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Abstract

The Direct Sampling technique, belonging to the family of multiple-point statistics, is
proposed as a non-parametric alternative to the classical autoregressive and Markov-
chain based models for daily rainfall time-series simulation. The algorithm makes use of
the patterns contained inside the training image (the past rainfall record) to reproduce5

the complexity of the signal without inferring its prior statistical model: the time-series
is simulated by sampling the training dataset where a sufficiently similar neighborhood
exists. The advantage of this approach is the capability of simulating complex statistical
relations by respecting the similarity of the patterns at different scales. The technique
is applied to daily rainfall records from different climate settings, using a standard setup10

and without performing any optimization of the parameters. The results show that the
overall statistics as well as the dry/wet spells patterns are simulated accurately. Also
the extremes at the higher temporal scale are reproduced exhaustively, reducing the
well known problem of over-dispersion.

1 Introduction15

The stochastic generation of rainfall time-series is a key topic for hydrological and cli-
mate science applications: the challenge is to simulate a synthetic signal honoring the
high-order statistics observed in the historical record, respecting the seasonality and
persistence from the daily to the higher temporal scales. Among the different proposed
techniques, exhaustively reviewed by Sharma and Mehrotra (2010), the most com-20

monly used approach to the problem, adopted since the ’60, is the Markov-chain (MC)
simulation: in its classical form, it is a linear model which cannot simulate the variability
and persistence at different scales. Some recently adopted solutions to overtake this
limit consist of introducing exogenous climatic variables and large-scale circulation in-
dexes (Hay et al., 1991; Bardossy and Plate, 1992; Katz and Parlange, 1993; Woolhiser25

et al., 1993; Hughes and Guttorp, 1994; Hughes et al., 1999; Wallis and Griffiths, 1997;
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Wilby, 1998; Kiely et al., 1998), lower-frequency daily rainfall covariates (Wilks, 1989;
Briggs and Wilks, 1996; Jones and Thornton, 1997; Katz and Zheng, 1999) or an index
based on the short-term daily historical or previously generated record (Harrold et al.,
2003a, b; Mehrotra and Sharma, 2007a, b) as conditional variables for the estimation
of the MC parameters. By doing this, non-linearity is introduced in the prior model, the5

MC parameters changing in time as a function of some specific low-frequency fluc-
tuations. An alternative proposed method is model nesting (Wang and Nathan, 2002;
Srikanthan, 2004, 2005; Srikanthan and Pegram, 2009), that implies the correction of
the generated daily rainfall using a multiplicative factor to compensate the bias in the
higher-scale statistics. These techniques generally allow a better reproduction of the10

statistics up to the annual scale, but they imply the estimation of a more complex prior
model and cannot completely catch a complex dependence structure.

In this paper, we propose the use of some lower-frequency covariates of daily rain-
fall in a completely unusual framework: the Direct Sampling (DS) technique (Mariethoz
et al., 2010), which belongs to multiple-point statistics (MPS). Introduced by Guardiano15

and Srivastava (1993) and widely developed during the last decade (Strebelle, 2002;
Allard et al., 2006; Zhang et al., 2006; Arpat and Caers, 2007; Honarkhah and Caers,
2010; Straubhaar et al., 2011; Tahmasebi et al., 2012), MPS is a family of geosta-
tistical techniques widely used in spatial data simulations and particularly suited to
pattern reproduction. MPS algorithms use a training image, i.e. a dataset to evalu-20

ate the probability distribution (pdf) of the variable simulated at each point (in time or
space), conditionally to the values present in its neighborhood. In the particular case
of the Direct Sampling, the concept of training image is taken to the limit by avoiding
the computation of the conditional pdf and making a random sampling of the historical
dataset where a pattern similar to the conditional data is found. If the training dataset is25

representative enough, these techniques can easily reproduce high-order statistics of
complex natural processes at different scales. MPS has already been successfully ap-
plied to the simulation of spatial rainfall occurrence patterns (Wojcik et al., 2009). In this
paper, we test the Direct Sampling on the simulation of daily rainfall time-series. The
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aim is to reproduce the complexity of the rainfall signal up to the decennial scale, sim-
ulating the occurrence and the amount at the same time with the aid of a multivariate
dataset. Similar algorithms performing a multivariate simulation had been previously
developed by Young (1994) and Rajagopalan and Lall (1999) using a bootstrap-based
approach. As discussed in details in Sect. 2.3, the advantage of the Direct Sampling5

with respect to the mentioned techniques is the possibility to have a variable high-order
time-dependence, without incurring excessive computation since the estimation of the
n dimensional conditional pdf is not needed. Moreover, we propose a standard setup
for rainfall simulation: an ensemble of auxiliary variables and fixed values for the main
parameters required by the Direct Sampling algorithm, suitable for the simulation of any10

stationary rainfall time-series, without the need of calibration. The technique is tested
on three time-series from different climatic regions of Australia. The paper is organized
as follows: in Sect. 2 the DS technique, the dataset used and the method of evaluation
are described. The statistical analysis of the simulated time-series is presented and
discussed in Sect. 4. Section 5 is dedicated to the conclusions.15

2 Methodology

In this section we recall the basics of multiple-point statistics and we focus on the
Direct Sampling algorithm. The dataset used is then presented as well as the methods
of evaluation.

2.1 Background on multiple-point statistics20

Before entering in the details of the DS algorithm, let us introduce some common el-
ements of MPS. The whole information used by MPS to simulate a certain process is
based on the Training Image (TI) or training dataset : the dataset constituted of one or
more variables used to infer the statistical relations and occurrence probability of any
datum in the simulation. The TI may be constituted of a conceptual model instead of25
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real data, but in the case of the rainfall time-series it is more likely to be a historical
record of rainfall measurements. The Simulation Grid (SG) is a totally or partially un-
informed N-dimensional array in which the algorithm generates values to obtain the
actual output of the simulation. It usually has the same dimensionality as the train-
ing image. In the case of a rainfall time-series simulation, the SG is a time-referenced5

one-dimensional vector of random variables (referred to as one variable for the sake
of simplicity), each of which represents the rainfall amount for a certain time-step. The
conditioning data (CD) are a group of given data (e.g. rainfall measurements) situated
in the SG. Being already informed, no simulation occurs at those time-steps. The pres-
ence of CD affects, in their neighborhood, the conditional law used for the simulation10

and limits the range of possible patterns. MPS, as well some MC-based algorithm for
rainfall simulation (see Sect. 1), may include the use of auxiliary variables to condition
the simulation of the target variable. An auxiliary variable is normally given as CD but,
in the case of the Direct Sampling, it can also be co-simulated with the target, without
being necessarily informed. For rainfall time-series, it could be for example: covariates15

of the original or previously simulated data (e.g. the number of wet days in a past pe-
riod), a correlated variable for which the record is known, a theoretical variable that
imposes a periodicity or a trend (e.g. a sinusoid function describing the annual sea-
sonality over the data). Finally, the search neighborhood is a moving window, i.e. the
portion of time-series located in the past and future neighborhood of each simulated20

value, used to retrieve the data event, i.e. the group of time-referenced values used to
condition the simulation.

