Authors answer

We thank the editor for taking into consideration our paper for publication and the referees for the
useful commentary provided. Any suggested corrections have been carefully examined and the
corrected paper is presented with the following answers to the referees comments.

The main improvements brought to the paper are:

1) Figure 1 has been modified to better show the rationale of the algorithm.

2) A more detailed illustration of the algorithm for the multivariate case has been provided in
Section 2.2.

3) The minimum moving sum has been added as an indicator of the long-term dependence
structure (Figure 7). The commentary to this result can be found in Section 4.4.

4) Section 3.1 “Imposing a trend” has been simplified and a commentary about the application of
the technique has been added in section 4.2.

Line numbering refers to the revised manuscript attached. The second file attached contains the
tracking of the corrections.

We hope that the revised paper will be evaluated positively and we keep ourselves available for any
further suggested improvements.

Best regards.
F.Oriani, J.Staubhaar, PRenard and G.Mariethoz.

Anonymous Referee #1

General comments The discussion paper demonstrates a simple and robust data generation method that
has not been widely applied in hydrology. Its application to daily rainfall generation therefore adds
considerable value to stochastic hydrology and highlights the ability of non-parametric approaches for
data generation. The methods applied are valid but some details are left out and it would be difficult for
the reader to replicate the analysis. The discussion and conclusions reflect the analysis and results
obtained. Specific comments Section 2.2 of the paper describes the Direct Sampling (DS) method and
uses Figure 1 to illustrate the method. It is not clear exactly how SG is obtained. How different is ST
from the historic record?

We understand that section 2.2 was unclear and we hope to have substantially improved it in the
revision. The definition of SG has been elaborated in section 2.1 (lines 73-76) of the revised paper.

Is the value of t (in x(t)) get randomly obtained from a uniform distribution (Random[0,1]* length of
simulated time series)?

Correct, the simulation order is randomly generated from a uniform distribution. This is now clarified
in section 2.2, lines 103-104.

Figure 1 is not very informative and might be better if it illustrates a single or two iterations in
chronological order.

We agree, figure I has been modified in order to better explain the copy-paste rule at the base of the
algorithm.



Section 2.2 does not inform how auxiliary variables are used as part of the DS method. It seems that the
search for Z(yi) continues until the thresholds for all the auxiliary variables are met but this is not stated
in Section 2.2.

We agree, the procedure has now been clarified in section 2.2, lines 147-150.

It may be possible to get rid of patches (Section 3.2) by imposing a condition that the Z(y1) selected
should not result in a patch in addition to its meeting the set thresh-
old of dissimilarity.

We think the suggested improvement can be a valid optional feature in cases where a total absence of
patching is critical, and it will be considered in further work.

Nevertheless, for the application shown in the paper and the proposed setup, we do not see a real need
for it since the observed patching is very low. We believe that in this case, forcing the algorithm to
totally get rid of the patches is not going to bring an effective improvement to the simulation and may
reduce the performance by over-conditioning. As shown in the results, the patching obtained is
negligible when using the proposed setup together with an appropriate training dataset (i.e. sufficiently
long with respect to the simulated time-series and with a low amount of gaps).

Moreover, as far as we have seen in the results of the tests conducted until now, the algorithm is not
naturally prone to patching. A considerable patching is generally due to an inadequate
parameterization or too limited/fragmented training dataset and results in a bad overall performance
of the algorithm. The user is warned about these issues (Section 3 lines 208-211, 272-275). Therefore,
in the most part if not all the cases in which a considerable patching occurs, a more efficient solution
would be to find an opportune setup or training dataset instead of pushing the algorithm not to
generate the patching itself.

In addition to the 10-years MS comparisons presented in Figure 6,
the minimum run sums for various lengths (up to say 10 or 20 years) could be used to
assess how well DS replicates the long-term dependence characteristics of the rainfall.

We agree, the minimum moving average (the moving sum divided by the window length, which
improves the visibility) with various windows up to 60 years has been computed for the stationary
simulations (see fig.7) and a commentary has been added at lines 420-430.

Suggestion changes to sentence structure etc. Page 3214 line 13 . . .. . ... reproduced
adequately, reducing the . . .. .. Page 3214 line 23-24 . . .. Solutions to deal with this
limitation . . .. . .. ... Page 3215 line 12 . . ... completely capture a complex . ...........
Page 320 line 2 . . ..event and acceptance threshold. . ... Page 3220 line 20-21 and

other locations: should it be datum or data? Page 3222 line 7 Table 1 presents the
dataset . . ... .. Page 3222 lines 14-15 Mariethoz and Renard (2010) show how direct
sampling can be used for data reconstruction Page 3222 line 3 and page 3239: why

is (*) included?

The training image includes the target and the auxiliary variables. To clarify this point, “*” as been
changed to “6”in Section 3 line 219 as well as Table 1.

Page 3228 line 16: —- discussed in the following section. Page 3242 replace ‘ dotted line’ with ‘blue
dots’



We agree with the suggestions, the revised paper has been changed accordingly.

