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Abstract 15 

Summer streamflows in the Pacific Northwest are largely derived from melting snow and 16 

groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will 17 

cause reductions in summer streamflow. Most regional scale assessments of climate change 18 

impacts on streamflow use downscaled temperature and precipitation projections from General 19 

Circulation Models (GCMs) coupled with large scale hydrologic models. Here we develop and 20 

apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity 21 

to a change in the timing and magnitude of recharge in a spatially-explicit fashion. In particular, 22 

we incorporate the role of deep groundwater, which large scale hydrologic models generally fail 23 

to capture, into streamflow sensitivity assessments. We validate our analytical streamflow 24 

sensitivities against two empirical measures of sensitivity derived using historical observations 25 

of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and 26 

analytically derived streamflow sensitivity values correspond. Although the selected watersheds 27 

cover a range of hydrologic regimes (e.g. rain-dominated, mixture of rain and snow, and snow-28 

dominated), sensitivity validation was primarily driven by the snow dominated watersheds, 29 

which are subjected to a wider range of change in recharge timing and magnitude as a result of 30 

increased temperature. Overall, two patterns emerge from this analysis: first, areas with high 31 

streamflow sensitivity also have higher summer streamflows as compared to low sensitivity 32 

areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over 33 

time as the summer progresses. Results of this analysis point to a robust, practical, and scalable 34 

approach that can help assess risk at the landscape scale, complement the downscaling approach, 35 

be applied to any climate scenario of interest, and provide a framework to assist land and water 36 

managers in adapting to an uncertain and potentially challenging future.  37 

Keywords: Climate Change; Streamflow; Groundwater Processes; Pacific Northwest; Snowpack 38 
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1 Introduction 40 

A fundamental challenge facing scientists and resource managers alike is grounding predictions 41 

of climate change and its consequences in specific landscapes and at scales useful for resource 42 

planning. This challenge is particularly acute for predictions of water abundance and scarcity, as 43 

both the climatic and landscape controls on water availability are typically at a finer scale than 44 

representations in the current class of climate and hydrologic models. Resource managers are 45 

tasked to plan for an uncertain future by assessing vulnerabilities and sensitivities of different 46 

landscapes to change. What strategy should they follow? 47 

One way to assess streamflow vulnerability to changing climate is via a “top-down” approach, 48 

which generally involves coupling General Circulation Models (GCMs) with hydrologic models 49 

that predict regional streamflow (e.g. Nash and Gleick, 1991; Hamlet and  Lettenmaier, 1999; 50 

Nijssen et al., 2001; Christensen et al., 2004; Jha et al., 2004; Milly et al., 2005; Jha et al., 2006; 51 

Tohver et al., 2014). This approach has many strengths, including simulation of hydrologic 52 

processes under multiple climatic scenarios and across large spatial and temporal scales, and 53 

forecasting hydrographs. But there are also limitations. GCMs coarsely parameterize terrain and 54 

fail to incorporate important climatic processes, such as the El Niño/Southern Oscillation and 55 

Pacific Decadal Oscillation, in predictions. Higher-resolution Regional Circulation Models 56 

(RCMs) that include better topographic representation are improving this situation (Leung and 57 

Qian, 2003; Maraun et al., 2010), but accurate forecasts of future climate by this method are still 58 

several years off. Moreover, large scale hydrologic models commonly used in the Pacific 59 

Northwest (PNW) for hydrologic forecasting (e.g. Variable Infiltration Capacity (VIC) (Liang et 60 

al., 1994), do not explicitly simulate streamflow contributions from deep aquifers (Wenger et al., 61 

2010). However, the issue of deep-groundwater representation is not limited to VIC alone. 62 

Explicit representation of deep-groundwater is approximated by extended soil profiles in many 63 

large scale land surface models (Vano et al., 2012).  64 

Several recent studies have demonstrated the important role of geologically-controlled deep 65 

groundwater in mediating streamflow response to climatic variability and warming in the PNW 66 

(Jefferson et al., 2008; Tague et al., 2008; Tague and Grant, 2009; Mayer and Naman, 2011; 67 

Tague et al., 2013; Waibel et al., 2013). Historical streamflow analysis across the western United 68 

States underscores the importance of both climatic and geologic controls on streamflow response 69 

to climate change (Safeeq et al., 2013). Accordingly, approaches that capture both climate and 70 

geologic controls are needed to identify landscape level streamflow vulnerability to changing 71 

climate. This is particularly critical in the PNW, where local climate, topography and geology 72 

combine to dictate hydrologic regimes. 73 

In the PNW, seasonal asynchrony between winter and spring precipitation and runoff and 74 

summer water demand makes summer water supplies scarce and vulnerable (Jaeger et al., 2013). 75 

Climate change will intensify this water scarcity by reducing summer streamflows (Safeeq et al., 76 

2013). Declines have the potential to be acute, due to a combination of observed and predicted 77 

shifts in precipitation phase from snow to rain, earlier onset and faster rates of snowmelt, and 78 

increased summer evapotranspiration (Mote et al., 2005; Stewart et al., 2005; Nolin and Daly, 79 

2006; Das et al., 2011). Increasing inter-annual variability and changes in extreme flows 80 

compound seasonal changes. Luce and Holden (2009), for example, documented widespread 81 

declines in the lowest annual flows occurring from 1948-2009; these flows are critical for 82 
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consumptive water use, hydropower, and aquatic biota, including the region’s prized and 83 

declining salmon populations. 84 

We present a complementary “bottom-up” approach, focusing on the PNW. Our methodology 85 

rests on the analytical framework of Tague and Grant (2009) that characterizes relative summer 86 

streamflow sensitivity. Using a rigorous definition of summer streamflow sensitivity as function 87 

of the first derivatives of the relationship between discharge and either the timing or magnitude 88 

of recharge, we develop a spatial analysis that characterizes summer streamflow sensitivity at a 89 

landscape scale. Relationships between observed climate and streamflows at specific gaged 90 

locations in diverse hydrogeologic areas are used to extend the sensitivity relationships to 91 

ungaged areas and map sensitivity for the entire study region. The uniqueness and strength of 92 

this approach is that it is independent of climate change scenarios. Sensitivity is mapped as an 93 

intrinsic property of the landscape as interpreted using the  average historical climate and other 94 

landscape properties, rather than as a response to future climate change alone. 95 

This sensitivity assessment can then be integrated with climate scenario data to produce regional-96 

scale summer streamflow vulnerability maps. We present an example of how this type of spatial 97 

analysis might be applied to National Forest lands in the Pacific Northwest. Land and water 98 

managers can tune this type of assessment to their specific needs in order to identify and 99 

prioritize actions to adapt to uncertain and potentially challenging future conditions.  100 

2 Study Location  101 

This analysis encompasses Oregon (OR) and Washington (WA) in the northwestern United 102 

States (US) with a population of nearly 10.5 million (US Census Bureau, 2010). The elevation 103 

varies from sea level to over 4300 m at Mount Rainier, with the north-south trending mountains 104 

of the Cascade Range dividing the western and eastern portions of the states (Fig. 1a). The study 105 

region is devided into thirteen physiographic sections (Fig. 1b) based on common topography, 106 

rock type, structure, and geomorphic history (Fenneman and Johnson, 1946). The maritime 107 

climate is highly influenced by the Pacific Ocean and varies with elevation and distance from the 108 

coast (Fig. 1b, 1c). Long-term average precipitation ranges from 150 mm in the Columbia Valley 109 

on the eastside of the Cascades to ~7000 mm in the Olympic Mountains (Daly et al., 2008, Fig. 110 

