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Abstract  16 

According to Dooge (1986) intermediate scale catchments are systems of organized complexity, 17 

being too much organized and yet too small to be characterized on a statistical/conceptual basis, but 18 

already too large and too heterogeneous to be characterized in a deterministic manner. A key 19 

requirement for building structurally adequate models precisely for this intermediate scale is a better 20 

understanding of how different forms of spatial organization affect storage and release of water and 21 

energy. Here, we propose that a combination of the concept of hydrological response units and 22 

thermodynamics offers several helpful and partly novel perspectives for gaining this improved 23 

understanding. Our key idea is to define functional similarity based on similarity of the terrestrial 24 

controls of gradients and resistance terms controlling the land surface energy balance, rainfall runoff 25 

transformation and groundwater storage and release. This might imply that functional similarity with 26 

respect to these mentioned specific forms of water release emerges at different scales, namely the 27 

small field scale, the hillslope and the catchment scale. We thus propose three different types of 28 

“functional units”, specialized HRU’s so to say, which behave similar with respect to one specific form 29 

of water release and with a characteristic extent equal to one of those three scale levels. We 30 

furthermore discuss an experimental strategy based on exemplary learning and replicate 31 

experiments to identify and delineate these functional units, and as a promising strategy for 32 

characterizing the interplay and organization of water and energy fluxes across scales. We believe 33 

the thermodynamic perspective to be well suited to unmask equifinality as inherence of the 34 

equations governing water, momentum and energy fluxes: this is because several combinations of 35 
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gradients and resistance terms yield the same mass or energy flux and the terrestrial controls of 36 

gradients and resistance terms are largely independent. We propose that structurally adequate 37 

models at this scale should consequently disentangle driving gradients and resistance terms, because 38 

this optionally allows to partly reduce equifinality by including available observations e.g. on driving 39 

gradients. Most importantly, the thermodynamic perspective yields an energy centered perspective 40 

on rainfall-runoff transformation and evapotranspiration, including fundamental limits for energy 41 

fluxes associated with these processes. This might additionally reduce equifinality and opens up 42 

opportunities for testing thermodynamic optimality principles within independent predictions of 43 

rainfall-runoff or land surface energy exchange. This is pivotal to find out whether spatial 44 

organization in catchments is in accordance with a fundamental organizing principle, or not.  45 

1 Introduction  46 

Almost thirty years ago Dooge (1986) identified the organized complexity of intermediate scale 47 

catchments between 5 and 250 km2 as a cardinal problem in hydrological research. Dooge (1986) 48 

defined them as systems that exhibit a considerable degree of both spatial organization and 49 

stochastic heterogeneity; being too large for a fully deterministic treatment but yet too small for a 50 

simplified conceptual treatment. Despite the great progress that has been achieved in hydrology of 51 

hillslopes and at the scale of organized simplicity (Dooge, 1986), we feel that our understanding at 52 

the intermediate scale of organized complexity is still rather incomplete. Why so? These systems are 53 

already too large and too heterogeneous to take real advantage from applying physically based 54 

models, as already pointed out by Beven (1989). This is due to the absence of the required detailed 55 

data (e.g. on patterns of soil hydraulic functions, the topology of preferential flow paths, the 56 

physiology of apparent vegetation etc.), because their exhaustive characterization at intermediate 57 

scales is severely limited by present measurement technology and experimental design (Beven, 2006; 58 

Kirchner, 2006, Zehe et al., 2007). We of course acknowledge that parameter sets of “physics based 59 

models” can be derived by calibration/ inverse modeling as done for Hydro-Geo-Sphere (Perez et al., 60 

2011), Mike She (Christiaens and Feyen, 2001; 2002), or CATFLOW (Klaus and Zehe, 2010). However, 61 

these efforts lead (non-surprisingly) to the same problems encountered in the calibration of 62 

conceptual models. On the one hand, we obtain either effective soil hydraulic functions that jointly 63 

represent matrix and preferential flow (Troch et al., 1993, Hopp and McDonnell, 2011): We are then 64 

stuck with non-commensurable parameters that cannot be constrained using measured data derived 65 

within multistep outflow experiments. On the other hand, if we decide to disentangle matrix and 66 

preferential flow, we face a strong equifinality in acceptable model structures, also because a large 67 

set of different flow network topologies produce similar response behavior (Weiler and McDonnell, 68 

2007; Klaus and Zehe, 2010; Wienhöfer and Zehe, 2014). 69 



 
 3 

Intermediate scale catchments with a strong spatial organization are, unfortunately, also too small 70 

for averaging out errors of simplified conceptual model approaches (as they tend to do according to 71 

Dooge (1986) at the scale of organized simplicity). Both the land surface energy balance and rainfall 72 

runoff generation reflect fingerprints of how the partly organized and partly heterogeneous patterns 73 

of soils and network like structures (surface and subsurface preferential flow paths, vegetation or 74 

structures associated with surface atmospheric turbulence) nonlinearly interact with the prevailing 75 

meteorological states and forcing (Schulz et al., 1996). These “structure-process” interactions cause, 76 

depending on the pattern of system states, threshold or emergent behavior (Zehe and Sivapalan, 77 

2009): either due to (a) the onset of preferential flow and potentially subsurface pipe flow, reducing 78 

overland flow formation (Buttle and McDonald, 2002; Zehe et al., 2005; Tromp-van Meerveld and 79 

Weiler, 2008; Wienhöfer et al. 2009; Fujimoto et al., 2011), (b) the rapid mobilization of pre-event 80 

water due to pressure transduction (e.g. Bonell et al., 1990; Sklash et al., 1996), or (c) the switch 81 

between either atmospheric or land surface controlled evapo-transpiration (McNaughton and Jarvis, 82 

1983; Dooge, 1986; Seneviratne et al., 2010). However, we lack suitable theoretical concepts to 83 

explain these threshold changes and emergent behavior, and to represent them in conceptual 84 

models.  85 

Today, almost 30 years after the problem of organized complexity has been identified, there is still a 86 

gap at the intermediate scale with respect to a) our understanding and b) structurally adequate 87 

models that step beyond input-output predictions and c) experimental strategies to collect useful 88 

data in a representative way to support modelling and understanding (Kirchner, 2006; McDonnell et 89 

al., 2007). As a consequence, hydrological practice often avoids operational flood forecasts in 90 

intermediate scale catchments not only because of the highly uncertain rainfall predictions but also 91 

because of the deficiencies of rainfall runoff models and data collection strategies that prevail at this 92 

scale. Here, we stipulate that a better understanding of how different forms of spatial organization 93 

affect storage and release of water and energy across scales is essential for narrowing down this gap. 94 

The key to gain such an improved understanding is to our opinion a re-interpretation of the concept 95 

of hydrological response units (HRUs, Flügel, 1996) - which we greatly appreciate – from a 96 

thermodynamic perspective (Kondepudi and Prigogine, 1998). The proposed re-interpretation offers 97 

alternative perspectives:  98 

 For defining functional similarity based on similarity of terrestrial and atmospheric controls 99 

on driving gradients and resistance terms. This implies that functional similarity is not static 100 

in the sense of a one fits all processes HRU, but that specific functional units (specialized 101 

HRUs) for a specific form of ‘water release’ might exist, and which operate at different scales 102 

(as explained in section 2); 103 



 
 4 

 For alternative experimental strategies. They rely on exemplary learning and replicate 104 

experiments and monitoring, to characterize how different forms of spatial organization 105 

control how catchments store and release water and energy (as explained in section 3); 106 

 For requirements to be met by structurally adequate models; for equifinality as an inherent 107 

part of their governing equations; for ways to partly reduce this equifinality by a systematic 108 

linkage of observations to model components representing driving gradients and resistance 109 

terms (as explained in sections 4.1 and 4.2); 110 

 For assessing whether persistent spatial organization in catchments is in accordance with 111 

thermodynamic optimality principles and whether this offers opportunities for uncalibrated 112 

predictions (as explained in section 4.3). 113 

The thermodynamic perspective yields, most importantly, a consistent energy centered perspective 114 

on rainfall runoff transformation and evapotranspiration. This includes fundamental upper limits for 115 

energy fluxes associated with these processes, which might be used to reduce equifinality and opens 116 

opportunities for testing thermodynamic optimality principles within independent predictions of 117 

rainfall runoff or land surface energy exchange.  118 

2 Re-interpreting the HRU idea from a thermodynamic perspective  119 

2.1 Hydrological processes from a thermodynamic perspective 120 

Flügel (1996) defined 'Hydrological Response Units as distributed, heterogeneously structured 121 

entities having a common climate, land use and underlying pedo-topo-geological associations 122 

controlling their hydrological transport dynamics'. When landscapes and their spatial organization 123 

are seen as open thermodynamic systems, similar functioning identified in observations suggests a 124 

similar thermodynamic state and functionality (Reggiani et al., 2008; Rasmussen et al., 2011). A 125 

necessary step to re-interpret the HRU idea from a thermodynamic perspective is to express 126 

hydrologic fluxes in thermodynamic terms (Kleidon et al, 2013). At the very basic level, the second 127 

law of thermodynamics tells us that (potential) gradients are depleted by the fluxes that are caused 128 

by these gradients (e.g., Kleidon et al., 2013), no matter if we deal with energy, momentum or mass 129 

fluxes (of water, solutes or sediments). Depletion of driving gradients implies production of entropy 130 

and dissipation of free1 energy. This direction of the second law is the foundation for expressing 131 

