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Abstract 18 

Calibration of distributed hydrologic models usually involves how to deal with the large 19 

number of distributed parameters and optimization problems with multiple but often 20 

conflicting objectives which arise in a natural fashion. This study presents a 21 

multiobjective sensitivity and optimization approach to handle these problems for a 22 

distributed hydrologic model MOBIDIC, which combines two sensitivity analysis 23 

techniques (Morris method and State Dependent Parameter method) with a multiobjective 24 

optimization (MOO) approach ε-NSGAII. This approach was implemented to calibrate 25 

MOBIDIC with its application to the Davidson watershed, North Carolina with three 26 

objective functions, i.e., standardized root mean square error of logarithmic transformed 27 

discharge, water balance index, and mean absolute error of logarithmic transformed flow 28 

duration curve, and its results were compared with those with a single objective 29 

optimization (SOO) with the traditional Nelder-Mead Simplex algorithm used in 30 

MOBIDIC by taking the objective function as the Euclidean norm of these three 31 

objectives. Results show: 1) The two sensitivity analysis techniques are effective and 32 

efficient to determine the sensitive processes and insensitive parameters: surface runoff 33 

and evaporation are very sensitive processes to all three objective functions, while 34 

groundwater recession and soil hydraulic conductivity are not sensitive and were 35 

excluded in the optimization; 2) Both MOO and SOO lead to acceptable simulations, e.g., 36 

for MOO, average Nash-Sutcliffe is 0.75 in the calibration period and 0.70 in the 37 

validation period; 3) Evaporation and surface runoff shows similar importance to 38 

watershed water balance while the contribution of baseflow can be ignored; 4) Compared 39 

to SOO which was dependent of initial starting location, MOO provides more insight on 40 
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parameter sensitivity and conflicting characteristics of these objective functions. 41 

Multiobjective sensitivity analysis and optimization provides an alternative way for 42 

future MOBIDIC modelling. 43 

 44 

Keywords 45 

Multiobjective optimization, sensitivity analysis, distributed hydrologic model, model 46 

calibration  47 
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1. Introduction 48 

With the development of information technology (e.g., high performance computing 49 

cluster and remote sensing technology), there has been a prolific development of 50 

integrated, distributed and physically-based watershed models (e.g., MIKE-SHE, 51 

Refsgaard and Storm, 1995) over the past two decades, which are increasingly being used 52 

to support decisions about alternative management strategies in the areas of land use 53 

change, climate change, water allocation, and pollution control.  Though in principle 54 

parameters of distributed and physically based models should be assessable from 55 

catchment data (in traditional conceptual rainfall-runoff models, parameters are obtained 56 

through a calibration process), these models still need a parameter calibration process in 57 

practice due to scaling problems, experimental constraints, etc. (Beven and Binley, 1992; 58 

Gupta et al, 1998; Madsen, 2003). Problems, arising in calibrating distributed hydrologic 59 

models, include how to handle large number of distributed parameters and optimization 60 

problems with multiple but often conflicting objectives. 61 

 62 

In the literature, to deal with large number of distributed model parameters, this is often 63 

done by aggregating distributed parameters (e.g., Yang et al., 2007), or screening out the 64 

unimportant parameters through a sensitivity analysis (e.g., Muleta and Nicklow, 2005; 65 

Yang, 2011). Sensitivity analysis can be used to not only screen out the most insensitive 66 

parameters, but also study the system behaviors identified by parameters and their 67 

interactions, qualitatively or quantitatively. However, most of applications in 68 

environmental modelling are based on the one-at-a-time (OAT) local sensitivity analysis, 69 

which is “predicated on assumptions of model linearity which appear unjustified in the 70 
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cases reviewed” (Saltelli and Annoni, 2010), or simple linear regressions where a lot of 71 

uncertainty are not fairly accounted for. The use of global sensitivity analysis techniques 72 

is very crucial in distributed modelling. Only recently, global sensitivity analysis 73 

techniques and multiobjective sensitivity analysis started to appear in hydrologic 74 

modelling, and van Werkhoven et al (2009) demonstrates how the calibration result 75 

responds to reduced parameter sets with different objectives and different metrics of 76 

parameter exclusion.  77 

 78 

Although most hydrologic applications are based on the single objective calibration, 79 

model calibration with multiple and often conflicting objectives arises in a natural fashion 80 

in hydrologic modelling. This is not only due to the increasing availability of multi-81 

variable (e.g., flow, groundwater level, etc.) or multi-site measurements, but also due to 82 

the intrinsic different system responses (e.g., peaks and baseflow in the flow series). 83 

Instead of finding a single optimal solution in the single objective optimization (SOO), 84 

the task in the multiobjective optimization (MOO) is to identify a set of optimal trade-off 85 

solutions (called a Pareto set) between conflicting objectives. Although there are 86 

criticisms of MOO such as that only one parameter set can be used for decision making, 87 

recently researches (e.g., Kollat and Reed, 2007) start to provide the answers. In 88 

hydrology, the traditional method to solve multiobjective problems is to form a single 89 

objective, e.g., by giving different weights to these multiple objectives or applying some 90 

transfer function. Over the past decade, several MOO algorithms approaches have been 91 

applied to the conceptual rainfall-runoff models (e.g., Yapo et al., 1998; Gupta et al., 92 

1998, Madsen, 2000, Boyle et al., 2000; Vrugt et al., 2003; Liu and Sun, 2010), and now 93 
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increasing applied to distributed hydrologic models (e.g., Madsen, 2003; Bekele and 94 