1c). Both OR and WA have extreme wet (winter) and dry (summer) seasons, but the seasonal 111 

distribution of precipitation varies between the region’s eastern and western halves. While most 112 

of the annual precipitation occurs during fall and winter, more frequent summer thunderstorms in 113 

the eastern half result in a slightly higher summer precipitation (Mass, 2008). An altitudinal 114 

temperature gradient, varying by latitude (Fig. 1c), controls the phase of precipitation with winter 115 

rain (R) in lower elevations, seasonal snow at higher elevations (SSZ), and transient snow at 116 

intermediate elevations (TSZ) (Jefferson, 2011). The majority of the winter precipitation occurs 117 

as rain in the Coast Range and as snow along the Cascades and other ranges (e.g., Wallowa and 118 

Blue Mountains). 119 

This strong climatic gradient and underlying geology that mediate landscape drainage efficiency 120 

(Tague and Grant, 2009) are predominant controls on the hydrologic regime of this region 121 

(Wigington et al., 2013). For example, streamflow recedes quickly in watersheds with low spring 122 

snowmelt and minimal groundwater storage (e.g., the OR Coast Range and western side of the 123 

Middle Cascade Mountains (e.g. Western Cascades)), resulting in higher winter peaks and 124 
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prolonged summer low flows. In contrast, streams in groundwater-dominated regions such as the 125 

volcanic dominated central and eastern portion of the Middle Cascade Mountains (High 126 

Cascades) show a much more uniform flow regime, with higher summer baseflows, slower 127 

recession rates, and significantly lower winter peak flows (Grant, 1997; Tague and Grant, 2004). 128 

3 Conceptual Model of Streamflow Sensitivity 129 

Our conceptual model is built around the assumption that the discharge from a watershed 130 

depends solely on the amount of aquifer storage. Based on conservation of mass, the water 131 

balance within the watershed is given by:  132 

  

  
                                                    (1) 133 

where, S is water stored in watershed (mm), IR is rainfall (mm/day), IM is snowmelt (mm/day), 134 

ET is evapotranspiration (mm/day), Q is discharge (mm/day), and GWin and GWout are the 135 

groundwater (mm/day) inflow and outflow, respectivily. Change in storage (dS/dt) is positive 136 

when IR+IM +GWin–GWout–ET > Q and negative whenever Q > IR+IM +GWin–GWout–ET. 137 

Maximum aquifer storage (dS/dt = 0) occurs when Q = IR+IM +GWin–GWout–ET, which should 138 

coincide with peak discharge (dQ/dt = 0) based on the storage-discharge relationship. In reality, 139 

since peak discharge always lags the peak recharge (Kirchner, 2009), the peak of the hydrograph 140 

will occur when IR+IM +GWin–GWout–ET <Q and thus dS/dt < 0. However, we simplify and 141 

assume that at the peak of the hydrograph dS/dt ≈ 0 and hence Q ≈ IR+IM +GWin–GWout–ET and 142 

equation (1) can be simplified to:  143 

                                                                     (2) 144 

where, Qo is peak discharge (mm).  145 

The recession curve of the hydrograph, or decay of Qo over time, can be expressed by: 146 

 ( )     
                                    (3) 147 

where, Q(t) is streamflow at time t (in days) from the beginning of the recession period, Qo is 148 

streamflow at t = 0, and k is a recession constant (Tallaksen, 1995). As the climate warms, any 149 

change in the timing and magnitude of Qo will affect Q(t). Additionally, the recession time t 150 

depends on the day of the peak discharge tp and the day td on which Q is quantified. Hence a 151 

more general form of equation (3) can be written as: 152 

 (      )  (      ) 
  (        )                          (4) 153 

where, ∆Qo and ts are change in peak discharge rate and shift in time driven by climate change, 154 

respectively. An earlier shift in peak discharge will result in a negative ts and hence an overall 155 

longer recession period between tp and the day td. Following Tague and Grant (2009), streamflow 156 

sensitivities to a shift in magnitude (∆Qo) and timing (ts) can be described using a first order 157 

derivative of Eq. (4) with respect to peak discharge Qo and time t: 158 

  ( )

   
      

                                                    (5) 159 



6 

 

  ( )

  
          

                                            (6) 160 

where, terms ɛQo and ɛt represent the metrics used in this study to describe the sensitivity of 161 

discharge to changes in magnitude of peak discharge and timing, respectively. The negative sign 162 

in Eq. (6) indicates that Q(t) decreases with increasing t. 163 

The response surfaces of ɛQo and ɛt (Fig. 2) illustrate the interaction between t and k and how the 164 

two sensitivities are expressed over the course of the streamflow recession. In groundwater 165 

dominated systems with low values of k (e.g. High Cascades), ɛQo starts higher at the beginning 166 

of the recession and shows a very subtle decline with increasing t (Fig. 2a). In contrast, in the 167 

runoff dominated systems with high k (e.g. Western Cascades), ɛQo is very comparable to low k 168 

systems but diminishes very rapidly with increasing t. In the context of climate change, this 169 

suggests that while changes in summer streamflow in groundwater and runoff dominated systems 170 

with similar tp and Qo may be comparable in the beginning of recession, they vary drastically as 171 

the recession progresses. The interaction between t and k for ɛt is more complex as compared to 172 

ɛQo (Fig. 2b). In groundwater dominated systems with low k, ɛt starts low and shows a very subtle 173 

decline with increasing t. In runoff dominated systems with high k, ɛt starts high but diminishes 174 

very quickly with increasing t. The very subtle and rapid decline of sensitivities (ɛQo and ɛt) 175 

between groundwater and runoff dominated systems expressed by the conceptual model are 176 

consistent with those expressed in streamflow trends in the empirical record. In groundwater 177 

dominated systems streamflow response to decreasing snowpack is mediated and streamflow 178 

continues to decline throughout the summer (Mayer and Naman, 2011; Safeeq et al., 2013).  179 

Although our conceptual model of streamflow sensitivity is consistent with trends shown in the 180 

empirical streamflow record, we recognize that the complexity of the real world is not captured 181 

by this simple formulation. Hence, several caveats and assumptions must be emphasized when 182 

applying this model. While there is a physical basis for the conceptual model, it is not physically-183 

based in a rigorous sense and involves several simplifying assumptions. Watersheds do not 184 

typically behave like linear reservoirs; filling (recharge) and emptying (discharge) often occur 185 

simultaneously, even during recession periods. Also groundwater exchange (GWin and GWout) 186 

between watersheds dictates the streamflow regime in some parts of the landscape (Jefferson  et 187 

al., 2006; Wigington et al., 2013; Patil et al., 2013). Physically accounting for groundwater gain 188 

and loss in this conceptual sensitivity framework with little or no data to draw on undermines the 189 

simplicity of this approach but introduces some error in some landscapes, notably those with 190 

large groundwater systems in young volcanic terranes. Additionally, this sensitivity approach 191 

assumes that Qo and t are independent and any change in Qo will not affect t. This assumption 192 

may hold true in rain dominated systems but could be problematic in snowmelt driven 193 

environments. However, this is a much less an issue in our study domain, where most of the 194 

snowmelt occurs during spring and summer recession characteristics depend primarily on peak 195 

initial recharge (Qo). Additionally, approximating the IR or IM for Qo and tR or tM for tp, even 196 

when ET≈ 0 and GWin = GWout (Eq. 2) could result in biased estimates of sensitivity described in 197 

equations 5 and 6. In places where the reservoir is large, Qo gets delayed following recharge IR or 198 

IM, and tR or tM may not represent tp. For example, in watersheds within the seasonal snow zone 199 