2.2 The Direct Sampling algorithm

Classical MPS implementations create a catalog of the possible neighbors patterns to
evaluate the conditional probability of occurrence for each event with respect to the25

considered neighborhood. This may imply a significant amount of memory and always
limits the application to categorical variables. On the contrary, the Direct Sampling
generates each value by sampling the data from the TI where a sufficiently similar
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neighborhood exists. The DS implementation used in this paper is called DeeSse soft-
ware (Straubhaar, 2011), the following is the main workflow of the algorithm. Let us
denote x = [x1, . . . ,xn] the time vector representing the SG, y = [y1, . . . ,ym] the one rep-
resenting the TI and Z(·) the target variable, object of the simulation, defined at each
element of x and y. Before the simulation begins, all continuous variables are normal-5

ized using the transformation Z 7−→ Z · (max(Z)−min(Z))−1 in order to have distances
(see step 3) in the range [0,1]. During the simulation, all the time-steps of the SG are
visited in a random order. At each uninformed xt, the following steps are executed:

1. The data event d (xt) = (Z(xt+h1
), . . . ,Z(xt+hn)) is retrieved from the SG according

to a fixed neighborhood of radius R centered on xt. It consists of at most N in-10

formed time-steps, closest to xt and defines a set of lags H = {h1, . . . ,hn}, with
|hi | ≤R and n ≤ N. The size of d (xt) is therefore limited by the user-defined pa-
rameter N and the available informed time-steps inside the search neighborhood.

2. A random time-step yi in y is visited and the corresponding data event d (yi ),
defined according to the same H , is retrieved to be compared with d (xt).15

3. A distance D(d (xt),d (yi )), i.e. a measure of dissimilarity between the two data
events, is calculated. For categorical variables (e.g. the dry/wet rainfall sequence),
it is given by the formula:

D(d (xt),d (yi )) =
1
n

n∑
j=1

aj , aj =

{
1 if Z(xj ) 6= Z(yj )
0 if Z(xj ) = Z(yj )

(1)

20

while for continuous variables the following one is used:

D(d (xt),d (yi )) =
1
n

n∑
j=1

|Z(xt)−Z(yj )| (2)
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where n is the number of elements of the data event. The elements of d (xt),
independently from their position, play an equivalent role in conditioning the sim-
ulation of Z(xt). Note that, using the above distance formulas, normalization is
not needed for categorical variables, while for the continuous ones it ensures dis-
tances in [0,1].5

4. If D(d (xt),d (yi )) is below a fixed threshold T, i.e. the two data events are suffi-
ciently similar, the iteration stops and the datum Z(yi ) is assigned to Z(xt). Other-
wise, the process is repeated from point 2 until a suitable candidate d (yi ) is found
or the prescribed TI fraction limit F is scanned.

5. If a TI fraction F has been scanned and the distance D(d (xt),d (yi )) is above T for10

each visited yi , the datum Z(y∗
i ) minimizing this distance is assigned to Z(xt).

This procedure is repeated for the simulation at each xt until the entire SG is informed.
Figure 1 illustrates the iterative simulation using the Direct Sampling and stresses some
of its peculiarities. First, simulating Z(xt) in a random order allows x to be progres-
sively populated at non-consecutive time-steps. Therefore, the simulation at each xt15

can be conditioned on both past and future, as opposed to the classical Markov-chain
techniques, that use a linear simulation path starting from the beginning of the series,
allowing conditioning on past only.

In the early iterations, the closest informed time-steps used to condition the simula-
tion are located far from xt and its number is limited by the search window, i.e. con-20

ditioning is mainly based on large past and future time-lags. On the contrary, the final
iterations dispose of a more populated SG, conditioning is thus done on small time-
lags since only the closest N values are considered. This variable time-lag principle
may not respect the autocorrelation on a specific time-lag rigorously, but it should re-
produce a more complex statistical relationship, which cannot be explored exhaustively25

using a fixed-dependence model.
The DS can simulate multiple variables together similarly to the univariate case, but

using a multivariate dataset as TI. In this case, we have a vector of variables Z(xt)
3219
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defined at each time-step. Point 3 of the algorithm is therefore repeated for each vari-
able using an independent data event and acceptation threshold. It has to be remarked
that the entire data vector Z(xt) is simulated in one iteration, reproducing exactly the
same combination of values found for all the variables at the sampled time-step, ex-
cluded the already informed ones (conditioning data). This feature, although reducing5

the variability in the simulation, has been adopted to reproduce the correlation between
variables accurately.

2.3 Comparison with existing resampling techniques

The resampling principle is at the base of some already proposed techniques for rain-
fall and hydrologic time-series simulation. There exist two principal families of resam-10

pling techniques: the block bootstrap (Vogel and Shallcross, 1996; Srinivas and Srini-
vasan, 2005; Ndiritu, 2011), which implies the resampling with replacement of entire
pieces of time-series with the aim of preserving the statistical dependence at a scale
smaller than the blocks size, and the k-nearest neighbor bootstrap (k-NN), based
on single value resampling using a pattern similarity rule. This latter family of tech-15

niques, introduced by Efron (1979) and inspired to the jackknife variance estimation,
has seen several developments in hydrology (Young, 1994; Lall and Sharma, 1996;
Lall et al., 1996; Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001; Wojcik
and Buishand, 2003; Clark et al., 2004). Having different points in common with the
Direct Sampling, its general framework is briefly presented in the following. Each da-20

tum inside the historical record is characterized by a vector d t of predictor variables,
analogous to the data event for the DS. For example, to generate Z(xt) one could use
d t = [Z(xt−1),Z(xt−2),U(xt),U(xt−1)], meaning that the simulation is conditioned to the
2 previous time-steps of Z and the present and previous time-steps of U , a correlated
variable. In the predictor variables space D, the historical data as well as Z(xt), which25

still has to be generated, are represented as points whose coordinates are defined by
d t. Consequently, proximity in D corresponds to similarity of the conditioning patterns.
Z(xt) is simulated by sampling an empirical pdf constructed on the k points closest to
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Z(xt); the closer the point is, the higher is the probability to sample the correspond-
ing historical datum. Proposed variations of the algorithm include transformations of
the predictor variables space, the application of kernel smoothing to the k-NN pdf to
increase the variability beyond the historical values, and different methods to estimate
the parameters of the model, e.g. k and the kernel bandwidth.5

