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Abstract

Snow processes might be one important driver of soil erosion in Alpine grasslands
and thus the unknown variable when erosion modelling is attempted. The aim of
this study is to assess the importance of snow gliding as soil erosion agent for
four different land use/land cover types in a sub-alpine area in Switzerland. We
used three different approaches to estimate soil erosion rates: sediment yield
measurements in snow glide depositions, the fallout radionuclide 137Cs, and
modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the
evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due
to all erosion agents involved, and the snow glide deposition sediment yield
measurement can be directly related to snow glide induced erosion. Further,
cumulative snow glide distance was measured for the sites in the winter

2009/2010 and modelled for the surrounding area and long-term average winter
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precipitation (1959-2010) with the Spatial Snow Glide Model (SSGM). Measured
snow glide distance confirmed the presence of snow gliding and ranged from 2
to 189 cm, with lower values at the north facing slopes. We observed a
reduction of snow glide distance with increasing surface roughness of the
vegetation, which is important information with respect to conservation
planning and expected and ongoing land use changes in the Alps. Snow glide
erosion estimated from the snow glide depositions was highly variable with
values ranging from 0.03 to 22.9 t ha! yr! in the winter 2012/2013. For sites
affected by snow glide deposition, a mean erosion rate of 8.4 t hal yr! was
found. The difference in long-term erosion rates determined with RUSLE and 137Cs
confirm the constant influence of snow glide induced erosion, since a large
difference (lower proportion of water erosion compared to total net erosion)
was observed for sites with high snow glide rates and vice versa. Moreover, the
difference of RUSLE and 137Cs erosion rates was related to the measured snow
glide distance (R2 = 0.64; p<0.005) and to the snow deposition sediment yields
(R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the
measured snow glide values under different land uses and land cover types. The
resulting map highlighted the relevance of snow gliding for large parts of the
investigated area. Based on these results, we conclude that snow gliding
appears to be a crucial and non-negligible process impacting soil erosion
pattern and magnitude in sub-alpine areas with similar topographic and

climatic conditions.

Keywords: soil erosion, Alps, snow, 137Cs, RUSLE
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1 Introduction

While rainfall is a well-known agent of soil erosion, the erosive forces of snow
movements are qualitatively recognized but quantification has not been
achieved yet (Leitinger et al., 2008; Konz et al., 2012). Particularly wet
avalanches can yield enormous erosive forces that are responsible for major soil
loss (Gardner, 1983; Ackroyd, 1987; Bell et al., 1990; Jomelli and Bertran, 2001;
Heckmann et al., 2005; Fuchs and Keiler, 2008; Freppaz et al., 2010) also in the
avalanche release area (Ceaglio et al., 2012).

Besides avalanches another important process of snow movement affecting the
soil surface is snow gliding (In der Gand and Zupancic, 1966). Snow gliding is the
slow (mm to cm per day) downhill motion of a snowpack over the ground
surface caused by the stress of its own weight (Parker, 2002). Snow gliding
predominantly occurs on south-east to south-west facing slopes with slope
angles between 30-40° (In der Gand and Zupancic, 1966; Leitinger et al., 2008).
Two main factors that control snow glide rates are (i) the wetness of the
boundary layer between the snow and soil cover and (ii) the ground surface
roughness determined by the vegetation cover and rocks (McClung and Clarke,
1987; Newesely et al., 2000). So far, only few studies investigated the effect of
snow gliding on soil erosion (Newesely et al., 2000; Leitinger et al., 2008). A
major reason for this shortcoming is the difficulty to obtain soil erosion rates
caused by snow processes. In steep sub-alpine areas soil erosion records (e.g.
with sediment traps) are restricted to the vegetation period because
avalanches and snow gliding can irreversibly damage the experimental design
(Konz et al., 2012).

Recently, first physically based attempts to model the erosive force of wet

avalanches were done (Confortola et al., 2012). No similar model exists for snow
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gliding. However, the potential maximum snow glide distance during a targeted
period can be modelled with the empirical Spatial Shnow Glide Model (SSGM)
(Leitinger et al., 2008). The modelling of this process is crucial to evaluate the
impact of the snow glide process on soil erosion at larger scale.

Soil erosion rates can be obtained by direct quantification of sediment transport
in the field, by fallout radionuclides (FRN) based methods (e.g. Mabit et al.,
1999; Benmansour et al., 2013; Meusburger et al., 2013) and by soil erosion
models (Nearing et al., 1989; Merritt et al., 2003). Since the end of the 1970’s
empirical soil erosion models such as the Universal Soil Loss Equation (USLE;
Wischmeier and Smith, 1965; Wischmeier and Smith, 1978), and its refined
versions the Revised USLE (RUSLE; Renard et al., 1997) and the Modified USLE
(MUSLE; Smith et al., 1984), have been used worldwide to evaluate soil erosion
magnitude under various conditions (Kinnell, 2010). These well-known models
allow the assessment of sheet erosion and rill/inter-rill erosion under moderate
topography. However, they do not integrate erosion processes associated with
wind, mass movement, tillage, channel or gully erosion (Risse et al., 1993; Mabit
et al., 2002; Kinnell, 2005) and also snow impact due to movement is not
considered (Konz et al., 2009). Several models have been tested for steep alpine
sites with the result that RUSLE reproduced the magnitude of soil erosion, the
relative pattern and the effect of the vegetation cover most plausible (Konz et
al., 2010; Meusburger et al., 2010b; Panagos et al., 2014). The erosion rate
derived from RUSLE corresponds to water erosion induced by rainfall and surface
runoff and hence in our site to the soil erosion processes during the summer
season without significant influence of snow processes.

