pected to have two different indications depending on the applied buffer size: (i) In
many peatlands, the former smooth peatland relief at the scale of approximately > 5m
has been disturbed due to peat cutting and differences in drainage and mineraliza-
tion rate. As a consequence, the rather smooth phreatic surface often does not follow
the uneven and patchy terrain. Relative altitude with respect to smaller buffer sizes
(< 250 m) may therefore explain part of the WL variation, e.g. a dip well that is located
at a surface much higher than the surrounding may indicate deeper water levels; (ii)
for large buffer sizes (> 250 m) relative altitude indicates whether the peatland lies in
a larger morphological depression or elevation, and thus may indicate whether large
scale lateral inflow of water can be expected or not. Similar indication is provided by
the topographic index (see below). The accuracy of relative altitude values depends on
the resolution and accuracy of the DEM. The nation-wide available DEM is based on
datasets of varying quality, which may lower the influence of this variable.

2.2.6 Topographic wetness index

The topographic wetness index is a common wetness indicator used in hydrology
(Beven and Kirby, 1979). It is a combined measure of catchment area and slope at
a given point and indicates the extent of flow accumulation. It was calculated for vari-
ous DEM resolutions using the GRASS 7 module r.watershed.

2.2.7 Protection status
The protection status of a peatland area may reflect hydrological conditions. Therefore

we checked for seven protection status at each dip well (see Table 1 for details).
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2.3 Model building scheme

Model building was performed using boosted regression trees (BRT), implemented in
the two R packages “gbm” (Ridgeway, 2013) and “dismo” (Hijmans, 2013). BRT is a ma-
chine learning algorithm, in which the final model is derived from the data. Functions
that relate target to predictor variables are not predetermined but freely developed.
BRT modeling is increasingly applied in spatial modeling of species or numerical en-
vironmental variables (Elith et al., 2008; Martin et al., 2011), thereby often showing
superior performance compared to other machine learning algorithms. The increas-
ing application of BRT is related to several of its favorable characteristics: the strength
of this method lies in the ability to fit complex functional dependencies including non-
linear relationships and interactions between predictor variables. Based on its flexibility,
BRT is invariant to monotonic transformations of predictors. Furthermore, BRT allows
missing values, is fairly insensitive to outliers and can estimate the relative contribution
of each predictor variable to the model. Due to these characteristics we expected BRT
to be very well suited for the very heterogeneous dataset of this study.

BRT modeling is based on the decision tree concept, with the major difference that
each decision tree has a reduced learning rate. Thus, the final model consists of thou-
sands of overlapping decision trees, similar to the ensemble approach. BRT model
calibration is prone to overfitting, and there are several ways to reduce this behaviour.
Due to the overfitting behaviour, cross validation is generally part of the model building
process. However, cross validation can be performed in several ways and, if performed
carelessly, can lead to over-optimistic model performance (De’ath, 2007). Here, cross
validation was performed by leaving out whole peatland areas instead of a random set
of dip wells. This represents a stricter cross validation, and we noticed that it strongly
reduced overfitting of the water level data, and thus contributed to the development of
a more robust model.

Another way to avoid overfitting is to impose monotonic slopes on the effects of in-
dividual parameters, which can even lead to improved prediction performance (De’ath,
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2007). For all our numerical variables we expected monotonic slopes rather than op-
timum functions. To avoid predefining any expected direction, all numerical variables
were added twice to the set of predictors, constraining the slope to a monotonic in-
crease and decrease. We let the model decide whether monotonic increase or de-
crease has higher predictive power.

Models were calibrated using a Gaussian response type, aimed at minimising
deviance (squared error) (Ridgeway, 2013). In all calibration runs, we applied the
gbm.step function of the dismo package, which assesses the optimal number of boost-
ing trees using cross validation. We tested various learning rates (0.001-0.01), bag
fractions (0.1-0.8) and levels of tree complexity (3 to 7), i.e. the number of nodes in
a tree. By trial-and-error we determined the most effective algorithm parameters for
our dataset being 0.005 for the learning rate, 0.6 for the bag fraction and 5 for the tree
complexity.

The final BRT model building is commonly performed as a two-step procedure (Elith
et al., 2008) which we basically also followed in our study: (i) in the first step, the
whole set of predictor variables is used to calibrate a BRT model. (ii) In a second step,
the number of parameters is reduced sequentially to avoid overfitting and to derive
a more parsimonious model. We tracked predictive performance criteria during the
simplification process. As various variables were calculated for different buffer sizes,
our predictors included a large number of correlated variables. Correlation coefficients
between predictor variables of > 0.7 are known to severely distort model estimation and
subsequent prediction (Dormann et al., 2013). Thus, we performed this simplification
process by first dropping those parameters with a correlation > 0.7 (either Pearson
or Spearman type) to another parameter with a higher contribution (Clapcott et al.,
2011). This avoided that two highly correlated parameters remain in the parameter set
longer than the last parameter of another group of variables, which may contribute less
compared to the two highly correlated parameters but provides extra information that is
not covered by the other parameters. After all highly-correlated parameters have been
dropped, further parameters with low contribution were dropped progressively.
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Predictor contributions are calculated as proportional contributions to the total er-
ror reduction, and can be considered as a measure for the influence of the individual
predictors. Additionally, a BRT model allows to derive partial dependence plots which
indicate how the response is affected by a certain predictor after accounting for the
average effects of all other predictors in the model (Elith et al., 2008). These plots do
not show the full effect of each parameter on the model response due to interactions
with other parameters that are fixed to derive theses plots as well as due to parameter
co-correlation. However, they can be used for interpreting model behavior (Elith et al.,
2008).