(see Section 4.2 for the definition), tp is on average delayed by six days from tM (Fig. 3). In rain 200 

dominated watersheds, the time lag between tR and tp is on average nine days for the first peak as 201 
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streamflow recovers from the long summer recession. This time lag between rainfall and 202 

streamflow decreases to one or two days for the subsequent peaks (Fig. 3a, 3c). Although the 203 

time lag between peak recharge and streamflow may vary significantly depending on data (e.g. 204 

observed vs. simulated IM and tM) and method (e.g. isotopic techniques vs. simple recharge-205 

runoff relationship) used to characterize the relationship, our goal here is to highlight the issue 206 

and how it might affect the sensitivity expressed using the conceptual model. Finally, the 207 

watershed recession constant, k, may vary year-to-year depending on evapotranspiration losses 208 

and other forms of water withdrawals (Thomas et al., 2013), which are not explicitly considered 209 

in the model. Given these limitations, our intent is not to precisely predict the change in actual 210 

flow regimes, but to assess the comparative sensitivity of those flow regimes across the 211 

landscape.  212 

4 Parameterizing the Model  213 

4.1 Recession Constant (k) 214 

Daily average streamflow data for a set of 227 (111 in OR and 116 in WA) unregulated 215 

watersheds were obtained from the United States Geologic Survey (USGS) 216 

(http://waterdata.usgs.gov/or/nwis/sw; data accessed on October 31, 2011) and the Oregon 217 

Department of Water Resources (http://apps2.wrd.state.or.us/apps/sw/hydro_report/; data 218 

accessed on November 1, 2011) (Fig. 1a). Watershed drainage areas range from 4 – ~21000 km
2
 219 

with an average of approximately 950 km
2
. These watersheds were classified as part of the 220 

USGS Hydroclimatic Climatic Data Network (HCDN) (Slack et al., 1993), or were part of the 221 

reference gage network developed by Falcone et al. (2010) based on Geospatial Attributes of 222 

Gages for Evaluating Streamflow (GAGES). Both the HCDN and GAGES datasets have been 223 

screened to ensure that they are minimally affected by upstream anthropogenic activities such as 224 

irrigation diversions, road networks, and reservoir operations. To minimize the effect of climate 225 

bias (i.e., wet vs. dry years) on estimates of k, all selected watersheds were further screened to 226 

have a minimum of 20 years of complete daily streamflow data within the water years 1950–227 

2010. Since the majority of the streamflow gages were located in the western half of the study 228 

area (Fig. 1a), we added 12 additional non-reference, non-HCDN gages to the eastern side to 229 

ensure a more uniform population of basins. These 12 gages were selected after visual 230 

examination of the historic streamflow data records for homogeneity, and review of site 231 

information, including hydrologic disturbance index (Falcone et al., 2010) to ensure there were 232 

no major diversions or impoundments. The selected 227 watersheds were delineated using a 233 

30 m resolution digital elevation model (DEM).  234 

4.1.1 Recession analysis 235 

Following Vogel and Kroll (1992), an automated recession algorithm was employed to search 236 

the historical record of daily streamflows for all recession segments lasting 10 days or longer. 237 

Peak and end of recession segments were defined as when the 3-day moving average streamflow 238 

began to recede and rise, respectively. The beginning of recession (inflection point) was 239 

identified following the method of Arnold et al. (1995). To minimize the effect of snowmelt on 240 

k, and thereby derive estimates of k that were intrinsic to the geology of the watershed, we 241 

excluded recession segments that fell between the onset of snowmelt-derived streamflow pulse 242 

and August 15
th

. We used August 15
th

 as a cutoff for melt-out date determined based on 243 

snowpack data from snowpack telemetry (SNOTEL) sites in OR and WA. The date of snowmelt 244 

http://waterdata.usgs.gov/or/nwis/sw
http://apps2.wrd.state.or.us/apps/sw/hydro_report/
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pulse onset was determined following the method of Cayan et al. (2001) and mean flow for 245 

calendar days 9–248 after Stewart et al. (2005). Similar to Vogel and Kroll (1992), spurious 246 

observations were avoided by only accepting pairs of receding streamflow (Qt, Qt-1) when Qt > 247 

0.7Qt-1. The recession constant k was calculated as: 248 

     [
 

 
∑ {  (       )    [   (       )]}
 
   ]                (7) 249 

where m is the total number of pairs of consecutive daily streamflow, Qt and Qt-1,at each site. 250 

Among the 227 watersheds, the values of m varied between 24 and ~8000 (average ~3000). 251 

Importance of k in characterizing the low flow behavior of streams has long been recognized but 252 

there is a considerable debate on appropriate techniques for recession analysis (Tallaksen, 1995; 253 

Vogel and Kroll, 1996; Smakhtin, 2001; Sujono et al., 2004 ). Estimates of k are comparable 254 

using some techniques (Sujono et al., 2004) but not others (Vogel and Kroll, 1996). To ensure 255 

that our k estimates for the candidate sites are robust and were not influenced by our choice of 256 

the technique for recession analysis, we recalculated k from the master recession curve generated 257 

for each site using the matching strip method (Posavec et al., 2006). We also calculated average 258 

k from semi-logarithmic plots of individual recession segments lasting 10 days or longer during 259 

non-snowmelt period as described earlier. The recession constant derived from the three methods 260 

showed a strong correlation (R > 0.77, p<0.001). We used the recession constant k from Eq. (7) 261 

in the sensitivity analysis. 262 

4.1.2 Regression model development 263 

We established a regression model for transferring k to the ungaged landscape. Average 264 

watershed relief and slope were estimated from a 30-m DEM using the ArcGIS spatial analyst. 265 

Soil permeability (Ksoil, cm/hr) values for the top 10 cm soil depth were obtained from the 266 

STATSGO database (Miller and White, 1998; available online: http://www.cei.psu.edu). A 267 

digital 1:500,000 scale ArcGIS coverage of aquifer permeability (Kaqu, m/day) derived from 268 

existing aquifer unit maps for eastern OR (Gonthier, 1985) and western OR (McFarland, 1983) 269 

was obtained from Wigington et al. (2013). Because this Kaqu dataset was not available for WA, 270 

we developed a geologic index (ranging from 1 to 9 with higher values corresponding to higher 271 

permeability) for OR and WA based on a 1:500,000-scale aquifer porosity and rock unit map 272 

(Huntting et al., 1961; Walker et al., 2003). A regression between drainage densities estimated 273 

using the National Hydrography Dataset (NHD) flowlines and the area-weighted geologic index 274 

was used to assign the Kaqu values to each geologic index in WA. Area-weighted values of 275 

average relief, slope, Ksoil, and Kaqu were determined and log-transformed prior to the regression 276 

analysis. 277 

Starting with the entire list of parameters (i.e., relief, slope, Ksoil, and Kaqu) from 227 watersheds, 278 

we developed a  multiple linear regression model. The established regression model was then 279 

used to generalize k values across the region (wall-to-wall) at the landscape scale. The prediction 280 

for k was made at the 5
th

 field Hydrologic Unit Code (HUC) scale of the national Watershed 281 

Boundary Dataset; 5
th

 field HUC units are termed watersheds and typically range in area from 282 

160 to 1010 km
2
. Outliers in the model parameters were identified based on Cook's distance 283 

(Cook, 2000) and subsequently excluded from the regression analysis using the recommended 284 

threshold of 4/ns-ni-1, where ns is the sample size and ni is the number of independent variables. 285 

Non-significant (p ≥ 0.15) model parameters were then eliminated via backward stepwise 286 

regression, until all remaining parameters were significant and the predictive power of the 287 

http://www.cei.psu.edu/
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equation (based on adjusted R
2
) began to decline. This regression equation was developed 288 

individually for OR and WA as well as the entire domain with both states combined (Table 1). 289 