Nicklow, 2007; Shafii and Smedt, 2009; MacLean et al., 2010). And there are some 95 

papers (Tang et al., 2006; Wöhling et al., 2008) to comparatively study their strengths 96 

with the application in hydrology. A good review of MOO applications in hydrological 97 

modelling is given by Efstratiadis and Koutsoyiannis (2010). It is worth noting that the 98 

multiobjective calibration is different from statistical uncertainty analysis which is based 99 

on the concept (or similar concept) of “equifinality” (see discussion in Gupta et al., 1998, 100 

and Boyle et al., 2000). 101 

 102 

This paper applies two sensitive analysis techniques (Morris method and State Dependent 103 

Parameter method) and ε-NSGAII in the multiobjective sensitive analysis and calibration 104 

framework. This was implemented to calibrate a distributed hydrological model 105 

MOBIDIC with its application to the Davidson watershed, North Carolina. The purpose 106 

is to study parameter sensitivity of the hydrologic model MOBIDIC and explore the 107 

capability of MOO in calibrating the MOBIDIC compared to the traditional SOO used in 108 

MOBIDIC applications. 109 

 110 

This paper is structured as follows: section 2 gives a description of the MOBIDIC model; 111 

section 3 introduces the approach in the multiobjective sensitivity analysis and 112 

optimization; section 4 gives a brief introduction of the study site, model setup, objective 113 

selection, and sensitivity and calibration procedure; in section 5, the results are presented 114 

and discussed; and finally the main results are summarized and conclusions are drawn in 115 

‘conclusions’ section. 116 
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 117 

2 Hydrologic model MOBIDIC 118 

MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo; Castelli et al., 2009; 119 

Campo et al., 2006) is a distributed and raster-based hydrological balance model. 120 

MOBIDIC simulates the energy and water balances on a cell basis within the watershed. 121 

Figure 1 gives a schematic representation of MOBIDIC. The energy balance is 122 

approached by solving the heat diffusion equations in multiple layers in the soil-123 

vegetation system, while the water balance is simulated in a series of reservoirs (i.e., 124 

boxes in Figure 1) and fluxes between them.  125 

 126 

For each cell, water in the soil is simulated by 127 

tas
c

asdpernf
g

ES
dt

dW

SQSI
dt

dW

−=

−−−=
        (1) 128 

where Wg [L] and Wc [L] are the water contents in the soil gravitational storage and 129 

capillary storage, respectively, and Inf [LT-1], Sper [LT-1], Qd [LT-1], Et [LT-1], and Sas 130 

[LT-1

gper WS ⋅= γ

] are infiltration, percolation, interflow, evaporation, and adsorption from 131 

gravitational to capillary storage, which are modeled through following equations: 132 

           133 

gd WQ ⋅= β            134 
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where γ, β and κ are percolation coefficient [T-1], interflow coefficient [T-1], and soil 136 

adsorption coefficient [LT-1], respectively, P the precipitation [LT-1], Qh and Rd Horton 137 

runoff and Dunne runoff, Ks the soil hydraulic conductivity[LT-1], Wgmax [L] and Wcmax

 140 

 138 

[L] the gravitational and capillary storage capacities. 139 

Once the surface runoff (Qh and Rd

 145 

) and baseflow are calculated, three different methods 141 

can be used for river routing, i.e., the lag method, the linear reservoir method, 142 

Muskingum-Cunge method (Cunge, 1969). Muskingum-Cunge method was used in this 143 

study. 144 

MOBIDIC uses either a linear reservoir or the Dupuit approximation to simulate the 146 

groundwater balance which relates the groundwater change to the percolation, water loss 147 

in aquifers and baseflow. In this case study, the linear reservoir method was used. 148 

 149 

Although there are many distributed parameters in MOBIDIC, normally these distributed 150 

parameters are calibrated through the “aggregate” factors (e.g., the multiplier for 151 

hydraulic conductivity) based on their initial estimations. And hereafter we use the term 152 

“factor” (instead of “model parameter”) when we conduct the sensitivity analysis and 153 

optimization, to avoid the confusion with the term “model parameter” used in model 154 

description. A factor can be a model parameter or a group of distributed model 155 

parameters with the same parameter name, and in this paper it is a change to be applied to 156 

a group of model parameters. In MOBIDIC, normally nine factors (i.e., nine groups of 157 

parameters) need to be calibrated. These factors, their explanations, and their 158 

corresponding model parameters are listed in Table 1.  159 

 160 

3 Methodology 161 
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The procedure applied here consists of two-step analyses, i.e., a multiobjective sensitivity 162 

analysis generally characterizing the basic hydrologic processes and single out the most 163 

insensitive factors, and a multiobjective calibration aiming at trade-offs between different 164 

objective functions. 165 

3.1 Sensitivity analysis techniques 166 

Sensitivity analysis is to assess how variations in model out can be apportioned, 167 

qualitatively or quantitatively, to different sources of variations, and how the given model 168 

depends upon the information fed into it (Saltelli et al., 2008). In the literature, a lot of 169 

sensitivity analysis methods are introduced and applied, e.g., Yang (2011) applied and 170 

compared five different sensitivity analysis methods. Here we adopted an approach which 171 

combines two global sensitivity analysis techniques, i.e., the Morris method (Morris, 172 

1991) and SDP method (Ratto et al., 2007). 173 

3.1.1 Morris method  174 

Morris method is based on replicated and randomized one-factor-at-a-time design (Morris, 175 

1991). For each factor Xi, Morris method uses two statistics, μi and σi, which measure the 176 

degree of factor sensitivity, and the degree of nonlinearity or factor interaction, 177 

respectively. The higher μi is, the more important the factor Xi is to the model output; and 178 

the higher σi is, the more nonlinear the factor Xi is to the model output or more 179 

interactions with other factors (details refer to Morris, 1991; Campolongo et al., 2007). 180 

