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Abstract. The simulation of routing and distribution of water through a regulated river system with

a river management model will quickly result in complex and non-linear model behaviour. A robust

sensitivity analysis increases the transparency of the model and provide both the modeller and the

system manager with an better understanding and insight on how the model simulates reality and

management operations.5

In this study, a robust, density-based sensitivity analysis, developed by Plischke et al. (2013), is

applied to an eWater Source river management model. This sensitivity analysis methodology is ex-

tended to not only account for main but also for interaction effects. The combination of sensitivity

indices and scatter plots enables the identification of major linear effects as well as subtle minor and

non-linear effects.10

The case study is an idealised river management model representing typical conditions of the South-

ern Murray Darling Basin in Australia for which the sensitivity of a variety of model outcomes to

variations in the driving forces, inflow to the system, rainfall and potential evapotranspiration, is

examined. The model outcomes are most sensitive to the inflow to the system, but the sensitivity

analysis identified minor effects of potential evapotranspiration and non-linear interaction effects15

between inflow and potential evapotranspiration.
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1 Introduction

Water managers rely heavily on models to predict future water availability, optimize water use and

evaluate water management strategies in order to find a balance between environmental, social and20

economic demands on the system. It is therefore crucial to be aware of the ability of a model to

capture the dynamics of the hydrological cycle relevant to the water management question. In recent

decades, addressing this issue has been the focus of much research in hydrological model calibration

and predictive uncertainty analysis (Gupta et al., 2012).

For a modeler, to arrive at a ’well’-calibrated model or to produce sensible and robust prediction25

intervals, it is essential to have a thorough understanding of how the hydrological system works and

how this system is represented in the model; how a variation in a parameter, boundary condition

or driving force will affect the prediction of interest. The knowledge gained from such sensitivity

analysis is not only of relevance during model development, it provides added value to the model as

it can focus management and monitoring to those aspects of the system and model that are most im-30

portant to the management of water resources (Saltelli et al., 2008). Additionally, discussing model

sensitivities with stakeholders will remove the notion of the model being a ’black box’ and can pro-

vide stakeholders with a better appreciation of the accuracy of the model, which has proven to be a

key aspect of adoption of model results in management (Patt, 2009; Bark et al., 2013).

River management models such as eWater Source (Welsh et al., 2013) are increasingly used, espe-35

cially in Australia, in the development of basin-wide water allocation plans. As these plans directly

affect the livelihood of people and the health of ecosystems, it is essential that the models underpin-

ning these plans have wide support and are robust. It is therefore essential that practitioners have a

set of tools for sensitivity analysis available, tailored to the needs of water allocation modelling. The

most straight forward sensitivity analysis technique is One-At-a-Time (OAT) sensitivity analysis in40

which one model aspect is changed while the others are fixed. The sensitivity of the model output

to the tested parameter is proportional to the gradient of the response surface. This is formalized in

gradient-based calibration routines, such as Levenberg-Marquardt optimization. Examples of such

OAT sensitivity analysis are Doherty and Hunt (2009), Foglia et al. (2009), Castaings et al. (2009)

and Peeters et al. (2011). This methodology is attractive as it requires a very limited number of model45

runs, about 2 to 3 model runs per parameter evaluated, and, as long as the model behaves linearly,

parameter interaction effects can be explored (Hill and Tiedeman, 2007). Saltelli and Annoni (2010)

highlight that OAT sensitivity analysis only provides reliable and robust results if it can be shown

that the model behavior is linear. This condition is seldom satisfied for hydrological models or even

known before a sensitivity analysis. The Elementary Effects method (Campolongo et al., 2007) is50

more robust against non-linearity in the model behavior, whilst still being frugal in the number of

model runs.

Global sensitivity analysis techniques however do not require the model behaviour to be linear

(Saltelli et al., 2008). The most straightforward global sensitivity analysis is either random or den-
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sity based sampling of parameter space and visualizing scatter plots of the parameter value against55

the prediction of interest (Wagener and Kollat, 2007; Peeters et al., 2013). Variance based methods,

such as Sobol’ sensitivity analysis (Saltelli and Annoni, 2010; Nossent et al., 2011), use a scheme of

structured resampling of a random base sampling to decompose the variance of the metric of interest

into the main effects of a parameter and interaction effects of other parameters.