2.3.1 WL;: transformation of WL

The map of water levels of this study was developed to improve the upscaling of green-
house gas emissions from organic soils. Therefore, the final map should provide the
highest accuracy for the water level range for which the highest differences of green-
house gas emissions occur. This can be achieved by transforming WL into a trans-
formed variable WL;, which shows linear relationship with GHG emissions. The sensi-
tivity of greenhouse gas emissions to water level has been analyzed in several labo-
ratory and field experimental and monitoring studies (Berglund and Berglund, 2011;
Drosler et al., 2011; Hahn-Schofl et al., 2011; Leiber-Sauheitl et al., 2014; Moore
and Dalva, 1993; Moore and Roulet, 1993). General trends are a strong increase of
methane (CH,) emissions for annual mean water levels of approximately > —0.1 m and
an increase of CO, emissions for water levels < —0.1 m with a trend similar to a satu-
ration function that levels out approximately between —-0.4 and —0.8 m (Fig. 3a). While
studies agree over these general trends, the exact shape of the transfer function and
the maximum levels of emissions as well as their dependence on soil properties and
other environmental parameters are still discussed controversially. Here, we assume
a hypothetical transfer function, relating the normalized GHG budget, ranging from 0 to
1, to the water level (see also Fig. 3),
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-e +1 WL<-0.1
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As GHG budget can be positive for both low and high WL, we introduced the trans-
formed water level, WL,, as (Fig. 3),

()

WL = W0 1 wL<-0.1
- WD wi s 017

By calibrating the model to both WL and WL,;, we test whether optimization on WL,
provides highest model accuracy for the water level range relevant for GHG emissions
and whether it optimizes the map for application to GHG upscaling.

2.3.2 Model performance criteria

Model fit and predictive performance after cross-validation were quantified by the
weighted root mean square error,

m

RMSE = \l Z1W' > (W, (x(’) —Xé)z), (3)

I j=1

where m is the number of dip wells, x is observed WL or WL, of dip well / and x is
simulated WL or WL, of dip well /, and w; is the data weight of dip well / (see below). We
refer to the root mean square error of the predicted data of cross validation by RMSE,,.
Model performance was further quantified by Nash—Sutcliffe Efficiency (NSE),

. -\ 2
m i i
i=1 w; (Xo _Xs)

NSE = 1 - =
W (Xé—x_o>
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where X, is the mean of all observed WL or WL,. It indicates how well observed vs.
predicted values match the 1: 1 line. NSE is a good overall indicator of predictive per-
formance because it combines scatter and bias (common offset and/or slope difference
from 1: 1 line) (Nash and Sutcliffe, 1970). Values greater than 0 signify a model that is
better than the reference model based on the data mean. We refer to the NSE of the
training data by NSE_,;, and of the predicted data of cross validation by NSE_,.
Systematic errors were quantified by calculating the model bias, here defined as,

BIAS = % (W,-Xé = W,-Xé).

i=1

2.3.3 Weighting scheme

The dataset contains peatland areas that strongly differ in their spatial extent and in the
number of installed dip wells. To use the information in the data in an optimal fashion, it
is important to introduce a weighting of the data. Without data weighting during calibra-
tion, too much influence is given to small and highly equipped peatlands, which reduces
predictive model performance for large less well equipped peatland areas. To avoid this
in a simple manner, weight could be reduced by the number of dip wells in each peat-
land, which results into each peatland being equally weighted. This scheme however
does not sufficiently use the high information content provided by highly-equipped large
peatlands, which should have a higher impact on model calibration than a small peat-
land with only few dip wells. Here, we present an objective weighting scheme that takes
into account both factors, peatland size and local density of dip wells, to derive dip well
specific weighting factors.

A common way to introduce individual data weights is to use the inverse of the error
variance og. For dip well / the weight is:

(5)
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Let us consider the extreme case that there are two dip wells separated by only a few
meters, so they are basically totally correlated regarding their water level dynamics.
The absolute water level, however, may differ between the two dip wells due to micro-
topography and measurement error. The second dip well can be considered as a re-
peated measurement. A reasonable approach would be to take the mean of both mea-
surements and to reduce the error variance by the inverse of the square root of the
number of measurements, for this example n = 2, which is common statistics for re-
peated measurements:

1
1.2
ﬁo-e,/

(6)

W/'=

Instead of taking the mean of the two dip wells, it is equally possible to keep both dip
wells. Then the weight of each dip must be divided by the number of fully-correlated
measurements, here n = 2:

.1

W,' = > . (7)

]
n—=0g,;

Dip wells that represent only “partly repeated” measurements, i.e. indicate some de-
gree of spatial correlation, can be accounted for by analyzing the spatial correlation
structure of the dataset. Here, we fitted a single spherical variogram model to the sam-
ple variogram of all data (Fig. 4 in Sect. 3.1). The variogram model provides a nugget,
a sill, and a range of spatial correlation for the given dataset of WL. The fraction of spa-
tial correlation, i.e. the correlated data variance, can now be obtained for any distance
between two dip wells / and j by:

~ sill-gamma;

(8)

foo=—2 1
" sill-nugget
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Parameter n of Eq. (7) can be determined for each dip well / as the sum of contributions
of all dip wells that are within the range of spatial correlation:

m ill- )
sill-gamma,

n=1+

sill-nugget ’ ®)

where gamma; is calculated based on the variogram parameters and the distance
between dip well / and j. Only dip wells with the same land use type were summed up
with Eq. (9), which avoids the down-weighting of dip wells with different land use type.
The latter are mostly characterized by fairly different WL, thus by rather low spatial
correlation to dip well /.