                                                           
1 Which is in the Oxford Dictionary defined as a thermodynamic quantity equivalent to the capacity of a system to 

perform work: i.e. to accelerate a (water) mass (as overland flow), to lift a (water) mass against gravity (as 
capillary rise) or to enlarge a potential gradient. 
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hydrologic fluxes (in fact any flux in physics) in the common way as a product of a conductance (or an 132 

inverse resistance, R) and a gradient2 ∇ 133 

 ⃗ -  ⁄ ∇ ⃗⃗⃗⃗⃗⃗  (Eq. 1) 134 

Hydrologically relevant potentials consist of (spatio-temporal fields) of soil or air temperature, soil or 135 

plant water potentials, piezometric heads or surface water levels driving either turbulent fluxes of 136 

latent and sensible heat, fluxes of capillary soil water and soil heat, or fluxes of free water sustaining 137 

different runoff components (Table 1). The magnitude of these fluxes is determined by the set of 138 

governing equations and especially hydrologically relevant resistances and last but not least also by 139 

thermodynamic limits like the Carnot efficiency (Kleidon et al., 2012; Rasmussen et al., 2012). The 140 

resistances terms, symmetric tensors in the most general case, relate to the inverse of the soil heat 141 

conductance, or the canopy and aerodynamic resistances, or the surface roughness, or the inverse of 142 

soil hydraulic conductivity. These resistances determine dissipative energy losses along the different 143 

flow paths, and strongly reflect the degree of heterogeneity of either soil materials in the subsurface 144 

control volume or the physiology and morphology of the vegetation at the land surface. Subsurface 145 

or plant resistances depend furthermore non-linearly on soil or plant water content, which also 146 

control soil or plant water potentials.   147 

Isolated systems, which do neither exchange mass nor energy with their environment, evolve to a 148 

“dead state” of maximum entropy due to the absence of any driving potential gradient called 149 

thermodynamic equilibrium (TE). Open systems such as the critical zone may, however, export 150 

entropy to the environment and maintain a spatially organized configuration far from 151 

thermodynamic equilibrium (Kleidon et al., 2012). 152 

From a thermodynamic perspective we may distinguish two different forms of water release, 153 

because they are driven by different gradients, and are thus associated with different energy 154 

conversions as well as different degrees of freedom of the system. At one hand the catchment may 155 

release water vapor to the atmosphere by means of evapo-transpiration (ET). ET is tightly linked with 156 

land surface atmosphere energy exchange, which is driven by differential radiative heating between 157 

the surface and the atmosphere, causing near surface gradients in air temperature and humidity. 158 

These gradients drive the turbulent fluxes, which are partly fed from soil water that is held by 159 

capillary forces against gravity. Vegetation acts as “preferential flow path” for capillary water and 160 

ground water into the atmosphere, as plant roots may extract soil water against steep gradients in 161 

soil water potential and thus shortcut dry topsoil layers, which considerably block bare soil 162 

                                                           
2
 To be precise fluxes are driven by potential gradients i.e. gradients in intensive state variables such as 

temperature or matric potentials, which are continuous at interfaces and non-additive. Extensive state variables 

such as soil moisture, internal energy or mass may be in contrary discontinuous at interfaces and are additive. 
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evaporation. The plant’s metabolism that sustains this preferential flow path is maintained by 163 

photosynthesis, which links to plant gas exchange (Schymanski, 2009) controlled by plant physiology 164 

(root water uptake, plant water transport, stomata conductance). Entropy production in a catchment 165 

is dominated by evapo-transpiration due to the large specific heat of vaporization (Kleidon 2012), 166 

while entropy export is sustained by outgoing long wave radiation and turbulent heat fluxes (Kleidon 167 

2012). 168 

Alternatively, the catchment may release liquid water as stream flow. Stream flow and its generation 169 

are driven by gravity, and feeds either from direct rainfall-runoff transformation or from non-170 

capillary water which is temporarily stored in the aquifer (or in the subsurface) and eventually 171 

released to the stream. Also the mass fluxes during rainfall runoff processes are tightly linked to free 172 

energy conversions namely of capillary binding energy of soil water (in fact chemical energy), 173 

potential energy and kinetic energy of soil and/or surface water. Although being small when 174 

compared to the surface energy balance, these energy conversions are of key importance. This is 175 

because they are related to the partitioning of incoming rainfall mass into runoff components and 176 

storage dynamics (Zehe et al., 2013) and reflect energy conservation and irreversibility of these 177 

processes as they imply small amounts of dissipation of free energy and thus production of entropy.  178 

2.1 Are HRUs and landscape organization resulting from co-evolution? 179 

Spatial organization in the critical zone itself manifests across a wide range of scales through 180 

different fingerprints, affecting both gradients and resistances controlling terrestrial water and 181 

energy flows (and stocks). The persistence of topographic gradients is the most obvious form of 182 

spatial organizations which implies the existence of catchments with maybe the strongest and well 183 

known implications for terrestrial water flows. A spatial correlation in for instance soil hydraulic 184 

properties (Zimmermann et al., 2008) reflects spatially organized storage of soil water and spatially 185 

organized capillary rise against gravity within a given soil (Western et al., 2004; Brocca et al., 2007; 186 

Blume et al., 2009; Zehe et al., 2010b). The soil catena reflects organized formation of different soil 187 

types along the gradient driving lateral hillslope scale water fluxes (Milne, 1936), which implies partly 188 

deterministic patterns of infiltration and overland flow formation.  189 

The omnipresence of networks of preferential flow paths is often regarded as the prime example for 190 

spatial organization (Bejan et al., 2008), because, independently from their genesis, they exhibit 191 

similar topological and functional characteristics. Topologically connected, network-like structures 192 

such as surface and subsurface preferential flow paths (surface rills, macropores, pipes) or vegetation 193 

and near surface atmospheric turbulent structures, create a strong anisotropy in flow resistances 194 

controlling water mass and energy by strongly reducing dissipative losses within the network. This 195 

implies accelerated fluxes at a given driving gradient either of liquid water during rainfall driven 196 
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conditions or of latent energy and water vapor during radiation driven conditions, thereby an 197 

increased power in associated energy fluxes (Kleidon et al., 2013). This in turn implies either an 198 

increased free energy export from the hillslope/catchment control volume or an increased depletion 199 

of internal driving gradients and thus a faster relaxation of the system back towards local 200 

thermodynamic equilibrium (Kleidon et al. 2013; Zehe et al. 2013). This common functionality might 201 

explain the dominance of rapid flow in different forms of connected network-like flow paths across 202 

many scales: locally in vertical macropores (Beven and Germann, 1982, 2013), in hillslope scale 203 

lateral surface rills or subsurface pipe networks (Bull and Kirkby, 1997; Parkner et al., 2007; Weiler 204 

and McDonnell, 2007; van Schaik et al. 2008; Wienhöfer et al., 2009) or in catchment scale and even 205 

continental scale river networks (Howard, 1990).  206 

We think that the idea of HRUs essentially implies that landscape evolution creates spatial 207 

organization, which is reflected in similar hydrological behavior of landscape entities / control 208 

volumes with similar structure. The underlying reason might be a co-evolution of distinct natural 209 

communities, landscape characteristics and suitable management practices (Watt et al., 1947; 210 

Winter, 2001; Schröder, 2006; Schaefli et al., 2010; Jefferson et al., 2011; Troch and Harman, 2013), 211 

because apparent spatial organization in a catchment has been formed in response to past hydro-212 

climatic- and management regimes (Phillips, 2006; Savenije, 2010). Locations at the hilltop i.e. the 213 

sediment source area, the mid slope i.e. sediment transport zone or the hillfoot/riparian zone 214 

sediment deposit area have experienced distinctly different weathering processes and micro-climatic 215 

conditions causing formation of typical soil profiles with distinct soil texture and matrix properties in 216 

different horizons. This might, depending on hillslope position and aspect, imply formation of distinct 217 

niches with respect to water, nutrient and sun light availability and thus “filters” to a) select distinct 218 

natural communities of vegetation (Tietjen et al., 2010) and soil macro fauna (Keddy, 1992; Poff, 219 