The main drawback of variance based methods is that it assumes that the entire effect of a parameter60

can be summarized by the variance (Borgonovo, 2007; Borgonovo et al., 2011). Variance based

sensitivity indices will therefore be less reliable if the response to a parameter has a skewed or

multi-modal distribution. Density-based sensitivity analysis techniques attempt to account for this

by incorporating the entire distribution of the response of a prediction of interest in the metric in

a way that does not require any assumptions on the shape of the distribution. The methodology65

suggested by Plischke et al. (2013) implements such a density-based sensitivity analysis technique

which is independent of the parameter sampling scheme. This has the added benefit that as no model

runs need to be devoted to the resampling of a base sampling, more computing resources can be di-

rected to exploration of parameter space.

The goal of this study is to apply a density-based sensitivity analysis in a river management mod-70

elling context to assess its capability to identify and quantify non-linear effects and to extend the

methodology to account for interaction effects. An idealised, hypothetical river management model

implemented in the eWater Source platform (Welsh et al., 2013) serves as testing platform to assess

the ability of the sensitivity analysis methodology to quantify the influence of a small number of

forcing variables upon a variety of model outcomes.75

The next section presents the theoretical background and numerical implementation of the Plischke

et al. (2013) global sensitivity analysis method. The river management model is briefly introduced

before presenting the results of the sensitivity analysis and summarizing the findings in the discus-

sion and conclusion sections.

2 Methods80

The sensitivity analysis introduced in Plischke et al. (2013) provides a robust, global density-based

sensitivity analysis, independent of sampling strategy. This section provides a short summary of this

methodology, for a detailed overview the interested reader is referred to Plischke et al. (2013).

Consider X and Y the set of variables that comprise the input and output respectively of a river

system model. FixingX to a single realisation, the parameter combination x, results in a conditional85

cumulative distribution of Y equal toFY |X=x(y) and an equivalent density function fY |X=x(y). The

importance of fixing X to x can be quantified by the separation between the unconditional FY (y)

and the conditional FY |X=x(y) or, similarly, the separation between fY (y) and fY |X=x(y). Using

the L1-norm, the separation between the two density functions can be written as:
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s(x) =

∫
Y

|fY (y)− fY |X=x(y)|dy (1)90

The importance of factor X on outcome Y can then be defined as:

δ(Y,X) =
1

2
E[s(X)]

=
1

2

∫
X

fX(x)

∫
Y

|fY (y)− fY |X=x(y)|dy dx (2)

The sensitivity index δ(X,Y ) varies between 0 and 1 and it can be shown that this index is zero95

when X and Y are completely independent (Plischke et al., 2013).

To compute δ(X,Y ) the integrals in eq. 2 need to be approximated numerically. This can be

achieved by taking n samples of the parameter space X and compute the corresponding values for

Y . The method does not impose any restrictions on the sampling strategy of the parameter space.100

This implies that the methodology can be applied with random sampling, quasi-random sampling

(e.g. Latin Hypercube Sampling or Sobol’ sequences) or Monte Carlo simulation.

The resulting dataset is partitioned into M classes Cm with m= 1, ...,M . For each class Cm,

the density function can be approximated with a kernel smoothing function with kernel K(.) and

bandwidth α (Devroye and Gyorfi, 1985):105

f̂Y (y) =
1

n

n∑
i=1

1

α
K

(
y− yi
α

)

f̂Y |Cm
(y) =

1

nm

nm∑
i:xi∈Cm

1

αm
K

(
y− yi
αm

)
(3)

where nm is the number of samples in class Cm and αm the corresponding bandwidth for the

kernel smoothing function.110

The next step is to approximate the L1 norm between the two distributions for each class. Using a

predefined number of quadrature points {ỹj , j = 1, ..., l}, the separation can be computed as:

sm,j = f̂Y (ỹj)− f̂Y |Cm
(ỹj)

Ŝm =
1

2

l−1∑
j=1

(|sm,j+1|+ |sm,j |)(ỹj+1− ỹj) (4)
115

The sensitivity index δ can then be approximated by:

δ̂ =
1

2n

M∑
m=1

nmŜm (5)
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To avoid bias in the sensitivity index and to assess the robustness of the sensitivity index estimate,

it is recommended to perform a bootstrap of the sensitivity index (Efron, 1977) and to adjust δ̂ with

the mean of the bootstrap δ̄∗:120

ˆ̂
δ = 2δ̂− δ̄∗ (6)

ˆ̂
δ provides the sensitivity index of the main effect of a variable. Plischke et al. (2013) however

does not provide a method to explore second order effects, i.e. the interaction between two variables.