The correlation matrix for the watershed parameters used for predicting k showed strong cross-290 

correlation (as high as 0.72), particularly among Kaqu, Slope, and Ksoil in OR. However, since 291 

these variables are used to predict k and not to characterize their relationship with each other, the 292 

cross-correlation and sign of the regression coefficients can be ignored. 293 

The regression coefficients (R
2
) for the three geographic domains (OR: Model 1a, WA: Model 294 

1b, or OR and WA combined: Model 2) ranges between 0.44 for WA and 0.59 for OR (Table 1), 295 

which are within the range of values reported elsewhere with a different set of independent 296 

variables (e.g. Thomas et al., 2013). The overall standard error of the estimate is low for the 297 

fitted regressions, and modeled k is only slightly biased, over-predicting small values and under-298 

predicting higher values of k (Fig. 4). There is no clear spatial pattern of systematic bias based on 299 

residuals, however (Fig. 4d). The predicted k map using Model 2 at the 5
th

 field HUC scale 300 

broadly distinguishes among different hydrologic regions with different drainage characteristics, 301 

including fast-draining regions such as the OR Coast Range, parts of the Columbia River Basin 302 

in OR and WA and the Owyhee uplands and much of the Ochoco Mountains in OR. Slower-303 

draining regions include the eastern (High) Cascades in OR and WA and the Okanogan 304 

highlands in WA (Fig. 5a), but the Okanogan k values are at the high end of the range for this bin 305 

(0.02-0.04).  306 

4.2 Historical Recharge Magnitude and Timing (Qo, tp) 307 

We approximated the peak discharge (Qo) in Eq. (2) by peak recharge (IR or IM depending on the 308 

dominant recharge type), ignoring the groundwater exchange between HUC units (GWin =GWout 309 

≈ 0) and with ET ≈ 0 at the start of the recession. In the PNW, the peak recharge pulse during the 310 

water year can be either rain or snowmelt, depending on geographic location. We assigned the 311 

primary type of peak recharge pulse (rain or snowmelt) based on a temperature threshold and 312 

snow to precipitation proportion. Following Jefferson (2011) and Nolin and Daly (2006), a 313 

winter temperature-based threshold of 0°C was chosen to approximate the boundary between the 314 

transitional snow zone (TSZ) and rain zone, while −2°C was chosen to approximate the 315 

boundary between the seasonal snow zone (SSZ) and TSZ. Following Knowles et al. (2006), we 316 

define winter as beginning in November, rather than January, and only use wet-day minimum 317 

temperatures, which showed a strong correlation with the snow to precipitation ratio. We defined 318 

a wet-day as a day when daily precipitation is greater than zero. In addition, we used the 319 

temperature threshold-based empirical relationship of Dai (2008) and the United States Army 320 

Corps of Engineers (USACE,1956) to calculate the median value (water year 1916-2006) of the 321 

fraction of annual precipitation falling as snow. We classified the peak recharge pulse as rain for 322 

the entire area within the identified rain zone and the portion of area in TSZ with a median snow 323 

fraction <10%; the remaining TSZ and entire SSZ were classified as snowmelt recharge pulse 324 

(Fig. 5b).  325 

A lack of spatially-distributed precipitation gauge and snowpack telemetry sites, particularly at 326 

higher altitudes, precluded using empirical data to calculate recharge magnitude and timing. 327 

Instead, we calculated the peak recharge magnitude (IR and IM) and timing (tR and tM) using 328 

spatially distributed gridded (1/16
th

 degree resolution) daily precipitation and VIC simulated 329 

daily snowmelt data from Hamlet et al. (2013). The simulated snowmelt data from Hamlet et al., 330 

(2013) were limited to the Columbia River Basin and coastal river basins of OR and WA and did 331 
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not include the OR portions of the Klamath and Great Basins. VIC simulated daily snowmelt 332 

data for the Klamath and Great Basins at 1/8 degree spatial resolution were obtained from the US 333 

Bureau of Reclamation (Reclamation, 2011). VIC uses a two-layer energy and mass balance 334 

approach to model the process of snow accumulation and melt; descriptions of snow 335 

accumulation and melt processes within the VIC model are well described elsewhere (Liang et 336 

al., 1994; Ni-Meister and Gao, 2011).  337 

The daily (1-365) average (1916-2006) maximum one-day recharge, IR and IM were calculated 338 

on the water year basis as: 339 

       (
∑     
 
   

 
 
∑     
 
   

 
       

∑       
 
   

 
)                       (8) 340 

       (
∑     
 
   

 
 
∑     
 
   

 
       

∑       
 
   

 
)                     (9) 341 

where, R is the daily precipitation (mm), M is the daily snowmelt (mm), and N is the length of 342 

record (year). The corresponding timing tR and tM were calculated as the day of water year on 343 

which IR and IM occurred.  344 

The spatial distribution of recharge magnitude (IR and IM) and timing (tR and tM) show distinct 345 

geographic contrasts between the eastern and western study domains (Fig. 6). The average peak 346 

daily recharge from precipitation (IR) varies from less than 5 mm/day in the Walla Walla Plateau 347 

and much of eastern OR to as high as 44 mm/day in the Olympic Mountains to the west. 348 

Similarly, the average daily peak snowmelt (IM) varies between 0 in coastal southeastern OR to 349 

as much 40 mm/day in northern WA. Although the magnitudes of IR and IM are small in north-350 

eastern WA and much of eastern OR as compared to those in the Coast Range, northern WA, and 351 

Cascades, they occur later during the water year. In northern WA, the timing of IM occurs quite 352 

late during the water year (Fig. 6). Timing of IR is also quite variable across the region and 353 

occurs as early as October to as late as mid-September (Fig. 6). For the sensitivity analysis, in 354 

systems with rain as dominant recharge we substituted Qo with IR and tp with tR. Similarly, in 355 

systems with snowmelt as dominant recharge we substituted Qo with IM and tp with tM. 356 

4.3 Future Recharge Magnitude and Timing (Qo, tp) 357 

Changes in actual streamflow in the future will not only depend on the intrinsic sensitivity of the 358 

landscape but also the magnitude and direction of climate change in terms of magnitude (IR or 359 

IM) and timing (tR or tM) of recharge to which a landscape is exposed. The actual exposure or 360 

magnitude of change in IR or IM and tR or tM will depend on future emission scenarios, which are 361 

highly uncertain. However, to illustrate this concept of intrinsic sensitivity and exposure, we 362 

present a climate change scenario consistent with regional-scale climate projections for the PNW 363 

of decreasing snowpacks (Mote, 2003; Elsner et al., 2010) as a proxy for exposure. An integrated 364 

daily snow product based on the 1-km resolution Snow Data Assimilation System (Carroll et al., 365 

2001) was selected and IM and tM were calculated as described earlier. We used the differences 366 

between IM and tM values for the wet year 2004 (an El Niño year) and dry year 2011 (a La Niña 367 

year), which correspond to a ~50% regional snowpack decline, as a potential climate change 368 

scenario. Changes in precipitation magnitude and timing are unclear for this region (Salathe et 369 

al., 2007; Mote and Salathe, 2010), and were excluded from this analysis. 370 
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5 Model Validation  371 

We validated our derived streamflow sensitivities (ɛQo and ɛt) against empirical measures of 372 

climate sensitivity extracted from historical records of 217 (Fig. 1a) watersheds for the months of 373 

July, August, and September. Our approach was to use streamflow response to historical climate 374 

extremes as a proxy for streamflow sensitivity. Measures used included the: 1) change in 375 

streamflow with respect to a change in annual precipitation between wet and dry periods; and 2) 376 

change in streamflow with respect to a change in spring air temperature between cool and warm 377 

periods. These two empirical measures of sensitivity were calculated as: 378 

   
         