In contrast, the translocation of FRN reflects all erosion processes by water, wind
and snow during summer and winter season and thus, is an integrated estimate

of the total net soil redistribution rate since the time of the fallout in the 1950s
4
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(the start of the global fallout deposit) and in case of predominant Chernobyl
137Cs input since 1986. Anthropogenic fallout radionuclides have been used
worldwide since decades to assess the magnitude of soil erosion and
sedimentation processes (Mabit and Bernard, 2007; Mabit et al., 2008; Matisoff
and Whiting, 2011). The most well-known conservative and validated
anthropogenic radioisotope wused to investigate soil redistribution and
degradation is 137Cs (Mabit et al., 2013).

For (sub-) alpine areas the different soil erosion processes captured by RUSLE
and the 137Cs method result in different erosion rates (Konz et al., 2009; Juretzko,
2010; Alewell et al., 2014; Stanchi et al.,, 2014, accepted). However, this
difference might also be due to several other reasons such as the error of both
approaches, the non-suitability of the RUSLE model for this specific environment
and/or the erroneous estimation of the initial fallout of 137Cs.

In this study, we aim to quantify snow glide induced erosion and investigate,
whether the observed discrepancy between erosion rates estimated with RUSLE
and the ones provided by the 137Cs method can be at least partly attributed to
snow gliding processes. Since vegetation cover affects snow gliding, four
different sub-alpine land use/land cover types were investigated. A further
objective of our research is to assess the relevance of snow gliding processes at

catchment scale using the Spatial Snow Glide Model (SSGM).

2 Materials and Methods

2.1 Site description

The study site is located in Central Switzerland (Canton Uri) in the Ursern Valley
(Fig. 1). The elevation of the W-E extended alpine valley ranges from 1400 up to
2500 m a.s.l. At the valley bottom (1442 m a.s.l.), average annual air

temperature for the years 1980-2012 is around 4.1 + 0.7 °C and the mean annual
5
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precipitation is 1457 £+ 290 mm, with 30% falling as snow (MeteoSwiss, 2013). The
valley is snow covered from November to April with a mean annual snow height
of 67cm in the period 1980 to 2012. Drainage of the basin is usually controlled by
snowmelt from May to June. Important contribution to the flow regime takes
place during early autumn floods. The land use is characterised by hayfields
near the valley bottom (from 1450 to approximately 1650 m a.s.l.) and pasturing
further upslope. Siliceous slope debris and moraine material is dominant at our
sites, and forms Cambisols (Anthric) and Podzols (Anthric) classified after IUSS
Working Group (2006).

Of the 14 experimental sites, 9 are located at the south-facing slope and 5 at
the north-facing slope at altitudes between 1476 and 1670 m a.s.l. Four different
land use/cover types with 3-5 replicates each were investigated: hayfields (h),
pastures (p), pastures with dwarf shrubs (pw), and abandoned grassland
covered with Alnus viridis (A). Vegetation of hayfields is dominated by Trifolium
pratense, Festuca sp., Thymus serpyllum and Agrostis capillaris. For the pastured
grassland Globularia cordifolia, Festuca sp. and Thymus serpyllum dominate.
Pastures with dwarf shrubs are dominated by Calluna vullgaris, Vaccinium
myrtillus, Festuca violacea, Agrostis capillaris and Thymus serpyllum. At pasture
sites of the south facing slope, which are stocked from June to September,

cattle trails transverse to the main slope direction.

2.2 Snow glide measurement

We measured cumulative snow glide distances with snow glide shoes for the
winter 2009/2010. The snow glide shoe equipment was similar to the set-up used
by In der Gand and Zupancic (1966), Newesely et al. (2000) and Leitinger et al.
(2008). The set-up consisted of a glide shoe and a buried weather-proof box
with a wire drum. Displacement of the glide shoe causes the drum to unroll the

6
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wire. The total unrolled distance was measured in spring after snowmelt. To
prevent entanglement with the vegetation, the steel wire was protected by a
flexible plastic tube. For each site, 3 to 5 snow glide shoes were installed to

obtain representative values. A total of 60 devices were used.

2.3 Assessment of soil redistribution

Snow glide distance was measured with snow glide shoes for 14 sites. For 12 of
the 14 sites (exclusive of the two Alnus viridis sites at the north facing slopes
(AN)), RUSLE and 137Cs based erosion rates were assessed. Seven of these sites
were measured in 2007 (Konz et al., 2009). During a second field campaign
performed in 2010, 5 additional sites were investigated using the same methods
for soil erosion assessment with 137Cs and RUSLE as in 2007 (Konz et al., 2009). The

137Cs measurements were decay corrected to 2007 for comparison purpose.

2.3.1 Snow and sediment sampling in the snow glide deposition area
Sediment concentrations were estimated by measuring the amount of sediment
in snow samples taken with a corer from the snow glide depositions in spring
2013 (Fig. 2). The corer allowed for the sampling of the entire depth of the snow
deposition and thus the integration of the sediment yield over the depth of the
deposition. For larger depositions, samples were collected along two transects
across each deposition. For smaller depositions, we took three samples. The
samples were melted and filtered through a 0.11 pm filter. The filtered material
was dried at 40°C and weighted to obtain the concentration of sediment per
sample (Ms). The mean sediment values (and for depositions with several
samples the interpolated mean sediment values) were used to estimate the total

sediment load of the snow-glide deposition (Ma) according to:

AgxXMg

M, =
A Ac

Equation 1
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where Ac is the area of the corer and Aa is the area of the snow-glide
deposition. The latter was mapped in the field by GPS and measuring tape.