After spatial correlation has been accounted for, the sum of the weights of all dip
wells of each land use type were adjusted that they correspond to the fractions of this
land use type in Germany. This adjustment accounts for the overrepresentation in the
dataset of dip wells in unused peatlands and underrepresentation of dip wells in arable
land.

2.4 Model uncertainty and stability evaluation

Uncertainty of the model predictions was assessed by bootstrapping, cross-validation
and residual analysis.

For the bootstrapping analysis, we followed the procedure of Leathwick et al. (2006).
We estimated the confidence intervals around the predictions and the fitted functions
by taking 1000 bootstrap samples of the 53 peatlands. The number of peatlands in
each sample was equivalent to the dataset, but peatlands were selected randomly with
replacement. Using the predictor variables of the final model, a BRT model was fitted
to each sample. Cross validation was again performed on peatlands, thus a peatland
in the calibration dataset was not part of the cross-validation dataset to avoid over-
optimistic results. Variances of the predictions and of the fitted functions of the 1000
models were evaluated.
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If datasets are relatively small (e.g. n < 1000; De’ath, 2007) then the small size of
the training and test datasets lowers model accuracy. Given the fairly small number
of peatlands in the dataset and the partly high spatial correlation of dip wells within
these peatlands, we decided not to split the dataset into a training and test dataset.
Estimates of model accuracy can then be based on cross-validation, thereby making
effective use of all the data (De’ath, 2007). The prediction uncertainty of the final model
is estimated by the root mean square error of prediction (RMSE_,, see above) for each
land cover class. After testing for normal-like distribution of the residuals, RMSE_, can
be used to derive the 68 and 95 % confidence intervals of the predictions with RMSE_,
and 2 x RMSE_,, respectively.

Finally, additional residual analysis was performed to evaluate whether the predic-
tions are biased for different land cover classes or geographical regions.

2.5 Regionalization

In the final regionalization step, the predictor variables contributing to the final model
were determined at a 25m x 25 m raster for all organic soil in Germany. Predictor vari-
ables were determined with the same map input that was used for model building.
Land cover information including information on ditches was based on the data from
year 2012 and the climatic data was based on the average of the last 30 years. The
fine spatial resolution of 25m x 25 m was not chosen to fool the reader with a spatially
highly accurate model. But, this fairly fine scale was necessary to map the relatively
small scale effects of the topography, land use and peatland geometry variables. The
final model was then used to make a prediction for each of these raster cells.
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3 Results and discussion
3.1 Spatial correlation structure of the dataset

The variogram model fitted to the sample variogram provided a nugget (0.012m2;
0.11m), a sill (0.09 m2; 0.3m), and a range of spatial correlation (2700 m) for our
dataset of WL (Fig. 4). The nugget represents the very small-scale soil hydraulic vari-
ability and micro-topography effects on WL (van der Ploeg et al., 2012) and measure-
ment error, e.g. by differences in the determination of the ground surface and in the
timing of the manual measurements. Furthermore, micro-topography (e.g. hummocks)
and oscillating peat surfaces of wet peatlands pose a challenge for an accurate de-
termination of both ground surface and water level. The water level time series in the
dataset were of different lengths and ranged from 1 to 20 years. Interannual variability
of water levels can be large (e.g., Knotters and van Walsum, 1997). For simplicity, in
our analysis, data were not harmonized by extrapolating WL time series using weather
data to a 30 year period. Thus, the nugget also includes errors that are introduced by
dip wells with different measurement periods that are located in the range of spatial
correlation. In consideration of these error sources, the fitted nugget of 0.11 m appears
to be a realistic value. The fitted sill matched with 0.3 m nearly perfectly the standard
deviation of the data (0.31 m), which indicates consistency between semivariogram
model and dataset. The fitted range of spatial correlation of 2700 m reflects both phys-
ical effects, i.e. the average range of lateral flows due to hydraulic gradients, as well as
the effect of average land use patterns in Germany on spatial correlation of WL. Fitted
values were used in the calculation of the dip-well specific weights using Egs. (7) and

(9).
3.2 Typical water levels for land use types in German organic soils

The land cover classes are characterized by plausible mean and median water levels,
which show consistent differences among each other (Table 2 and Fig. 5a). The mean
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values of arable land and grassland agree with what can be expected for their agro-
nomic requirements, with slightly lower water levels for arable land. The high variability
observed for both classes may be related to the variability of the efficiency of installed
drainage systems, as e.g. the presence and condition of tile drains and the depth of
ditches. Grasslands can be managed with very variable intensity, which is partly re-
flected in different water levels. Figure 5a further shows that deciduous forests seem to
dominate on slightly drier organic soils compared to coniferous forests, which dominate
under wetter conditions. A high variability of water levels is observed for the land cover
class “unused peatland”. On the one hand, post peat-cutting topography increases
the variability of WL over short distances. It probably contributes to the high variance
observed for this class. On the other hand, this class comprises both rather dry un-
used peatlands and wetter peatlands in which re-wetting measures already took place,
which however do not show yet a “wet soil” attribute in the ATKIS Digital Landscape
Model. This may also cause part of the variance observed in the grassland and for-
est land cover class. All “wet” land cover classes (reed, wet grassland, wet forest, and
wet unused peatland) that were separated by wetness indication clearly show higher
water levels, showing the wetness attribute of the Digital Landscape Model is a useful
attribute.