Morris method takes m*(n+1) model runs to estimate these two sensitivity indices for 181 

each of n factors with sample size m. The advantage is it is efficient and effective to 182 

screen out insensitive factors. Normally m takes values around 50. And according to 183 
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Saltelli et al. (2008), the sensitivity measure (μi

TiS

) is a good proxy for the total effect (i.e., 184 

 in Eq. 4 below), which is a robust measure in sensitivity analysis.  185 

  186 

3.1.2 State-Dependent Parameter method (SDP) 187 

SDP (Ratto et al., 2007) is based on the ANOVA functional decomposition, which 188 

apportions the model output uncertainty (100%, as 1 in Eq. 3) to factors and different 189 

levels of their interactions: 190 

∑∑∑ +++=
>i

n
ij

ij
i

i SSS ..12...1        (3) 191 

where iS  is the main effect of factor Xi

iX

 representing the average output variance 192 

reduction that can be achieved when  is fixed, and ijS is the first-order interaction 193 

between iX  and jX , and so on. In ANOVA based sensitivity analysis, total effect ( TiS ) 194 

is frequently used, which stands for the average output variance that would remain as 195 

long as iX  stays unknown,  196 

n
ij

ijiTi SSSS ...12... +++= ∑
≠

        (4) 197 

SDP method uses the emulation technique to approximate lower order sensitivity indices 198 

in Eq. (3) (e.g., iS  and ijS  in this study) by ignoring the higher order sensitivity indices. 199 

And we define ∑+=
j

ijiDi SSS (referred to as “quasi total effect” later) as a surrogate to 200 

the total effect. The advantage is that it can precisely estimate lower order sensitivity 201 

indices at a lower computational cost (normally 500 model runs, which is independent of 202 

number of factors). The disadvantage is that it cannot estimate higher order sensitivity 203 

indices.  204 
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 205 

In practice, especially for over-parameterized cases, Morris method is firstly suggested to 206 

screen out insensitive factors, and then SDP method is applied to quantify the 207 

contributions of the sensitive factors and their interactions. In this study, as model 208 

parameters are aggregated into nine factors (as listed Table 1), these two methods are 209 

applied individually. And then, the sensitivity of each factor and its system behaviour 210 

will be discussed, qualitatively by Morris method, and quantitatively by SDP method. 211 

And then the most insensitive factors will be screened out and excluded in the calibration.  212 

 213 

In the context of multiobjective analysis, sensitivity analysis applied includes: 1) to 214 

examine the sensitivity of each factor to different objective functions, qualitatively or 215 

quantitatively; 2) to single out the most sensitive factors and study the physical 216 

behaviours of the system; 3) to exclude the most insensitive factors and therefore 217 

simplify the process of calibration. It is worth noting: this sensitivity analysis approach 218 

applied here is not a fully multiobjective sensitivity analysis approach as proposed by 219 

Rosolem et al (2012 and 2013) which applies sensitivity analysis to all objectives in an 220 

integrated way and is objective. However compared to the fully multiobjctive sensitivity 221 

analysis approach (as proposed in Rosolem et al, 2012) which easily requires over 10,000 222 

model runs, our approach is very computationally efficient as both Morris method and 223 

SDP method only need several hundred model runs, which is highly appreciable for 224 

physically based and distributed hydrologic models. 225 

 226 

3.2 Multiobjective calibration and ε-NSGAII 227 
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In the literature of hydrologic modelling, most applications are single objective based, 228 

which aims at a single optimal solution. However, for example in flow calibration, there 229 

is always a case that two solutions, one solution better simulates the peaks and poorly 230 

simulates the baseflow while the other solution poorly simulates the peaks while better 231 

simulates the baseflow. These two solutions, called Pareto solutions, are 232 

incommensurable, i.e., better fitting of the peaks will lead to worse fitting of the baseflow, 233 

and vice versa. This belongs to the domain of MOO, aiming at finding a set of optimal 234 

solutions (Pareto solutions), instead of one single solution. 235 

 236 
Generally a MOO problem can be formulated as follows: 237 

))(),...,(),...,(),(()(..
))(),...,(),...,(),(()(min

21

21

XgXgXgXgXGts
XfXfXfXfXF

li

ki

=
=

     (5) 238 

Where X is an n-dimensional vector and in this study represents the model factors to be 239 

calibrated, )(Xfi  ith )(Xgi objective function, and  ith

 241 

 constraint function. 240 

In the literature, there are many algorithms available to obtain the Pareto solutions, e.g., 242 

NSGAII (Non-dominated Sorting Genetic Algorithm-II; Deb et al, 2002), SPEA2 243 

(Strength Pareto Evolutionary Algorithm 2; Zitzler et al., 2001), MOSCEM-UA 244 

(Multiobjective Shuffled Complex Evolution Metropolis; Vrugt et al., 2003), and ε-245 

NSGAII (Kollat and Reed, 2006), etc. In this study, we adopt ε-NSGAII, which is 246 

efficiency, reliability, and ease-of-use. Its strengths have been comparatively studied in 247 

Kollat and Reed (2006) and Tang et al. (2006).  248 

 249 
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ε-NSGAII is an extension of the NSGAII (Deb et al., 2002), a second generation of 250 

multiobjective evolution algorithm. The main characteristics of ε-NSGAII include: (i) 251 