To estimate second order effects between variables X1 and X2, the samples are subdivided into n

groups of equal intervals for X1. The sensitivity index δ̂ for X2, δ̂X2
, is computed for each interval.125

If there is no interaction effect between X1 and X2, then δ̂X2
will not vary with the level of X1. To

quantify this, the variance of δ̂X2
is computed over all n levels ofX1. Small variances indicate small

interaction effects and vice versa.

3 Model Description

Fig. 1. a) Map showing the extent (indicated by pink shading) of the idealised river system model within the

Murray-Darling Basin and b) schematic structure of the river management model

The case study is a hypothetical river system model (Fig. 1), based on a simplified version of the130

Murrumbidgee River Model in New South Wales, Australia (Dutta et al., 2012; Podger et al., 2014).

Using the full version of the Murrumbidgee River Model was not warranted, not only because of the

complexity of the system and the management rules, but, more importantly, because of legal issues

with regards to model licensing and confidentiality. The idealised, hypothetical model retains most

of the relevant complexity practitioners encounter when creating water allocation models.135
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In the model, water is routed from a storage reservoir through three river reaches. Routing starts in

reach 1 at the storage reservoir with hydropower generators that receive water from a single tributary

inflow. In Reach 1, water is taken from the system for town water supply and irrigation and water is

received from unregulated rain-fed tributaries. From the Upper Gauge at the end of Reach 1, water

is routed through Reach 2. In this reach, interaction with groundwater is taken into account by an140

exchange flux. As in reach 1, water is received from unregulated, rain-fed tributaries and water is

taken out for irrigation and town water supply. In addition to these offtakes, water is diverted into

an off-river wetland system. Reach 3 starts at the middle gauge and is similar to reach 2. It also

has offtake for town water supply, irrigation and off-river wetlands and recieves inflow from rainfed

tributaries. Groundwater-surface water interaction is not taken into account in this reach. Each reach145

has a term representing unaccounted losses. The loss relationships are taken from the more complex

model. The total travel time from headwater to end- of- system is 18 days (3 days reach 1, 6 days

reach 2 and 9 days reach 3). These values, together with the other parameters influencing routing of

water are also taken and aggregated from the more complex model.

Daily timeseries of rainfall and evaporation from 1895 to 2006 are obtained from SILO (http://www.longpaddock.qld.gov.au/silo/)150

for sites representative of each of the three reaches to simulate inflow from tributaries and compute

irrigation demand. Inflow into the main storage in the model is taken from daily gauged data from

1895 to 2006.

The town water demands are based on a fixed annual pattern (8.8, 3.0 and 1.2 106m3/year for

reaches 1, 2 and 3 respectively). Irrigation demands are based on a reach-based aggregation of irri-155

gation use as well as rationalising crop types. There are environmental demands for the wetlands in

reach 2 and 3, which are designed to establish and maintain favorable habitat conditions for indige-

nous fauna and flora (Janssen, 2012).

Two aspects of water management are considered: 347m3/s order constraint on storage releases,

i.e. the maximum flow that can be requested by water users in the system of the storage, and an160

annual allocation system. The allocation system comprises high and general security order debit

annual accounting schemes. Water is first allocated from the storage to high security entitlement

holders and only once these are fulfilled, water is allocated to general security entitlement hold-

ers. The start of the Water Year is 1 July with allocations updated continuously throughout the year

where these include allowances for minimum tributary inflows and delivery losses. At the end of the165

water year accounts are reset to zero. License entitlements were aggregated on a reach basis. Two

socio-economic indicators have been included to indicate the impacts of storage volumes on recre-

ational usage and mid-river flows on algal blooms and the associated impact on recreational usage.