Figure 5b shows the transformed water level for all classes. It can be observed that
the variances of the wetter land cover classes relatively increase compared to the
variances of the dry land cover classes. This is due to the highest sensitivity of GHG
emissions in the wet range of water levels (> —0.5m). Consequently, the rather high
variance of WL for arable land corresponds to a rather low variance of WL, i.e. to
a rather low assumed effect of WL variability on the GHG budget.

3.3 BRT model calibration and validation: WL vs. WL;

In contrast to land cover class, the other predictor variables showed, if at all, only weak
relations to WL and WL; when evaluating them with box plots, 2-D cross plots and
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simple correlation matrices. Here, we expected BRT to detect the strongest predictor
interactions and to identify the most informative predictors.

After model calibration with all predictors, subsequent model simplification succes-
sively dropped those parameters with correlation > 0.7 and lowest contribution. For
both, WL and WL, model performance improved during this simplification. For WL,
highest values of NSE_, of approximately 0.46 were achieved with 21 to 9 model pa-
rameters. The development of NSE, for the last 50 parameters is shown in Fig. 6.
Further elimination of parameters led to a pronounced decline of model performance.
Similar behavior was observed for the calibration on WL. In favour of a more parsi-
monious model we chose the model with the lowest number of parameters before the
pronounced decline of model performance occurred. For the calibration on WL, this
corresponded to the model with lowest number of parameters that still achieved NSE,
values of > 0.45 (Fig. 6). The final WL; model comprised nine predictor variables, and
the final WL model seven parameters. The percentages of parameter contributions to
the final model and their individual influences are discussed for WL, in Sect. 3.4.

Table 3 summarizes the statistical performances of the models calibrated on WL and
WL,. For both models NSE_,, is considerably higher than NSE_, and shows the com-
monly observed overfitting behavior of BRT models. The different measures that we
conducted to minimize overfitting (cross-validation on peatlands, restriction to mono-
tonic responses, and model simplification including elimination of highly correlated
variables) lowered the difference between NSE_, and NSE_, but could not totally avoid
overfitting. NSE,, of the WL; model (0.453) indicates higher predictive model perfor-
mance compared to the WL model (0.381). However, as the data ranges differ due
to the transformation, this comparison may be misleading. Therefore, we transformed
the predictions of the WL model to obtain WL, values from this model and equally
calculated the performance criteria (Table 3, second column). Then, NSE,, is slightly
increased (0.397), but does not achieve the values of the model that was calibrated
on WL,. A better predictive model performance of the model calibrated on WL, is also
visible for the RMSE_, values. The total RMSE_,, as well as the RMSE_, values for the
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dry (WL < —0.3m) and wet range (WL > —0.3m), show slightly lower values for the WL,
model compared to WL, values from the model calibrated on WL. Given our hypothet-
ical transfer function (Fig. 3) in which the GHG budget is linearly related to WL,, the
higher accuracy of WL, predictions directly corresponds to a higher accuracy of GHG
budget predictions.

Superior model performance is also evident when evaluating model bias. Only when
calibrating directly on WL, the WL, predictions are bias-free. Calibration on WL and
subsequent transformation to WL, introduces a model bias towards systematically
lower WL, values. In subsequent applications to GHG emission upscaling, lower WL,
values would lead to an overestimation of CO, emissions and to an underestimation of
CH, emissions.

3.4 Influence of predictor variables on WL,

Given the beneficial characteristics of the model calibrated on WL, for GHG upscaling,
presentation and discussion of further model results is restricted to the WL, model.

The BRT method allows to analyze the parameter contributions to and influences on
the model (Elith et al., 2008) and thus may contribute to the system understanding.
The percentages of the contributions of the nine predictor variables to the final model
ranged from 25.2 t0 5.6 % (Fig. 7). Except of protection status, at least one parameter of
each of the seven parameter groups contributed to the final model. All protection status
information was dropped early during the simplification process due to low contribution,
although WL showed slightly higher values for data from Nature Protection or Special
Areas of Conservation. However, other parameters seem to be able to fully compensate
the information that is lost by dropping this predictor.

Land cover class, Ic, at the dip well was the parameter with strongest contribution
(25.2 %). It basically follows the trend illustrated in Fig. 5b. The bootstrap error plotted
as standard deviation (Fig. 7) shows the variation of this influence over the 1000 boot-
strap models. A second land cover parameter, the fraction of dry land cover classes on
organic soils in a buffer of 2500 m radius, fdry(2500), contributed to the model with
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10.3%. The monotonic decrease of WL, with increasing 4, (2500) is plausible, as
higher values reflect intensive land use in the surroundings of the dip well and thus
indicate intensive artificial drainage. Together both parameter contributed by 35.5%
and thus land cover represents the parameter group with the strongest model contri-
bution.