Anonymous Referee #2

General comments:

The manuscript proposes the Direct Sampling (DS) technique to simulate daily rainfall
data as an alternative to the parametric models. As this method resamples the data
from the training image based on certain criteria, it cannot simulate values larger than
the ones in the training image. Based on this one can say that this method is inferior

to the other non-parametric methods such as Harrold et al. (2003b) and Mehrotra and
Sharma (2007).

We agree with the referee, this limitation is put in evidence at line 374 and in the conclusions, line 486.
On the other hand, the advantage of the DS with respect to the parametric techniques is the faithful
reproduction of the time-dependence structure and distribution at higher scales, where also extremes
higher than the reference are generated. Ongoing tests and a detailed comparison between the DS and
the mentioned family of techniques will be the subject of a future publication.

Apart from this, the model adequately preserves the statistical characteristics of the historical data used
in the simulation. The section on non-stationary simulation (Section 4.6) is not clear, confusing and not
relevant to manuscript.

We think that the simplicity in which even a complex non-stationarity can be reproduced is a valuable
and essential aspect of the algorithm and should be illustrated for time-series simulation, therefore we
did not remove this part of the manuscript.

We agree about the lack of clarity: the explanation of the methodology has been simplified in Section
3.1 and the relevance of the application is now put in evidence at lines 467-470 .

I cannot understand why PACF was used to assess the correlation in the data. ACF should have
been used in its place.

ACF and PACF are algebraically linked by the Yule-Walker equations (see for example [1] p.64) and
contain the same information. Since here the aim was to investigate how efficiently each time-lag
dependence is reproduced by the algorithm, the PACF has been chosen since it shows the linear
dependence for each time-lag independently, which is not the case for the ACF. This is clarified at lines
335-340.

The manuscript should be revised before it can be published in HESS.

Specific comments:

The word "global" appears at a number of places and I cannot understand what it really
means. Please explain.

We agree, the term is ambiguous, it has been changed to “marginal” referring to the probability
distribution (lines 294,417,496).

PACEF is not relevant and there is no need to calculate the correlations for lags up to 10
or 20.



Since the algorithm operates in a non-parametric way and imposes a variable time-dependence, the
eventuality of modifying the persistence of the signal cannot be excluded a priori. That is why the daily
PACF is calculated up to the 20th lag, just to show that no artifacts are introduced. This has been
clarified at lines 440-443.

At the monthly scale a more complex dependence structure justifies the computation until the upper
lags.

Technical corrections:

Page 3214, Line 13: Replace "exhaustively" with "well" or "satisfactorily" Page 3214,
Line 23: Change "overtake" to "overcome" Page 3216, Lines 12-15: Sect 3 is missing.
Sect 3 describes the application of the method. Page 3219, Line 17: Changed "in-
formed" to "covered" Page 3219, Line 24: Change "respect" to "preserve" Page 3220,
Line 5: Change "informed" to "selected" Page 3222, Line 5: Change "showing and
extreme" to "showing an extreme" Page 3223, Line 4: Change "respect more strictly"
to "preserve" Page 3223, Line 15: Change "showed" to "shown" Page 3224, Line 18:
What is the statistics mentioned here? Page 3226, Line 16: Change "Another used
validation criterion" to "Another validation criterion used " Page 3226, Line 17: Change
"transformed in a" to "transformed into a" Page 3226, Line 19: Change "region" to
"spell"

We agree with the suggestions, the revised paper has been changed accordingly

Page 3227, Lines 1 -24: PACF is not appropriate here. ACF should be used
to assess the correlation with the well-known confidence limits. Delete lines 15 — 24.

We agree on the fact that the detailed explanation about the confidence limits is unnecessary, it has
been deleted accordingly. The motivation for using PACF instead of ACF is explained above. Besides,
the confidence limits are still valid for PACF since based on the autocorrelation of an IID ~ N(0,0°

), for which the two functions are statistically zero valued and equivalent (see [1] p.65).

Page 3229, Line 8: What is meant
by "border"? Do the authors mean the start and end of the time series.

Correct, the term has been changed accordingly.

Page 3228, Line 16: Insert "section" after "following"
Page 3230, Lines 12-13: Not clear. Page 3230, Line 17: Change "respected" to "preserved"

We agree with the suggestions, the revised paper has been changed accordingly.

Page 3231, Lines 8-28: These can be deleted. There is no need to calculate the correlations
up to 10 or 20 lags. Lag one correlation coefficient is adequate.

We agree on the fact that we do not expect a significant autocorrelation in the reference for lags
greater than 1. The reason for computing that is explained above.

Besides, the model only cater for lag one correlation by considering the sum of current and previous
day rainfall (2MS) as a covariate.



We do not agree, the 2MS is used to respect more accurately the lag-one autocorrelation, since we
know a priori that it is the most important short-term dependence for daily rainfall. But it is not the
sole lag the algorithm takes into account. As explained in Section 2.2 lines 136-143, higher order
dependences are variably taken into account by the data event of the target variable, which changes
size during the simulation. This concept has been clarified at lines 228-230.

Page 3232, Line 1: What is the non-stationarity imposed?

The non-stationarity is the one found in the Tl. The sentence has been rewritten (line 456) to clarify
this point.

Page 3232, Line 7: What is meant by "global" statistic? This word has been used at several places Page
3233, Line 21: Change "Goundwater" to "Groundwater"

We agree with the suggestions, the revised paper has been changed accordingly.