         
                                         (10) 379 

   
           

           
                                         (11) 380 

Average annual precipitation (P) for each watershed was used to identify the 5 years with the 381 

lowest and highest precipitation as dry and wet periods, respectively. Similarly, the watershed 382 

average of mean daily spring (April - June) temperature (T) was used to identify the 5 years with 383 

the coolest and warmest springs. This approach is analogous to the precipitation and temperature 384 

elasticity measure of streamflow sensitivity proposed by Schaake (1990) and 385 

Sankarasubramanian et al. (2001). The empirical measures ɛp and  ɛT were calculated as an 386 

indicator of streamflow sensitivity to a change in magnitude and timing of recharge, respectively. 387 

However, magnitude (IR and IM) and timing (tR and tM) are each affected by wet and dry periods 388 

and cool and warm springs (Table 2). Also, the effect of wet and dry climate on peak recharge 389 

magnitude and timing differs for rain and snowmelt dominated systems. For example, during a 390 

wet as compared to a dry period, tM shifts 16 days later whereas tR shifts 20 days earlier. Hence, 391 

the empirical measures ɛp and  ɛT are representative of the streamflow sensitivities as a 392 

convolution of timing and magnitude. We used the non-parametric Spearman rank correlation (ρ) 393 

coefficient to evaluate the correspondence between empirical (ɛp and  ɛT) and conceptual (ɛQo and 394 

ɛt) measures of streamflow sensitivities. Spearman rank correlation is less sensitive to outliers 395 

and considered a robust alternative to the Pearson product moment correlation. 396 

6 Results and Discussion 397 

6.1 Sensitivity Validation 398 

Summer streamflow sensitivities derived from the conceptual framework are in agreement with 399 

the climate sensitivity estimators calculated from historical data (Table 2). The absolute 400 

magnitudes of both empirical (ɛp and  ɛT) and conceptual (ɛQo and ɛt) measures of streamflow 401 

sensitivities decrease from July to September. Also, both precipitation- and temperature-based 402 

estimators of streamflow sensitivity ɛp and  ɛT are significantly (p<0.001) correlated  with ɛQo and 403 

ɛt. The Spearman rank correlation coefficient for ɛp and ɛQo decreases from 0.73 in July to 0.50 404 

in September, and for ɛp and ɛt decreases from 0.77 in July to 0.54 in September. The Spearman 405 

rank correlations between ɛp and ɛQo or ɛt are weaker and ranged between -0.66 (ɛp vs. ɛQo) and -406 

0.71 (ɛp vs. ɛt) in July and -0.5 in September. The overall slightly lower values of Spearman rank 407 

correlations between empirical and conceptual measures of streamflow sensitivities are not 408 
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surprising given the fact that changes in IM and tM between wet and dry periods were very small. 409 

Similarly, between cool and warm periods IR and tR were relatively constant. So although we 410 

used a total 217 watersheds for validation, not all of them were subjected to a change in 411 

magnitude and timing of recharge between wet and dry or cool and warm periods. In fact, all of 412 

the rain dominated watersheds had similar IR and tR between cool and warm periods. This 413 

smaller change in IR and tR limits the range of our validation for rain dominated watersheds.  414 

6.2 Sensitivity Analysis & Distribution  415 

Streamflow sensitivities to a change in magnitude, ɛQo, are very similar during the first weeks 416 

after peak recharge for all HUC units across the range of k values (Fig. 7a). In groundwater 417 

dominated HUCs, the ɛQo are mediated and show very sharp contrasts from runoff dominated 418 

HUCs even after 110 days of recession. Since peak recharge IM occurs late during the year in 419 

most of the low k HUCs (Fig. 6), these mediated sensitivities will be expressed throughout the 420 

summer. In contrast, the sensitivities to a change in timing, ɛt, are very different during the first 421 

weeks after peak recharge across all HUC units (Fig. 7b). Most of the HUCs with higher ɛt (>0.5 422 

mm/day) are in the rain dominated Coast Range (Fig. 1) where recharge magnitude (IR) is higher 423 

overall when compared to the snow dominated Cascades, Olympics, and other western parts of 424 

OR and WA. However, in most of these coastal HUCs the peak recharge occurs early in the year 425 

(Fig. 6), resulting in a long recession with lower sensitivities in the summer months.  426 

Summer streamflow sensitivities to a change in the magnitude (ɛQo) and timing (ɛt) of recharge at 427 

the beginning of July, August, and September show several distinct patterns (Fig. 8). First, there 428 

is a clear north-south grain to the sensitivity of both variables due primarily to the corresponding 429 

orientation of the topography, with the Cascade Range in both OR and WA clearly showing up 430 

as most sensitive to both types of changes. Snow-dominated regions with late melt, such as the 431 

mountains along the WA-Canada border and the Wallowa Mountains in OR also show a high, 432 

though diminished, sensitivity. Second, the maps show that 5
th

 field HUCs sensitive to a change 433 

in magnitude (IR and IM) are also sensitive to a change in timing (tR and tM). Third, the level of 434 

sensitivity and its spatial extent diminish as the day of interest (td) moves from early to late 435 

summer. The highest magnitudes of sensitivity to changes in IR and IM, were 0.47, 0.25, and 0.14 436 

mm/mm at the start of July, August, and September,
 
respectively; The highest magnitudes of 437 

sensitivity to changes in tR and tM were 0.28, 0.10, and 0.03 mm/day, at the start of July, August, 438 

and September, respectively. The highest sensitivity for July streamflow is primarily located in 439 

the northern WA and along the Cascades, but portions of OR Cascades continue to show high 440 

sensitivity throughout the summer. This contrasting pattern is attributed to relatively high k 441 

values in the OR Cascades compared to northern WA. By the end of August, OR Cascade 442 

streams are mainly sourced from deep groundwater, as most of the above-ground storage in the 443 

form of snow has melted out (Tague and Grant, 2004).  444 

The influence of k becomes more important than peak recharge magnitude and timing as summer 445 

proceeds. Thus, although the different regions display similar levels of sensitivity, the reasons for 446 

this sensitivity vary by locale. In contrast, summer streamflow (i.e., July, August, and 447 

September) in HUCs that receive recharge in the form of rain (e.g., Coast Range) and do not 448 

have deep groundwater, are less sensitive to a change in the IR or tR compared to HUCs driven by 449 

snowmelt recharge (e.g., High Cascade range and much of northern WA). This lower sensitivity 450 

primarily results from peak rainfall occurring earlier in the year (Fig. 6), leading to a long 451 
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summer recession. A similar low sensitivity is observed in eastern OR, where peak snowmelt 452 

occurs later in the year but the magnitude of recharge IM is small and there is very little deep 453 

groundwater contribution to sustain the recession.  454 

Over the entire study area, streamflow at the start of July is at least moderately sensitive (ɛQo and 455 

ɛt >0.001) to a change in peak recharge magnitude and timing in 49% and 27% of the area, 456 

respectively. As the day of interest moves towards the start of September, the spatial extent of at 457 

least moderately sensitive areas diminishes to 25% and 11% of the region for ɛQo and ɛt, 458 

respectively. Within the individual states, streamflow at the start of July in OR is at least 459 

moderately sensitive in 38% and 16% of the area as compared to 64% and 44% of the area in 460 