There are three storage volume categories (< 10%, < 50% and > 50%) for recreational usage based

on visitor numbers. Recreational benefits are calculated for periods of time the model is at each170

threshold, using the Crase and Gillespie (2008) 100,000 visitor estimate to Lake Hume. Estimates

of visitor numbers at high and low storage volumes are based on this estimate and the actual Tourism
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Research Australia (TRA) average, low and high visitor numbers in the Murrumbidgee catchment

in the period 2003-2010 (DRET, 2010). Benefit transfer recreation values are taken from the same

study (updated to 2012 Australian dollars (AUD) using the Australian Consumer Price Index, CPI).175

There are three risk of algal bloom categories (no bloom, alert and bloom) where no bloom occurs

if there is a flow of at least 11.6m3/s in the last 7 days and alert if this flow occurs within the last 14

days. If flow does not exceed 11.6m3/s in the last 14 days, algal bloom is simulated to occur. Aus-

tralian dollars have been associated with loss of amenity in the weeks when there is an alert or bloom

using the thresholds, estimated visitor numbers using TRA data and high and low estimates of river180

recreation based on survey data (DRET, 2010), and benefit transfer of general recreation benefits

from Morrison and Hatton MacDonald (2010) (2010 AUD values are updated to 2012 AUD using

the CPI and where the full value is used for no bloom, a proportion based on Crase and Gillespie

(2008) for an alert and 0 AUD for an alert).

4 Results185

In the sensitivity analysis, the three main forcing variables are considered; the system inflow (Inflow),

the precipitation (Rain) and the potential evapotranspiration (PET ). The latter two affect the inflow

into the reaches and the irrigation demand. Inspired by the work of Leblanc et al. (2012), the forcing

variables are changed through a multiplier to the corresponding input time series with the range of

the multiplier for each variable is to be between 0.5 and 1.5. This range encompasses both historical190

variation in hydrological input and output, as well as the expected change under various climate

change models and scenario’s. While elaborate schemes are available to perturb hydrological time

series, this is not warranted in this study as the focus is on metrics that integrate the entire flow time

series. As such emphasis of the research is on interested in changes in total flow in or out the model,

rather than in changes of the timing of flow.195

Using Sobol’ sequences (Sobol, 1976), 100,000 quasi-random samples of the three input variables

are generated. For each of these samples a range of output time series is calculated (Pickett et al.,

2013). Table 1 lists the names of the output series and a short description.

Each of the output variables in Table 1 is a daily time series. The metric for the sensitivity for200

different forcing data (M̂ ) is the difference between the kernel density estimate of the daily times

series of a randomly selected reference simulation (f̂Y ref (y)) and the kernel density estimate of the

daily time series for the changed forcing data (f̂Y sim(y)):
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Table 1. Output variables of the Source river system model

Name Description Units

UpperFlow Flow rate at the gauge at the end of the first reach m3/s

MiddleFlow Flow rate at the gauge at the end of the middle reach m3/s

EndFlow Flow rate at the gauge at the end of the final reach m3/s

$AlgalBloom Monetary value generated by recreation as function of the

risk of algal blooms

106 AUD

$Stor Monetary value generated by recreation on storages 106 AUD

$TotalAg Monetary value generated by irrigated agriculture 106 AUD

Hydropower Electricity generated from the storage reservoir kWh

GenSec Percentage of time general security licenses receive their

full entitlement

%

f̂Y ref (y) =
1

n

n∑
j=1

1

α
K

(
yref − yref,i

α

)
205

f̂Y sim(y) =
1

n

n∑
j=1

1

α
K

(
ysim− ysim,i

α

)
dj = f̂Y ref (ỹj)− f̂Y sim(ỹj)

M̂ =
1

2

l−1∑
j=1

(dj+1 + dj)(|ỹj+1− ỹj |) (7)

The choice of this metric is motivated by the fact that, since the case study is an idealised, hypo-210

thetical model, it is not possible to directly compare the results with observations. In addition to this,

and more importantly, the variety of model outcomes examined in this study are more than likely to

be affected by different aspects of the hydrograph. Similar to choosing an objective function in tra-

ditional calibration or a likelihood function in uncertainty analysis, such metric needs to be tailored

to be able to capture the relevant aspects of the hydrograph. Choosing an ill-suited metric can have215

huge consequences for the sensitivity analysis, calibration or uncertainty analysis, as pointed out in

Montanari and Koutsoyiannis (2012) and Nearing (2014). The metric presented in Eq. 7 is designed

to provide an as general and robust as possible measure of the difference between two time series as

not to bias the interpretation of the sensitivity analysis.