Sediment load was further converted to soil erosion rate (E) by:

M
E=-4 Equation 2
As

where As is the source area of the snow and sediment deposition. Each snow
glide was photo documented and the respective source area was mapped with

GPS and transferred to ArcGIS for surface area estimation.

2.3.2 Assessment of soil redistribution by water erosion using the RUSLE
The USLE (Wischmeier and Smith, 1978) and its revised version the RUSLE (Renard
et al., 1997) is an empirical erosion model originally developed in the United
States. Several adapted versions for other regions as well as for different
temporal resolutions have been developed and applied with more or less
success (Kinnell, 2010). Despite its well-known limitation (highlighted in our
introduction), we selected RUSLE because of the lack of simple soil erosion
models specific for mountain areas and moreover because of its better
performance when compared to the other existing models (Konz et al., 2010;
Meusburger et al., 2010b). The RUSLE can be calculated using the following

equation:

A=RXKXLSXCXP Equation 3

where A is the predicted average annual soil loss (t ha-l yr-1). R is the rainfall-
runoff-erosivity factor (N h-1) that quantifies the effect of raindrop impact and
reflects the rate of runoff likely to be associated with the rain (Renard et al.,

1997). The soil erodibility factor K (N h kg m-2) reflects the ease of soil
8
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detachment by splash or surface flow. The parameter LS (dimensionless)
accounts for the effect of slope length (L) and slope gradient (S) on soil loss. The
C-factor is the cover factor, which represents the effects of all interrelated
cover and management variables (Renard et al., 1997).

For comparability between the RUSLE estimates of Konz et al. (2009) and the
ones assessed in this study we used the same R-factor approximation of Rogler
and Schwertmann (1981) adapted by Schuepp (1975). According to the USLE
procedure, snowmelt can be integrated in erosivity calculation by multiplying
snow precipitation by 1.5 and then adding the product to the kinetic energy
times the maximum 30-min intensity. However, the latter procedure does not
account for redistribution of snow by drifting, sublimation, and reduced
sediment concentrations in snowmelt (Renard et al., 1997). Therefore, as
suggested by Renard (1997) this adaption of the R-factor was not considered in
this study. The K-factor was calculated with the K nomograph after Wischmeier
and Smith (1978) using grain-size analyses and carbon contents of the upper 15
cm of the soil profiles. Total C content of soils was measured with a Leco CHN
analyzer 1000, and grain size-analyses were performed with sieves for grain sizes
between 32 and 1000 um and with a Sedigraph 5100 (Micromeritics) for grain
sizes between 1 and 32 pym. L and S were calculated after Renard et al. (1997).
The support and practice factor P (dimensionless) was set to 0.9 for some of the
pasture sites because alpine pastures with cattle trails resemble small terrace
structures, which are suggested to be considered in P (Foster and Highfill, 1983).
For all other sites, P value was set to 1. The cover-and-management factor C
was assessed for sites with and without dwarf shrubs separately using measured
fractional vegetation cover (FVC) in the field.

For investigated sites without dwarf shrubs (US Department of Agriculture,

1977)the C-factor can be estimated with:
9
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C = 0.45 x e 00456xFVC Equation 4

and for sites with dwarf shrubs the following equation was used:

C = 0.45 x g 00324xFVC Equation 5

The FVC was determined in April and September using a grid of 1 m2 with a mesh
width of 0.1 m2. The visual estimate of each mesh was averaged for the entire
square meter. This procedure was repeated four times for each plot. The
maximum standard deviation was approx. 5%. For the Alnus viridis sites we used
the value provided by the US Department of Agriculture (1977) i.e. 0.003. This
value assumes a fall height of 0.5 m and a ground cover of 95-100%.

The uncertainty assessment of the RUSLE estimates is based on the measurement
error of the plot steepness (£ 2%), which was determined by repeated
measurements and slope length (x 12.5 m). An error of + 2% was assumed for the
grain size analyses as well as for the organic carbon determination. These errors
were propagated through the K-factor calculation. An error of £ 20% based on
the observed variability between spring and autumn of FVC on the plots, was
used for the determination of the C-factor. For the R-factor an error of + 5 N h-1,
which corresponds to the observed variability between the sites was assumed.
Finally error propagation for the multiplication of the single RUSLE factors was

done.

2.3.3 137Cs to assess total net soil redistribution
A 2 x 2 inch Nal-scintillation detector (Sarad, Dresden, Germany) was used to

measure the in-situ 137Cs activity. The detector was mounted perpendicular to

10
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the ground at a height of 25 cm to reduce the radius of the investigated area to
1 meter. Measurement time was set at 3600 seconds and each site was
measured three times.

The detector was successfully (R2 = 0.86) calibrated against gamma
spectroscopy laboratory measurements with a 20% relative efficiency Li-drifted
Ge detector (Geli; Princeton Gamma-Tech, Princeton, NJ, USA) at the
Department for Physics and Astronomy, University of Basel. For the Geli detector
the resulting measurement uncertainty on 137Cs peak area (at 662 keV) was
lower than 8% (error of the measurement at 1-sigma) (Schaub et al.,
2010).Gamma spectrometry calibration and quality control of the analysis were
performed following the protocol proposed by Shakhashiro and Mabit (2009).
Soil moisture influences the measured 137Cs activity. Thus, soil moisture
measurements with an EC-5 sensor (DecagonDevices) were used to correct the
in-situ measurements. The Nal detector has the advantage of providing an
integrated measurement over an area of 1 m2. The commonly observed intrinsic
small scale variability (=30 %) for 137Cs (Sutherland, 1996; Kirchner, 2013) is thus,
smoothed. Nonetheless, around 10% of the uncertainty of the 137Cs-based soil
erosion values can be attributed to the variability of replicated measurements
on each single plot. The main error of the in-situ measurement results from the
peak area evaluation and was determined at 17 % (Schaub et al., 2010).