[1] Box, G. E. and Jenkins, G. M..: Time series analysis, control, and forecasting, Revised Edition, San
Francisco, CA: Holden Day, 1976.
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Abstract. The Direct Sampling technique, belonging to the family ofltiple-point statistics, is
proposed as a non-parametric alternative to the classitaregressive and Markov-chain based
models for daily rainfall time-series simulation. The aitfuin makes use of the patterns contained
inside the training image (the past rainfall record) to ogjuce the complexity of the signal without
inferring its prior statistical model: the time-series imslated by sampling the training dataset
where a sufficiently similar neighborhood exists. The ativge of this approach is the capability of
simulating complex statistical relations by respectirgdimilarity of the patterns at different scales.
The technique is applied to daily rainfall records from eliéint climate settings, using a standard
setup and without performing any optimization of the partarge The results show that the overall
statistics as well as the dry/wet spells patterns are stedilaccurately. Also the extremes at the
higher temporal scale are reproduesdhaustiveladequatelyreducing the well known problem of
over-dispersion.

1 Introduction

The stochastic generation of rainfall time-series is a kpict for hydrological and climate sci-
ence applications: the challenge is to simulate a syntkigfiwal honoring théxigherderhigh-order
statistics observed in the historical record, respectiegseasonality and persistence from the daily
to the higher temporal scales. Among the different propaselniques, exhaustively reviewed by
Sharma and Mehrotr@010, the most commonlysedadoptedapproach to the probleradepted
since the '60-is the Markov-chain (MC) simulation: in its classical forih,is a linear model
which cannot simulate the variability and persistence #emdint scales.Semerecentlyadepted
solutiensto-overtakahishmit-Solutiongo dealwith thislimitation consist of introducing exogenous
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climatic variables and large-scale circulation indexday( et al, 1991 Bardossy and Plajd 992
Katz and Parlangel993 Woolhiser et al. 1993 Hughes and Guttorpl994 Wallis and Griffiths
1997 Wilby, 1998 Kiely et al, 1998 Hughes et a).1999, lower-frequency daily rainfall covari-
ates Wilks, 1989 Briggs and Wilks 1996 Jones and Thornteri997 Katz and Zheng1999 or

an index based on the short-term daily historical or presipgenerated recorcHarrold et al,
2003ab; Mehrotra and Sharm@007ab) aseenditionalconditioningvariables for the estimation of
the MC parameters. By doing this, non-linearity is introeld@ the prior model, the MC parameters
changing in time as a function of some specific low-frequdhmtuations. An alternative proposed
method is model nestingfang and Nathgr2002 Srikanthan2004 2005 Srikanthan and Pegram
2009, that implies the correction of the generated daily rdinfsing a multiplicative factor to com-
pensate the bias in the higher-scale statistics. Thesnitpes generally allow a better reproduction
of the statistics up to the annual scale, but they imply thienasion of a more complex prior model
and cannot completelyatehcapturea complex dependence structure.

In this paper, we propose the use of some lower-frequencyriaies of daily rainfall in a com-
pletely unusual framework: the Direct Sampling (DS) tecjuei Mariethoz et al.2010, which be-
longs to multiple-point statistics (MPS). Introduced®yardiano and Srivastaya993 and widely
developed during the last deca&rebelle2002 Allard et al, 2006 Zhang et al.2006 Arpat and Caers
2007 Honarkhah and Caer201Q Straubhaar et gl201% Tahmasebi et gl2012, MPS is a family
of geostatistical techniques widely used in spatial dataukitions and particularly suited to pattern
reproduction. MPS algorithms use a training image, i.e.tas#d to evaluate the probability distri-
bution (pdf) of the variable simulated at each point (in tiorespace), conditionally to the values
present in its neighborhood. In the particular case of thrediSampling, the concept of training
image is taken to the limit by avoiding the computation of doaditional pdf and making a ran-
dom sampling of the historical dataset where a pattern airtoltheserditieralconditioningdata is
found. If the training dataset is representative enougdsdtiechniques can easily reproduce high-
order statistics of complex natural processes at diffesealies. MPS has already been successfully
applied to the simulation of spatial rainfall occurrencégras {Nojcik et al, 2009. In this paper,
we test the Direct Sampling on the simulation of daily rairfene-series. The aim is to reproduce
the complexity of the rainfall signal up to the decenniallscaimulating the occurrence and the
amount at the same time with the aid of a multivariate dataSanilar algorithms performing a
multivariate simulation had been previously developedrbyng (1994 andRajagopalan and Lall
(1999 using a bootstrap-based approach. As discussed in diet&lsction2.3 the advantage of
the Direct Sampling with respect to the mentioned techrigsi¢he possibility to have a variable
high-order time-dependence, without incurring excessmputation since the estimation of the
n-dimensional conditional pdf is not needed. Moreover, wa@ppse a standard setup for rainfall
simulation: an ensemble of auxiliary variables and fixedigalfor the main parameters required

by the Direct Sampling algorithm, suitable for the simuatbf any stationary rainfall time-series,
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without the need of calibration. The technique is testedhoee time-series from different climatic
regions of Australia. The paper is organized as follows: ént®n2 the DS techniquethedataset

proposedsetupand the method of evaluation are descrilre&ection3. The statistical analysis of
the simulated time-series is presented and discussed tioSdand Sectiorb is dedicated to the

conclusions.