WA, to a change in peak recharge magnitude and timing, respectively. Similarly, streamflow at 461 

the start of September in OR is at least moderately sensitive in 15% and 6% of the area as 462 

compared to 39% and 18% of the area in WA, to a change in peak recharge magnitude and 463 

timing, respectively.  464 

6.3 Summer Streamflow Vulnerability  465 

This analysis yields a spatially-explicit prediction of the sensitivity of late summer streamflow to 466 

climate change based on the convolution of geology, as represented by k, and recharge dynamics, 467 

as represented by IR, IM, tR and tM (Fig. 8). To better understand this sensitivity, we consider how 468 

the processes driving it vary across the landscape. For example, the OR High Cascades and much 469 

of WA show similar levels of sensitivity, but for different reasons. The OR High Cascades are 470 

sensitive because of low k and, as a result, abundant deep, and slow draining groundwater that 471 

recharges streams over many months. Peak snowmelt recharge, IM in much of the OR Cascades 472 

is not only small compared to northern WA, but also melts earlier (Fig. 6), leaving deep 473 

groundwater as the only source of late season streamflow. These groundwater-dominated 474 

landscapes in effect “remember” changes in climate as reflected in either the magnitude or 475 

timing of recharge in the winter or spring, resulting in higher sensitivity of late-season 476 

streamflow.  477 

In contrast, much of northern WA is sensitive not because of low k but because of higher IR or IM 478 

and late tR and tM. The IM is higher in much of this region and melts later during the year (Fig. 6), 479 

contributing a substantial portion of the late season streamflow. If the climate changes so that 480 

less snow accumulates and snowmelt occurs earlier in spring, the corresponding changes in 481 

recharge timing and magnitude are reflected in late summer streamflow, which relies almost 482 

exclusively on snowmelt in this region. 483 

The hydrogeologic sensitivities (Fig. 8) illustrate the magnitude of change to existing summer 484 

streamflows during early July, August, and September, per unit change in recharge magnitude 485 

and timing. Hence, the sensitivity is an intrinsic, mappable landscape property driven primarily 486 

by current climate and geology. This information is valuable for climate change planning and 487 

mitigation efforts, particularly in ungauged basins, which represent most of the landscape. Our 488 

analysis predicts sensitivity to change, but not actual changes to magnitude or timing of 489 

streamflow. Actual changes in summer streamflow are a product of both this hydrogeologic 490 

sensitivity (Fig. 8) and realized changes in IR or IM and tR or tM under a given climate change 491 

scenario. Changes in ET are also a factor, but are not considered here.  492 



14 

 

Summer streamflow change resulting from this test scenario can be expressed both in absolute 493 

(units of flow increase or decrease over time) and relative (percentage increase or decrease over 494 

time with respect to Q0) terms, depending on the application and subject of interest. The average 495 

change in IM and tM between the year 2004 and 2011 was 4.1±4.5 mm and 38±34 days, 496 

respectively. We then calculated late summer streamflow at the beginning of July, August, and 497 

September using the change in IM and tM values separately (Fig. 9). Only 7% of the region 498 

showed a decline in July 1
st
 streamflow by at least 1 mm (a threshold equivalent to average daily 499 

September streamflow) under the IM scenario as compared to 8% under the tM scenario. Most of 500 

the HUCs with a 1 mm or greater decline are located in WA. Nearly 16% of the area in WA 501 

showed at least a 1 mm decline in July 1
st
 streamflow as compared to only 3% in OR to a change 502 

in tM between the years 2004 and 2011. Similarly, 12% of the area in WA showed at least a 1 mm 503 

decline in July 1
st
 streamflow as compared to only 3% in OR to a change in IM between the year 504 

2004 and 2011. As expected, streamflow changes in July were larger than in August and 505 

September under both the IM (Fig. 9a) and tM (Fig. 9b) scenarios. Relative changes (%) in 506 

streamflow were calculated after normalizing the absolute change by the peak snowmelt recharge 507 

(IM) as a proxy for Q0. In the absence of spatially distributed observed streamflow data, we 508 

utilized the peak recharge as a proxy for available water in the streams at the start of the 509 

recession. In general, areas showing greater absolute change also showed greater relative change 510 

(Fig. 9a, 9b). 511 

This disparity between absolute and relative change across the landscape illustrates a key aspect 512 

of interpreting sensitivity: our prediction of future streamflows reflects both the intrinsic 513 

sensitivity of the landscape (as reflected in k and average historic climate) as well as changes in 514 

snowpack between cooler and warmer years. Both factors affect the timing or magnitude of 515 

recharge. Specifically, under our assumed scenario, the changes in IM and tM, are greater in 516 

places with “warmer” snowpacks (Nolin and Daly, 2006), such as the Cascades and other 517 

mountain ranges that are closer to marine influence (e.g., Olympics, Fig. 1b). In these areas, 518 

small temperature changes directly affect the total proportion of snow to precipitation. In 519 

contrast, colder snowpack areas such as the Harney and Great Basins, Payette, and Walla Walla 520 

Plateau (Fig. 1b) are less sensitive to temperature changes. The net effect to streamflow is that 521 

some regions (e.g. Northern Cascades, Fig. 1b) experience both more vulnerable snowpack and 522 

more sensitive landscapes (i.e. lower k values). This is reflected in both a greater absolute and 523 

relative change (Fig. 9). The drier eastern portions of the study region, in contrast, have lower 524 

absolute change because their snowpacks are relatively insensitive to warming, and k values are 525 

higher.  526 

7 Management Applications 527 

A central goal in developing this spatially-explicit, analytical framework was to help resource 528 

managers, such as the US Forest Service (USFS), evaluate vulnerabilities of key resources to 529 

changing summer streamflows, and develop and implement adaption strategies to reduce 530 

potential impacts. While such strategies may introduce some new activities (e.g., facilitated 531 

migration of species, mulching forests) (Grant et al., 2013), we expect that most will involve 532 

adjustments in the location, timing, and scope of current actions or modification of their site-533 

specific designs.  534 
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To explore this, we consider how this type of spatial analysis might inform management of 535 

National Forest lands in the Pacific Northwest. National Forests comprise a particularly large 536 

fraction of the region (nearly 27 % of OR and WA) and support diverse, valuable, and climate-537 

sensitive resources. The largest changes in summer streamflows are expected to occur on these 538 

forest lands, which may affect and alter numerous forest management activities. Such activities 539 

include timber harvest and fuels management, watershed restoration, resource assessment and 540 

monitoring, and construction and operation of dams, water diversions, roads, and recreational 541 

facilities.  542 

Watershed restoration is currently a major focus for the USFS (Potyondy and Geier, 2011). 543 

Much of this work in the Pacific Northwest is directed towards maintaining or improving water 544 

quality and aquatic habitats for salmon and other cold water biota, as directed by the Northwest 545 

Forest Plan and other forest plans in the region. Common restoration actions include removal of 546 

physical barriers in streams (e.g., poorly designed culverts), road improvements and 547 

decommissioning, improved livestock management, reconstruction of stream channels and 548 

floodplains, restoration of riparian vegetation and streamflows, decommissioning or alteration of 549 

dams and water diversions, and enhancement of instream habitats via additions of wood, 550 

boulders, and nutrients (Roni et al., 2002). 551 

Implementing these restoration projects in a ‘climate informed’ way is critical, as changes in 552 

summer streamflows and other habitat components (e.g., stream thermal regimes) may 553 

significantly influence their effectiveness (Battin et al., 2007). This can be accomplished by 554 

integrating assessment products like the one presented here into existing strategic planning and 555 

project design processes. For example, to maximize the effectiveness of its restoration program, 556 

the USFS is currently focusing investments in ‘priority watersheds’ based on assessments of 557 

non-climatic stressors and other factors (Watershed Condition Framework at 558 

http://www.fs.fed.us/publications/watershed/). In the PNW, those watersheds where the greatest 559 

ecological gains can be achieved with the least funding have typically been selected as priorities. 560 