1997; Schröder, 2006), and to b) constrain the appropriate forms of landuse (Savenije, 2010). This in 220 

turn implies a similar ensemble with respect to formation of biotic flow networks (burrow systems of 221 

ants, earthworms, moles and voles as well as root systems), which feeds back on flows of water, 222 

mass and thermal energy (Tietjen et al. 2009), which in turn create feedbacks on the vegetation 223 

habitat (Tietjen et al., 2010).  224 

In this sense, we propose that structural similarity of, for instance, hillslopes might imply that past 225 

process patterns and human ‘disturbances’ have been similar (Watt et al. 1947, Schröder 2006). If we 226 

accept this, it seems logical that structurally similar landscape entities which are exposed to a similar 227 

management regime exert also at present similar controls on hydrological dynamics at different 228 

scales. 229 
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2.2 From response units to a hierarchy of functional units 230 

Based on Eq.1 and the associated mass- and energy balances we define functional units as classes of 231 

landscape entities/control volumes with similar terrestrial controls on the pair of gradient and 232 

resistance fields (referred to as (∇R) in the following) controlling either land surface energy 233 

exchange (thereby water vapor release) or different forms of stream flow generation (thereby liquid 234 

water release). This definition is consistent with the HRU definition as well as with the original idea of 235 

Representative Elementary Watersheds (REW) of Reggiani et al. (1998), as hydrologically 236 

homogenous control volumes. At the same time, this definition offers a broader perspective, because 237 

the extent of functionally similar control volumes might (likely) be different for the different forms of 238 

water release (as already suggested by Vogel and Roth, 2003). We propose that homogeneity with 239 

respect to the terrestrial controls of the pair (∇R) might emerge at three different scales namely 240 

(1) at the small field scale with respect to (∇R) controlling the land surface energy balance, (2) at 241 

the hillslope scale with respect to (∇R) controlling rainfall-runoff transformation and (3) the 242 

headwater/sub catchment scale with respect to (∇R) controlling groundwater storage and release. 243 

As a consequence, we propose the existence of three specific functional units (specialized HRUs) for 244 

a specific form of ‘water release’, which operate at the three different scales (Figure 1):  245 

 Field scale elementary functional units (EFUs) of the same class are expected to function 246 

similarly with respect to the land surface energy balance and evapo-transpiration. They 247 

dominate catchment functioning during radiation driven conditions acting vertically and thus 248 

in parallel. Members of different EFU classes are characterized by similarity of the terrestrial 249 

properties controlling the radiation balance, the Bowen ratio, ET and root water uptake and 250 

upward flows of capillary water in the soil matrix (Figure 2, Table 2). 251 

 Hillslope scale lateral topological units (LTU) of the same class are expected to function 252 

similarly with respect to runoff formation during rainfall driven conditions. They release 253 

water during and after rainfall events due to activated, topologically connected flow paths 254 

which dominate free water fluxes either at the surface, in subsurface lateral drainage 255 

networks or at the bedrock interface or through fractures to the aquifer. Members of the 256 

same LTU class share thus the same dominant runoff mechanism, consist of the same 257 

organized sequence of EFUs from the hill crest to the stream, which are likely interconnected 258 

by the same type of lateral (preferential) flow paths (Figure 2, Table 2).  259 

 Sub catchment scale hydro-geomorphic units (HGU) of the same class function similarly with 260 

respect to groundwater storage and release. HGU classes are determined by the hydro-261 

geological and geomorphic setting of sub-catchments. This determines the starting point for 262 
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morphological processes, thereby constraining the set of hillslope forms, as well as parent 263 

rock for soil formation (Figure 2, Table 2). 264 

Overall, this idea implies that operative dominance of these functional units is nothing static, but 265 

depends on the prevailing forcing conditions – either rainfall driven or radiation driven. These 266 

conditions determine the degrees of freedom for the catchment to release water either to the 267 

atmosphere or as event runoff alongside with the different driving gradients, different associated 268 

preferential flow paths that get potentially activated and different forms of water storage depletion. 269 

Before we further explain how the proposed hierarchy might facilitate a representative experimental 270 

characterization of intermediate scale catchments, it is necessary to reflect on equifinality (Beven 271 

and Freer, 2001), as an inherence of hydrological dynamics. 272 

2.2 Equifinality as inherence of our governing equations and options for its reduction 273 

Eq. 1 is inherently subject to equifinality as several combinations of gradients and resistances yield 274 

the same flux (e.g. an increase in bedrock slope can be compensated by decreasing subsurface 275 

hydraulic conductivity to yield the same flux). This might frequently be the case in hydrological 276 

systems as the quasi static controls on gradients driving lateral flows of free water during rainfall-277 

runoff transformation are largely independent from those that determine the flow resistance. In line 278 

with Bardossy (2007) we suggest that the equifinality in Eq. 1 can partly be reduced by collecting 279 

information that characterizes at least two out of the three variables: either q (or a proxy thereof) 280 

and terrestrial controls on R, or q and terrestrial controls on ∇, or terrestrial controls on ∇ and R. 281 

This option has clear implications for:  282 

 A feasible experimental design to characterize intermediate scale catchments, which should 283 

rely on characterizing the outlined pairs (if possible) in replicate members of candidate 284 

functional units along the proposed hierarchy; 285 

 The structural adequacy of models, which should be thermodynamically consistent (as 286 

already called for by Reggiani et al. (1998)) and can thus disentangle the driving gradients 287 

and resistances controlling hydrological fluxes. This allows, for instance, constraining the set 288 

of feasible behavioral subsurface flow resistances by incorporating available information on 289 

the corresponding gradients driving lateral flows (e.g. bedrock topography).  290 

Current technology allows in principle characterization of the terrestrial controls of all hydrologically 291 

relevant gradients, and even bedrock topography may be approximated using geophysical imaging 292 

techniques. Fingerprints of lateral subsurface fluxes and resistances (including fingerprints of 293 

preferential flow paths) may be retrieved from natural and artificial tracers. Also ET patterns can be 294 

estimated by new remote sensing techniques coupled with high-resolution SVAT modeling. However, 295 
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a combination of these techniques with soil physical methods, to characterize resistance terms, or 296 

sap flow to estimate local transpiration fluxes is due to the well-known scale issues and the high 297 

amount of labor only feasible at a limited extent. We thus suggest clustering of these observations in 298 

replicate members of EFUs or LTUs classes, mainly to explore whether their main structural and 299 

functional characteristics can be indeed characterized in an exemplary manner. If this were true, this 300 

would imply that behavioral model parameters characterizing structure and functionality of EFUs or 301 

LTUs were indeed transferable among all members of the same class.  302 

3 Implications for experimental characterization of intermediate scale 303 

catchments  304 

The idea of HRU or specific functional units implies that their typical dynamic behavior might be 305 

grasped by thoroughly characterizing the structural setup and functionality of a subset of only a few 306 

members of each class. Up to now, a large set of HRU separation methods has been suggested such 307 

as (an exhaustive review being beyond the scope of this paper):  308 

 Topographic indicators to support geomorphology-based predictive mapping of soil thickness 309 

(Pelletier and Rasmussen, 2009), soil erosion processes (Märker et al., 2011), and other soil 310 

properties (Behrens et al., 2010), or  311 

 Explanations of the variability of base flow response based on climatic, soil and land use 312 

characteristics (Santhi et al., 2008; Haberlandt et al., 2001), or even 313 

 Schemes to predict the locally dominating runoff processes based on soil, topography, 314 

landuse and small-scale experiments for agricultural land (Naef et al., 2002; Schmocker-315 

Fackel et al. 2007).  316 

A rigorous experimental test whether HRUs exist in the landscape has, however, never been carried 317 

out. A major obstacle to implement such an experimental test, or more precisely to search for the 318 

proposed hierarchy of functional units, is to balance the need for exhaustive characterization of the 319 

triple of (q, ∇R) within class members of functional units with the need to conduct replicate 320 

experiments and monitoring to detect typical functional and structural characteristics among class 321 

members. The null hypothesis e.g. for EFUs is that their class members belong to the same ensemble 322 

with respect to the interplay of the energy balance (including ET), root water up take and capillary 323 

soil water dynamics. This implies that mean and spatio-temporal variability of for instance sap flow, 324 

soil moisture, surface- and soil temperature dynamics observed within replicates should be identical 325 

within the confidence limits, and significantly differ from the corresponding observations obtained in 326 

members of other EFU classes. However, to ensure an acceptable significance level of such a test of 327 

concept one cannot exclusively rely on observations, because the sample sizes, N, within EFU class 328 
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members are likely to be small (and the confidence limits of the mean decrease with N-1/2). This 329 

exercise must thus be essentially combined with a test, whether behavioral model parameter sets 330 

are transferable among class members of functional units at the same hierarchy level. 331 