2 Methodology

In this section we recall the basics of multiple-point stiéts and we focus on the Direct Sampling
algorithm. The dataset used is then presented as well asdth®ds of evaluation.

2.1 Background on multiple-point statistics

Before entering in the details of the DS algorithm, let usddtice some common elements of MPS.
The whole information used by MPS to simulate a certain e based on th&aining Image
(T1) or training dataset: the dataset constituted of one or more variables used¢o tiné statistical
relations and occurrence probability of any datum in theuation. The Tl may be constituted of
a conceptual model instead of real data, but in the case ahthall time-series it is more likely
to be a historical record of rainfall measurements. Simaulation Grid (SG) is atetally-erpartially
uninfermedN-dimensienabrraytime referencedrectorin which thealgerithmgeneratesalueste
ebﬁmheaenﬂe%pum%restoredmmhe smulaﬂonk—u&ua”yhasthes&me

S +Following a

diman me ariaceim ala

simulationpathwhich is usuallyrandom the SG isa-time-referencedne-dimensionalectorof

! b rogressivelyilled with simulatedvaluesandbecomeshe
actualoutputof the simulation Theconditioning data {€B)-are a group of given data (e.g. rainfall

measurements) situated in the SG. Being already infornmsinmulation occurs at those time-steps.
The presence c&B-conditioningdataaffects, in their neighborhood, the conditional law used fo
the simulation and limits the range of possible patterns.Sivé%s well some MC based algorithm
for rainfall simulation (see Sectiol), may include the use @uxiliary variables to condition the
simulation of the target variabléwn-auxitiaryvariableishermallygivenrasCb-butintheeaseofthe
DirectSamplingiitcanalsebeAuxiliary variablesnayeitherbeknown(fully or partially) andused
toguidethesimulation.or theymaybeunknownbutstill co-simulatedvith thetargetwithoutbeing

necessarihinformedbecauseaheir structurescontainsimportantcharacteristicef the signal For
rainfall time-series, it could be for example: covariatéghe original or previously simulated data

(e.g. the number of wet days in a past period), a correlatgdbia for which the record is known,

a theoretical variable that imposes a periodicity or a trgnd. a sinusoid function describing the
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annual seasonality over the data). Finally, $earch neighborhood is a moving window, i.e. the
portion of time-series located in the past and future neighdod of each simulated value, used to
retrieve thedata event, i.e. the group of time-referenced values used to conditiersimulation.

2.2 The Direct Sampling algorithm

Classical MPS implementations create a catalog of the Iplesseighbors patterns to evaluate the
conditional probability of occurrence for each event widlspect to the considered neighborhood.
This may imply a significant amount of memory and always kntiie application to categorical
variables. On the contrary, the Direct Sampling generageb ®alue by sampling the data from
the Tl where a sufficiently similar neighborhood exists. & implementation used in this paper
is called DeeSse seftware(Straubhaar2011l)—the-, The following is the main workflow of the
algorithm-for thesimulationof asinglevariable Forthemultivariatecaseseethelastparagraptof
Let us denotex = [x1,...,z,] the time vector representing the S&G+ [y1, ..., .| the one repre-
senting the Tl and/(-) the target variable, object of the simulation, defined ahedement ofc and
y. Before the simulation begins, all continuous variablesrarmalized using the transformation
Z v+~ Z - (max(Z) —min(Z))~! in order to have distances (see s&pn the rangg0, 1]. Dur-

ing the simulational-thethe uninformedtime-steps of the SG are visited in a random ordére

randomsimulationpatht € {1,2,...., M } is obtainedby samplingwithout replacementhe discrete
uniformdistributionU (1,M) whereM is the SGlength.At each uninformed:,, the following steps

are executed:

1. The data everd(x;) = {Z(x14h,),-.-, Z(x14n, )} IS retrieved from the SG according to a
fixed neighborhood of radius R centered o#it—. It consists of at most N informed time-
steps, closest to;. This defines a set of lagg = {hy, ..., h, }, with |h;| < Randn < N. The
size ofd(x;) is therefore limited by the user-defined parameter N andvhgadle informed

time-steps inside the search neighborhood.

2. Arandom time-step; in y is visited and the corresponding data ewéfy; ), defined accord-
ing tothesameH , is retrieved to be compared witt{z,).

3. AdistanceD(d(x:),d(y;)), i.e. a measure of dissimilarity between the two data eyésts
calculated. For categorical variables (e.g. the dry/wetfall sequence), it is given by the

formula:

L Lif Z(x;) # Z(y;)
D(d(x¢),d(y:)) == ) aj, aj = '
(d(z),d(y:)) n; 0if Z(zj) = Z(y;) ?

while for continuous variables the following one is used:

D), dy) = 5 Y| 21s) - Z(ay) @

4
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wheren is the number of elements of the data event. fbigthborelementof d(x,), inde-
pendently from their position, play an equivalent role imditioning the simulation of ().
Note that, using the above distance formulas, the norntalizés not needed for categorical

variables, while for the continuous ones it ensures dissug0, 1].