In general, such areas have high ecological values (e.g., high biodiversity, rare or legally 561 

protected species), mild to modest levels of non-climatic impacts (e.g., water diversions, water 562 

quality problems, altered stream habitats), high sensitivities to those impacts (e.g., cold water 563 

biota with narrow thermal tolerances), and significant opportunities for restoration (e.g., 564 

important and technically-solvable problems, sufficient financial resources and workforce 565 

capacity, community support, few legal barriers).  566 

This sensitivity assessment provides an opportunity to consider an additional factor in the 567 

priority-setting: climate-induced changes in summer streamflow. In many cases, such changes 568 

may not alter priority areas selected for restoration. For example, current priority watersheds 569 

may remain priorities after consideration of climate change information (Fig. 10). In others, 570 

however, likely climate impacts may shift emphasis away from some watersheds and towards 571 

others. For example, watersheds with large projected changes in summer streamflows and water 572 

resources highly sensitive to those changes may be considered a lower restoration priority if 573 

restoration treatments are unlikely to address the cumulative effects of both climatic and non-574 

climatic impacts or if the cost of those treatments greatly exceed available funding (i.e., adaptive 575 

capacity is limited). Conversely, the relative priority of other watersheds may increase in cases 576 

where significant climate impacts are expected, but managing both climatic and non-climatic 577 

impacts is deemed technically, socially, and financially achievable (Fig. 10).  578 

http://www.fs.fed.us/publications/watershed/
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Moreover, this analysis could influence the type, intensity, location, or timing of restoration 579 

actions considered necessary to sustain critical resources in priority watersheds, both at a 580 

watershed and project scale. The prospect of late-season streamflow change in some portions of 581 

the watershed could lead to redesign of water diversions, proactive efforts to reduce stream 582 

temperatures, re-thinking low-flow channel dimensions for fish passage and stream channel 583 

reconstruction projects, and reconsideration of what riparian species are likely to survive into the 584 

future (Fig. 10).  585 

8 Conclusions 586 

Our results provide a hydrogeologic framework to identify watersheds most and least vulnerable 587 

to summer streamflow changes. This method reveals landscape level patterns and their 588 

relationship to topographic, geologic and climatic controls, and can be applied to interpret the 589 

effects of any climate change scenario of interest. As such, we believe the sensitivity maps 590 

represent a robust, scalable tool that can be used in climate change assessment and adaptation in 591 

both gaged and ungauged basins.  592 

Lack of geologic (i.e., aquifer permeability) and snowmelt information at appropriate spatial 593 

scales and accuracies to predict drainage efficiency and peak recharge magnitude and timing is a 594 

challenge. For example, aquifer permeability used for OR and WA at the scale of 1:500,000 595 

reflects far less spatial heterogeneity and it is unclear how a finer scale (i.e., 1:100,000) 596 

permeability or geology map would influence k. Similarly, we relied on simulated historic 597 

snowmelt data at 1/16 and 1/8 degree grid resolution due to the absence of long-term, spatially-598 

distributed measurements. It is unclear how the changes in temperature and precipitation will 599 

affect or assumption to approximate the peak discharge with recharge. As the climate continues 600 

to warm, the time lag between recharge and streamflow (Fig. 3) in rain and snow dominated 601 

watersheds will likely shift. More rain instead of snow will also alter the dominant recharge 602 

regime (Fig., 5b) and eventually the streamflow sensitivities. Also, this sensitivity analysis 603 

should be applied carefully in places where subsurface groundwater exchange or summer 604 

evapotranspiration dominate summer streamflow regime. As finer-resolution data on both 605 

geological and climatic factors becomes available, this approach can be refined to capture new 606 

information. 607 

More broadly, we recognize that this approach does not yield the specific streamflow values or 608 

future hydrographs of the current generation of hydrologic models. There are many applications 609 

where having a spatio-temporal prediction of how much water is present would be quite useful. 610 

Beyond the uncertainty in both our approach and streamflow modeling, each method has 611 

strengths and limitations. The spatial map of sensitivity reveals broad landscape patterns and is 612 

applicable where data, time, or cost limit applying a more sophisticated hydrologic model. 613 

Hydrologic models give detailed predictions, but may not always illuminate underlying 614 

mechanisms or provide sound future predictions. Both approaches have their place. Although our 615 

results are independent of GCM predictions, the two approaches are not necessarily mutually 616 

exclusive. New CMIP5 high resolution, terrain sensitive model predictions could be incorporated 617 

into this framework. . 618 

Predicting future streamflows is an uncertain task at best, but is essential to address a rapidly 619 

changing environment. The “bottom up” approach described here is intended to complement 620 
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other “top down” approaches involving sophisticated and coupled climate and hydrologic 621 

models. These spatial maps based on simple theory and supported by empirical data represent 622 

spatially-explicit hypotheses about how streamflow is expected to respond to climate changes in 623 

the future. Other more complex approaches also yield spatially-explict hypotheses in the form of 624 

future hydrographs. We can now compare these two approaches, highlight their strengths and 625 

limitations, and integrate knowledge from each to guide managers and communities in facing the 626 

uncertain future of water resources in the Pacific Northwest and beyond. 627 
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Tables	825 

Table 1: Regression analysis for prediction of k in Oregon (Model 1a) and Washington (Model 826 
1b) and the entire domain (Model 2), using relief, soil permeability (Ksoil), aquifer permeability 827 
(Kaqu) and slope. 828 

    Regression Equation d.f. Se R2 
Adj. 
R2 

F 
Statistics 

Model 1a 
OR  k =0.2939448   

97 0.010 0.59 0.58 45.39 
-0.0272553 log (Relief)  
-0.0118343 log (Ksoil)  

  -0.0011999 log (Kaqu) 

Model 1b           
WA  k =0.159973  

95 0.011 0.44 0.43 25.36 
-0.014864 log (Relief)  

-0.012880 log (Kaqu)  

    +0.006182 log (Ksoil)  

Model 2 
Domain  
(OR & 

WA) 

k =0.1942972 

199 0.011 0.50 0.49 65.88  
-0.0214605 log (Relief)  

+0.0043926 log (Slope)  

    -0.0027865 log (Kaqu) 

d.f. is degree of freedom; Se is standard errror. 
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Table 2: Watershed average (n = 217) values of peak recharge magnitude and timing between 839 
wet/dry and cool/warm periods with corresponding empirical and analytically derived  840 
streamflow sensitivity values.  841 

Scenario Average Parameter Value Empirical Validation Derived Sensitivity 

IR 
(mm) 

IM 
(mm) 

tR 
(day) 

tM 
(day)

ɛp (mm/mm), Eq. 10 ɛQo (mm/mm), Eq. 5 
July Aug Sep July Aug Sep 

Wet 35.95 6.95 86 167
0.046 0.016 0.013 0.046 0.017 0.0066 

Dry 21.56 4.32 106 151

IR 
(mm) 

IM 
(mm) 

tR 
(day) 

tM 
(day)

ɛT (mm/oC), Eq. 11 ɛt (mm/day), Eq. 6 
July Aug Sep July Aug Sep 

Cool 28.03 7.33 89 180
-22.17 -7.89 -2.89 0.014 0.004 0.0016 

Warm 28.13 4.56 87 154
 842 
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Figures	844 

 845 

Figure 1: (A) Study domain and selected stream gages (n = 227; all circles) in Oregon and 846 
Washington used to calculate k. Stream gages (n = 217; light blue circles) with at least 20 years 847 
of daily streamflow between 1950 and 2010 were used in the sensitivity validation and other 848 
time series comparisons of rain, snowmelt, and streamflow; (B) Physiographic regions based on 849 
common topography, rock type, structure, and geomorphic history; (C) average (1981-2010) 850 
annual precipitation; (D) average (1981-2010) temperature. 851 