With the 137Cs method soil redistribution rates are calculated by comparing the
isotope inventory for an eroding point with a local reference inventory where
neither erosion nor soil accumulation is expected. In the Urseren Valley, the
initial reference 137Cs fallout originated from thermonuclear weapon tests in the
1950s5-1960s and the nuclear power plant accident of Chernobyl in 1986.

For the conversion of the 137Cs inventories to soil erosion rates knowledge about

the proportion of Chernobyl 137Cs fallout is a key parameter for the estimation of
11
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erosion rates, however, only little data is available. Pre-Chernobyl (1986) 137Cs
activities of the top soil layers (0 - 5 cm) between 2 and 58 Bqg kg-! (one outlier
of 188 Bqg kg! in Ticino) were recorded for 12 sites distributed over Switzerland
(Riesen et al., 1999). After radioactive decay, in 2007 only 1 - 35 Bq kg-! are left.
The 137Cs activity for the flat reference sites near the valley bottom (1469-1616 m
a.s.l) was estimated as 146 + 20 Bqgq kg! (Schaub et al., 2010). The investigated
sites are located in close vicinity to the reference sites and at comparable
altitude (1476-1670 m a.s.l). Consequently, the maximum contribution of pre-
Chernobyl 137Cs might represent 20% at reference sites.

Additionally, vertical migration must be considered. In literature migration
values between 0.03 and 1.30 cm yr! are reported (Schimmack et al., 1989;
Arapis and Karandinos, 2004; Schuller et al., 2004; Schimmack and Schultz, 2006;
Ajayi et al., 2007). In the Urseren Valley, 137Cs activity (Bg kg-') declines
exponentially with soil depth. Therefore, for the conversion of 137Cs
measurements to soil erosion rates, the well-known profile distribution model
(Walling et al., 2011) was adapted for the direct use with 137Cs activity profile
(Konz et al., 2009; Konz et al., 2012). We set the particle size factor to 1,
because no preferential transport of the finer soil particles was observed for our
sites (Konz et al., 2012). In contrast, no preferential transport or preferential
transport of coarse material occurred, most likely due to snow and animal
induced particle transport (see Konz et al., 2012). The calculation of the erosion
rates refers to the period 1986-2007 because pre-Chernobyl 137Cs is negligible.
For uncultivated sites the Diffusion and Migration model is an alternative to the
profile distribution model. However, the 137Cs depth profile at our reference sites
did not follow a polynomial distribution and thus did not allow for a successful fit
of the diffusion and migration coefficient. Due to the integrative and repeated

measurement with the Nal detector, the errors associated with measurement
12
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precision are assumed to be largely cancelled out. However the error
associated with the spatial variability of the reference inventory (x 20 Bq kg-!)
were propagated through the conversion model in order to receive an upper

and lower confidence interval for the resulting erosion estimates.

2.4 Spatial modelling of snow glide distances

We used the Spatial Shnow Glide Model (SSGM, Leitinger et al. 2008) to predict
potential snow glide distances for an area of approximately 30 km2 surrounding
our study sites. The SSGM is an experimental model, which includes the
parameters: the forest stand, the slope angle, the winter precipitation, the slope
and the static friction coefficient us (-). Slope angle and slope aspect were
derived from the digital elevation models DHM25 and below 2000 m a.s.l. the
DOM. The DOM is a high precision digital surface model with 2 m resolution and
an accuracy of + 0.5 m at 10 in open tferrain and * 1.5 m at 10 in terrain with
vegetation. The DHM25 has a resolution of 25 m with an average error of 1.5 m
for the Central Plateau and the Jura, 2 m for the Pre-Alps and the Ticino and 3
to 8 m for the Alps (Swisstopo). Winter precipitation was derived from the
MeteoSwiss station located in Andermatt. We used the result from a QuickBird
land cover classification with a resolution of 2.4 m (subsequently resampled to 5
m) as land cover input (Meusburger et al., 2010a). Combining this land cover
map with a land use map (Meusburger and Alewell, 2009), it was possible to
derive the parameter forest stand. To each of the 4 investigated land cover
types a uniform static friction coefficient (4s) was assigned.

The static friction coefficient can be derived by:

F,
F,

My = Equation 6

where Fn (g m s-2) is the normal force that can be calculated with
13
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F,=mxgxcosa Equation 7

where g is the standard gravity (9.81 m s=2),a is the slope angle (°) and m the
weight of the snow glide shoe (in our study 202 g).

The initial force (Fr; with the unit g m s-2), which is needed to get the glide shoe
moving on the vegetation surface, was measured with a spring balance (Pesola®
Medio 1000 g) and multiplied with the standard gravity. To obtain representative
values of Fr the measurement was replicated 10 times per sample site and
subsequently averaged. The parameter estimates the surface roughness, which
integrates the effect of different vegetation types and land uses on snow
gliding. A detailed description of the model and its parameters has been
provided by Leitinger et al. (2008).

Supplemented by snow glide measurements from this study, the SSGM (i.e. OLS
regression equation) was refined to be valid also for north exposed sites and

sites with Alnus viridis. Consequently, the revised SSGM is given by the equation:

In( 9):-0.337—0.925Xl+0.095X2+0.01X3+1.006X4+0.839X5+0.076X6'0.075X72 Equation 8

where )7 is the estimated snow-gliding distance (mm), x1 is the forest stand (0;1),

X2 is slope angle (°), x3 is winter precipitation (mm), x4 is slope aspect East (0;1),
xs is slope aspect South (0;1), xs is slope aspect W (0;1) and x7 is the static
friction coefficient. The revised SSGM was highly significant (p < 0.001) with a
determination coefficient of 0.581 (adjusted R?).