3.1 How to characterize EFUs and their structure and functionality?  332 

3.1.1 Controls and characteristics of EFUs 333 

We hypothesize that similarity with respect to the surface energy balance and ET emerges at the 334 

EFU/field scale (1000 m2) due to emerging homogeneity with respect to the terrestrial controls on 335 

the radiation balance, root water uptake and capillary water storage/ upward capillary rise. This is 336 

because the covariance lengths of the governing soil hydraulic parameters, soil moisture and 337 

controlling vegetation are in the order of 1-10 m (Zimmermann et al. 2008; Zehe et al. 2010b; Gerrits 338 

et al. 2010). We furthermore suggest that lateral variability of soil water potential at a given depth is 339 

during energy driven conditions rather small at this scale. This is supported by the observed stability 340 

of ranks and absolute mean differences among 80 soil moisture sensors Zehe et al. (2010b) clustered 341 

at a forested and grassland site. The reported persistence of these differences at a scale extent of 10 342 

by 10 m might rather reflect small scale heterogeneity of soil texture, but not necessarily differences 343 

in driving potentials. This is because the persistence of differences can be explained by absence of 344 

lateral soil water flows, which in turn may be due to absence of a lateral gradient in soil water 345 

potential. The latter implies that a vertical 1d treatment of soil water flow (as proposed in section 346 

4.2) is still appropriate at this scale.  347 

Our first guess predictors for detecting candidate EFUs in a given geological setting are thus landuse 348 

and management practice, location within the catena and hillslope aspect (Figure 2, Table 2). These 349 

factors determine exposure to global radiation, surface albedo, as well as either the age spectrum 350 

and species composition of trees in forest areas or surface preparation and selection of crops in 351 

agricultural areas (with a certain plant albedo).  352 

3.1.3 Characterization of the energy balance and gradients and resistances at the EFU-scale 353 

For EFU detection and characterization we propose combined observations of global radiation and 354 

the albedo (∇, sap flow (relates to q) within trees species of representative age stages, air 355 

temperature and humidity (relate to ∇clustered along the catena at up, mid, downslope locations 356 

and in the riparian zone. This should be completed with observations of soil water characteristics at 357 

the same sites (with all the known difficulties) to characterize soil hydraulic conductivity (relates to R 358 

during capillary rise) and the soil water retention curve driving upward capillary water flow (relates 359 

to ∇. We propose a combination of in-situ observations of soil moisture and matric potentials in 360 

the field (for inverse modelling and soil landscape modeling), permeameter measurements and 361 



 
 12 

undisturbed soil cores to be analyzed in the lab. Comparison of inverted hydraulic parameter sets 362 

with those derived from soil samples quantify the effect of activated preferential flow paths, as the 363 

former jointly represent flow in both domains (Troch et al., 1993, Hopp and McDonnell, 2011).  364 

As some networks of preferential flow paths are created by biota such as earthworms, ants and 365 

rodents (Lavelle et al., 2006; Meysman et al., 2006), an ecological survey of the abundance and 366 

number of individuals of soil ecosystem engineers creating vertical and lateral preferential flow paths 367 

might yield helpful proxy information on density and depth of biotic macropores.  368 

3.2 How to identify LTUs and characterize their structure and functionality?  369 

3.2.1 Controls and characteristics of LTUs? 370 

Class members of hillslope scale LTUs are deemed to belong to the same ensemble with respect to 371 

controls of rainfall runoff behavior (note that we exclude homogeneity with respect to base flow 372 

production here). We propose that homogeneity with respect to the terrestrial controls on rainfall 373 

interception and the gradients driving vertical and lateral fluxes of free water emerges at this scale. 374 

This is because hillslopes are key elements organizing rainfall-runoff transformation in many 375 

intermediate scale catchments (e.g. Troch et al. 2004, Berne et al. 2005), connecting areas with 376 

maximum potential energy located at boundary to the stream, the latter marking a local minimum in 377 

potential energy. Hillslopes are already large enough to be distinguished based on typical spatial 378 

patterns characterizing their flow path morphology (confluent, parallel, divergent), their hydro-379 

pedology based on the soil catena (Milne, 1936) and permeability of the parent rock including dip 380 

direction and slope of facies and optionally fractures.  381 

Then again, hillslopes are smaller than the length scales of mesoscale and even of most micro-scale 382 

atmospheric structures (including convective rainfall cells); spatial variability of the atmospheric 383 

forcing within the hillslope is thus controlled by slope topography, aspect and landuse. The fact that 384 

rainfall runoff in different hydro-climates may be successfully simulated using model structures that 385 

rely on several typical hillslopes as building blocks (Güntner, 2002; Zehe et al. 2005; 2013; Jackisch et 386 

al. in press) is another strong argument that homogeneity with respect to rainfall-runoff 387 

transformation emerges at the hillslope scale.  388 

We propose that within a given hydro-geological and geomorphic setting a similar surface and 389 

bedrock topography and morphology alongside with a similar landuse are first order determinants 390 

for LTU-classes (Figure 2, Table 2). These factors determine the ensemble for interception and 391 

infiltration, as well as the steepness of the water level-/ potential energy gradient that might drive 392 

lateral flows as well as the conditions for sediment redistribution and formation of the soil catena. 393 
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3.2.2 Characterization of rainfall-runoff transformation, gradients and resistance at the LTU scale  394 

As neither flow at the bedrock interface nor in lateral pipe networks is directly observable, we still 395 

struggle in understanding how, when and why hillslopes connect to the stream. In recent years 396 

promising new investigation techniques have been proposed to add bits and pieces to this puzzle as 397 

for instance DTS surveys of groundwater inflow locations along streams (e.g. Selker et al., 2006; 398 

Westhoff et al. 2007) or thermal IR imagery of saturated area dynamics (e.g. Pfister et al., 2010; 399 

Schuetz and Weiler, 2011). Source areas of runoff onset and cessation in the hillslope, riparian zone, 400 

stream continuum might be characterized using biological tracers (Pfister et al., 2009), occasionally 401 

with radon as a tracer of groundwater input and extensive observation networks (e.g. Jencso et al. 402 

2010; Tromp van Meerveld et al., 2006).  403 

Bedrock topography, as key control on gradients driving lateral flow, may be furthermore 404 

approximately characterized by geophysical imaging techniques such as electric resistivity 405 

tomography (ERT e.g. Graeff et al.; 2009) or ground penetrating radar (GPR). These techniques are, 406 

however, laborious and need to be validated with auger profiles, because even joint geophysical 407 

inversions can be non-unique (e.g. Binley et al., 2002; Paasche and Tronicke, 2007). Time-lapse GPR 408 

using a shielded antenna is furthermore promising for in-situ observation of shallow subsurface 409 

hydrological processes. Up to now such surface-based techniques are rarely used for monitoring 410 

purposes. Because of the high demands on data quality only a handful of successful examples is 411 

reported, which are mainly carried out in controlled environments such as sand boxes (e.g. Versteeg 412 

et al., 2001; Trinks et al., 2001; Truss et al., 2007; Haarder et al., 2011). 413 

3.3 How to identify HGU and to characterize their structure and functioning? 414 

3.3.1 Controls and characteristics of HGUs 415 

We expect homogeneity with respect to groundwater storage and release to emerge at the 416 

headwater or even sub catchment scale and to be largely determined by the hydro-geological 417 

setting, landuse and of course the climatic setting. The hydro-geological setting determines parent 418 

rock for soil formation, as well as the nature and the properties of the aquifer, while landuse and 419 

climate largely determine groundwater recharge. HGU’s should thus ideally have homogeneous 420 

geology, climate conditions and landuse. As this rarely is the case in intermediate scale catchments 421 

there is a need to understand how homogeneous geologies and land-uses as well as different 422 

mixtures thereof control ground water storage and release. 423 

3.3.2 Characterization of free water storage and release across scales and geologies 424 

The majority of the related tracer-based investigations have been carried out in small, geologically 425 

homogenous, experimental catchments (Klaus and McDonnell, 2013). More recent work has begun 426 
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to explore tracer signatures across scales, ranging from hillslopes to headwaters (e.g. Uchida et al., 427 

2005; McGuire and McDonnell, 2010) and headwaters to lower meso-scale (~200 km2) catchments. 428 