Going back to the Direct Sampling, the similarities with the k-NN bootstrap are:
(i) they both make a resampling of the historical record conditioned by an ensemble of
auxiliary/predictor variables; (ii) they both compute a distance as a measure of dissim-
ilarity between the simulating time-step and the candidates considered for resampling.
Nevertheless, there are several points of divergence in the rationale of the techniques:10

(i) in the k-NN bootstrap, the distance is used to evaluate the resampling probability,
while in the DS it is used to evaluate the resampling possibility. This means that, using
the k-NN resampling, the conditional pdf is a function of the distance, while in the DS
the distance is only used to define its support. In fact, using the DS, the space D is
not restricted to the k nearest neighbors but it is bounded by the distance thresholds:15

outside the boundary, the resampling probability is zero, while inside, it follows the oc-
currence of the data in the scanned TI fraction, without being a function of the pattern
resemblance. Only in case of no candidate found, the closest neighbor outside the
bounded portion of D is chosen for resampling. The latter can be considered as an ex-
ceptional condition which usually does not lead to a good simulation and seldom occurs20

using an appropriate setup and training dataset. (ii) Using the DS, the conditional pdf
remains implicit, its computation is not needed: the historical record is randomly visited
instead and the first datum presenting a distance below the threshold is sampled. This
is an advantage since it avoids the problem of the high-dimensional conditional pdf es-
timation which limits the degree of conditioning in bootstrap techniques (Sharma and25

Mehrotra, 2010). (iii) The k-NN technique considers a fixed time-dependence, while it
varies during the simulation in the case of the DS. (iv) Finally, the simulation path (in the
SG) is always linear in the k-NN technique, while it is random using the DS, allowing
conditioning on future time-steps of the target variable.
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3 Application

The dataset chosen for this study is composed of three daily rainfall time-series from
different climatic regions of Australia: Alice Springs (hot desert), with a very dry rainfall
regime and long droughts, Sydney (temperate), with a far wetter climate due to its
proximity to the ocean, and Darwin (tropical savannah), showing and extreme variability5

between the dry and wet seasons.
Table 1 delineates the dataset used: the chosen stations present a considerable

record of about 70 years for Darwin and Alice Springs and 150 years for Sydney. Any
gaps or trends have been explicitly kept to test the behavior of the algorithm with incom-
plete or non-stationary datasets. The Direct Sampling treats gaps in the time-series in10

a simple way: each data event found in the TI is rejected if it contains any missing
data. This allows incomplete training images to be dealt with in a safe way, but, as one
could expect, a large quantity of missing data, especially if sparsely distributed, may
lead to a poor simulation. About dataset reconstruction using the direct sampling see
Mariethoz and Renard (2010).15

Since rainfall is a complex signal exhibiting not only multi-scale time dependence but
also intermittence, the classical approach is to split the daily time-series generation in
two steps: the occurrence model, where the dry/wet daily sequence is generated using
a Markov-chain, and the amount model, where the rainfall amount is simulated on wet
days using an estimation of the conditional pdf (e.g., Coe and Stern, 1982). The sim-20

ulation framework proposed here is radically different: we use the Direct Sampling to
generate the complete time-series in one step, simulating multiple variables together.
In particular, the TI used is composed of the past daily rainfall record (∗) and the follow-
ing auxiliary variables (Table 2): (1) the average rainfall amount on a 365 days centered
moving window (365MA) [mm], (2) the sum of the current and the previous day amounts25

(2MS) [mm], (3) and (4) two out-of-phase of triangular functions (tr1 and tr2) with fre-
quency 365.25 days, similar to trigonometric coordinates expressing the position of the
day in the annual cycle, (5) the dry/wet sequence, i.e. a categorical variable indicating
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the position of a day inside the rainfall pattern (1=wet, 0=dry, 2= solitary wet, 3=wet
day at the beginning or at the end of a wet spell). The first two auxiliary variables are
covariates used to force the algorithm to respect more strictly the inter-annual structure
and the day-to-day correlation, which are known to exist a priori. The other ones are
used to reproduce the dry/wet pattern and the annual seasonality accurately. It has5

to be remarked that, apart from (3) and (4), which are known deterministic functions
imposed as CD, the rest of the auxiliary variables are transformations of the rainfall
datum, automatically computed on the TI and co-simulated with the daily rainfall.

To summarize, the main parameters of the algorithm are the following: the maximum
scanned TI fraction F∈ (0,1], the search neighborhood radius R, the maximum num-10

ber of neighbors N, both expressed in number of elements of the time vector, and the
distance threshold T∈ (0,1]. Recall that, apart from F, each parameter is set indepen-
dently for each simulated variable. The setup shown in Table 2 is used together with
F= 0.5 and proposed as a standard for daily rainfall time-series. A sensitivity analy-
sis, not showed here, confirmed the generality of this setup which is not the result of15

a numerical optimization on a specific dataset, but it is rather in accordance to the
criteria used to define the order and extension of the variable time-dependence, as
shown below. Applying it to any type of single-station daily rainfall dataset, the user
should obtain a reliable simulation without needing to change any parameter or give
Supplement. An additional refinement of the setup is also possible, keeping in mind the20

following general rules:

– R limits the maximum time-lag dependence in the simulation and should be set
according to the length of the largest sufficiently repeated structure or frequency
in the signal that has to be reproduced. Being interested to condition the simula-
tion upon the inter-annual fluctuations (visible in the 10 years Moving Sum time-25

series in Fig. 8), we set R365MA = Rrainfall = 5000 for the 365MA and daily rainfall
variables. We recommend keeping R below the half of the training dataset total
length, to condition on sufficiently repeated structures only. Regarding dry/wet pat-
tern conditioning, we prefer limiting the variable time dependence within a 21 days
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window (Rdw = 10). In general Rdw should be set between the median and the
maximum of the wet spell length distribution, in order to properly catch the conti-
nuity of the rainfall events over multiple days.

– N controls the complexity of the conditioning structure but also influences the spe-
cific time-lag dependence. For instance, if one increases N, higher-order depen-5

dencies are represented, but the weight accorded to a specific neighbor in evalu-
ating the distance between patterns becomes lower. This leads to a less accurate
specific time-lag conditioning, but a more complex time-dependence is respected
on average. For the rainfall amount and 365MA variables, N�R follows the same
setup rule as for Rdw. In this way, in the initial iterations, the conditioning neighbors10

will be sparse in a 10 001 days window (R= 5000) to respect low-frequency fluc-
tuations, whereas, in the final iterations, they will be contained in a N days window
to respect the within-spell variability. The standard value proposed here (N365MA
= Nrainfall = 21) corresponds approximately to the spell distribution median of the
Darwin time-series, remaining in the appropriate range for the other considered15

climates. Conversely, Ndw is kept lower in order to focus the conditioning on the
small-scale dry/wet pattern. Ndw = 5 gives in general the best result in terms of
dry/wet pattern reproduction, with a gradual degradation of the statistics departing
from this value.