Selection, crossover, and mutation processes as other genetic algorithm by mimicking the 252 

process of natural evolution, (ii) an efficient non-domination sorting scheme, (iii) an 253 

elitist selection method that greatly aids in capturing Pareto front, (iv) ε-dominance 254 

archiving, (v) adaptive population sizing, and (vi) automatic termination to minimize the 255 

need for extensive parameter calibration. More details refer to Kollat and Reed (2006). In 256 

this study, two changes were made to the original ε-NSGAII: 1) the initial population is 257 

generated with Sobol’ quasi-random sampling technique to improve the coverage of 258 

parameter space; 2) the code is parallelized and interfaced with MOBIDIC to improve the 259 

computational speed.  260 

 261 

As a comparison, a single objective function is defined as 2-norm of the multiple 262 

objectives F(X), which measures how close to the original point (theoretical optimum O): 263 

𝑠𝑜𝑓 = ‖𝐹(𝑋)‖2 = �∑ 2)(Xfi
𝑘
𝑖=1        (6) 264 

And SOO was done with the classic Nelder–Mead algorithm (Nelder and Mead, 1965) 265 

which is already coded into the MOBIDIC package. 266 

 267 

To analyze the Pareto solution and also compare with the solution from SOO, except for 268 

traditional methods, the “Level diagrams” proposed by Blasco et al. (2008) was also used. 269 

Compared to traditional methods, it can visualize high dimensional Pareto front and 270 

synchronizes the objective and factor diagrams. The procedure and includes two steps. In 271 

the first step, the vector of objectives (k-dimension) for each Pareto point is mapped to a 272 



14 
 

real number (one-dimension) according to the proximity to the theoretical optimum 273 

measured with a specific norm of objectives; and in the second step, these norm values 274 

are plotted against the corresponding values of each objective or factor. 1-norm, 2-norm 275 

and ∞-norm are suggested. To compare with SOO, 2-norm was used. 276 

 277 

4 Davidson watershed and objective selection 278 

4.1 Davidson watershed 279 

The Davidson watershed, located in southwest mountain area of North Carolina, drains 280 

an area of 105km2 above the station “Davidson river near Brevard” (see Figure 2). The 281 

elevation ranges from 645m to 1,820m above sea level. Based on the NLDAS climate 282 

data, the average annual precipitation is 1,900mm and varies from 1,400mm to 2,500mm, 283 

and daily temperature changes from -19oC to 26oC. The average daily flow is about 284 

3.68m3

 286 

/s. 285 

Data used in MOBIDIC model include (i) Digital Elevation Model (DEM), (ii) soil data, 287 

(iii) land cover data, (iv) climate data (precipitation, minimum and maximum temperature, 288 

solar radiation, humidity and wind speed), and (v) flow data. 9m DEM, land cover, 289 

SSURGO soil data, one station (Davidson river near Brevard) of flow data are from U.S. 290 

Geological Survey, and hourly NLDAS climate data from National Aeronautics and 291 

Space Administration (NASA). NLDAS integrates a large quantity of observation-based 292 

and model reanalysis data to drive offline (not coupled to the atmosphere) land-surface 293 

models (LSMs), and executes at 1/8th-degree grid spacing over central North America, 294 

enabled by the Land Information System (LIS) (Kumar et al., 2006; Peters-Lidard et al., 295 

2007). 296 
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 297 

DEM is used to delineate the watershed and estimate the topographic parameters and 298 

river system, Land cover for evaporation parameters, soil data for soil parameters, 299 

climate data is used to drive MOBIDIC, and flow data are used to calibrate the model and 300 

assess model performance. The climate and flow data used in this study are from Jan 1, 301 

1996 to Sep 30, 2006. As NLDAS only has hourly temperature daily instead of hourly 302 

minimum and maximum temperature needed by MOBIDIC, we compiled the hourly 303 

climate data to daily data and run the model at a daily step. After MOBIDIC setup, the 304 

initial parameter values are listed in third column of Table 1. 305 

 306 

We split the data into a warm-up period (from Jan 1, 1996 to Sep 30, 2000), a calibration 307 

period (from Oct 1, 2000 to Sep 30, 2003), and a validation period (from Oct 1, 2003 to 308 

Sep 30, 2006). 309 

 310 

4.2 Objective function selection 311 

After setting up MOBIDIC in the Davidson watershed, three objective functions were 312 

used in the multiobjective sensitivity analysis and optimization: 313 

1) Standardized root mean square error between the logarithms of simulated and observed 314 

outflows: 315 

𝑆𝑅𝑀𝑆𝐸 =
�1
𝑁∑ (𝑙𝑜𝑔�𝑄𝑖

𝑜𝑏𝑠�−𝑙𝑜𝑔�𝑄𝑖
𝑠𝑖𝑚�)2𝑁

𝑖=1

� 1
𝑁−1∑ (𝑙𝑜𝑔�𝑄𝑖

𝑜𝑏𝑠�−𝑙𝑜𝑔𝑄�������)2𝑁
𝑖=1

      (7) 316 

2) Water Balance Index, calculated as the mean absolute error between the simulated and 317 

observed flow accumulation curves:  318 

𝑊𝐵𝐼 = 1
𝑁
∑ |𝑄𝐶𝑖𝑜𝑏𝑠 − 𝑄𝐶𝑖𝑠𝑖𝑚|𝑁
𝑖=1         (8) 319 

3) Mean absolute error between the logarithms of simulated and observed flow duration 320 