McGuire et al. (2006) showed for the Western Cascades in Oregon that mean transit time (MTT) was 429 

positively correlated to flow path length and negatively correlated to flow path gradient. Additionally 430 

Hrachowitz et al. (2009) reported for a set of 20 headwater catchments (1 to 35 km2) that MTT is 431 

strongly controlled by precipitation intensity and soil cover, drainage density and topographic 432 

wetness index. While geological factors have been omnipresent in MTT scaling studies, only few 433 

investigations have been able to identify distinct geological differences across nested- and 434 

neighbouring catchments (e.g. Sayama et al., 2011). However, todays available studies (e.g. 435 

Maloszewski et al., 1992; Dewalle et al., 1997; Viville et al., 2006; Tetzlaff et al., 2006, 2009, 436 

Heidbüchel et al., 2013) do not yet span a wide enough range of bedrock types where both flow and 437 

isotope tracer data are available to draw more general conclusions on how catchment bedrock 438 

conditions influence mixing, storage, and release across scales. Such studies should furthermore be 439 

completed by a characterisation of the space time variability of climate and landuse controls.  440 

4 Implications for structurally adequate modelling  441 

4.1 Reduce inherent equifinality by removing physical and structural biases 442 

4.1.1 Thermodynamic consistent model equations  443 

We already proposed that structurally adequate models for intermediate scale catchments should be 444 

thermodynamically consistent to draw advantage from the structure of Eq. 1 by including available 445 

data on a pair out of the triple of flux, gradient, resistance (q, ∇R). This allows constraining the set 446 

of feasible behavioral subsurface flow resistances by incorporating available information on bedrock 447 

topography at the hillslope scale, as well as soil water retention properties and proxies for 448 

macroporosity along the catena. As an exhaustive observation of these characteristics at the 449 

intermediate scale is out of reach, this option is only feasible, if the structure and functionality of 450 

functional units may indeed be exemplarily characterized and the related behavioral structural and 451 

functional parameter sets are indeed transferable among members of the same EFU or LTU class.  452 

Most conceptual models are not thermodynamically consistent because they merge driving gradients 453 

and resistances into effective descriptions (Westhoff and Zehe, 2013). Distributed physically based 454 

models employ thermodynamically consistent model equations; commonly the Darcy-Richards 455 

approach, the convection dispersion approach and approximations of the Saint-Venant equations. In 456 

principle, they allow consistent predictions of internal dynamics and input output behavior, including 457 

non-Gaussian transport, based on different conceptualizations of preferential flow up to the 458 

headwater scale, as recently shown by e.g. Gassman et al. (2013). Nevertheless, a full 3d physically 459 
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based model might not be a ‘perfect model’ for intermediate scale catchments, neither when 460 

defining perfection on the basis of a balance of complexity and parsimony, nor with respect to 461 

straight forward accessibility of structural model errors (Reusser et al., 2011; Reusser and Zehe, 462 

2010). 463 

4.1.2 Disentangling matrix fluxes and rapid fluxes in connected networks 464 

Model structural adequacy requires to our opinion also separated treatment of fluxes in 465 

matrix/continuum elements and connected network-like structures. This should be addressed for 466 

vegetation controlling transpiration, for flow in the river network and in particular for subsurface 467 

vertical and lateral preferential flows, due to several good reasons. First, because matrix flow and 468 

preferential flow sustain different forms of water release, they are dominated by different forces 469 

(either capillary forces or gravity) and deplete different gradients in free energy, as already explained 470 

above. Second, with the soil matrix and preferential flow paths acting as independent factors that 471 

control subsurface flow resistances, they are independent sources of equifinality (e.g. Binley and 472 

Beven, 2003, Zehe and Wienhöfer 2014). Preferential flow networks with different topological and 473 

hydraulic properties may result in the same control volume resistance and thus match observed flow 474 

and transport equally well, even if all other model parameters are kept constant (Wienhöfer and 475 

Zehe, 2014). Separate treatment of matrix flow as well as vertical and lateral preferential flow allows 476 

constraining the degrees of freedom in both flow domains independently, using different 477 

appropriate sources of information and genetic knowledge about the differences in their origin.  478 

An exhaustive overview over the wide range of methods that have been proposed for representing 479 

subsurface flow in vertical and lateral preferential flow paths is beyond our scope; Šimůnek et al. 480 

(2003), Gerke (2006) and Köhne et al. (2009) published among others exhaustive overviews. In line 481 

with studies of Vogel et al. (2006), Sander and Gerke (2009) and Klaus and Zehe (2011) we prefer a 482 

spatially explicit representation as vertical and lateral connected flow paths. This approach preserves 483 

the flow path topology (Wienhöfer and Zehe, 2014) and may be parameterized based on observable 484 

field data or based on estimates from species distribution models for ecosystem engineers (Schröder, 485 

2008; Schneider and Schröder, 2002). Such an explicit approach allows furthermore testing 486 

thermodynamic optimality principles, as they allow for a-priory optimization of the resistance field at 487 

a given gradient (Porada et al. 2011). This implies the possibility for independent predictions based 488 

on optimized model structures and preferential flow networks (compare to section 4.3). 489 

4.2  What is a perfect (and yet thermodynamically consistent) model?  490 

“Perfection is achieved, not when there is nothing more to add, but when there is nothing left to be 491 

taken away”. In line with this bon-mot of Antoine de Saint-Exupéry we regard a model as perfect if it 492 

balances necessary complexity with greatest possible parsimony. Although thermodynamic 493 



 
 16 

consistency of equations and separate treatment of matrix and preferential flow are not negotiable, 494 

we think that simplicity can be achieved for instance by stating clear hypotheses on a) how spatial 495 

organization creates anisotropy in dominant terrestrial water and energy flows (thereby reducing 496 

dimensionality of the governing equation set), or b) how to account for preferential flow paths and 497 

how to couple fast and slow flow domains, or c) how to conceptualize driving gradients in a smart 498 

and unbiased manner.  499 

4.2.1 Pioneering research and models to balance necessary complexity with parsimony 500 

The Representative Elementary Watershed approach (REW approach) proposed by Reggiani et al. 501 

(1998), is certainly pioneering in proposing a simplified but thermodynamically consistent treatment 502 

of the mass, energy and momentum balance of hydrologically homogeneous control volumes 503 

(named REWs). Reggiani et al. (1998, 1999) derived the set of balance equations for the REW and 504 

sub-control volumes/process domains (e.g. the unsaturated and saturated flow domains, 505 

characteristic areas where either Hortonian or Dunne’s overland flow dominate etc.) using 506 

thermodynamic consistent averaging (Reggiani et al. 1998, Reggiani et al. 1999, Reggiani and 507 

Schellekens 2003, Reggiani and Rientjes 2005). The related parameters and state variables are, thus, 508 

to be regarded as effective representations of point scale state variables and parameters (Zehe et al. 509 

2006, Lee et al. 2007, Mou et al. 2008). Beven (2006) identified the assessment of suitable closure 510 

relations to characterize exchange flows of mass, energy and momentum as the cardinal problem 511 

when applying the REW approach to real catchments. And there has been considerable progress in 512 

this respect: REWASH developed by Reggiani and Rientjes (2005) has been successfully applied to the 513 

Geer catchment in Belgium and to the Donga basin in Benin by Varado et al. (2006). Zhang et al. 514 

(2006) introduced a macropore flow domain into the REWASH model, which considerably improved 515 

its performance when applied to the Attert basin. In particular they were able to simultaneously 516 

reproduce stream flow and distributed observations of ground water.  517 

However, all the listed applications of the REW approach up to now treat sub catchments and REWs 518 

as synonymous and flow within the control volumes in a spatially averaged zero-dimensional 519 

manner. This is problematic as it implies averaging across different ensembles - for instance soil 520 

types - and with respect to the local equilibrium assumption. Furthermore, it is exactly the deviation 521 

from the spatial average compared to the uniform distribution what makes up spatial organization. 522 

Thus, the REW approach is in our opinion over-simplified with respect to how it represents different 523 

forms of hillslopes and sub-hillslope scale spatial organization and thus eventually with respect to 524 

how it reduces equifinality in the above specified manner.  525 

The hillslope storage Boussinesq model proposed by Troch et al. (2004) is another pioneering work, 526 

based on an analytical solution of the linearized Boussinesq equation that describes discharge from a 527 
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free unconfined aquifer that develops over impermeable bedrock. The HSB model is tailored for hilly 528 

landscapes with shallow, permeable, weakly heterogeneous soils, where subsurface storm flow and 529 

saturated excess overland flow dominate runoff generation (Hilberts et al. 2004, Troch et al. 2004, 530 