The model was then applied for the winter period 2009/2010 (285 mm winter
precipitation) and for the long-term average winter precipitation (430 mm

winter precipitation, years 1959 to 2010).
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3 Results and Discussion

3.1 Snow glide measurements 2009/2010

For each site the static friction coefficient as a measure for surface roughness
was determined in autumn prior to the installation of the snow glide shoes.
Lowest surface roughness was observed for the hayfields, followed by soil
surface at sites covered with Alnus viridis on the north facing slope (Table 1). For
the pastures without dwarf-shrubs, the two mean monitored values differed (us =
0.37 and 0.68) but were similar to that of pastures with dwarf-shrubs (s = 0.66 to
0.69). Slightly higher values were observed for the dense undergrowth of Alnus
viridis sites on the south facing slope (4s = 0.70 and 0.84). These static friction
coefficients are within the range of 0.22-1.18 reported by Leitinger et al. (2008).

The snow glide measurements confirmed the presence and the potential impact
of this process in our investigated sites. The mean measured snow glide
distances (sgd) of the different sites varied from 2 to 189 cm (see Table 1). A
main proportion of this variability can be explained by the slope aspect and the
surface roughness (see Fig. 3). With increasing surface roughness (expressed as
the static friction coefficient; us) the snow glide distance declines. This decrease
is more pronounced for the south facing slope (sgd = -1547.2us + 172.93; R2 =
0.50; p = 0.036). For the north facing slope the snow glide distances and the
variability are lower. Approximately 80% of the observed variability on the north
facing slope can be explained by the surface roughness (sgd = -622.17us + 43.09;
R2 = 0.82; p = 0.033). The identification of slope aspect and surface roughness as
main causal factors for snow gliding, corresponds to the findings of other studies
(In der Gand and Zupancic, 1966; Newesely et al., 2000; Hoeller et al., 2009).
According to several studies on the seasonal snow - soil interface conditions (In
der Gand and Zupancic, 1966; McClung and Clarke, 1987; Leitinger et al., 2008),
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snow gliding on south-facing sites is preferential in spring, when high solar
radiation leads to a high portion of melting water at the soil/snow interface.
However, in autumn snow gliding primarily occurs when a huge amount of snow
falls on the warm soil. In this case, north-facing sites may be confronted with
high snow gliding activity as well.

Our measured snow glide distances are comparable to those recorded by other
researchers. For example Hdller et al. (2009) monitored during a seven-year
period in the Austrian Alps a snow glide distance of 10 cm within the forest, 170
cm in cleared forest sites and up to 320 cm for open fields. Margreth (2007)
found total glide distances of 19 to 102 cm for an eleven-year observation

period in the Swiss East Alps (south-east facing slope at 1540 m a.s.l.).

3.2 Soil erosion estimates

Snow glide depositions were observed for seven sites, for one site a wet
avalanche deposition (pN) and for 4 sites no snow glide depositions were
observed (Table 3). The 4 sites without snow glide depositions were all located
at the north facing slope. The erosion rates estimated from the sediment yields
of the snow glide deposition ranged from 0.03 to 22.9 t ha'! yr-l. The maximum
value was determined for the site hl which is in agreement with the 137Cs
method. For sites with snow glide depositions, a mean value of 8.4 t ha-! yr'l was
measured. The somewhat high erosion rates are documented in a photo from
the spring (Fig. 4). The winter 2012/2013 precipitation of 407 mm was quite
representative of the long-term average (i.e. 430 mm). On average, the
pastured sites without dwarf shrubs produced the highest measured sediment
yields, followed by the hayfields and considerably lower values were observed
for the pastures with dwarf shrub sites. Whether the observed difference is due

to the different vegetation cover or due to site specific topography cannot be
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solved conclusively with the present dataset. A wet avalanche was observed for
the site pN. Interestingly, the estimated erosion rate of the wet avalanche
deposition was smaller than most of the snow gliding related erosion rates, at
1.97 t ha-! yr-l. However, high erosion rates of 3.7 and 20.8 t ha=! per winter due
to wet avalanches have been reported in a study site located in the Aosta
Valley, Italy (Ceaglio et al., 2012). In this study site where the major soil loss is
triggered by wet avalanches, the snow-related soil erosion estimated from the
deposition area was comparable to the yearly total erosion rates assessed with
the 137Cs method (13.4 and 8.8t ha-! yr-1, Ceaglio et al., 2012).

On the north facing slope an average RUSLE estimate of 1.8 t ha! yr! with a
maximum value of 3.8 t ha! yr-! was established (Table 2). The on average lower
values as compared to the south-facing slope (6.7 t ha-! yr1) are due to lower
slope angles (thus lower LS-factor values) and C-factors (due to a higher
fractional vegetation cover). This effect was not compensated by the on
average higher K-factor of 0.40 kg h N-1 m-2 on the north facing slopes. The
higher K-factor is caused by a 6 % higher proportion of very fine sand. The mean
RUSLE based soil erosion rate for all sites was 4.6 t hat yr-1.