curves  321 
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𝑀𝐴𝑅𝐷 = 1
100

∑ | 𝑙𝑜𝑔�𝑄𝑃𝑖𝑜𝑏𝑠� − 𝑙𝑜𝑔�𝑄𝑃𝑖𝑠𝑖𝑚� |𝑁
𝑖=1      (9) 322 

In Eq. (7), (8) and (9), obs
iQ  and sim

iQ  are observed and simulated flow series at time step i, 323 

N the data length, Qlog  the average of logarithmic transformed observed flows, obs
CiQ  and 324 

sim
CiQ  ith observed and simulated accumulated flows, and 𝑄𝑃𝑖

𝑜𝑏𝑠 and 𝑄𝑃𝑖
𝑠𝑖𝑚 ith

SRMSE (Eq. 7), WBI (Eq. 8), and MARD (Eq. 9) are measures of the closeness between 327 

simulated and observed flow series, water balance, and closeness between simulated and 328 

observed flow frequencies, respectively. The smaller these measures are, the better the 329 

simulation is, and the minima are (0, 0, 0) meaning a perfect match between the 330 

simulation and observation. It is worth noting that we use the logarithms of the flows 331 

instead of flows to avoid overfitting flow peaks (Boyle et al., 2000; Shafii and De Smedt, 332 

2009) as flood forecasting is not our main focus. And for SRMSE, we have NS ≈ 1-333 

SRMSE

 percentiles of 325 

observed and simulated flow duration curves. 326 

2

And accordingly, the single objective function here is the Euclidean norm (2-norm) of 336 

SRMSE, WBI, and MARD: 337 

 when N is large (e.g., > 100), where NS is the Nash-Sutcliffe coefficient (Nash 334 

and Sutcliffe, 1970), which is widely used in hydrologic modelling.  335 

 𝑠𝑜𝑓 = √𝑆𝑅𝑀𝑆𝐸2 + 𝑊𝐵𝐼2 + 𝑀𝐴𝑅𝐷2      (10) 338 

 339 

5 Result and discussion 340 

5.1 Multiobjective sensitivity analysis 341 

Morris method and SDP method were applied individually to the initially selected factors 342 

(in Table 1). 343 
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For Morris method, its convergences for three objective functions, monitored using the 344 

method proposed in Yang (2011), were achieved around 700~800 model simulations. 345 

Figure 3 gives the sensitivity results for objective functions SRMSE, WBI, and MARD, 346 

respectively. In each plot, the horizontal axis (µ) denotes the degree of factor sensitivity, 347 

and the vertical axis (σ) denotes the degree of factor nonlinearity or interaction with other 348 

factors.  349 

For SRMSE, the most sensitive factors are group (pα, pγ, and pκ), followed by pβ and 350 

rCH, while other factors (especially rKs and rKf) are not so sensitive. This applies to the 351 

degree of the factor nonlinearity or interaction. Factors in the same group have a similar 352 

effect on studied objective function. The sensitivities of pα, pγ, and pκ indicate the 353 

importance of their corresponding processes (i.e., surface runoff, percolation, and 354 

adsorption which is related to evapotranspiration) to SRMSE, while interflow (pβ) is less 355 

important and other processes/characteristics (e.g., groundwater flow, rKf

For WBI, the dominating parameter is pκ, followed by pα, pγ, pβ and rCH, while other 358 

factors (especially rKf and rW

) are not 356 

important.  357 

cmax

For MARD, the results are nearly the same to SRMSE. And this means factors behave 364 

similarly to these two objective functions. 365 

) are not so sensitive. WBI measures the water balance 359 

between observed and simulated flow series, and it is reasonable that pκ which controls 360 

the water supply for evaporation is most sensitive while other factors (pα, pγ, pβ and rCH) 361 

are sensitive mainly through interaction with this factor, as indicated by the high “σ”s of 362 

these factors.  363 

 366 
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Figure 4 gives the sensitivity results based on SDP method for SRMSE, WBI, and MARD, 367 

from top to bottom. In each plot, the grey and black bars are iS  and DiS  for each factor.  368 

For SRMSE, as indicated by R2
iS in the legend, main effects ( ) contribute to 58.7% of 369 

SRMSE uncertainty, and quasi total effects ( DiS ) account for 83% of SRMSE uncertainty 370 

which is quite high, while other 17% due to higher interactions are not explained.  Based 371 

on DiS  (black bar), the most sensitive factors are pγ and pκ, followed by pα and rCH, and 372 

then pβ and rWcmax

iS

 while other factors are not sensitive. This result quantitatively 373 

corroborates the result obtain from Morris method. The main effects ( ) of (pγ, pκ, and 374 

pα) are high (i.e., 0.17, 0.18 and 0.14), which suggests these factors should be determined 375 

first in model calibration as they lead to the largest reduction in SRMSE uncertainty. For 376 

each factor, the difference between the black bar and grey bar shows the first order 377 

interaction with other factors. This interaction is very strong in pγ, pκ, pα, and rCH, and 378 

very weak in other factors.  379 

 380 

For WBI, as indicated by R2
iS in the legend, the total main effects ( ) contribute to 38.4% 381 

of the WBI uncertainty, quasi total effects ( DiS ) only account for 57.6% of WBI 382 

uncertainty, and around 40% due to higher interactions are not explained and can not be 383 

ignored. However, by analyzing the result with that from Morris method (top right in 384 