Berne et al. 2005, Hilberts et al. 2005). Although, treatment of hillslope scale spatial variability of 531 

infiltration is a challenge, this concept is valuable in the sense that rainfall-runoff transformation is 532 

dominated by lateral fluxes of free non capillary water and a simplified but unbiased treatment of 533 

this process.  534 

A simplified but unbiased accounting for terrestrial controls on driving gradients does not necessarily 535 

imply to switch to models based on coupled partial differential equations. TOPMODEL (Beven and 536 

Kirkby, 1979), WASA (Güntner, 2002) and mHm (Samaniego et al., 2010) are based on smart but 537 

explicit conceptualization of how landscape characteristics in different hydro-climates determine the 538 

gradients and resistances controlling the dominant runoff formation process. WASA is tailored for 539 

semiarid landscapes where Hortonian overland flow dominates and the catena is the dominating 540 

landscape element (Jackisch et al. 2014). The TOPMODEL assumptions, which cumulate into the idea 541 

that points with a similar topographic index act hydrologically similar (Beven and Freer, 2001b), are 542 

likely fulfilled in a humid climate with shallow highly permeable soils over impermeable bedrock. 543 

Although we appreciate the progress achieved with TOPMODEL (Beven and Kirkby, 1979) and 544 

dynamic TOPMODEL (Beven and Freer, 2001b) - as maybe the most famous and smartest 545 

conceptualization of landscape controls on liquid water release (rainfall runoff and base flow 546 

production) - we think that it is nonetheless too simple for catchments that are dominated by other 547 

runoff generation mechanisms, as well as when it comes to land-surface energy exchange and 548 

capillarity dominated flow during radiation driven conditions. However, it would be unfair only to 549 

blame TOPMODEL as being too simple when it comes to predictions of land-surface energy 550 

exchange: most hydrological and land surface models produce severe errors in this respect, 551 

especially with respect to the influence of vegetation. Another error source is shallow turbulence 552 

parameterization which is in most atmospheric based models on Monin-Obukhov-similarity and 553 

related stability functions. The underlying key assumptions as horizontal homogeneity and constant 554 

turbulent fluxes near the ground are, however, questionable at intermediate scale, especially in case 555 

of a rugged topography.   556 

4.2.2 Suggestion of a simple but structurally adequate modeling framework: the CAOS model 557 

The CAOS (Catchment as Organized Systems) model simulates water, tracer and heat dynamics based 558 

on thermodynamically consistent equations and disentangles matrix and preferential flow. Our 559 

proposition to achieve parsimony is to represent only the dominant matrix- and preferential flow 560 

processes at the EFU, hillslope and catchment level in a coupled but one dimensional manner. We 561 

further propose that flow in network-like structures dominates against matrix flow during rainfall 562 
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driven conditions. The CAOS model consists of hierarchical objects (Figure 3) with the catchment 563 

object on top, followed by hillslope and riparian zone objects. The least model entities are not REWs 564 

but EFUs, which control vertical flows of land-surface energy exchange and ET (based on the 565 

Penman-Monteith approach) and related vertical flows of upward capillary rise and soil heat during 566 

radiation driven conditions or downward gravity driven preferential flow during rainfall driven 567 

conditions. During radiation driven conditions we use the Darcy-Richards equation, which is, 568 

although often criticized, still the best concept to describe capillary driven water flows. Flow in the 569 

macropore domain during rainfall driven conditions is either represented through a kinematic wave 570 

equation, or via a stochastic approach. As motivated by Davies and Beven (2012), the latter consists 571 

in treating water flows during rainfall driven conditions by means of a space time domain random 572 

walk of water particles. Diffusive model parameters may be estimated based on soil water 573 

characteristics, while the pdf of advective flow velocities in preferential pathways is retrieved from 574 

tracer travel depth or travel time distributions. Related macropore densities and depth may be 575 

estimated from dye staining, time lapse GPR or data on the abundance of ecosystem engineers. 576 

Water beyond saturation is directed to either the macropore domain or to the Rapid Subsurface Flow 577 

object, which laterally connects EFUs along the downslope driving gradient. The lower boundary 578 

condition is free drainage which connects to the Slow Groundwater Flow object.  579 

Lateral exchange between EFU objects during rainfall runoff is treated in separate hillslope scale 580 

network domains representing either overland flow in rills or subsurface hillslope lateral flow. Flow 581 

within these networks is modeled with either the diffusion wave or the Darcy-Weisbach equation 582 

respectively. Motivated by the experimental findings of van Schaik et al. (2008, 2009) and by 583 

unpublished experimental findings of an irrigation experiment outlined in section 5.1.1 we neglect 584 

exfiltration from the lateral flow domains into the surrounding matrix/EFU objects. The slow 585 

groundwater domains account for base flow production through a diffusion wave equation. It 586 

receives its water from the lower boundary of the matrix domain and the rapid subsurface flow 587 

object. Groundwater flow on the hillslope is assumed to be homogeneous perpendicular to the line 588 

of steepest descent. The stream domain is also represented as a network. It receives its water from 589 

the Rapid Subsurface Flow and Slow Groundwater Flow objects of all connected hillslopes. Flow is 590 

described with the kinematic wave equation. Each of the model objects has a transport module 591 

based on the advection-dispersion equation including a decay term to account for the transport of 592 

solutes, isotopes or thermal energy. Adaptive time stepping and the same explicit/implicit Crank-593 

Nicolson scheme as in the water flow solvers are used.  594 

An example of the overall model output is given in Figure 3. The restriction to multi-1-d 595 

representations and of the EFU size to be approximately 1.000 m² in size and applying the ‘θ-based’ 596 

version of the Richards equation reduces the computation time significantly. With respect to model 597 
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complexity, the CAOS model concept on the one hand steps beyond the REW concept (Reggiani et al. 598 

2005, Lee et al. 2007) as it avoids averaging across landscape components of different function and 599 

hence allows closure of the mass, momentum and energy balance in a spatially resolved manner. On 600 

the other hand, the model is clearly simpler than fully distributed, physically based models as for 601 

instance HydroGeoSphere (Brunner and Simmons, 2012), HYDRUS 3D and CATFLOW. 602 

4.3 Thermodynamic consistency to test thermodynamic optimality  603 

4.3.1 Organizing principles – a possible link between catchment structure and functioning 604 

Several authors suggest that water flow in catchments and catchment structure is in accordance with 605 

different candidate optimality principles that characterize the associated energy conversions and 606 

related thermodynamic limitations (Phillips, 2006; Paik and Kumar, 2010; Phillips, 2010). Woldenberg 607 

(1969) showed that basic scaling relationships of river basins can be derived from optimality 608 

assumptions regarding stream power. Similarly, Howard (1990) described optimal drainage networks 609 

from the perspective that these minimize the total stream power. Rinaldo et al. (1992) explain river 610 

networks as “least energy structures” minimizing local energy dissipation and based on this they 611 

reproduced observed fractal characteristics of river networks.  612 

Related to these energetic minimization principles, the community debates several principles that 613 

seem to state exactly the opposite (Paik and Kumar, 2010): that systems organize themselves to 614 

maximize steady state power (MAXP proposed by Lotka (1922), steady state net reduction of free 615 

energy (MRE - Zehe et al., 2010, 2013) or steady state maximized entropy production (MEP -  616 

Paltridge, 1979) associated with environmental flows. The MEP hypothesis has been corroborated 617 

within studies that allowed a) successful predictions of states of planetary atmospheres (Lorenz et 618 

al., 2001), b) identification of parameters of general circulation models (Kleidon et al., 2006) or c) 619 

identification of hydrological model parameters to estimate the annual water balances of the 35 620 

largest basins on Earth (Porada et al 2011). Kleidon et al. (2013) recently explored whether the 621 

formation of connected river networks is in accordance with MAXP and thus whether “free” energy 622 

transfer to sediment flows is maximized. What they showed is that the depletion of topographic 623 

gradients by sediment transport is linked to a minimization in frictional dissipation in streamflow, so 624 

that maximization and minimization approaches may not necessarily contradict each other.  625 

We thus suggest that these outlined maximization and minimization principles are largely two sides 626 

of the same medal, because local minimization of frictional dissipation of kinetic energy increases the 627 

flows ability to transport matter against the driving macroscale gradient and thus to deplete it.  628 
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4.3.2 Promising findings and the need for stronger tests  629 

These outlined organizing principles allow for a priori optimization of the resistance field at a given 630 

gradient (Porada et al. 2011) with respect to an objective function. This implies the possibility of 631 

independent predictions either using an optimized bulk resistance (Westhoff et al., 2014) or based on 632 

an optimized density of vertical and lateral macropores (Zehe et al. 2013; Kleidon et al. 2013). If 633 

conclusive, this might be seen as argument that at least the potential natural state of a catchment as 634 

open terrestrial system functions in accordance with such a principle. 635 

Zehe et al. (2013) provided evidence that the spatially organized pattern of soils and macropores in 636 

the Weiherbach, reflecting past erosion processes (Zehe and Blöschl, 2004) and habitat preference of 637 