4. If D(d(z),d(y;)) is below a fixed threshold T, i.e. the two data events are geifitly similar,
the iteration stops and the datufify; ) is assigned t& (z; ). Otherwise, the process is repeated
from point2 until a suitable candidaté(y;) is found or the prescribed TI fraction limit F is
scanned.

5. Ifa Tl fraction F has been scanned and the distdn@&z:),d(y;)) is above T for each visited
¥4, the datumZ (y}) minimizing this distance is assigned Xz, ).

This procedure is repeated for the simulation at eachntil the entire SG isrfermedovered

Figure 1 illustrates the iterative simulation using the Direct Séingpand stresses some of its pe-
culiarities. First, simulatingZ(«;) in a random order allows: to be progressively populated at
non-consecutive time-steps. Therefore, the simulatieeaahz, can be conditioned on both past
and future, as opposed to the classical Markov-chain teciesi that use a linear simulation path

starting from the beginning of the series, allowing comdliitng on past only.
FIG.1 ABOUT HERE

In the early iterations, the closest informed time-steius condition the simulation are located
far from 2, and its number is limited by the search window, i.e. conditig is mainly based on
large past and future time lags. On the contrary, the fingdtiens dispose of a more populated SG,
conditioning is thus done on small time lags since only tlese$t N values are considered. This
variable time-lag principle may not respect the autocati@h on a specific time-lag rigorously,
but it shouldrepreduegreservea more complex statistical relationship, which cannot helaed
exhaustively using a fixed-dependence model.

The DS can simulate multiple variables together similadyttte univariate casequtusinga
multivariatedatasetasH—n-this-easewe-havedealingwith a vector of variablesZ (z;) defired
by Ny andRy. Unlike theimplementatiorpresentedn (Mariethoz et al. 2010, DeeSse alsouses
aspecificacceptancéhresholdT;, for eachvariable. Point3 of the algorithm ishereforerepeated

repeateduntil a candidatewith a distancebelow the thresholdfor all variablesis found. If this
conditionis notmet,thescanstopsatthe prescribed’| fractionF andtheerrorfor eachcandidatey;

to Z(z;). Notethat the entire data vectd (x;) is simulated in one iteration, reproducing exactly
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the same combination of values found for all the variablebatsampled time-stepxetudedthe
SG. This feature, although reducing the variability in the glation, has been adopteddocurately
reproduce the correlation between variabtesirately

2.3 Comparison with existing resampling techniques

The resampling principle is at the base of some already pexgptechniques for rainfall and hydro-
logic time-series simulation. There exist two principahfies of resampling techniques: the block
bootstrap Yogel and Shallcros4996 Srinivas and Srinivasa005 Ndiritu, 2011), which implies
the resampling with replacement of entire pieces of tinr@&savith the aim of preserving the statis-
tical dependence at a scale minor than the blocks size, ardiiearest neighbor bootstrap (k-NN),
based on single value resampling using a pattern similewi. This latter family of techniques,
introduced byEfron (1979 and inspired to the jackknife variance estimation, has segeral devel-
opments in hydrologyoung 1994 Lall and Sharmal994 Lall et al, 1996 Rajagopalan and Lall
1999 Buishand and Brandsma001, Wojcik and Buishand2003 Clark et al, 2004. Having dif-
ferent points in common with the Direct Sampling, its gehé&nr@mework is briefly presented in
the following. Each datum inside the historical record iarettterized by a vectat, of predictor
variables, analogous to the data event for the DS. For exanmplgenerate (z;) one could use
di =[Z(x1-1),Z(x¢—2),U(xs),U(x:—1)], meaning that the simulation is conditioned to the 2 pre-
vious time-steps of and the present and previous time-stepé/ofa correlated variable. In the
predictor variables spad@, the historical data as well a(x;), which still has to be generated,
are represented as points whose coordinates are defingd Bpnsequently, proximity if® corre-
sponds to similarity of the conditioning patterns(z;) is simulated by sampling an empirical pdf
constructed on the k points closest4dz, ); the closer the point is, the higher is the probability to
sample the corresponding historical datum. Proposedti@rgof the algorithm include transforma-
tions of the predictor variables space, the applicatioreof&l smoothing to the k-NN pdf to increase
the variability beyond the historical values, and diffarerethods to estimate the parameters of the
model, e.g. k and the kernel bandwidth.

Going back to the Direct Sampling, the similarities with KaIN bootstrap are: i) they both make
a resampling of the historical record conditioned by an etde of auxiliary/predictor variables; ii)
they both compute a distance as a measure of dissimilarttyele® the simulating time-step and
the candidates considered for resampling. Neverthelbess are several points of divergence in
the rationale of the techniques: i) in the k-NN bootstraf, distance is used to evaluate the re-
sampling probability, while in the DS it is used to evaludte tesampling possibility. This means
that, using the k-NN resampling, the conditional pdf is aciion of the distance, while in the DS
the distance is only used to define its support. In fact, utiegDS, the spacP is not restricted