– The combination N=R=1 for the 2MS and tr auxiliary variables is equivalent to20

a lag-(0,1) dependence and should not be changed since we have no interest in
expanding or varying the lag-dependence in this case.

– T determines the tolerance in accepting a pattern. The sensitivity analysis done
until now on different types of heterogeneities (Meerschman et al., 2013) con-
firmed that the optimum generally lies in the interval [0.01,0.07]. Higher T values25

usually lead to poorly simulated patterns and lower ones may induce a bias in
the global statistics and increase the phenomenon of verbatim copy, i.e. the exact
reproduction of an entire portion of data by oversampling the same pattern inside
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the TI. For these reasons, we recommend keeping the proposed standard value
T= 0.05 for all the variables.

– F should be set sufficiently high to have a consistent choice of patterns but a value
close to 1, i.e. all the TI is scanned each time, may lower the variability of the sim-
ulations and increase the verbatim copy. Using a training dataset representative5

enough, the optimal value corresponds to a TI fraction containing some repeti-
tions of the lowest-frequency fluctuation that should be reproduced. Considering
the randomness of the TI scan, the value F= 0.5 chosen in this paper is sufficient
to serve the purpose.

3.1 Imposing a trend10

The simulation can be constrained to reproduce the same type of trend found in the TI
by making use of an auxiliary variable (Chugunova and Hu, 2008). The auxiliary vari-
able proposed here for any type of non-stationarity is L(yt) = yt, corresponding to the
TI time vector. An exact copy L(xt) = L(yt) is present in the SG as conditioning data.
The parameters for L(·) are set as follows: RL = 1, NL = 1 and TL = 0.01. Therefore,15

the sampling for each simulated datum Z(xt) is forced to remain inside the time neigh-
borhood I(xt) = yt ± TLV (L), V (L) being the total variation of L, i.e. the total length of
the series. For example, for the Darwin case, being V (L) = 26356 and TL = 0.01, the
sampling to simulate Z(xt) is constrained to I(xt) ≈ yt±263 [days]. In this way, the main
statistics are respected, but the local variability is almost completely restricted to the20

one found inside the training dataset, reproducing the non-stationarity. The following
remarks are noteworthy: (i) any type of non-stationarity is automatically imposed by L
but, to properly catch the trend and avoid an unnecessary restriction to the local vari-
ability, I should be equal to the maximum time interval for which the target variable can
be considered stationary; (ii) the simulation cannot be longer than the training dataset,25

having no basis to extrapolate the trend in the past or future; (iii) the local variability is
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not completely limited by L: a pattern outside the tolerance range (i.e. with a distance
over the threshold) could be sampled if no better candidate is found.

3.2 Validation

To validate the proposed technique, the visual comparison of the generated time-series
with the reference as well as several groups of statistical indicators are considered.5

The empirical cumulative probability distributions, computed using the Kaplan–Meier
estimate (Kaplan and Meier, 1958), of the daily, the annual and decennial rainfall time-
series, obtained by summing up the daily rainfall, are compared using quantile-quantile
(qq-) plots. Moreover, the daily rainfall statistics have been analyzed separately for
each month considering the average value of the following indicators: the probability10

of occurrence of a wet day and the mean, standard deviation, minimum and maximum
on wet days only. For instance, the standard deviation is computed on the wet days
of each month of January, then the average value is taken as representative of that
time-series. We therefore obtain a unique value for the reference and a distribution of
values for the simulations represented with a box-plot.15

Another used validation criterion is the comparison of the dry and wet spells length
distributions. Each series is transformed in a binary sequence with zeros corresponding
to dry days and ones to the wet days. Then, counting the number of days inside each
dry and wet region, we obtain the distributions of dry and wet spells length, that can
be compared using qq-plots. This is an important indicator since it determines, for20

example, the efficiency of the algorithm in reproducing long droughts or wet periods.
Since the DS works by pasting values from the TI to the SG, it is straightforward to

keep track of the original location of each value in the training image. If successive val-
ues in the TI are also next to each other in the SG, then a patch is identified. A multiple
box-plot is then used to represent the number of patches found in each realization as25

a function of the patch length to evaluate the verbatim copy effect.
The last group of indicators considered is the sample Partial Autocorrelation Func-

tion (PACF) (Box and Jenkins, 1976) of the daily, monthly and annual rainfall. Given
3226
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a time-series Xt, the sample PACF is the estimation of the linear correlation index be-
tween the datum at time t and the ones at previous time-steps t−h, without considering
the linear dependence with the in-between observations. For a stationary time-series
the sample PACF is expressed as a function of the time-lag h with the following formula:

ρ̂(h) = Corr[Xt − Ê (Xt |{Xt−1, . . . ,Xt−h+1}),Xt−h − Ê (Xt−h|{Xt−h+1, . . . ,Xt−1})] (3)5

where Ê (Xt |{Xt−1, . . . ,Xt−h+1}) is the best linear predictor knowing the observations
{Xt−1, . . . ,Xt−h+1}. ρ(h) varies in [0,1], with high values for a highly autocorrelated pro-
cess. This indicator is widely used in time-series analysis since it gives information
about the persistence of the signal. In the case of daily rainfall, the partial autocorre-10

lation is usually very low, while the higher-scale rainfall may present a more important
specific time-lag linear dependence. As suggested by Brockwell and Davis (1991), in
the absence of any prior knowledge about Xt, an accurate way to detect a significant
autocorrelation at a certain lag, is to compare it with an IID ∼ N(0,σ2) noise. Such a sig-
nal is totally non-autocorrelated and presents a sample PACF (ρ̂AN) near zero for any15

h > 1. Moreover, ρ̂AN follows the asymptotic normal distribution AN(0,n−1), n being the
number of observations in the considered sample. The 95% confidence interval of this
distribution can be used to test the significance of any ρ̂(h). That is, in the estimation of

the autocorrelation for Xt, at all the ρ̂(h) values within 0±1.96n−1/2 can be considered
negligible, being of the same magnitude as ρ̂AN. Conversely, the values outside these20

boundaries are probably the expression of a significant autocorrelation and should be
reproduced by the simulation. The fact that the variance of ρ̂AN as well as the size of
the 95% confidence interval increase with n−1, allows a correct PACF evaluation with
respect to the limited information given by the considered sample.