Anecic earth worms (van Schaik et al., 2014), is superior against other tested arrangements with 638 

respect to long term reduction of free energy of soil water. This implies that the true system 639 

configuration operates closer to local thermodynamic equilibrium (LTE) than the other 640 

configurations. They showed furthermore that an uncalibrated 1.5-year simulation of rainfall-runoff 641 

transformation based on an apparent thermodynamic optimum in the surface density of 642 

macropores, which maximized free energy reduction during rainfall runoff processes (thereby 643 

minimizing system time to recover back to LTE), performed equally well than the best model setup 644 

calibrated based on rainfall runoff data. It seems that in this old agricultural landscape, that the slow 645 

co-evolution of landforms, soil catena formed by erosion and macropore patterns to a system 646 

architecture far from thermodynamic equilibrium, implies that the system dynamics, however, 647 

operates close to local thermodynamic equilibrium, except for a few extreme events.  648 

The same study of Zehe et al. (2013) revealed that the relatively young landscape in Malacahuello 649 

catchment in the Chilenean Andes close to the Volcano Longymay, operates close to a steady state in 650 

the potential energy of soil water. A model structure assuming that gains in potential energy due 651 

infiltration into these highly permeable volcanic ash soils are on the long term compensated by 652 

potential energy export by means of subsurface storm flow, allowed an uncalibrated prediction of 653 

rainfall runoff within an NSE of 0.65. Last not least, a parsimonious model for the land surface energy 654 

exchange based on maximum power and Carnot efficiency by Kleidon and Renner (2013 a, b) 655 

performed, without calibration, well against flux tower data at three sites with different landuse and 656 

at the global scale well against data ERA 40 reanalysis data. This implies that turbulence in the 657 

convective boundary layer, which forms at a time scale of 10 -20 minutes, is structured such that 658 

sensible heat fluxes operate close to the upper limit determined by Carnot efficiency.  659 

We conclude that a thermodynamic perspective might offer a very useful perspective on the 660 

“operative” advantage of organized preferential flow structures: push it to the limit and minimum 661 

time for recovery. In case structures establish fast compared to characteristic time of mass and 662 
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energy flows as in the boundary layer, they push the system to operate at its (Carnot) limit. In case 663 

organized structures result from of a very slow co-evolution, as in the Weiherbach, they minimize 664 

time of the system to recover back to LTE. However, we acknowledge that a) the validity and the 665 

practical value thermodynamic optimality are still debated (see also discussion of this paper in 666 

HESSD) and b) that the reported promising findings might be just a matter of coincidence. A test of 667 

concept based on successful uncalibrated predictions, relies implicitly on the assumption that the 668 

model is “closed”, i.e. is an acceptable representation of the system accounting for all relevant 669 

degrees of freedom and the feedbacks between processes that form structures and their impact on 670 

water and energy flows. As none of the reported model studies is closed in this sense, there is a 671 

strong need for defining rigorous model and real world experiments to test how far thermodynamic 672 

optimality bears and applies.  673 

5. Conclusions and outlook 674 

The presented strategy for improving our quantitative understanding of how spatial organization 675 

controls storage and release of water and energy the intermediate scale catchments has been driving 676 

joint research within the CAOS project for the last 2.5 years. Key objectives of the CAOS project are 677 

to test our three main propositions: on a) a scale hierarchy of functional units and a strategy for their 678 

characterisation, b) requirements to be met by of structurally adequate models and c) the search for 679 

organizing principles linking catchment structure and functioning. Focus area is the Attert 680 

hydrological observatory basin in Luxembourg, which has been operated in since 1994 by the CRP-681 

Gabriel Lippmann (e.g. Pfister et al., 2009; 2010; Martínez-Carreras et al., 2012). It consists of 9 682 

nested sub catchments that have homogenous and mixed geologies ranging from schists to marl, 683 

sandstone and limestone, different land uses and a semi-oceanic climate. 684 

5.1  Brief outlook on the ongoing proof-of-concept 685 

5.1.1 Experimental design 686 

Along the hypotheses and ideas proposed in section 3 for an experimental test of the HRU concept, 687 

46 candidate EFUs in two candidate LTUs have been instrumented since 2011 with automated sensor 688 

clusters (SC). A single sensor cluster collects data on rainfall fall (N=5), air temperature, relative 689 

humidity and wind speed, global radiation; soil moisture profiles (N=10), electric conductivity (N=10) 690 

and soil temperature (N=10); matric potential (N=10), water levels (N=4) to observe groundwater and 691 

stream water levels, and five sap flow (N=4). 23 Sensor clusters are located within candidate EFUs in 692 

the schist area, of which 6 along north facing slopes and 10 along south facing slopes, 7 units are 693 

situated close to a stream, and we included 16 forest and 7 pasture sites. Within the sandstone and 694 

marl areas 12 and 11 EFUs have been instrumented, respectively. This has been combined with an 695 
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ecological survey of soil ecosystem engineers in combination with bromide profiles and dye staining. 696 

We sampled different earthworm species (in total 18 were found in the Attert catchment) and small 697 

rodents in a randomly stratified design at 117 locations (including the sensor cluster sites if possible) 698 

considering the gradients of different habitat factors covering the entire catchment. These data may 699 

serve as basis for models predicting the spatiotemporal distribution of these species (Palm et al., 700 

2013) and yield proxy information about preferential flow paths. To investigate the relevant 701 

subsurface structures and properties we have evaluated different geophysical techniques. The 702 

combination of ERT, GPR and a few manual auger profiles has proven to provide important 703 

information on, depth to bedrock and the depth of the weathered schist layer and can be used to 704 

evaluate the consistency of the first-guess lead topologies and to estimate the downslope extent of 705 

EFUs within selected LTUs. 706 

At the hillslope-/ LTU scale connectivity between hillslopes/riparian zones and streams has been 707 

characterized in detail for a tributary of the Colpach River in the Schist area of the Attert catchment. 708 

Within 50 m reaches we measured incremental discharge measurement including Radon as a natural 709 

tracer to distinguish between young water and old water draining from the hillslopes into the 710 

streams. Additionally salt tracer experiments were performed to derive gains and losses for several 711 

headwater streams during different flow conditions. This was completed with hand-held TIR and DTS 712 

temperature observations of the streams to identify localized inflow locations. At the event time 713 

scale we conducted a hillslope scale sprinkling experiment to explore the role of lateral subsurface 714 

flow in the near surface weathered schist layer and the feasibility of combining time lapsing GPR, TDR 715 

soil moisture profiling and stable isotope profiling prior and after the irrigation to jointly monitor 716 

subsurface flow processes within the upper 2-3 m.  717 

The Attert observatory is also well suited to explore how homogeneous geologies and landuse as well 718 

as different mixtures thereof control ground water storage and release, as it provides natural tracer 719 

and rainfall runoff data for at least a decade for nine nested sub catchments (e.g. Pfister et al., 2002). 720 

Recent investigations focus on geological controls on isotopic signatures in baseflow and catchment 721 

dynamic storage (as per Sayama et al., 2011) and the spatial and temporal variance of storage 722 

capacities and dynamics, as well as of contributions from saturated and unsaturated zones. To this 723 

end we rely on the complementarities of multiple tracers (geochemicals, stable isotopes of O and H, 724 

tritium), hydrometric data and in-situ observations and remote sensing of soil moisture. 725 

As spatio-temporal variability is of key importance for discriminating functional similarity and 726 

dissimilarity, it is characterized by merging operational rainfall radar data with rain gauge data as 727 

well as distrometer data to characterize droplet sizes and vertical rain radar that have been installed 728 

within the Attert catchment at three meteo-sites. These data are combined: a) by means of data-729 
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assimilation into the soil-vegetation-atmosphere model system WRF-NOAH-MP (Skamarock et al., 730 

2008; Schwitalla and Wulfmeyer, 2014) and b) by a geo-statistical merging originally proposed by 731 