Peatland characteristics are the second most important parameter group. The peat-
land type contributed by 16 %. The model indicates that peatlands without any con-
nection to surface water bodies (river or lake) and the class of other organic soils are
characterized by lower WL, compared to the peatland types lowland bog, upland bog
and fen neighboring surface water. As the class of other organic soils is generally ex-
pected to reflect lower water levels and as surface water may have a stabilization effect
on water levels of organic soils, the influence of the peatland type can be considered as
plausible. Besides peatland type, the substrate of the peat base contributes by 5.6 %.
Here, organic soils overlying limnic sediments (e.g. calcareous gyttja) or basement rock
are characterized by higher WL, compared to organic soils overlying unconsolidated
rock. This can be explained by the lower drainage resistance of unconsolidated rocks.
This may cause an increased efficiency of anthropogenic drainage and/or a general
higher vulnerability to seepage losses. Finally, slightly lower WL, values are indicated
by a high fraction of organic soils for the 500 m buffer, f,¢,:(500). This may reflect the
higher land use pressure on large peatlands compared to rather small peatlands, which
tentatively are more easily preserved by nature protection efforts.

The remaining four parameter groups are represented in the model by only one pa-
rameter each. The third most influential parameter was the length of ditches on arable
land and grassland for the 250 m buffer, di,, 4r(250). At first glance, it may be surpris-
ing that with increasing ditch density, WL, values tend to be higher, as ditches are sup-
posed to drain the water when land is used as arable land and grassland. The fact that
the model identifies a rather strong effect in the opposite direction may be caused by
the incomplete information about the drainage network. There is not detailed informa-
tion about the spatial distribution of tile drains. Based on expert knowledge, agricultural
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areas with a lower ditch density are more likely to be equipped with tile drains. As the
latter, easily installed with a narrow drain spacing, are more effectively draining organic
soils, low WL, values for arable land and grassland may be related to low ditch densi-
ties. Furthermore, ditches were originally dug at narrow spacing in especially wet areas
of organic soils, but there is no information available whether these ditches still function
properly.

The parameters Wby, mmers Aol @Nd tiy,s05 all show expected trends. The model pre-
dicts higher WL, for increasing climatic water balance in the summer period (May to
October), Wbg,mmer» @nd for dip wells located in depressions (low values of h,), and
for higher small-scale topographic wetness indices calculated on the 25 x 25 digital
elevation model (ti;;¢05)-

The fact that all parameters show expected or explainable responses in the model
corroborates the reliability of the calibrated WL, model. The standard deviation of the
predictor responses based on the bootstrap samples shows the stability of the ob-
served responses.

Further insights into model behavior can be obtained by analyzing parameter interac-
tions. This is obtained by changing two parameters simultaneously while keeping mean
values for all other parameters (Elith et al., 2008). Figure 8 shows the two strongest
parameter interactions. Parameter wbg,mme, Strongly interacts with py .. The generally
lower values of WL, of fens without surface water connection and other organic soils
show a stronger dependency on the summer climatic water balance. While a summer
climatic water balance of > —80 mm shows rather low further effect on WL, for the wet-
ter peatland types, in contrast for the two drier peatland types there is still a strong
effect with increasing wWbg,ymer- The trend for wbgmmer > 130 mm for the dry peatland
types is supported by seven different peatlands.

Another strong interaction is observed for pp,ee and fy,, (2500). While a rather low ef-
fect of the fraction of arable land and grassland is observed for organic soils overlying
basement rock and peat clay layer, strong effect is observed for organic soils overly-
ing unconsolidated rock. This interaction reflects the higher lateral range of drainage
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effects for organic soils with little flow resistance at the peat base. In these organic
soils, intensive land use lowers water level over large areas.

3.5 Discussion of model uncertainty

Plotting observed vs. predicted WL, from cross-validation (Fig. 9) illustrates the rather
large residual variance that cannot be explained by the model. As indicated by the
higher RMSE_, for the wet range (Table 3), scatter increases with increasing WL;. Error
bars in the y direction indicate data error derived from the nugget of the variogram. It is
exemplarily shown for a few data points. Due to transformation, data error increases for
higher WL,. Figure 9 demonstrates that the fraction of unexplainable variance related
to data error is much higher for the wet than for the dry range. Bootstrap error that
indicates the variation of the model predictions for 1000 bootstrap samples is shown in
the x direction for the same data points. Bootstrap error is lower than the data error for
the wet range and slightly higher for the dry range.

Bootstrap errors demonstrate the sensitivity of model predictions to changes of the
dataset used for calibration. When a model possesses structural deficits, such as miss-
ing predictor variables, bootstrap errors should not be used to define confidence inter-
vals for the model predictions. Figure 10 shows residuals from cross-validation and
standard deviation of bootstrap predictions for all land cover classes. The residuals of
each land cover class show normal-like distributions. For five of the nine land cover
classes (wet forest, wet unused peatland, arable land, coniferous forest, and reed),
Shapiro—Wilk test of normality is positive (p > 0.05). Figure 10a further indicates that
residuals of each land cover fairly well scatter around zero, indicating low bias for the
various land cover classes. Land cover class specific confidence intervals of model pre-
dictions can thus be derived from the RMSE_, of each land cover class, e.g. 2-RMSE,,
representing the 95 % confidence interval.