Since the time-series used in this paper are not necessarily stationary, any sam-25

ple PACF is computed from the standardized signal X s
t , obtained by applying moving
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average estimation m̂t and standard deviation ŝt filters with the following formula:

X s
t =

Xt − m̂t

ŝt
, m̂t = (2q+1)−1

q∑
j=−q

Xt+j ,

ŝt = [(2q+1)−1
q∑

j=−q
(Xt+j − m̂t)

2]−
1
2 , q+1 ≤ t ≤ n−q

(4)

where q = 2555 (15 years centered moving window). It is important to note that this
operation may exclude from the PACF computation a consistent part of the signal (q+5

1 ≤ t ≤ n−q), especially on the higher time-scale signal. In the case of the datasets
used, the annual time-series is reduced to less than 60 values for Alice Springs and
Darwin: a barely sufficient quantity, considering that a generic minimum amount of data
for a useful sample PACF estimation given by Box and Jenkins (1976) is of about 50
observations.10

4 Results and discussion

To evaluate the proposed technique, a group of 100 realizations of the same length as
the reference is generated for each of the 3 considered datasets to obtain a sufficiently
stable response in both the average and the extreme behavior. The setup used is
the one presented in Sect. 3 with the fixed parameters values shown in Table 2. The15

obtained results are shown and discussed in the following.

4.1 Visual comparison

Figure 2 shows the comparison between random samples from both the simulated
and the reference time-series. For each dataset, the generated rainfall looks similar to
the reference: the extreme events inside the 10 years samples are reproduced with an20

analogous frequency and magnitude. The annual seasonality, particularly pronounced
3228
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in the Darwin series, is accurately simulated as well as the persistence of the rainfall
events, visible in the 100 days samples. These aspects are evaluated quantitatively in
the following sections.

4.2 Multiple-scale probability distribution

The qq-plots of the rainfall empirical distributions are presented in Fig. 3, where all the5

range of quantiles is considered. The distribution of the daily rainfall (computed on wet
days only) is generally respected, although some extremes that are present only once
in the reference and, in particular, at the border of the time-series, may not appear in
the simulation. It is the case of the Darwin series, with a mismatch of the very upper
quantiles. Moreover, the DS being an algorithm based on resampling, the distribution10

of the simulated values is limited by the range of the training dataset: this is shown in
the Alice Springs and Sydney qq-plots, where the distribution of the last quantiles is
clearly truncated at the maximum value found in the reference. This result is normally
expected using this type of techniques: the direct sampling is of course not able to
extrapolate extreme intensities higher than the ones found in the TI at the scale of the15

simulated signal.
On the contrary, the distribution of the rainfall amount on the solitary wet days is

accurately respected, with some realizations including higher extremes than the ref-
erence. More importantly, the annual and 10 years rainfall distributions are correctly
reproduced and do not show over-dispersion. This phenomenon, common among the20

classical techniques based on daily-scale conditioning, consists in the scarce repre-
sentation of the extremes and underestimation of the variance at the higher scale.
This problem is avoided here because a variable dependence is considered, up to
a 5000 days radius on the 365MA auxiliary variable, that helps respecting the low-
frequency fluctuations. We also see that, at this scale, the DS is capable of generating25

extremes higher than the ones found in the reference, meaning that new patterns have
been generated using the same values at the daily scale. This results is purely based
on the reproduction of higher-scale patterns: the acceptance threshold value chosen
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for the 365MA auxiliary variable allows enough freedom to generate new patterns al-
though maintaining an unbiased distribution. Nevertheless, this approach is not meant
to replace a specific technique to predict long recurrence-time events at any temporal
scale, since it is not focused on modeling the tail of the probability distribution.

4.3 Annual seasonality and extremes5

Figure 4 shows the principal indicators describing the annual seasonality of the refer-
ence and the generated time-series: each different season is accurately reproduced by
the algorithm, with almost no bias. The probability of having a wet day, usually imposed
by a prior model in the classical parametric techniques, is indirectly obtained by sam-
pling from the rainfall patterns of the appropriate period of the year. This goal is mainly10

achieved using the auxiliary variables tr1 and tr2 as CD (see Sect. 3).
Regarding the extremes, shown in Fig. 5, there is a more accurate simulation of the

maxima with respect to the minima, slightly underestimated in the Sydney series.

4.4 Rainfall patterns and verbatim copy

The statistical indicators regarding the dry/wet patterns shown in Fig. 6 demonstrate15

the efficiency of the proposed DS setup in simulating long droughts or wet periods
according to the training dataset: the dry and wet spells distributions are respected
and extremes higher than the ones present in the TI are also simulated.

The verbatim copy box-plots show the distribution of the time-series pieces exactly
copied from the TI as a function of their size for the ensemble of the realizations: the20

number of patches decreases exponentially with their size. The phenomenon is mainly
limited to a maximum of few 8 days patches, with isolated cases up to 14 days.

The 10 years rainfall moving sum, shown at the bottom of Fig. 6, shows the low-
frequency time-series structure: the quantiles of the simulations at each time-step con-
firm that the global variability is correctly simulated, but the local fluctuations and global25

trends do not match the reference. For example, the Darwin reference series shows
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a clear upward global tendency which is not present in the superposed randomly-
picked DS realization. Generally, the TI is supposed to be stationary or the non-
stationarity should be at least described by an auxiliary variable. If it is not the case,
as for the Darwin time-series, the algorithm respects the global variation of the refer-
ence, but it does not reproduce a specific trend. This problem is treated separately in5

Sect. 4.6.

4.5 Linear time-dependence

The specific linear time-dependence of the generated and reference signal has been
evaluated at different scales using the sample Partial Autocorrelation Function (PACF,
Fig. 7, Eq. 3).10

At the daily scale, the data show the same level of autocorrelation at lag-1 and a low
but significant linear dependence until lag 3 for Alice Springs and Sydney, while Darwin
presents a longer tailing which asymptotically approaches the confidence bounds of
the Gaussian noise. The DS simulation shows a tendency to a slight underestimation
of the lag-1 PACF, with a maximum error around 0.1 (the Sydney time-series). The rest15

of the lags are reproduced quite accurately.
At the monthly scale, the linear time-dependence structure is clearly related to the

annual seasonality, with a negative autocorrelation around lag 6 and a positive one
around lag 12. The climate characterization is also evident: from Alice Springs to Dar-
win we see a more marked seasonality reflected in the PACF. The simulation follows20

the reference fairly well, with a maximum error around ±0.1.
At the annual scale, the limited length of the time-series reduces leads to wider

confidence bounds for the non-significant values (see Sect. 3.2). The reference does
not show a clear linear time-dependence structure which is not similarly reproduced
by the simulation. Some more relevant discrepancy is present in the Darwin series,25

presenting a more discontinuous structure. However, using such a limited dataset for
the time scale considered here, it is difficult to determine if the reference PACF is really
indicative of an effective linear dependence.
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4.6 Non-stationary simulation

Figure 8 shows the Darwin time-series simulation realized by imposing the same non-
stationarity with the technique proposed in Sect. 3.1. The 10 years moving sum plot
shows that the local and global trend of the reference are accurately reproduced: the
median of the realizations follows the reference and a variability of about 4 m between5

the 5th and 95th percentile is present. The accuracy in the global statistics appears to
be essentially the same as for the stationary simulation: the only remarkable difference
is a modest positive bias in the maximum wet periods length.