Figure 3), we still can get some valuable results: the dominating sensitive factor is pκ 385 

with DiS  0.43 (which is same as Morris method), followed by pγ, pα, and rCH, while 386 

other factors are not sensitive; the main effect of pκ is as high as 0.27, and it should be 387 
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fixed in order to get the maximum reduction in WBI uncertainty; the first interaction is 388 

high in pκ, pγ, and pα, not obvious in other factors. 389 

Similar to the Morris results for SRMSE and MARD, the result of MARD is nearly the 390 

same as SRMSE. The similar result for SRMSE and MARD shows similar characteristic 391 

relationship between factors and the objective function. This is explainable: a good 392 

simulation measured by SRMSE will more likely result in a good measure of MARD, and 393 

vice versa.  394 

 395 

As aforementioned, in the context of multiobjective sensitivity analysis, sensitivity 396 

analysis is to exclude the factors which are insensitive to all the objective functions 397 

considered. Based on the analysis above, four most insensitive factors are rKs, rKf, 398 

rWcmax, and rWgmax. However, as shown in Figure 4, rWcmax is more sensitive than other 399 

three factors, and for objective function WBI, as higher order interactions are strong 400 

based on SDP (i.e., explains around 40% of model uncertainty), and evaporation is the 401 

most sensitive process to water balance (as indicated by pκ and rCH) and rWcmax is the 402 

only factor related to evaporation storage (Wc), therefore, we only exclude rKf, rKs, and 403 

rWgmax

 405 

 for calibration. 404 

5.2 Multiobjective optimization 406 

After sensitivity analysis, only six factors were involved in the calibration. For MOO, we 407 

set the initial population size 128 to obtain a good coverage of the factor space and other 408 

ε-NSGAII parameters to their recommended values, and it led to 482 Pareto front points 409 

from totally 22,000 model runs with modified ε-NSGAII. And for SOO, it stopped after 410 



20 
 

686 model runs with the classic Nelder–Mead algorithm. Apparently, ε-NSGAII took 411 

more model simulations than the Nelder–Mead algorithm, but simulation time was 412 

compensated by the parallelized code running on high performance clusters.  413 

 414 

Figure 5 shows optimized non-dominant sets normalized within [0, 1] and the black line 415 

is for the factor set with SOO. It is encouraging that except rWcmax, factor ranges 416 

decreased a lot. This corroborates the conclusion in the sensitivity analysis: pγ, p𝜅, pβ, pα, 417 

and rCH are the most sensitive and identifiable factors to these three objective functions, 418 

while rWcmax is less sensitive and less identifiable. Several scattered values of pγ and 419 

dispersed rWgmax

 423 

 show that optimized factor sets are scattered in the response surface 420 

rather than concentrated in a continuous region. And the factor set with SOO is within the 421 

range of non-dominant sets. 422 

Figure 6 shows Pareto solutions scattered in the three-dimensional space (top left), and 424 

projections in two-dimensional subspaces with corresponding correlation coefficients (r) 425 

in the calibration period, with the black dot in each plot denoting the solution for SOO . 426 

Correlation coefficients are high and negative for SRMSE and WBI (-0.54), and WBI and 427 

MARD (-0.74), and this indicates strong trade-off interactions along the Pareto surface, 428 

i.e., better (lower) WBI will eventually result in worse (higher) SRMSE, and vice versa. 429 

The correlation coefficient is low (0.13) between SRMSE and MARD, and is even lower 430 

when these two objectives approach to their minima regions (i.e., SRMSE < 0.53 and 431 

MARD < 0.09). This might indicate a poor choice of the objective function, as also shown 432 

by similar sensitivity results for these two objective functions in Section 5.1. Table 2 lists 433 
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the statistics of these three objectives associated with Pareto sets and the result of SOO. 434 

For Pareto sets, in the calibration period, the average SRMSE is 0.49 ranging from 0.47 to 435 

0.57, which corresponds to the average NS 0.78 ranging from 0.67 to 0.78; the average 436 

WBI is 0.05 ranging from 0.02 to 0.11; and the average MEAD is 0.08 ranging from 0.03 437 

to 0.11. In the validation period, the average SRMSE is 0.54 ranging from 0.51 to 0.62, 438 

which corresponds to the average NS 0.70 ranging from 0.61 to 0.74; the average WBI is 439 

0.05 ranging from 0.04 to 0.09; and the average MEAD is 0.10 ranging from 0.08 to 0.13. 440 

And for SOO, SRMSE, WBI and MEAD are 0.48, 0.06 and 0.07 for the calibration period, 441 

and 0.57, 0.06 and 0.10 for the validation, and accordingly the “NS”s are 0.77 and 0.67, 442 

respectively. According to Moriasi et al., 2007 which suggests NS > 0.75 and WBI < 10% 443 

as excellent modelling of river discharge, all Pareto solutions with MOO and the solution 444 

with SOO are close to “excellent” for both calibration and validation periods.  445 

 446 

To better visualize Pareto sets and compare with the result of SOO, the level diagrams are 447 

plotted in Figure 7 by applying Euclidean norm (2-norm) to evaluate the distance of each 448 

Pareto point to the ideal origin (0,0,0) (ideal values for all three normalized objectives are 449 

0). In Figure 7, top three plots are for three objectives and the rest for optimized factors, 450 

and the black dot in each plot is the solution for SOO. In the level diagrams, each 451 

objective and each factor of a point (corresponding to a Pareto solution) is represented 452 

with the same 2-norm value for all the plots. Compared with MOO, obviously, SOO was 453 

trapped in the local optima as seen in top-left plot. Another SOO was done with starting 454 

point close to the optimum of MOO, and now the optimum of SOO is very close to that 455 

of MOO, which means optimization with Nelder-Mead algorithm was dependent of 456 
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starting point. The 2-norm has a close linear relationship with SRMSE due to values of 457 

SRMSE are 5 to 10 times of other two objective functions, and it doesn’t have such 458 

relationship with other two objectives. The scattering of objectives and factors makes it 459 

difficult in decision making to select a single solution because there is not a clear trade-460 

off solution (Blasco et al., 2008). However, compared to SOO, the Pareto solutions from 461 