The mean 137Cs based soil erosion rates of 17.8 t ha-! yr-'l are approximately four
times as high as the average RUSLE estimates. Congruent with RUSLE the 137Cs-
based average soil erosion rate on the north facing slopes is lower than on the
south facing slopes (by 8.7 t ha! yrl1). The highest 137Cs-based soil erosion
estimates are found at two hayfield sites (hl and h3) and the pasture sites at the
south facing slope (pl1 and p2). The higher RUSLE and 137Cs estimates on the
more intensely used, steeper and more snow glide affected south facing slope
are reasonable. However, the high 137Cs-based erosion rates (16.6 t hal yr! for
A1N and 13.7 t hat yr-1 for A2N)) at Alnus viridis sites are unexpected and will be

discussed below.
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3.3 Relation between soil redistribution and snow gliding

Sediment yield measurements in snow glide depositions showed the importance
of this process in the winter 2012/2013. However, even though the winter was
quite representative for the average winter conditions (in terms of winter
precipitation) the measured rates are likely to vary between different years. To
assess the relevance of this process for a longer time scale, a second approach
using RUSLE and 137Cs was followed.

Our hypothesis was that the difference of the water soil erosion rate modelled
with RUSLE and the total net erosion measured with the 137Cs method correlates
to a “winter soil erosion rate”. This winter soil erosion rate comprises long-term
soil removal by snow gliding and occasionally wet avalanches as well as snow
melt. These “winter erosion rates” (difference of 137Cs and RUSLE) ranged from
rates of -7.3 t ha-t yr-! for a pasture with dwarf shrubs to rates of 31 t ha-t yr-! for
the hayfield site hl. A negative difference of 137Cs and RUSLE indicates,
according to our hypothesis, a sedimentation (because RUSLE simulates the
potential water soil erosion rates) and a positive value erosion due to processes
not implemented in the RUSLE. The most likely processes would be snow induced
processes. Two observations underpin our hypothesis: first, even though the
sediment yield measurements in the snow glide deposition comprise only one
winter, a relation (p = 0.13) between the snow glide erosion and the difference
of 137Cs and RUSLE could be observed (R2 = 0.39; Fig. 5). The largest difference
between 137Cs and RUSLE based erosion could be observed for sites with high
snow glide related sediment yield (except for the site h3). The resulting intercept
might be either to a deviation of the weather conditions in the winter 2012/2013
from the long-term average condition captured by the other methods or due to

the impact of occasional wet avalanches and/or snow melt. For instance,
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following the USLE snow melt adaptation for R-factor would result in an on
average 2.1t hat yr'l higher modelled erosion rate for all sites.

A further indication for the importance of snow gliding as soil erosion agent is
given by the significant positive correlation between measured snow glide
distance and the difference of 137Cs and RUSLE, which we interpret as winter soil
erosion rate (Fig. 6). The measured snow glide distance explained 64 % of the
variability of the winter soil erosion rate (p<0.005). However, this relation does
not comprise the Alnus viridis sites that showed a large difference between
RUSLE and 137Cs based rates but a low snow glide distance. For the Alnus viridis
sites, we have to expect that either one of the two approaches to determine soil
erosion rates is erroneous and/or that we have another predominant erosion
process not considered/or not correctly parameterised in the RUSLE yet. A
possible error related to the 137Cs approach might be that 137Cs was intercepted
by leaf and litter material of Alnus viridis. Thus, a reference site with Alnus viridis
stocking would be necessary which is difficult to find in our site because no flat
areas exist with Alnus viridis stocking. The observation of increasing soil erosion
with increasing snow glide rates is congruent with the findings of Leitinger et al.
(2008), who observed that the severity of erosion attributed to snow gliding (e.g.
torn out trees, extensive areas of bare soil due to snow abrasion, landslides in
topsoil) was high in areas with high snow glide distance and vice versa.
Generally, for these sub-alpine sites the magnitude of the RUSLE based water
erosion rates need to be considered with caution not only with respect to the
involved uncertainties but also conceptually since several of the factors lay
outside the empirical RUSLE framework. Also the magnitude of the 137Cs based
erosion rate needs to be considered carefully. The profile distribution model
tends to overestimate soil erosion rates since it assumes that the 137Cs depth

distribution does not change with time. However, in the very first years after the
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fallout, 137Cs was concentrated more in the surface soil layer (Schimmack and
Schultz, 2006). Thus, in the years after the fallout small losses of soil would have
resulted in a relatively high 137Cs loss which might result in an overestimation of
soil erosion rates.

The latter uncertainties do not include snow melt erosion and temporal
variability, both potential reasons for the intercept observed between the
magnitude of winter erosion estimated from RUSLE/137Cs and from snow glide
depositions. Nonetheless, the almost 1:1 relation is a clear indication that the
observed discrepancies between the RUSLE and 137Cs based soil erosion rates
are related to snow gliding. Congruent with our results Stanchi et al. (2014,
accepted) found a relation between the intensity of snow erosion affected
areas and the difference of RUSLE and 137Cs estimates.

Further, it can be deduced that low surface roughness is correlated to high snow
glide distances and these are again positively correlated to large observed
differences between RUSLE and 137Cs based soil erosion rates that we interpret
as high winter soil erosion rates. Erosion estimates from sediment yield
measurements of the snow glide deposition could confirm the partially high
winter erosion rates. However, the presented relations might be highly variable,
depending on soil temperature (whether the soil is frozen or not) during snow in,
the occurrence of a water film that allows a transition of dry to wet gliding
(Haefeli, 1948) and on the weather conditions of a specific winter. In addition,
some of the investigated sites might also be affected by avalanches in other

years.