The fact that, to impose the trend, the sampling is restricted to a local region of
the reference reduces the local variability with respect to the stationary simulation.10

Consequently, a little increase of the verbatim copy effect occurs.

5 Conclusions

The aim of the paper is to present an alternative daily rainfall simulation technique
based on the Direct Sampling algorithm, belonging to multiple-point statistics family.
The main principle of the technique is to resample a given dataset using a pattern-15

similarity rule. Using a random simulation path and a non-fixed pattern dimension, the
technique allows imposing a variable time-dependence and reproducing the reference
statistics at multiple scales. The proposed setup, suitable for any type of rainfall, in-
cludes the simulation of the daily rainfall time-series together with a series of auxiliary
variables including: a categorical variable describing the dry/wet pattern, the 2 days20

moving sum which helps respecting the lag-1 autocorrelation, the 365 days moving av-
erage to condition upon inter-annual fluctuations and two coupled theoretical periodic
functions describing the annual seasonality. Since all the variables are automatically
computed from the rainfall data, no additional information is needed.

The technique has been tested on three different climates of Australia: Alice Springs25

(desert), Sydney (temperate) and Darwin (tropical savannah). Without changing the
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simulation parameters, the algorithm correctly simulates both the rainfall occurrence
structure and amount distribution up to the decennial scale for all the three climates,
avoiding the problem of over-dispersion, which often affects daily-rainfall simulation
techniques. Being based on resampling, the algorithm can only generate data which
are present in the training dataset, but they can be aggregated differently, simulating5

new extremes in the higher-scale rainfall and dry/wet pattern distributions. The tech-
nique is not meant to be used as a tool to explore the uncertainty related to long
recurrence-time events, but rather to generate extremely realistic replicates of the da-
tum, to be used as inputs in hydrologic models.

Reproducing a trend in the simulation is also possible by making use of an additional10

auxiliary variable which simply restricts the sampling to a local portion of the TI. This
way, any type of non-stationarity present in the TI is automatically imposed on the simu-
lation. The Darwin example demonstrates the efficiency of this approach in reproducing
100 different realizations showing the same type of trend and global statistics.

In conclusion, the Direct Sampling technique used with the proposed generic setup15

can produce realistic daily rainfall time-series replicates from different climates without
the need of calibration or additional information. The generality and the total automation
of the technique makes it a powerful tool for a routine use in scientific and engineering
applications.

Acknowledgements. This research was funded by the Swiss National Science Foundation20

(project #134614) and supported by the National Centre for Goundwater Research and Training
(University of New South Wales). The dataset used in this paper is courtesy of the Australian
Bureau of Meteorology (BOM).

3233

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

References

Allard, D., Froidevaux, R., and Biver, P.: Conditional simulation of multi-type non stationary
markov object models respecting specified proportions, Math. Geol., 38, 959–986, 2006.
3215

Arpat, G. and Caers, J.: Conditional simulation with patterns, Math. Geol., 39, 177–203, 2007.5

3215
Bardossy, A. and Plate, E. J.: Space-time model for daily rainfall using atmospheric circulation

patterns, Water Resour. Res., 28, 1247–1259, doi:10.1029/91WR02589, 1992. 3214
Box, G. E. and Jenkins, G. M.: Time series analysis, control, and forecasting, San Francisco,

CA: Holden Day, 1976. 3226, 322810

Briggs, W. M. and Wilks, D. S.: Estimating monthly and seasonal distributions of tempera-
ture and precipitation using the new CPC long-range forecasts, J. Climate, 9, 818–826,
doi:10.1175/1520-0442(1996)009<0818:EMASDO>2.0.CO;2, 1996. 3215

Brockwell, P. J. and Davis, R. A.: Time series theory and methods, Chap. 7, 222–223, Springer-
Verlag, 1991. 322715

Buishand, T. A. and Brandsma, T.: Multisite simulation of daily precipitation and temperature
in the Rhine basin by nearest-neighbor resampling, Water Resour. Res., 37, 2761–2776,
doi:10.1029/2001WR000291, 2001. 3220

Chugunova, T. L. and Hu, L. Y.: Multiple-point simulations constrained by continuous auxiliary
data, Math. Geosci., 40, 133–146, doi:10.1007/s11004-007-9142-4, 2008. 322520

Clark, M. P., Gangopadhyay, S., Brandon, D., Werner, K., Hay, L., Rajagopalan, B., and
Yates, D.: A resampling procedure for generating conditioned daily weather sequences, Wa-
ter Resour. Res., 40, W04304, doi:10.1029/2003WR002747, 2004. 3220

Coe, R. and Stern, R. D.: Fitting models to daily rainfall data, J. Appl. Meteorol., 21, 1024–1031,
doi:10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2, 1982. 322225

Efron, B.: Bootstrap methods – another look at the jackknife, Ann. Stat., 7, 1–26,
doi:10.1214/aos/1176344552, 1979. 3220

Guardiano, F. and Srivastava, R.: Multivariate geostatistics: beyond bivariate moments, Quant.
Geo. G., 1, 133–144, 1993. 3215

Harrold, T. I., Sharma, A., and Sheather, S. J.: A nonparametric model for stochastic genera-30

tion of daily rainfall occurrence, Water Resour. Res., 39, 1300, doi:10.1029/2003WR002182,
2003a. 3215

3234

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/91WR02589
http://dx.doi.org/10.1175/1520-0442(1996)009<0818:EMASDO>2.0.CO;2
http://dx.doi.org/10.1029/2001WR000291
http://dx.doi.org/10.1007/s11004-007-9142-4
http://dx.doi.org/10.1029/2003WR002747
http://dx.doi.org/10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1029/2003WR002182


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Harrold, T. I., Sharma, A., and Sheather, S. J.: A nonparametric model for stochastic generation
of daily rainfall amounts, Water Resour. Res., 39, 1343, doi:10.1029/2003WR002570, 2003b.
3215

Hay, L. E., Mccabe, G. J., Wolock, D. M., and Ayers, M. A.: Simulation of precipitation by weather
type analysis, Water Resour. Res., 27, 493–501, doi:10.1029/90WR02650, 1991. 32145

Honarkhah, M. and Caers, J.: Stochastic simulation of patterns using distance-based pattern
modeling, Math. Geosci., 42, 487–517, 2010. 3215