MOO can make decision making easy as it can be converted with expert opinion or some 462 

utility function.  463 

 464 

Figures 8 and 9 show simulated and observed flow duration curves and time series flows, 465 

respectively, with grey lines denoting the simulations with MOO and black lines with 466 

SOO. Generally, all simulations match the observation well for both the duration curve 467 

and time series flow for both calibration period and validation period. For the duration 468 

curve, simulations from MOO show a wide range in the low flows with frequencies from 469 

0.85 to 1.0, which reflects the insensitivity of groundwater process (discussed in the 470 

sensitivity analysis, i.e., rKf is insensitive to these three objectives). Except for this, there 471 

is a slight overestimation of flows, large flows during the calibration period with 472 

frequencies from 0.2 to 0.1, and median to large flows during the validation period with 473 

frequencies from 0.5 to 0.1. This might be due to the uncertainty in the reanalyzed 474 

climate data. And the extreme flow with frequency around 0 is underestimated, and this is 475 

because we chose the logarithm scale of the observed and simulated flows instead of 476 

normal scale when computing objectives SRMSE and MARD. With SOO, the deviation 477 

from the observed is larger. Similar conclusions can be drawn from the time series 478 



23 
 

simulations in Figure 9, i.e., the wide ranges of low flow period, and underestimation of 479 

flow peaks. Other than this, generally all simulations can mimic the observations.  480 

 481 

Figure 10 shows the time series of watershed average storages (soil storage expressed as 482 

soil saturation, and groundwater depth), and fluxes (evaporation, surface runoff and 483 

baseflow) associated with MOO (shaded) and SOO (black line). With MOO, soil 484 

saturation varies from 0.2 to 1.0 and groundwater from 0 to 120mm. The temporal 485 

fluctuation of soil moisture is higher than groundwater, but lower than fluxes in 486 

evaporation and surface runoff. And this is true for the solution with SOO except the its 487 

ranges of soil saturation and groundwater (groundwater is very close to 0mm). For fluxes 488 

with MOO, evaporation and surface runoff have more temporal variation than baseflow, 489 

and their magnitudes are larger than baseflow. This applies to fluxes with SOO, and its 490 

baseflow is close to 0. This can be confirmed by the De Finetti diagram in Figure 11: 491 

with MOO, the average contributions of evaporation, surface runoff, and basedflow are 492 

49.3%, 46.1%., and 4.8%, respectively while the contribution of baseflow is very 493 

insignificant. And the contribution of baseflow is almost 0 with SOO.  494 

 495 

The result of MOO above is based on a single random seed. The result of MOO with 496 

another random seed is similar to the above except that range of rWcmax is narrower 497 

(however its effect on the simulation result is limited due to its low sensitivity discussed). 498 

Multiple-rand-seed MOO is always appealing, but it might not be practical to fully 499 

distributed and physically based models which is normally time-consuming in 500 
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computation. What one can do is to choose a reliable and robust algorithm based on 501 

literature review. 502 

 503 

6 Conclusion 504 

This study presents a multiobjective sensitivity and optimization approach to calibrate a 505 

distributed hydrologic model MOBIDIC with its application in the Davidson watershed 506 

for three objective functions (i.e., SRMSE, WBI, and MAED). Results show:  507 

1) The two sensitivity analysis techniques are effective and efficient to determine the 508 

sensitive processes and insensitive parameters: surface runoff and evaporation are 509 

very sensitive processes to all three objective functions, while groundwater 510 

recession and soil hydraulic conductivity are not sensitive and were excluded in 511 

the optimization. 512 

2) For SRMSE and MAED, all the factors have almost same sensitivities, and a low 513 

correlation exists between these two objectives in the non-dominance of Pareto 514 

set. This might indicate the poor choice of the objective function. 515 

3) Both MOO and SOO achieved acceptable results for both calibration period and 516 

validation period, in terms of objective functions and visual match between 517 

simulated and observed flows and flow duration curves. For example, with MOO, 518 

the average NS is 0.75 ranging from 0.67 to 0.78 in the calibration and 0.70 519 

ranging from 0.61 to 0.74 in the validation period. 520 

4) In the case study, evaporation and surface runoff shows similar importance to 521 

watershed water balance while the contribution of baseflow can be ignored. 522 
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5) Compared to MOO with ε-NSGAII, the application of SOO with the Neld-Mead 523 

algorithm was dependent of initial starting point. Furthermore, the Pareto solution 524 

provides a better understanding of these conflicting objectives and relations 525 

between objectives and parameters, and a better way in decision making. 526 
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Table 1 Initial selected factors, initial estimation of the corresponding MOBIDIC 

parameter, and factor ranges 

Factor Meaning of the given factor Initial estimation of 
MOBIDIC parameter Factor range 

pγ Exponential change*1 on soil percolation 
coefficient γ [s-1 1.2e-011 ] [-2, 9] 

pκ Exponential change on soil adsorption 
coefficient κ [s-1 1.6e-007 ] [-6, 5] 

pβ Exponential change on interflow 
coefficient β [s-1 2.5e-006 ] [-7, 4] 

pα Exponential change on surface storage 
decay coefficient α [s-1 3.3e-007 ] [-6, 5] 

rK Multiplying change
s 

*2
[5.0e-006, 8.9e-005]  on soil hydraulic 

conductivity [m/s] [0.001, 100] 

rW Multiplying change on maximum storage 
of the capillary reservoir [m] cmax [0.017, 0.165] [0.01, 5] 

rW Multiplying change on maximum storage 
of the gravitational reservoir [m] gmax [0.107, 0.449] [0.01, 5] 

rC Multiplying change on bulk turbulent 
exchange coefficient for heat [-] H [0.010,0.018] [0.01, 5] 

rK Multiplying change on groundwater 
decay coefficient [sf -1 1.0e-007 ] [0.001, 5] 