3.4 Modelled snow glide distances
The modelled snow glide rates from the SSGM compared reasonably well with
the snow glide measurements (Fig. 7). In agreement with the measured values
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all sites facing to the north revealed lower modelled snow glide distances.
Largest discrepancies between the mean modelled and measured values of
each site occur for the pastures on the south facing slopes (p and pw). The
model overestimates the snow glide rates for these sites, which might be due to
the effect of micro-relief in form of cattle trails at these sites. This small terraces
(0.5 m in width) most likely reduce snow gliding but are not captured by the
digital elevation model that is used for the SSGM. In general, modelled snow
glide distances show smaller ranges than measured snow glide distances, due to
the 5 m resolution of the model input data (Fig. 7). Interestingly, the occurrence
of dwarf shrubs seems to reduce snow gliding to a larger extend as predicted by
the model.

The modelled snow glide distance map (Fig. 8) is based on the long-term
average of winter precipitation, which is with 430 mm clearly higher than the
winter precipitation in 2009/2010 with 285 mm (Fig. 7). The highest snow glide
values were simulated on the steep, south facing slopes with predominate
grassland and dwarf-shrub cover. Very high rates are also found on the lower
parts of the south facing slopes that are used as pastures and hayfields. The
smallest snow glide rates are located on the north facing slopes. The map
clearly reproduces the effect of topography and aspect. Moreover, snow glide
distances summarized for predominant land-use types also reproduce the
impact of vegetation cover (Fig. 9). The highest potential snow glide distances
were simulated by the SSGM for the south-facing hayfield and pasture sites while
the Alnus viridis has on average decisively smaller snow glide distances. In
contrast, on the north facing slopes there is no difference observed between
the Alnus viridis - and the hayfield category. Here the pasture sites show the

highest average snow glide rate. The interpretation of the differences between
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land use types is, however, restricted since systematically different topographic
conditions are involved.

The topographic and climatic conditions in our valley resemble the environment
under which the SSGM was initially developed; nonetheless further regular yearly
measurement would be needed to improve the performance of the model in this
area. In conclusion, the application of the SSGM highlighted the relevance of
the snow gliding process and the potentially related soil erosion for (sub-) alpine

areas.

4 Conclusions

The presented absolute magnitude of the snow glide related soil erosion rate is
subject to high inter-annual variability. However, snow glide erosion measured
from the snow glide depositions (0.03 to 22.9 t ha! yr-! in the winter 2012/2013)
highlights the need to consider the process of snow gliding as a soil erosion
agent in steep, scarcely vegetated alpine areas.

RUSLE and 137Cs both yield average long-term soil erosion rates for water and
total net erosion, respectively. Despite the associated uncertainties, the total
net erosion rate is significantly higher than the gross water erosion rate provided
by RUSLE. We interpret the difference as “winter” soil erosion rate which was
significantly correlated to snow glide rates and showed an almost 1:1 relation to
sediment yield measurements in snow glide depositions. The application of RUSLE
and 137Cs showed i) the relevance of the snow glide process for a longer time
scale (as compared to the snow glide deposition measurements of one winter)
and ii) that for an accurate soil erosion prediction in high mountain areas it is
crucial to assess and quantify the erosivity of snow movements.

The Spatial Show Glide Model might serve as a tool to evaluate the spatial

relevance of snow gliding for larger areas. However, it would be recommended
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to additionally estimate the kinetic energy that acts upon the soil during the
snow movement. This would allow for a direct comparison of rainfall erosivity
and snow movement erosivity, and moreover its insertion into soil erosion risk
models. The impact of snow movement on soil removal should moreover, be
evaluated in context of predicted changes in snow cover e.g. an increase of
snow amount for elevated (>2000 m a.s.l.) areas (Beniston, 2006).

Further, we demonstrated that surface roughness, which is determined by the
vegetation type and the land use, reduces snow glide rates particularly on the
in general more intensely used south facing slopes. In turn snow glide rates are
positively related to increasing soil loss for grassland sites. This is an important
result with respect to soil conservation strategy since surface roughness can be

modified and adapted through an effective land use management.
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5 Tables

Table

1: Parameters

related to measured

snow glide distance (sgd, SD =

standard deviation based on 3-5 replicate measurements) for the investigation

sites in the Ursern Valley, Switzerland. N indicates the sites on the north facing

slope.
slope initial force Fr static friction measured SD sgd
site  vegetation @) (g ms?) coefficient s (-) sgd (cm) (cm)
hl hayfield 39 569 0.37 189 117
h2 hayfield 38 510 0.33 50 40
h3 hayfield 35 392 0.24 126 49
pasture with dwarf-
pwl shrubs 38 1030 0.66 34 19
pasture with dwarf-
pw2 shrubs 35 1118 0.69 28 15
pl pasture 38 579 0.37 89 37
P2 pasture 35 1109 0.68 64 40
hiN hayfield 28 343 0.20 30 14
h2N  hayfield 30 608 0.35 8 1
PN pasture 18 628 0.33 17 23
AIN Alnus viridis 25 1050 0.58 2 1
A2N  Alnus viridis 30 451 0.26 28 9
Al Alnus viridis 22 1550 0.84 14 18
A2 Alnus viridis 31 1197 0.70 60 46
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787
788 Table 2: Measured site characteristics (SOC=so0il organic carbon; vfs= very fine sand fraction), resulting RUSLE factors
789 and soil erosion rates and 137Cs based erosion rates for the investigation sites in the Ursern Valley, Switzerland.

790 *indicated the sites from Konz et al. (2009).