Figure 2: Theoretical response surface from conceptual model (Tague and Grant, 2009) for 852 
representative k values for the study region. Sensitivity of summer streamflow to (A) a change in 853 
the magnitude of recharge (mm/mm) and (B) an earlier shift in the timing of recharge (mm/day) 854 
assuming an initial recharge volume of 1 mm. 855 

Figure 3: Time series of daily rainfall (A), snowmelt (B), and streamflow (C) averaged over the 856 
available lengths of record and n watersheds in rain (R, n = 44; green), transitional snow zone 857 
(TSZ, n = 43; red), and seasonal Snow zone (SSZ, n = 130; blue). Solid lines represent the mean 858 
value and shaded areas represent the standard error of the mean. 859 

Figure 4: Calculated and modeled flow recession constant (k) for watersheds in (A) OR, (B) 860 
WA, and (C) entire domain based on the regression equations developed individually for OR 861 
(Model 1a), WA (Model 1b) and for the entire domain (Model 2) ); (D) Spatial distribution of 862 
residuals (Calculated-Modeled) using Model 2. 863 

Figure 5A: Spatial distribution of recession constant k using Model 2 for the entire domain of 864 
Oregon and Washington. Lower k values represent deep groundwater-dominated systems; higher 865 
k values represent surface flow-dominated systems. 866 

Figure 5B: Study domain discretized between rain (R; green), transitional snow zone (TSZ; 867 
blue), and seasonal snow zone (SSZ; gray) based on Nov-Jan average wet day air temperature. 868 
Areas in the TSZ with a snow to precipitation ratio (Sf) >10% are shaded with light blue. 869 

Figure 6: Spatial distribution of peak recharge magnitude (mm/day) for precipitation IR (a), 870 
snowmelt IM (b) and recharge timing (day of water year) for precipitation tR (c) and snowmelt tM 871 
(d) across the study domain. 872 

Figure 7: Decline of streamflow sensitivities for the range of k across all HUC units to a change 873 

in (A) magnitude, ɛQo and (B) timing, ɛt during the first 110 days of recession from the peak 874 

recharge, tp. White shading indicates no data.  875 

Figure 8: Spatial distribution of (A) July, (B) August and (C) September streamflow sensitivities 876 

to a change in (i) magnitude ɛQo (mm/mm) and (ii) timing ɛt (mm/day) of recharge.  877 
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Figure 9A: Predicted decline in streamflow in absolute (i) and relative (ii) terms, based on: 1) 878 
the intrinsic sensitivities to changes in peak snowmelt magnitude (Fig. 8); and 2) a scenario 879 
similar to the differences experienced between a warm, dry year (2003, El Niño) and a cool, wet 880 
year (2011, La Niña). Gray areas are rain dominated recharge and were excluded from this 881 
analysis. 882 

Figure 9B: Predicted decline in streamflow in absolute (i) and relative (ii) terms, based on: 1) 883 
the intrinsic sensitivities to changes in peak snowmelt timing (Fig. 8); and 2) a scenario similar 884 
to the difference experienced between a warm, dry year (2003, El Niño) and a cool, wet year 885 
(2011, La Niña). Gray areas are rain dominated recharge and were excluded from this analysis. 886 

Figure 10: Examples of hypothetical watershed prioritization based on USDA Forest Service 887 
Watershed Condition Classification, an assessment of non-climatic impacts, sensitivities to those 888 
impacts, and opportunities to address them. Priority watersheds (red stars) differ for 889 
classifications without (A) and with (C) streamflow sensitivity analysis (B).  890 
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 892 

Figure 1: (A) Study domain and selected stream gages (n = 227; all circles) in Oregon and 893 
Washington used to calculate k. Stream gages (n = 217; light blue circles) with at least 20 years 894 
of daily streamflow between 1950 and 2010 were used in the sensitivity validation and other 895 
time series comparisons of rain, snowmelt, and streamflow; (B) Physiographic regions based on 896 
common topography, rock type, structure, and geomorphic history; (C) average (1981-2010) 897 
annual precipitation; (D) average (1981-2010) temperature.  898 
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 900 

 901 

Figure 2: Theoretical response surface from conceptual model (Tague and Grant, 2009) for 902 
representative k values for the study region. Sensitivity of summer streamflow to (A) a change in 903 
the magnitude of recharge (mm/mm) and (B) an earlier shift in the timing of recharge (mm/day) 904 
assuming an initial recharge volume of 1 mm. 905 
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Figure 3: Time series of daily (1-365) rainfall (A), snowmelt (B), and streamflow (C) averaged 908 
over the available lengths of record (1915-2006) and n watersheds in rain (R, n = 44; green), 909 
transitional snow zone (TSZ, n = 43; red), and seasonal Snow zone (SSZ, n = 130; blue). Solid 910 
lines represent the mean value and shaded areas represent the standard error of the mean. 911 
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 913 

Figure 4: Calculated and modeled flow recession constant (k) for watersheds in (A) OR, (B) 914 
WA, and (C) entire domain based on the regression equations developed individually for OR 915 
(Model 1a), WA (Model 1b) and for the entire domain (Model 2); (D) Spatial distribution of 916 
residuals (Calculated-Modeled) using Model 2. 917 
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 919 

Figure 5A: Spatial distribution of recession constant k using Model 2 for the entire domain of 920 
Oregon and Washington. Lower k values represent deep groundwater-dominated systems; higher 921 
k values represent surface flow-dominated systems. 922 
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 924 

Figure 5B: Study domain discretized between rain (R; green), transitional snow zone (TSZ; 925 
blue), and seasonal snow zone (SSZ; gray) based on Nov-Jan average wet day air temperature. 926 
Areas in the TSZ with a snow to precipitation ratio (Sf) >10% are shaded with light blue. 927 
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 929 

Figure 6: Spatial distribution of peak recharge magnitude (mm/day) for precipitation IR (a), 930 
snowmelt IM (b) and recharge timing (day of water year) for precipitation tR (c) and snowmelt tM 931 
(d) across the study domain. 932 
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 934 

Figure 7: Decline of streamflow sensitivities for the range of k across all HUC units to a change 935 

in (A) magnitude, ɛQo and (B) timing, ɛt during the first 110 days of recession from the peak 936 

recharge, tp. White shading indicates no data.  937 
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 939 

Figure 8: Spatial distribution of (A) July, (B) August and (C) September streamflow sensitivities 940 

to a change in (i) magnitude ɛQo (mm/mm) and (ii) timing ɛt (mm/day) of recharge.  941 
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 943 

Figure 9A: Predicted decline in streamflow in absolute (i) and relative (ii) terms, based on: 1) 944 
the intrinsic sensitivities to changes in peak snowmelt magnitude (Fig. 8); and 2) a scenario 945 
similar to the differences experienced between a warm, dry year (2003, El Niño) and a cool, wet 946 
year (2011, La Niña). Gray areas are rain dominated recharge and were excluded from this 947 
analysis. 948 
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 950 

Figure 9B: Predicted decline in streamflow in absolute (i) and relative (ii) terms, based on: 1) 951 
the intrinsic sensitivities to changes in peak snowmelt timing (Fig. 8); and 2) a scenario similar 952 
to the difference experienced between a warm, dry year (2003, El Niño) and a cool, wet year 953 
(2011, La Niña). Gray areas are rain dominated recharge and were excluded from this analysis. 954 
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 956 

Figure 10: Examples of hypothetical watershed prioritization based on USDA Forest Service 957 
Watershed Condition Classification, an assessment of non-climatic impacts, sensitivities to those 958 
impacts, and opportunities to address them. Priority watersheds (red stars) differ for 959 
classifications without (A) and with (C) streamflow sensitivity analysis (B).  960 
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