to the k nearest neighbors but it is bounded by the distanesitblds: outside the boundary, the
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resampling probability is zero, while inside, it followsetloccurrence of the data in the scanned Tl
fraction, without being a function of the pattern resemb&nOnly in case of no candidate found,
the closest neighbor outside the bounded portioP & chosen for resampling. The latter can be
considered as an exceptional condition which usually doekead to a good simulation and seldom
occurs using an appropriate setup and training datasélsiig the DS, the conditional pdf remains
implicit, its computation is not needed: the historicaloetis randomly visited instead and the first
datum presenting a distance below the threshold is samflei. is an advantage since it avoids
the problem of the high-dimensional conditional pdf estiorawhich limits the degree of condi-
tioning in bootstrap techniqueSiiarma and Mehrotr2010. iii) The k-NN technique considers a
fixed time-dependence, while it varies during the simutatiothe case of the DS. iv) Finally, the
simulation path (in the SG) is always linear in the k-NN teghe, while it is random using the DS,

allowing conditioning on future time-steps of the targetable.

3 Application

The dataset chosen for this study is composed of three daiijatl time-series from different cli-
matic regions of Australia: Alice Springs (hot desert), lwit very dry rainfall regime and long
droughts, Sydney (temperate), with a far wetter climatetduts proximity to the ocean, and Dar-

win (tropical savannah), showirgpdanextreme variability between the dry and wet seasons.

TAB.1 ABOUT HERE

Table 1 delineategpresentshe dataset used: the chosen statiprssentprovide a considerable
record of about 70 years for Darwin and Alice Springs and #yyfor Sydney. Any gaps or trends

have been explicitly kept to test the behavior of the algponitwith incomplete or non-stationary
datasets. The Direct Sampling treats gaps in the timesserig simple way: each data event found
in the Tl is rejected if it contains any missing data. Thi®at incomplete training images to be
dealt with in a safe way, but, as one could expect, a largetgyarf missing data, especially if
sparsely distributed, may lead to a poor simulatid¥eeutdatasereconstructiorusingthedireet

samplingseeMariethoz and Renar{2010Q show how the Direct Samplingcan be usedfor data
reconstruction

Since rainfall is a complex signal exhibiting not only mdtiale time dependence but also inter-
mittence, the classical approach is to split the daily tsedes generation in two steps: the occur-
rence model, where the dry/wet daily sequence is generatad a Markov-chain, and the amount
model, where the rainfall amount is simulated on wet daysgian estimation of the conditional pdf
(e.g.,Coe and Sternl982. The simulation framework proposed here is radicallyediht: we use
the Direct Sampling to generate the complete time-series@step, simulating multiple variables
together. In particular, the Tl used4ésmpesedbf-basedon the past daily rainfall recoré-and

thefollowing-auxiliary-and composedf the following variables (Table): 1) the average rainfall
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amount on a 365 days centered moving wind8é5(// A) [mm], 2) the sum of the current and the
previous day amount2{/.S) [mm], 3) and 4) two out-of-phase of triangular functionsl(andtr2)
with frequency 365.25 days, similar to trigonometric capatles expressing the position of the day
in the annual cycle, 5) the dry/wet sequence, i.e. a categlorariable indicating the position of a
day inside the rainfall pattern (1 = wet, 0 = dry, 2 = solitargtw3 = wet day at the beginning or at
the end of a wet spell) the daily rainfall amountwhich is the targetof the simulation The first
two auxiliary variables are covariates used to force theritlyn torespectorestrieth-preserveahe
inter-annual structure and the day-to-day correlatioriclvlare known to exist a priori. The other

ones are used to reproduce the dry/wet pattern and the aseasainality accurateliyloreoverany

unknowndependenca the daily rainfall signalis genericallytakeninto accountin the simulation

by usinga dataeventof variablelengthasexplainedn Section2.2. It has to be remarked that, apart
from 3) and 4), which are known deterministic functions irmpd as=Bconditioningdata the rest

of the auxiliary variables are transformations of the ralidatum, automatically computed on the
Tl and co-simulated with the daily rainfall.

To summarize, the main parameters of the algorithm are flmving: the maximum scanned TI
fraction Fe (0,1], the search neighborhood radius R, the maximum number ghbers N, both
expressed in number of elements of the time vector, and 8tardie threshold & (0,1]. Recall
that, apart from F, each parameter is set independenthafdr simulated variable. The setup shown
in Table2 is used together with & 0.5 and proposed as a standard for daily rainfall time-series. A
sensitivity analysis, nathewedshownhere, confirmed the generality of this setup which is not the
result of a numerical optimization on a specific datasetjttgtrather in accordance to the criteria
used to define the order and extension of the variable tinperttence, as shown below. Applying it
to any type of single-station daily rainfall dataset, thenshould obtain a reliable simulation without
needing to change any parameter or give supplementarymiation. An additional refinement of

the setup is also possible, keeping in mind the followingegahrules:

— R limits the maximum time-lag dependence in the simulatioth should be set according to
the length of the largest sufficiently repeated structuréreguency in the signal that has to
be reproduced. Being interested to condition the simutatjwon the inter-annual fluctuations
(visible in the 10-years MA time-series in Figudg we set Rssars = Rrqin oz = 5000 for
the 365M .S and daily rainfall variables. We recommend keeping R belogv ltalf of the
training dataset total length, to condition on sufficiemypeated structures only. Regarding
dry/wet pattern conditioning, we prefer limiting the vdoia time dependence within a 21-
days window (R,, = 10). fr-gereraRawThis windowshould be set between the median and
the maximum of the wet spell length distribution, in ordeptoperly catch the continuity of

the rainfall events over multiple days.