The prediction uncertainty derived from cross-validation is much higher than the
bootstrap prediction uncertainty obtained from the bootstrap standard deviation (sd),
with 2*sd corresponding to the 95 % confidence interval (Fig. 10). The large difference
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between these values indicates that the model has structural deficits that can be at-
tributed to several error sources: (i) key influences on WL, are missing in the set of
predictor variables. None of the predictor variables indicate whether and to which ex-
tent water level increase due to re-wetting measures took place in the last years. Wet-
ness indicators (wet soil and/or vegetation attributes) that are obtained from the Digital
Landscape Model probably react with a delay of several years. Thus, we expect the
occurrence of several observed high WL, values that cannot be explained by any of the
predictor variables. (ii) Small-scale topography that is not represented with sufficient
detail and accuracy in the DEM may cause that several predictions strongly differ from
what would be expected from the other predictor variables. A common example may
be a dip well that is located on a narrow peat ridge, which remained after peat-cutting
and is absent in the DEM, and that is situated in an area classified as wet soil by the
Digital Landscape Model. Then, the model indicates a WL, that is much higher than the
observed WL, as for the observed value the reference surface was the surface of the
peat ridge. (iii) Consistent information about tile drains is missing and only exists re-
gionally (Tetzlaff et al., 2009). At the national scale, however, there are no maps on tile
drains. Tile drains are known to have a strong effect on WL, for arable land and grass-
land. As explained above, we expect parameter dig,, 4(250) to partially compensate
for this missing information. (iv) Another source of prediction uncertainty may comprise
inconsistent and erroneous land cover classification of the Digital Landscape Model
due to the high degree of subjectivity for many of the attributes. Furthermore, the tem-
poral accuracy of the Digital Landscape Model may be as bad as 5years which can
cause time series with land use change to be split at the wrong date, and vegetation
and wetness attributes not yet to be updated to the current conditions.

(v) The water balance of fens strongly depends on the size and the hydraulic head
of the groundwater catchment. Unfortunately, there is no consistent map on hydraulic
heads or groundwater catchments for all Germany.

We checked model predictions for geographical bias. Geographical location was not
one of the model parameters. However, history and policy of land use on organic soils,
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current ditch water management and climate do show large-scale geographical trends.
We divided our dataset into the three major German peatland regions (NE, NW and S)
and evaluated the model residuals (Fig. 11) to see whether our model is biased due
to important missing geographical effects. A serious bias for any of the three major
German peatland regions cannot be identified.

When applying calibrated statistical models during regionalization, it is important to
check model behavior for extrapolation outside the range of the parameter space that
is covered by the data upon which the model was built. BRT always extrapolates at
a constant value from the most extreme environmental value in the training data. In
contrast to other types of statistical models, e.g. generalized linear models, BRT does
not continue the fitted trend beyond the last observation. Regarding the categorical
variables, the dataset covers all classes occurring in Germany with several peatlands.
The dataset also covers the major range of values occurring in Germany for the nu-
merical predictor variables. Furthermore, Fig. 7 indicates that the constant values, at
which the model extrapolates the influence of the variables, do not raise major concern
for any extreme predictions outside the parameter range.

3.6 Regionalization

The map of WL, resulting from the application of the fitted WL, model to all grid cells
shows gradients at the regional scale (Fig. 12a). E.g. in the south of Germany, a gradi-
ent from wet to dry can be observed for the pre-alpine upland bogs and the peatlands
of the moraine plain. In the north of Germany, the map indicates that organic soils in
the very NE are wetter than the rest. For the rest of the north a slight gradient can
be observed from less dry to dry from NW to E, which is mainly driven by the higher
summer climatic water balance in the NW. As both categorical and numerical predictor
variables do also vary at sub-regional scale, the resulting map also shows gradients
within peatland areas, e.g. due to small-scale land use ditch density gradients and
topography effects (Fig. 12b).
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We calculated WL, averages of the land cover classes using the regionalized WL,
from the map (Table 2, column 3). The given standard deviation comprises both the
variability within a land cover class that is explained by the model as well as the uncer-
tainty of each prediction. Resulting means and standard deviations slightly differ from
the corresponding values of the dataset. The land cover specific WL, values obtained
from the map can be considered as being more representative, as the regionalization
procedure is supposed to partly account for potential bias in the dataset.

When applying this map and its predicted WL, values in subsequent GHG upscaling,
it is crucial that model uncertainty is propagated properly. An example demonstrates
the necessity of uncertainty propagation. For a grid cell classified as wet grassland,
the probability distribution of WL, is shown based on a normal distribution that was
fitted to the residuals of this land cover class (Fig. 12c¢). Without propagating the un-
certainty and when only translating the predicted WL, (eventually in combination with
other parameters, e.g. soil properties) into a GHG budget, GHG budget is strongly un-
derestimated as the WL, prediction is close to zero, indicating neither large CO, nor
CH, emissions. When translating the full distribution of WL, into a GHG budget, the
resulting GHG budget would be much higher, as at both sides of the predicted WL, the
GHG budget increases.