Hughes, J. and Guttorp, P.: A class of stochastic models for relating synoptic atmospheric
patterns to regional hydrologic phenomena, Water Resour. Res., 30, 1535–1546, 1994. 3214

Hughes, J., Guttorp, P., and Charles, S.: A non-homogeneous hidden Markov model for precip-10

itation occurrence, J. Roy. Stat. Soc. C-App., 48, 15–30, 1999. 3214
Jones, P. G. and Thornton, P. K.: Spatial and temporal variability of rainfall related to

a third-order Markov model, Agr. Forest Meteorol., 86, 127–138, doi:10.1016/S0168-
1923(96)02399-4, 1997. 3215

Kaplan, e., and Meier, p.: Non-parametric estimation from incomplete observations, J. Am. Stat.15

Assoc., 53, 457–481, doi:10.2307/2281868, 1958. 3226
Katz, R. W. and Parlange, M. B.: Effects of an index of atmospheric circulation on stochastic

properties of precipitation, Water Resour. Res., 29, 2335–2344, doi:10.1029/93WR00569,
1993. 3214

Katz, R. W. and Zheng, X. G.: Mixture model for overdispersion of precipitation, J. Climate, 12,20

2528–2537, doi:10.1175/1520-0442(1999)012<2528:MMFOOP>2.0.CO;2, 1999. 3215
Kiely, G., Albertson, J. D., Parlange, M. B., and Katz, R. W.: Conditioning stochastic proper-

ties of daily precipitation on indices of atmospheric circulation, Meteorol. Appl., 5, 75–87,
doi:10.1017/S1350482798000656, 1998. 3215

Lall, U. and Sharma, A.: A nearest neighbor bootstrap for resampling hydrologic time series,25

Water Resour. Res., 32, 679–693, doi:10.1029/95WR02966, 1996. 3220
Lall, U., Rajagopalan, B., and Tarboton, D. G.: A nonparametric wet/dry spell model for re-

sampling daily precipitation, Water Resour. Res., 32, 2803–2823, doi:10.1029/96WR00565,
1996. 3220

Mariethoz, G. and Renard, P.: Reconstruction of incomplete data sets or images using direct30

sampling, Math. Geosci., 42, 245–268, doi:10.1007/s11004-010-9270-0, 2010. 3222

3235

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003WR002570
http://dx.doi.org/10.1029/90WR02650
http://dx.doi.org/10.1016/S0168-1923(96)02399-4
http://dx.doi.org/10.1016/S0168-1923(96)02399-4
http://dx.doi.org/10.1016/S0168-1923(96)02399-4
http://dx.doi.org/10.2307/2281868
http://dx.doi.org/10.1029/93WR00569
http://dx.doi.org/10.1175/1520-0442(1999)012<2528:MMFOOP>2.0.CO;2
http://dx.doi.org/10.1017/S1350482798000656
http://dx.doi.org/10.1029/95WR02966
http://dx.doi.org/10.1029/96WR00565
http://dx.doi.org/10.1007/s11004-010-9270-0


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Mariethoz, G., Renard, P., and Straubhaar, J.: The direct sampling method to per-
form multiple-point geostatistical simulations, Water Resour. Res., 46, W11536,
doi:10.1029/2008WR007621, 2010. 3215

Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M., and Renard, P.:
A practical guide to performing multiple-point statistical simulations with the Direct Sampling5

algorithm, Comput. Geosci., 52, 307–324, doi:10.1016/j.cageo.2012.09.019, 2013. 3224
Mehrotra, R. and Sharma, A.: A semi-parametric model for stochastic generation of

multi-site daily rainfall exhibiting low-frequency variability, J. Hydrol., 335, 180–193,
doi:10.1016/j.jhydrol.2006.11.011, 2007a. 3215

Mehrotra, R. and Sharma, A.: Preserving low-frequency variability in generated daily rainfall10

sequences, J. Hydrol., 345, 102–120, doi:10.1016/j.jhydrol.2007.08.003, 2007b. 3215
Ndiritu, J.: A variable-length block bootstrap method for multi-site synthetic streamflow genera-

tion, Hydrolog. Sci. J., 56, 362–379, doi:10.1080/02626667.2011.562471, 2011. 3220
Rajagopalan, B. and Lall, U.: A k-nearest-neighhor simulator for daily precipitation and other

weather variables, Water Resour. Res., 35, 3089–3101, doi:10.1029/1999WR900028, 1999.15

3216, 3220
Sharma, A. and Mehrotra, R.: Rainfall generation, in: Rainfall: State of the Science, no. 191 in

Geophysical Monograph Series, AGU, Washington DC, 215–246, 2010. 3214, 3221
Srikanthan, R.: Stochastic generation of daily rainfall data using a nested model, in: 57th Cana-

dian Water Resources Association Annual Congress, 16–18, 2004. 321520

Srikanthan, R.: Stochastic generation of daily rainfall data using a nested transition probability
matrix model, in: 29th Hydrology and Water Resources Symposium: Water Capital, 20–23
February 2005, Engineers Australia, Rydges Lakeside, Canberra, 26 pp., 2005. 3215

Srikanthan, R. and Pegram, G. G. S.: A nested multisite daily rainfall stochastic generation
model, J. Hydrol., 371, 142–153, doi:10.1016/j.jhydrol.2009.03.025, 2009. 321525

Srinivas, V. V. and Srinivasan, K.: Hybrid moving block bootstrap for stochas-
tic simulation of multi-site multi-season streamflows, J. Hydrol., 302, 307–330,
doi:10.1016/j.jhydrol.2004.07.011, 2005. 3220

Straubhaar, J.: MPDS technical reference guide, Centre d’hydrogeologie et geothermie, Uni-
versité de Neuchâtel, Neuchâtel, 2011. 321830

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., and Besson, O.: An improved parallel
multiple-point algorithm using a list approach, Math. Geosci., 43, 305–328, 2011. 3215

3236

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2008WR007621
http://dx.doi.org/10.1016/j.cageo.2012.09.019
http://dx.doi.org/10.1016/j.jhydrol.2006.11.011
http://dx.doi.org/10.1016/j.jhydrol.2007.08.003
http://dx.doi.org/10.1080/02626667.2011.562471
http://dx.doi.org/10.1029/1999WR900028
http://dx.doi.org/10.1016/j.jhydrol.2009.03.025
http://dx.doi.org/10.1016/j.jhydrol.2004.07.011


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statis-
tics, Math. Geol., 34, 1–21, 2002. 3215

Tahmasebi, P., Hezarkhani, A., and Sahimi, M.: Multiple-point geostatistical modeling based on
the cross-correlation functions, Comput. Geosci., 16, 779–797, 2012. 3215

Vogel, R. M. and Shallcross, A. L.: The moving blocks bootstrap versus parametric time series5

models, Water Resour. Res., 32, 1875–1882, doi:10.1029/96WR00928, 1996. 3220
Wallis, T. W. R. and Griffiths, J. F.: Simulated meteorological input for agricultural models, Agr.