 

*1

)1exp(0 −×= pXXX

 Exponential change pX means the corresponding MOBIDIC parameter X will be changed according to 

, where X0 is the initial estimation of X; 
*2

rXXX ×= 0

 Multiplying change rX means the corresponding MOBIDIC parameter X will be changed according to  
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Table 2 Statistics of three objective functions associated with multiobjective 

optimization and single objective optimization 

 
Multiobjective optimization Single objective optimization 

 
Calibration Validation Calibration Validation 

 
Mean Min Max Mean Min Max 

  SRMSE 0.49 0.47 0.57 0.54 0.51 0.62 0.48 0.57 
WBI 0.05 0.02 0.11 0.05 0.04 0.09 0.07 0.06 
MAED 0.08 0.03 0.11 0.10 0.08 0.13 0.07 0.10 

 

  



32 
 

Figure Captions 

Figure 1 A schematic representation of MOBIDIC. Boxes denote different water storages 

(gravitational storage Wg, capillary storage Wc, groundwater storage H, surface storage 

Ws, and river system), solid arrows fluxes (evaporation Et, precipitation P, infiltration Inf, 

adsorption Ad, percolation Pc, surface runoff R, interflow Qd, groundwater discharge Qg, 

and surface runoff and interflow from upper cells (R+Qd)up

Figure 2 The location of Davidson watershed, North Carolina, with DEM map, river 

system (lines), and watershed outlet (the triangle point) 

), dashed arrows different 

routings, and blue characters major model parameters. 

Figure 3 Multiobjective sensitivity analysis result based on the Morris method (µ is the 

sensitivity measure, and σ demonstrates the degree of nonlinearity or factor interaction) 

Figure 4 Multiobjective sensitivity analysis result based on the SDP method 

Figure 5 The normalized factor sets associated with MOO (grey lines) and the solution 

with SOO (dark line) 

Figure 6 The Pareto solutions in the three dimensional space (top left), and the 

projections in the two dimensional subspace (other plots), with MOO, and the black dot is 

the solution with SOO 

Figure 7 2-norm level diagrams representation of the Pareto sets with MOO, and the 

solution with SOO (black dot) 

Figure 8 Flow duration curve for observed (dotted line), and simulated with MOO (grey) 

and SOO (solid line) 

Figure 9 Observed flows (dotted) and simulated flows with MOO (grey) and SOO (black 

line) for the calibration period (top) and validation period (bottom) 

Figure 10 Time series of watershed average storages (soil water storage expressed as soil 

saturation, and groundwater depth), and fluxes (evaporation, surface runoff, and baseflow) 

with MOO (grey) and SOO (black line). For SOO, the groundwater storage and baseflow 

are close to 0 and hardly seen. 

Figure 11 De Finetti diagram (Ternary plot) of Evaporation, Surface runoff, and 

Baseflow with MOO (grey) and SOO (black star) 
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Figure 1 A schematic representation of MOBIDIC. Boxes denote different water 

storages (gravitational storage Wg, capillary storage Wc, groundwater storage H, surface 

storage Ws, and river system), solid arrows fluxes (evaporation Et, precipitation P, 

infiltration Inf, adsorption Ad, percolation Pc, surface runoff R, interflow Qd, 

groundwater discharge Qg, and surface runoff and interflow from upper cells (R+Qd)up
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dashed arrows different routings, and blue characters major model parameters.  
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Figure 2 The location of the Davidson watershed, North Carolina, with DEM map, 

river system (lines), and watershed outlet (the triangle point) 
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Figure 3 Multiobjective sensitivity analysis result based on the Morris method (µ is 

the sensitivity measure, and σ demonstrates the degree of nonlinearity or factor 

interaction) 

 

 

 



36 
 

  

Figure 4 Multiobjective sensitivity analysis result based on the SDP method 
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Figure 5 The normalized factor sets corresponding to the Pareto solutions (grey 

lines) with MOO and the solution with SOO (dark line) 
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Figure 6 The Pareto solutions in the three dimensional space (top left), and the 

projections in the two dimensional subspace (other plots), with MOO, and the black dot is 

the solution with SOO 
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Figure 7 2-norm level diagrams representation of the Pareto sets with MOO, and 
the solution with SOO (black dot) 
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Figure 8 Flow duration curve for observed (dotted line), and simulated with MOO 

(grey) and SOO (solid line) 

 
 
 



41 
 

 
Figure 9 Observed flows (dotted) and simulated flows with MOO (grey) and SOO 
(black line) for the calibration period (top) and validation period (bottom) 
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Figure 10 Time series of watershed average storages (soil water storage expressed as 
soil saturation, and groundwater depth), and fluxes (evaporation, surface runoff, and 
baseflow) with MOO (grey) and SOO (black line). For SOO, the groundwater storage 
and baseflow are close to 0 and hardly seen. 
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Figure 11 De Finetti diagram (Ternary plot) of Evaporation, Surface runoff, and 
Baseflow with MOO (grey) and SOO (black star) 
 
 
 


	Sensitivity analysis is to assess how variations in model out can be apportioned, qualitatively or quantitatively, to different sources of variations, and how the given model depends upon the information fed into it (Saltelli et al., 2008). In the lit...