3.7 Possible paths for model improvement

The model performance that is achieved by the statistical approach presented in our
study raises the question whether collecting more WL data can improve model perfor-
mance or whether the factor that is constraining the model performance is the limited
strength of the nation-wide available predictor variables. To assess this question, ad-
ditional “holdout models” were developed by fitting the BRT model to various random
sets of data with a limited number of peatland areas (from 10 to 50 peatlands). For
each number of peatland areas, 500 random selections were calibrated and model
performance was evaluated with NSE,. As expected, results indicate an increase of
model performance with increasing number of peatlands used in the model building
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process (Fig. 13). Results also indicate a substantial flattening of the learning curve.
Thus, further collection of WL data may only lead to a substantial model improvement
when including many more peatlands into the dataset. More promising would be the
specific collection of more data on the weakly represented and/or important land cover
classes arable land and grassland.

Another path to achieve a stronger model improvement is the development of new
predictor variables. In future, the availability of a more accurate DEM based on laser-
scanning data, which is already available at full coverage for some federal states of
Germany, may strongly increase the predictability of the observed WL data. Addition-
ally, a nation-wide map on water management and on the distribution of tile drains may
represent great potential to explain large parts of the residual variance and/or even al-
low setting up a large scale physically-based model that includes water management.
Furthermore, data harmonization by extrapolating the water level time series of our
dataset with the climatic boundary conditions of the last 30 years may lower the un-
explainable variance of the dataset due to short measurement periods (Bartholomeus
et al., 2008), an effort that has been successfully conducted in Finke et al. (2004) using
the transfer noise model of Bierkens et al. (1999). Finally, we believe that the inclusion
of remote sensing products in our statistical model approach, as e.g. spaceborne mi-
crowave soil moisture observations (Sutanudjaja et al., 2013), may hold large potential
to improve model performance as moisture differences due to varying water levels are
high for organic soils.

4 Conclusions

Our study demonstrates the potential of statistical modeling for the regionalization of
water levels in organic soils when data covers only a small fraction of peatlands of the
final map and thus spatial interpolation is not possible. With the available dataset of tar-
get and predictor variables, it was possible to predict 45 % of the GHG relevant water
level variance in the dataset in a cross-validation scheme. The variance is explained by
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nine predictor variables. With the analysis of their effect on the water level it was pos-
sible to gain insights into natural and anthropogenic boundary conditions that control
water levels of organic soils in Germany.

Based on a hypothetical GHG transfer function relating GHG emissions to annual
mean water levels (WL) we showed the advantage of transforming the annual mean
water level into a new variable (WL,;) to which GHG emissions linearly depend on. The
transformation improved model accuracy, increased the explained variance of the water
level range that is relevant for GHG emissions and avoided model bias.

The presented approach is transparent and allows successive improvement when
new input data and predictor variables become available. Our results show that model
improvement by increasing number of WL, data, however, seems to be limited. If efforts
are made, data collection should be concentrated in agriculturally used organic soils,
for which relatively few data is available. We believe that the constraining factor of
model performance is rather the weakness of the predictor variables that are currently
available at large scales. The development of new more informative predictor variables,
as e.g. water management maps and remote sensing products, may represent the
more promising path for model improvement.

The proposed regionalization approach is suited to application to any other country
when similar data on target and predictor variables is available. It is important that
the spatial resolution of the predictor variables is high enough (Finke et al., 2004). If
predictor variables like land use and peatland type are only available at a much coarser
scale and provided as percentages for grid cells, the dependency between predictor
variables and the rather local WL will be probably lost for most of the predictor variables.
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Table 1. Overview on predictor variables.

Predictor Variable

Variable name

Values

Point/Buffers (m)

Data Source

Land use type
Vegetation attributes (optional)

“Wet soil observed”

Combined land cover information
(land use type +veg. +wet soil
attr.)

Dry land cover fraction
Wet land cover fraction

Total length of ditches for all Ic
and only for arable and grassland
(subscr.: “dry”)

Distance to next ditch

Peatland type

Material at peat base
Peatland fraction

Distance to edge of peatland
Ratio of dpear/foeat
Precipitation
Evapotranspiration

Climatic water balance

Relative height

Topographic index

Protection status

Tary(X)

diten, ary(X)

Prype

Phoase

Toeat(X)

'summer

hra(X)

tirasr (X)

Arable, grassland, forest, shrubs, peat-
mining, unused peatland, swamp, open water
Deciduous forest, mixed forest, coniferous for-
est, reed, shrubs, grass

Yes, no

Arable, grassland, wet grassland, deciduous
including mixed forest, wet forest, coniferous
forest, reed, unused peatland, wet unused
peatland

arable + 0.5 - grassland on organic soil area; 0
to1

reed + wet grassland + wet forest+wet un-
used peatland on organic soil area; 0 to 1
>0m

>0m

Lowland bog, upland bog, fen neighboring
surface water, fen without neighboring surface
water, other “low-C” organic soil
Unconsolidated rock, peat clay layer, rock, no
information

Oto1

>0m

>0

>0mm
>0mm
<0and >0mm
<0and >0m

>0

Nature Conservation Area, Special Areas of
Conservation, Special Protection Area for wild
birds, UNESCO-biosphere reserve, Nature
Park, National Park, Landscape Protection
Area

point, 100, 500, 1000, 2500
point

point
point, 100, 500, 1000, 2500

100, 500, 1000, 2500
100, 500, 1000, 2500

point, 50, 250, 1000, 2500

point
point

point

point, 500, 1000, 2500

2500

point

point

point

point — median 25, 50, 100,
250, 500, 1000

point and 1000 buffer for
10, 25, 250, 1000 raster
values

point

Digital Landscape Model'
Digital Landscape Model'