4.1 Main Effects220

Fig. 2 shows the scatter plots of sensitivity metric M̂ for all combinations of forcing data and output

variables. It is clear that the dominant influencing driving variable is Inflow as a strong response
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Fig. 2. Scatter plots of M̂ , the difference between kernel density estimates for each simulation and the kernel

density estimate of the reference simulation for all forcing data and model output variables for the eWater

Source hypothetical river management model.

is noticeable for variations in this driving variable for all output variables with the exception of

HydroPower. The effects of Rain and PET are less pronounced. A very striking feature are the

many non-linearities in the response surface of the hypothetical model. This is mostly due to a num-225

ber of threshold values used in the management rules of the river management system. For instance,

generation of hydro-power is only possible when the storage level in the dam exceeds a predefined

threshold related to the height of the water intake point for the turbines.

Fig. 3 shows a barplot of the sensitivity indices ˆ̂
δ for all main effects. These indices confirm the230

dominant influence of Inflow on most output variables. They also enable to rank the influence

of Inflow on the different output variables. MiddleF low, EndF low and GenSec respond to a
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Fig. 3. Sensitivity indices, ˆ̂δ, for all forcing data and model output variables for the eWater Source hypothetical

river management model.

similar degree to changes in Inflow and the same is true for the output variables related to monetary

value ($AlgalBloom, $Stor and $TotalAg). HydroPower is least influenced by Inflow, which,

from Fig. 2, is clearly related to the threshold-induced non-linear behavior.235

The methodology is also able to quantify the often small and non-linear effects of the other forcing

variables. This is especially noticeable for PET . There is a clear but highly non-linear effect of

PET on $Stor, which is reflected in a higher ˆ̂
δ. The output variable HydroPower has a bimodal

distribution where the majority of simulations have an M̂ close to zero. Nevertheless, the global

sensitivity method is able to distinguish and quantify the subtle trends in the non-zero values for the240

different input variables.

4.2 Interaction Effects

The previous section established the importance of Inflow as the main driving variable. It is how-

ever from both a management and modeling perspective interesting to have an understanding of how

the interaction between variables affects the model outcome.245

Fig. 4 shows plots with the factor values on the x and y-axis, with a color scale to visualise M̂

for the three combinations of interaction of the driving forces (Inflow-Rain, Inflow-PET and

Rain-PET ) for all 8 model outcomes. The first column shows that the effect of Inflow on most

of the model outputs does not vary with the value of Rain. There is however a clear interaction be-250

tween Inflow and PET for most of the model outputs; while the Inflow response is the dominant

feature in the plots, the shape of this response depends on the value of PET . HydroPower is a
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Fig. 4. Scatterplots of interaction of the driving forces. The intensity of the color scale is proportional to the

model outcome value, where dark red colors indicate high values and light red colors indicate low values

noted exception as it displays very little structure in the scatterplots. This is because hydropower is

generated by release of water from the reservoir in function of the demand and the water level in the
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reservoir. These management rules create a buffer to immediate impact from rainfall and inflow and255

also result in non-linear, threshold related behaviour.

Very little structure is noticeable in the third column of Fig. 4, which shows the interaction between

Rain and PET , reflects the limited influence both driving forces have as a main effect.

To quantify the interaction effect for each interaction combination in Fig. 4, the variance of the δ̂ of

the variable on the y-axis is computed for 100 equal intervals of the variable on the x-axis. By using260

Sobol’ sequences to generate the 100,000 samples of the parameter space, each equal interval of the

x-axis variable has approximately 1,000 samples to compute the δ̂.