Forest Meteorol., 88, 241–258, doi:10.1016/S0168-1923(97)00035-X, 1997. 3214
Wang, Q. J. and Nathan, R. J.: A daily and monthly mixed algorithm for stochastic genera-

tion of rainfall time series, in: Water Challenge: Balancing the Risks: Hydrology and Water10

Resources Symposium 2002, p. 698, Institution of Engineers, Australia, 2002. 3215
Wilby, R. L.: Modelling low-frequency rainfall events using airflow indices, weather patterns and

frontal frequencies, J. Hydrol., 212, 380–392, doi:10.1016/S0022-1694(98)00218-2, 1998.
3215

Wilks, D. S.: Conditioning stochastic daily precipitation models on total monthly precipitation,15

Water Resour. Res., 25, 1429–1439, doi:10.1029/WR025i006p01429, 1989. 3215
Wojcik, R. and Buishand, T. A.: Simulation of 6 hourly rainfall and temperature by two resam-

pling schemes, J. Hydrol., 273, 69–80, doi:10.1016/S0022-1694(02)00355-4, 2003. 3220
Wojcik, R., McLaughlin, D., Konings, A., and Entekhabi, D.: Conditioning stochastic rainfall repli-

cates on remote sensing data, IEEE T. Geosci. Remote, 47, 2436–2449, 2009. 321520

Woolhiser, D. A., Keefer, T. O., and Redmond, K. T.: Southern oscillation effects on daily
precipitation in the southwestern United-States, Water Resour. Res., 29, 1287–1295,
doi:10.1029/92WR02536, 1993. 3214

Young, K. C.: A multivariate chain model for simulating climatic parameters from daily data, J.
Appl. Meteorol., 33, 661–671, doi:10.1175/1520-0450(1994)033<0661:AMCMFS>2.0.CO;2,25

1994. 3216, 3220
Zhang, T., Switzer, P., and Journel, A.: Filter-based classification of training image patterns for

spatial simulation, Math. Geol., 38, 63–80, 2006. 3215

3237

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/96WR00928
http://dx.doi.org/10.1016/S0168-1923(97)00035-X
http://dx.doi.org/10.1016/S0022-1694(98)00218-2
http://dx.doi.org/10.1029/WR025i006p01429
http://dx.doi.org/10.1016/S0022-1694(02)00355-4
http://dx.doi.org/10.1029/92WR02536
http://dx.doi.org/10.1175/1520-0450(1994)033<0661:AMCMFS>2.0.CO;2


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Summary of the used dataset.

Location Station Period [years] Record length [days] Missing data [days]

Alice Springs A.S.Airport 1940–2013 26 347 305
Sydney S.Observatory Hill 1858–2013 56 662 184
Darwin D.Airport 1941–2013 26 356 0
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Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window
radius R, maximum number of neighbors N and distance threshold T. The variables are: (1)
the 365 days Moving Average (365MA), (2) the Moving Sum of the current day and the one
before (2MS), (3) and (4) annual seasonality triangular functions (tr1 and tr2), (5) the dry/wet
sequence dw and (∗) the rainfall amount as the target variable.

Variable R N T

(1) 365MA 5000 21 0.05

Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).

Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗) the rainfall amount as the target variable.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗) rainfall 5000 21 0.05 600 800 1000 [days]

24

(2) 2MS 1 1 0.05

Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).

Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗) the rainfall amount as the target variable.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗) rainfall 5000 21 0.05 600 800 1000 [days]

24

(3) tr1 1 1 0.05

Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).

Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗) the rainfall amount as the target variable.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗) rainfall 5000 21 0.05 600 800 1000 [days]

24

(4) tr2 1 1 0.05

(5) dw 10 5 0.05

Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).

Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗) the rainfall amount as the target variable.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗) rainfall 5000 21 0.05 600 800 1000 [days]

24

(*) rainfall 5000 21 0.05

Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall signal: the

reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the negligible autocorrelation

indexes (dashed lines).

Table 2. Standard setup proposed for rainfall simulation. The parameters are: search window radius R, max-

imum number of neighbors N and distance threshold T. The variables are: 1) the 365 days Moving Average

(365MA), 2) the Moving Sum of the current day and the one before (2MS), 3) and 4) annual seasonality

triangular functions (tr1 andtr2), 5) the dry/wet sequencedw and∗) the rainfall amount as the target variable.

Variable R N T

1) 365MA 5000 21 0.05

2) 2MS 1 1 0.05

3) tr1 1 1 0.05

4) tr2 1 1 0.05

5) dw 10 5 0.05

∗) rainfall 5000 21 0.05 600 800 1000 [days]

24
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Fig. 1. Sketch of a sequential simulation performed by the Direct Sampling: the chain rep-
resents the SG, with circles corresponding to uninformed time-steps and full dots denoting
simulated data. The dashed rectangle represents the search neighborhood of radius R, the
datum being simulated is indicated with the arrow and the ones composing the data event are
numbered. In this example, R=6 and the maximum number of neighbors N=4.
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Fig. 2. Visual comparison between the simulated and the reference daily rainfall [mm] time-
series: 10 years (left column) and 100 days (right column) random samples.
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Fig. 3. qq-plots of the empirical probability rainfall amount [mm] distributions: median of the re-
alizations (dotted line), 5th and 95th percentile (dashed lines). The bisector (solid line) indicates
the exact quantile match.
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Fig. 4. Box-plots of the average wet days probability, mean daily rainfall amount [mm] and its
standard deviation per month. The solid line indicates the reference.

3243

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/3213/2014/hessd-11-3213-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 3213–3247, 2014

The Direct Sampling
technique

F. Oriani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Box-plots of the average extremes per month. The solid line indicates the reference.
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Fig. 6. Main indicators describing the rainfall pattern: qq-plots of the dry and wet spells [days]
distributions, verbatim copy box-plots as function of the patch size [days] and daily 10 years
Moving Sum (MS) time-series [mm] of the reference (black line), median, 5th and 95th per-
centile of the realizations (gray lines) and a randomly picked simulation (dashed blue line).
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Fig. 7. Sample Partial Autocorrelation Function (PACF) of the daily, monthly and annual rainfall
signal: the reference (solid line), 100 DS simulations (box-plots), and confidence bounds for the
negligible autocorrelation indexes (dashed lines).
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Fig. 8. Darwin daily rainfall non-stationary simulation: 10 years Moving Sum time-series (top)
of the reference (black line), median, 5th and 95th percentile of the realizations (gray lines) and
a randomly picked simulation (dashed blue line); main quantile-comparisons (center); main
seasonal indicators and verbatim copy box-plot (bottom).
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