Digital Landscape Model'
Digital Landscape Model'

Digital Landscape Model'
Digital Landscape Model'
Digital Landscape Model'
Digital Landscape Model'
Map of organic soils?
Map of organic soils?
Geological Map (BGR)®

Geological Map (BGR)®
Geological Map (BGR)3

raster map 1km x 1km (DWD)*
raster map 1km x 1km (DWD)*
raster map 1km x 1km (DWD)A

Digital Elevation Model®

Digital Elevation Model®

Maps of protected areas®

" ATKIS Basis DLM, Federal Agency for Cartography and Geodesy, BKG;
2 Map of organic soils (Fell et al., 2014, Humboldt University of Berlin);

8 Geological Map 1:200000 (GUEK 200, BGR — Federal Institute for Geosciences and Natural Resources);
4 raster map 1km x 1 km of weather data (German Weather Service);
5 BKG; Variable name indicated for the nine variables in the final model with (X) indicating buf. size and R indicating raster resolution.
% Federal Agency for Nature Conservation (BfN).
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Table 2. Weighted mean and standard deviation of WL and WL, data, and of the WL, map

presented in Sect. 3.6, for the nine land cover classes.

WL (m) WL, () WL, (), map
mean + sd mean + sd mean + sd
arable land -0.69+0.30 -0.76 £0.17 -0.66 +£0.22
deciduous f. -0.45+0.34 -0.49+0.37 -0.47+£0.35
grassland -0.44+£0.29 -0.52+£0.32 -0.49+£0.30
unused peatl. -0.39+0.36 -0.39+0.41 -0.37+0.40
coniferous f. -0.36+0.36 -0.37+0.37 -0.46+0.35
wet unused peatl. -0.22+0.27 -0.18+0.40 -0.17+£0.36
wet forest -0.22+0.29 -0.17+0.43 -0.21+0.39
wet grassland -0.10+£0.14 -0.00+0.31 -0.15+0.39
reed -0.01+0.17 0.20+0.29 -0.06 £0.32
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Table 3. Performance criteria of the different models; dry range defined as WL < -0.3m and

wet range as WL > -0.3m.

WL (m) WL, (-) WL, ()
(calibrated on WL)  (calibrated on WL)  (calibrated on WL,)
NSE_, 0.627 0.559 0.642
NSE,, 0.381 0.397 0.453
RMSE,, 0.269 0.299 0.284
RMSE,, 4y 0.284 0.263 0.259
RMSE,, . 0.222 0.382 0.355
Bias -0.003 0.083 0.002
Biasg,, -0.012 0.070 0.003
Bias,,e 0.021 0.120 0.000
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Fig. 1. Locations of the 1094 dip wells of the dataset. Base map (Geological map 1:200 000,
BGR) shows the distribution of bog and fen peat, and other organic soils.
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Fig. 2. lllustration of the predictor variables determined for each dip well based on available

national maps (see Table 1).
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Fig. 3. lllustration of the annual mean water level (WL) transformation. (a) Hypothetical transfer

function relating GHG budget to WL (m). (b) GHG budget vs. the transformed water level (WL,).
(c) WL, vs. WL. Rugs indicate the data quantiles of the analyzed dataset.
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Fig. 4. Sample semi-variogram and fitted semi-variogram model of the annual mean water level

data, WL.
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Fig. 7. Partial dependence plots for the predictor variables. For explanation of variables see
Table 1. Y axes are on WL, scale and are centered around the mean WL,. Error bars and
grey area indicate standard deviation of the response over 1000 bootstrap models. The relative
contribution of each predictor is indicated as percentage. Rugs at bottom of each plot show
distribution of data across that variable, in deciles.
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points are scaled by their weights.

-0.5 0.0

WL, (-) Prediction

3905

Jaded uoissnosiq

Jaded uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
11, 3857-3909, 2014

Large-scale
regionalization of
water table depth in
peatlands

M. Bechtold et al.

(8
] (=)



http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3857/2014/hessd-11-3857-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3857/2014/hessd-11-3857-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

HESSD
11, 3857-3909, 2014
Large-scale
regionalization of
water table depth in

Discussion Paper

(b)

~~
@©
~

(uonoipaud - uoneAIasqo) sjenpisal

peatlands
M. Bechtold et al.

Discussion Paper

56 91 418 65 81 382 38 57 30

(@)

0.15 —

suonoipald desjs}ooq Jo ps

I
o
=
<}

0.00 —

56 91 418 65 81 382 38 57 30

-1.0

paal
pue|sseld jom
15910} }oMm

‘ead pasnun jom
'} SNOJBHUOD
‘lyead pasnun
pue|sselb

'} snonploap

s|qele

paal
pue|sseld jom
15910} }oMm

‘lead pasnun jom
'} SNOJBHUOD
‘lyead pasnun
pue|sselb

'} snonploap

s|qele

Discussion Paper

Fig. 10. (a) Residuals (observation — prediction) of WL, predictions and (b) standard deviation

(sd) of bootstrap predictions shown for the nine land cover classes. In the upper part, the

number of dip wells in each class is indicated.
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Fig. 11. Residuals (observation — prediction) of WL, predictions for the three major geograph-
ical peatland regions of Germany. In the upper part, the number of dip wells in each class is

indicated.
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