Fig. 5. Sensitivity index δ̂ of the effect of Rain (blue) and PET (red) on $Stor for 100 equal intervals of

Inflow

Fig. 5 illustrates this for the interaction effects of Inflow, Rain and PET on $Stor. The sen-

sitivity index values for Rain are low and hardly vary for different levels of Inflow, which is an265

indication of very limited interaction between Rain and Inflow, as confirmed by the scatterplot

(Fig. 4). The δ̂ values for PET do vary markedly with the level of Inflow. This sensitivity index
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reaches a minimum for Inflow values close to 1, while reaching peaks close to values of 0.75 and

1.1. This is reflected in the variance of the δ̂ values which is 4.5x10−4 for the Inflow-Rain couple

and 3.5x10−3 for Inflow-PET . Fig. 6 shows the variance of the sensitivity indices for all interac-270

tion pairs for all model outcomes. The values for Hydropower are much higher than for the other

model outcomes due to the nonlinear behaviour. They are omitted from Fig. 6 as they distorted the

visualization.

Fig. 6. V ar(δ̂X1−X2) for all combinations of driving forces for all model outcomes. High values indicate

potential interaction between X1 and X2. The values for Hydropower are omitted in order not to distort the

visualization

The most dominant interaction effects are between Inflow andPET for $TotalAg andUpperF low,275

followed by $AlgalBloom, $Stor and MiddleF low.

5 Discussion

The sensitivity analysis of the hypothetical river management model highlights inflow as a crucial

variable of the model and how this affects the multiple values the river provides. This emphasizes

the importance of an accurate characterization of the flow rates of upstream areas when modeling280

flow routing in regulated systems comparable to the case study, i.e. the regulated river systems of

the Murray Darling Basin in Australia. An accurate characterization of flow rates not only entails

maintaining a dense river gauge network, it also means adequately describing the measurement un-

certainty in the flow rates, not in the least the uncertainty introduced by the rating curve that describes

the stage-discharge relationship (Tomkins, 2012). The work of Hughes et al. (2014) illustrates this as285

they identify the inflow from ungauged catchment as crucial in the calibration of river management

models.

Direct precipitation in the storage, wetlands and irrigation areas has a very minor influence on the

model outcomes. This is mostly due to the small volume of rainfall (0.633km3/yr) compared to the

inflow volume (4.4km3/yr) and the correlation between the inflow volume and rainfall. Any effect290
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of rainfall will therefore be dwarfed by the effect of inflow to the system. The interaction effect of

Inflow and PET is mostly due to the feedback mechanism as irrigation requirements increase with

increasing potential evapotranspiration.

Such parameter interaction is well-known in other areas of hydrological modelling, such as in

rainfall-runoff modelling (Gallagher and Doherty, 2007; Zhang et al., 2013; Peeters et al., 2013)295

and in groundwater modelling (Doherty and Hunt, 2009), although it has not received much atten-

tion in river system modelling. Letcher et al. (2007) discuss the importance interacting effects in

water allocation models, without however providing a rigorous quantitative framework to evaluate

the effects.

The sensitivity analysis in this study was limited to multiplying factors on three driving forces. It300

would be very insightful to include other model parameters in the sensitivity analysis, especially

those controlling storage volumes and irrigation requirements. Along the same lines, including the

parameters of the management rules, e.g. rules on allocations, in the sensitivity analysis can yield

additional understanding of the operational management of the river system, as shown by Micevski

et al. (2011).305

6 Conclusions

The density-based sensitivity analysis of Plischke et al. (2013) has been applied to a river manage-

ment model representing an idealized regulated river system representative of the Southern Murray-

Darling Basin in Australia to identify the main and interaction effects of three driving forces on

several hydrological and socio-economic model outcomes.310

The extended sensitivity analysis method presented in this paper provides a quantitative measure of

sensitivity of main and interaction effects and, through a combination with qualitative visual inspec-

tion of scatter plots, proved to be able to identify not only major effects but also subtle interactions,

even in the presence of strong non-linearities.

Due to the small dimensionality of the case study, it was possible to visualise all main effects and315

their interactions through scatter plots for all model outcomes. Although this will be challenging for

higher dimensional problems, the visual inspection of scatter plots is an invaluable complement to

the sensitivity indices.

Understanding the dynamics of river system models is often not intuitive, especially in larger or

basin-scale models (Johnston and Smakhtin, 2014). A robust and comprehensive sensitivity analysis320

is an invaluable step in model development to elucidate the often intricate interactions between driv-

ing forces, management rules and parameters. Increased understanding of the model will not only

lead to improvements in calibration and prediction, it also has enormous potential in establishing

credibility and understanding of models.
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