LS- R- C- RUSLE 137Cs

slope SOC vfs silt clay K-factor P-factor factor factor factor (- (thalyr (thatyr
site (@) %) ) %) %) (kghN'm2) () () (Nh?) ) 1) 1)
hl 39 77 129 473 125 0.280 1.00 22.2 97.2 0.010 6.0 37.0
h2 38 72 9.7 588 17.3 0.290 1.00 8.8 94.5 0.006 15 11.0
h3 35 74 123 438 16.9 0.230 1.00 20.7 93.6 0.010 45 33.0
pwl 38 6.9 6.3 635 10.8 0.320 0.90 12.6 91.7 0.040 13.3 6.0
pw?2 35 7.1 11.2 409 14.2 0.230 0.90 11.8 94.8 0.040 9.3 13.0
pl 38 76 11.2 505 11.6 0.270 0.90 11.8 97.6 0.020 5.6 20.0
p2 35 72 124 456 15.0 0.250 0.90 15.3 96.4 0.020 6.6 30.0
h1iN 28 48 185 410 58 0.416 1.00 7.0 93.6 0.012 3.2 18.3
h2N 30 43 137 480 85 0.419 1.00 8.4 91.7 0.012 3.8 7.5
pN 18 6.2 175 38.7 10.2 0.369 1.00 11 97.2 0.012 0.5 7.2
A1N 25 3.8 16.1 438 9.7 0.399 1.00 5.3 93.6 0.003 0.6 16.6
A2N 30 6.8 18.7 39.7 9.6 0.389 1.00 8.4 91.7 0.003 0.9 13.7
Mean of
N-facing
sites 37 7.3 109 501 14.0 0.267 0.94 14.7 95.1 0.021 6.7 21.4
Mean of S-
facing
sites 26 52 169 422 838 0.398 1.00 6.0 93.6 0.008 1.8 12.7
mean of
all sites 32.4 6.4 134 46.8 11.8 0.3 1.0 11.1 94.5 0.0 4.6 17.8

791
792
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Table 3: Snow movement related soil erosion derived from the difference of 137Cs-based and RUSLE-based erosion
rates (Diff.) and from field measured sediment in snow glide deposits (sg erosion). For each snow glide deposit, the
mean sediment yield estimate is based on several samples (n). SD = is the standard deviation for the resulting
erosion rates based on the individual sediment yield samples and * indicates the sediment yield of a wet avalanche.

Uncertainty Diff. provides the uncertainty of Diff. resulting from both the 137Cs and RUSLE method.

Diff.
187Cs - SD sg
RUSLE 137Cs RUSLE Uncertainty erosion
(thatlyr (thatyr (thalyr Diff. (thal sg erosion (t halyr
site D D D yr1) (t hal yr1) D) n
hl 6.0 37.0 31.0 8.5 22.9 81.5 16
h2 15 11.0 9.5 7.7 3.2 1.9 3
h3 45 33.0 28.5 8.2 1.1 1.9 10
pwl 13.3 6.0 -7.3 10.9 0.8 0.5 3
pw2 9.3 13.0 3.7 9.8 0.0 0.1 7
pl 5.6 20.0 14.4 8.5 16.7 6.8 11
p2 6.6 30.0 23.4 8.6 14.0 44.9 13
Nno snow
hiN 3.2 18.3 15.1 7.6 glide - -
no snow
h2N 3.8 7.5 3.7 8.4 glide - -
pN 0.5 7.2 6.7 8.0 1.97* 3.8 18
Nno snow
A1N 0.6 16.6 16.0 7.2 glide - -
Nno snow
A2N 0.9 13.7 12.8 7.6 glide - -
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6 Figure captions

Fig. 1 The Ursern Valley in the Central Swiss Alps and the location of the 14
investigated sites (hayfields (h), pastures (p), pastures with dwarf shrubs (pw),

and abandoned grassland covered with Alnus viridis (A), north facing slope (N)).
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Fig.2 lllustration of the procedure for snow glide related erosion rate assessment.
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Fig. 3 Snow glide distance against the static friction coefficient for the south-
(squares) and north (dots) facing slope sites. Y-error bars represent the standard
deviation of replicate measurements at one site. For the static friction
coefficient, an error of + 0.1 (corresponding to the scale accuracy of the spring

balance) was assumed.
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Fig. 4 Example of snow glide deposits for the site pl.
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Fig. 5 Snow glide erosion estimated from the snow glide deposit sediment yield
against the difference of the 137Cs and RUSLE soil erosion rate (t hat yr-1).Y-error
bars represent the uncertainty of both the 137Cs and RUSLE estimates. X-error
bars represent the standard deviation of erosion rates resulting from several
sediment measurements within one snow glide deposit. The solid line represents

the obtained linear regression and the dotted lines the 95% confidence interval.
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824 Fig. 6 Correlation of the cumulative snow glide distances (cm) measured for the
825 winter 2009/2010 versus the difference of the 137Cs and RUSLE soil erosion rate (t
826 ha-t yr-1) for the grassland sites (dots, n=10) and the Alnus viridis sites A1N, A2N
827 (squares, n=2). Y-error bars represent the error of both the 137Cs and RUSLE
828 estimates. X-error bars represent the standard deviation of replicate snow glide
829 measurements at one site. Solid line represents a linear regression and the
830 dotted lines the 95% confidence interval.
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Fig. 7 Boxplot of measured snow glide distances and corresponding modelling
results for different land use/cover types (hayfields (h), pastures (p), pastures
with dwarf shrubs (pw), and abandoned grassland covered with Alnus viridis (A))

for the winter period 2009/2010. N indicates the sites on the north facing slope.
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839 Fig. 8 Map of the potential snow glide distance (m) modelled by SSGM.
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Fig. 9 Modelled potential snow glide distances (using long-term average winter
precipitation)) as mean for the whole catchment grouped by predominant land-
use/cover types (hayfields (h), pastures (p), pastures with dwarf shrubs (pw),
Alnus viridis sites (A)). N indicates the sites on the north facing slope. Error bars

indicate the standard error of the mean.
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