— N controls the complexity of the conditioning structure also influences the specific time-lag

dependence. For instance, if one increases N, higher-degendencies are represented, but
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the weight accorded to a specific neighbor in evaluating istaiice between patterns becomes
lower. This leads to a less accurate specific time-lag cimmditg, but a more complex time-
dependence is respected on average. For the rainfall araodB865M A variables, N« R
follows the same setup rule as fogR In this way, in the initial iterations, the conditioning
neighbors will be sparse in a 10001 days winddw= 5000) to respect low-frequency fluc-
tuations, whereas, in the final iterations, they will be eaméd in a N-days window to respect
the within-spell variability. The standard value propokete (Ng5174 = N3gsar4 = 21) cor-
responds approximately to the spell distribution mediathefDarwin time-series, remaining
in the appropriate range for the other considered clima@eswversely, N,, is kept lower in

order to focus the conditioning on the small-scale dry/wagtgyn. N, =5 gave in general

the best result in terms of dry/wet pattern reproductisith—a-gradualdegradatioref-the
- incf i val

Fhe-combinationN=R=1forthe For 2M Sand+r—auxiliary-variablesis-equivalentie-a

fag{6dependencand, trl and¢r2, the time-dependencss limited to lag 1 by usin
N =R =1. Thiscombinationshould not be changed since we have no interest in expanding

or varying thetime lag-dependence-thiseasdor thementionedvariables

T determines the tolerance in accepting a pattern. Thetaétysanalysis done until now

on different types of heterogeneitiddéerschman et gl2013 confirmed that the optimum
generally lies in the intervaD.01,0.07] (1 to 7% of the total variation) Higher T values
usually lead to poorly simulated patteamst, but lower ones may induce a bias in thbal
statistiesmarginaldistributionand increase the phenomenon of verbatim copy, i.e. the exact
reproduction of an entire portion of data by oversampling shme pattern inside the TI.
For these reasons, we recommend keeping the proposed staadlze T = 0.05 for all the
variables.

F should be set sufficiently high to have a consistent chofgeatierns but a value close
to 1, i.e. all the Tl is scanned each time, may lower the vdiialof the simulations and
increase the verbatim copy. Using a training dataset reptatve enough, the optimal value
corresponds to a Tl fraction containing some repetitiontheflowest-frequency fluctuation
that should be reproduced. Considering the randomnessofltiscan, the value & 0.5

chosen in this paper is sufficient to serve the purpose.
TAB.2 ABOUT HERE

Imposing a trend

FheAs alreadyshownin (Chugunova and Hi2008 Mariethoz et al.201Q Honarkhah and Caers
201Q Hu et al, 2014, in caseof a non-stationaryargetvariable,the simulation can be constrained
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to reproduce the same type of trend found in the Tl by makimgoisan auxiliary variable-—Fhe

Hiime-vector-An-exacteopytta=7L{y-ispresentin-, The oneproposechereis the integer

vectorL = [1,2,...,M], whereM is thelengthof thetime-seriestrackingthe positionof eachdatum

insidethe Tl. L is assignedo the SG as conditioningata—TFheparametersfoiL{-aresetas
fellowsdatumwith thefollowing parametersR;, = 1, N, =1 and T, = 0.01. Fhereferd\ccording

to the thresholdT ;, the samphngfepeaehwn&lateddanﬁ%—weed&&mmarmnsqdeme

mmmmmw@mmm
insidetheT!; for examplejn the Darwin case, being{£}=26356-M = 26356 and T, = 0.01 (1%

of the total variationallowed) the sampling to simulat&(z;) is constrained te{zr~=+263
theintervaly, £ 263 [days]. In this way, themainstatisticsaremarginaldistributionis respected,
but the local variability ismestcempletelyrestricted to the one found inside the training dataset,

reproducmg thmen—staﬂen&n{ygmmd The following remarks are noteworthy: &ry-type

re-to avoid

an unnecessary restrictida-the-lecalvariability—-sheuldbeegquatof the sampling, T, should

correspondo the maximum time interval for which the target variable b@ considered stationary;

i) the simulationeanreshouldnotbe longer than the training dataset, having no basis topdate
the trend in the past or future; iii) the local variabilityiet completely limited by_: a pattern outside
the tolerance range (i.e. with a distance over the thre}looldd be sampled if no better candidate

is found.
3.2 Validation

FevalidateTotestthe proposed technique the visual comparison of the geatttiate-series with the
reference as well as several groups of statistical indisatiee considered. The empirical cumulative
probability distributions, obtained using the Kaplan-kregstimate Kaplan and Meigr1958, of
the daily, the annual and decennial rainfall time-serié$ained by summing up the daily rainfall,
are compared using quantile-quantile (qg-) plots. Moreotfee minimum moving average;.e.

long-termdependenceharacteristicef therainfall.
Thedaily rainfall statistics have been analyzed separatelgéch month considering the average

value of the following indicators: the probability of occence of a wet day and the mean, standard
deviation, minimum and maximum on wet days only. For instartise standard deviation is com-
puted on the wet days of each month of January, then the aveedge is taken as representative of
that time-series. We therefore obtain a unique value forgference and a distribution of values for

the simulations represented with a box-plot.