Ehret et al. (2008) for improving quantitative precipitation estimates. During radiation-driven 732 

conditions horizontally averaged sensible and latent heat fluxes are observed by means of a 733 

scintillometer and air-borne thermal remote sensing that yields spatially highly resolved data on leaf 734 

temperature and soil surface temperature at different time slices. Spatial patterns of land cover and 735 

leaf area index are derived from Landsat and Modis satellite images to support EFU identification by 736 

means of pattern recognition. 737 

5.1.2 Spatial transferability of parameters as genuine test of model structural adequacy  738 

Transferability of model parameters of the CAOS model among members of the same functional unit 739 

class is a genuine test whether the proposed hierarchy of functional units does exist and whether 740 

their thorough exemplary experimental structural and functional characterization is helpful to partly 741 

reduce inherent equifinality. The ongoing hierarchical verification approach spans from the EFU scale 742 

across hillslope and headwater scale (Table 3). In addition to the traditional split sampling tests 743 

(calibration/validation periods), the verification approach therefore also comprises parameter 744 

transfer tests among EFUs of the same class and hillslopes of the same LTU class. As this verification 745 

is a multidisciplinary task, we also put a focus on the identification and development of universally 746 

applicable verification criteria and metrics. The major challenge here is to find ways for joint 747 

evaluation across variables and scales and to complete established metrics tailored for specific 748 

observables.  749 

5.2 Closing word on the value of sharing our failures  750 

The outlined experimental design covers a sufficient number of members of each candidate EFU and 751 

LTU class to enable characterization of structural and functional similarities and differences. In 752 

combination with the ongoing model verification this makes, in our opinion, up a strong test for the 753 

presented propositions and ideas. We have interesting findings to be published in the forthcoming 754 

research papers - some match our expectations, some are truly surprising - which will tell how much 755 

of our hypotheses and ideas will be corroborated, will need refinement or even will be rejected. We 756 

take this risk of “being proven as wrong”, to vote for a publication culture which allows sharing of 757 

scientific failures instead of hiding them; simply because there is much to be learned from scientific 758 

falsifications. Opinion papers may, among others, exactly serve this purpose.  759 
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7 Figures 1161 

 1162 
 1163 
Figure 1: Catchment functioning reflecting context dependent controls of different elementary 1164 
functional units (EFUs) or lateral topological units (LTUs). Members of the same EFU class exert 1165 
similar terrestrial controls on the surface energy balance (when being in similar states and exposed 1166 
to similar radiation/rainfall forcing). EFUs thus control functional similarity during radiation driven 1167 
conditions acting in parallel, class members could be ideally represented by the same parameter set 1168 
related to the energy balance and vertical water flows. Members of the same LTU class exert similar 1169 
terrestrial controls on rainfall runoff generation as the embedded EFUs are interlinked by lateral, 1170 
gravity driven water flows. Hillslope scale LTUs control functional similarity, classes members could 1171 
be ideally represented by the same parameter set characterizing lateral flows and EFU scale 1172 
parameters. 1173 
  1174 
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 1175 
Figure 2: Scheme of lateral topological units and embedded elementary functional units controlling 1176 
rainfall runoff response and land atmosphere energy exchange  1177 
  1178 
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 1179 

 a b 

c 1180 

Figure 3: (a) Simplified UML diagram of the current CAOS model structure. Each object either has 1181 

child objects or solves 1-D flux equations. (b): Sketch of the physical model elements. (c) Exemplary 1182 

visualization of model states and output. Numerical solutions have mass relative balance errors of 1183 

order 0.001 to 0.01. 1184 
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 1186 

8 Tables 1187 

Table 1: Gradients and resistances determining fluxes/storage of water and energy as well as their 1188 

landscape controls, special emphasis is also on the influence of connected network like structures 1189 

which reduce resistances. 1190 

Processes Gradient  Landscape control Resistance  Network like 

structure 

 Energy exchange and storage    

Transpiration 
 

Vapor pressure 
canopy-atmosphere 
(due to radiative 
heating) 

Canopy albedo 
and temperature 
Aspect and slope  
Air vapor pressure 
Soil water potential 
Wind speed 

Canopy and 
boundary layer 
resistances, root 
resistance, plant 
physiology  

Canopy structure, 
Leaf area index 
(LAI), root network 
topology 

Evaporation  
 

Vapor pressure soil -
atmosphere 
(due to radiative 
heating) 

Soil albedo and 
temperature 
Aspect and slope 
Soil water content & soil 
water retention curve 
Wind speed 

Inverse of soil 
hydraulic 
conductivity 
Boundary layer 
resistance 

Pore network  

Sensible heat flux Temperature 
surface-atmosphere 

Soil albedo and 
temperature 
Aspect and slope 
Surface roughness 
Air temperature 
Wind speed 
 

Turbulent/laminar 
boundary layer 
resistance 

 

Soil heat flux Soil temperature  Soil albedo and 
temperature 
Aspect and slope 
Heat capacity 
Soil water content 

Inverse of soil 
thermal 
conductivity 
content  

Advectiv heat flux  

 Water storage  and drainage   

Surface runoff Overland flow depth Surface topography & 
permeability  

Surface roughness 
(incl. plants and 
debris),  

Rill network 
topology & spec. 
flow resistance 

Infiltration Soil water potential 
 

Soil water retention 
curve, soil water content, 
depth to ground water 

Inverse of  hydraulic 
conductivity, soil 
water content  

Macropore network 
topology & spec. 
flow resistance 

Root water uptake Water potential soil-
root 

Rooting depth 
Fine root distribution 
Canopy water demand 
Soil water content 
Depth to groundwater 

Root system 
resistance 
Inverse of hydraulic 
conductivity 

Root network 
Macropore network 

Subsurface storm 
flow 

Gradient in free 
water table 
(gravitational 
potential gradient) 

Bedrock topography & 
permeability 

Inverse of  hydraulic 
conductivity, soil 
water content 

Lateral pipe 
network & spec. 
flow resistance 

Ground water flow  Piezometric head  Aquitart topography, 
specific storage 
coefficient  

Inverse of hydraulic 
permeability 

Fracture network 
topology & spec. 
flow resistance 

 1191 
  1192 
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Table 2: Hierarchy of proposed functional classification scheme, controlled from of water release, 1193 
candidate descriptors, and dominant preferential flow path, hydrological context of dominance 1194 

Hierarchy  

level 

Similarity Descriptors Preferential  

flow path 

Dominance 

Hydro-Geomorphic 
Unit (catchment 

scale) 

Base flow, ground 
water storage 

Parent rock for soil 
formation, aquifer, 

geomorphology 

River network Permanent, 
long term 

Lateral Topological 
Unit (hillslope scale) 

Rainfall runoff 
transformation, 

free water storage 

Potential energy 
differences: surface & 
bedrock topography, 

catena, aspect 

Vertical 
macropore, 

lateral pipe or rill 
network 

Rainfall 
driven 

conditions 

Elementary 
Functional Unit EFU 

(field scale) 

Land surface 
energy 

exchange/ET, 
capillary soil water 

supply  

Slope position & aspect, 
landuse, soil type 

Vegetation  Radiation 
driven 

conditions 

 1195 
 1196 
  1197 
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Table 3: Available observations and calibration parameters for CAOS model verification at different 1198 

scale levels 1199 

 1200 

 1201 

 1202 

Forcing data Observed parameters 
& parameter sets from 
lower level 

Verification data Parameters to be 
estimated 

 
EFU verification  

   

    
Rain gauges from sensor 
clusters 

Soil samples:  soil water 
retention curves  

Soil moisture: 3 
profiles 

Size of top soil layer 

Meteorological data from 
sensor clusters 

Auger information: soil 
layering  
ERT: depth to bedrock 

Matrix potential: 1 
profile 

Van Genuchten parameters: 
small corrections to 
observed 

3D radar reflectivity from 
European network 
Micro rain radar 
Distrometers 

LAI Sap flow: 5 trees LAI: small corrections to 
observed 

 Macropore density  Soil layers: small corrections 
to observed 

 
Lateral flow network verification using sprinkling experiments 
    
Natural rainfall Calibrated EFU 

parameters 
Piezometric heads Macropore domain: non-

linearity and  reservoir 
constant   

Sprinkled water GPR and ERT information: 
soil layering 

Soil moisture: 16 
profiles 

Darcy-Weisbach: 
roughness, pipe diameter, 
number of parallel pipe 
networks 

Isotopic signature of 
sprinkled water 

 Pre and post event 
isotope profiles  

Diffusion wave: hydraulic 
conductivity 

Meteorological data  time lapse GPR Leakage coefficient 

 
Lateral flow networks verification using discharge data 
    
Rainfall ERT: depth to bedrock Stream discharge Macropore domain: non-

linearity and  reservoir 
constant   

Isotopic signature of 
rainfall 

Calibrated EFU 
parameters 

Isotopic signature in 
stream  

Darcy-Weisbach: 
roughness, pipe diameter, 
number of parallel pipe 
networks 

Meteorological data   Diffusion wave: hydraulic 
conductivity 

   Hydraulic conductivity of 
slow groundwater reservoir 