10
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Another used validation criterion is the comparison of theahd wet spells length distributions.
Each series is transforméstinto a binary sequence with zeros corresponding to dry days a@sl on
to the wet days. Then, counting the number of days inside eégchnd wetegierspell we obtain
the distributions of dry and wet spells length, that can begared using qqg-plots. This is an
important indicator since it determines, for example, tfiieiency of the algorithm in reproducing
long droughts or wet periods.

Since the DS works by pasting values from the Tl to the SG straightforward to keep track of
the original location of each value in the training imagesu€cessive values in the Tl are also next
to each other in the SG, then a patch is identified. A multipbe-plot is then used to represent the
number of patches found in each realization as a functioh@fatch length to keep track of the
verbatim copy effect.

The last group of indicators considered is the sample Patitocorrelation Function (PACF)
(Box and Jenkins1976 of the daily, monthly and annual rainfall. Given a timeissrX,, the
sample PACF is the estimation of the linear correlation inldetween the datum at timeand the
ones at previous time-steps- h, without considering the linear dependence with the iwken
observations. For a stationary time-series the sample R&\&¥pressed as a function of the time-lag
h with the following formula:

p(X,h) = Corr[ Xy — B(X,{{X 1, Xe—hgr 1)y Xoeh — EX e {X g1 X1 D] ()

BN

WhereE(Xt|{Xt,1, ..., Xt—n+1}) isthe bestlinear predictor knowing the observatipis_1,..., X¢—p41}-
p(h) varies in[0, 1], with high values for a highly autocorrelated process. Timicator is widely
used in time-series analysis since it gives informationualtbe persistence of the signallhe
autocorrelatiofunctioncouldbeusednsteadbut PACFis preferrecheresinceit showstheautocorrelation
ateachlagindependentlyln the case of daily rainfall, the partial autocorrelatismsually very low,

while the higher-scale rainfall may present a more imparspecific time-lag linear dependence.

As suggestedsy—usuallydonein the absence of any prior knowledge abgft—anaceuratenay

2
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375  the PACF indexes. Since the time-series used in this paper are not necessttipnary, any
sample PACF is computed from the standardized sigfyalobtained by applying moving average
estimationmn, and standard deviatiof filters with the following formula:

q

q
c =) TN Y Xy 8=120+) T Y (X - TE, g+l <t <n—g

Jj=—q Jj=—q

X, — 5
XtS: tAmt

St

(4)

whereq = 2555 (15 years centered moving window). It is important to not this operation may

380 exclude from the PACF computation a consistent part of theadi(y + 1 <t < n — ¢), especially
on the higher time-scadegznal In the case of the datasets used, the annual time-seriedused
to less than 60 values for Alice Springs and Darwin: a barefficsent quantity, considering that
a-generiethe minimum amount of data for a useful sample PACF estimagjmen-suggestedy
Box and Jenkin§1979 is of about 50 observations.

385 4 Results and discussion

To evaluate the proposed technique, a group of 100 reairatf the same length as the reference

is generated for each of the 3 considered datasets to obsaifficiently stable response in both the

average and the extreme behavior. The setup used is the esenped in Sectio8 with the fixed

parameters values shown in TaBleThe obtained results are shown and discussed in the folgpwi
390 section

4.1 Visual comparison

Figure2 shows the comparison between random samples from bothnttudesed and the reference
time-series. For each dataset, the generated rainfalslsokilar to the reference: the extreme
events inside the 10-years samples are reproduced withedogaus frequency and magnitude. The
395 annual seasonality, particularly pronounced in the Daseiries, is accurately simulated as well as
the persistence of the rainfall events, visible in the 189sdsamples. These aspects are evaluated

guantitatively in the following sections.

FIG.2 ABOUT HERE
4.2 Multiple-scale probability distribution

400 The qg-plots of the rainfall empirical distributions arepented in Figur8, where all the range
of quantiles is considered. The distribution of the dailinfall (computed on wet days only) is
generally respected, although some extremes that arenpresly once in the reference and, in
particular, at théserderstartor endof the time-series, may not appear in the simulation. It & th

case of the Darwin series, with a mismatch of the very uppantiles. Moreover, the DS being an

12
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algorithm based on resampling, the distribution of the $atad values is limited by the range of
the training dataset: this is shown in the Alice Springs apdin®y qqg-plots, where the distribution
of the last quantiles is clearly truncated at the maximuraedbund in the reference. This result
is normally expected using this type of techniques: theatisampling is of course not able to
extrapolate extreme intensities higher than the ones fauiide Tl at the scale of the simulated

signal.
FIG.3 ABOUT HERE

On the contrary, the distribution of the rainfall amount be solitary wet days is accurately re-
spected, with some realizations including higher extretnas the reference. More importantly, the
annual and 10-years rainfall distributions are corre@froduced and do not show over-dispersion.
This phenomenon, common among the classical techniqued lbasdaily-scale conditioning, con-
sists in the scarce representation of the extremes andestoleation of the variance at the higher
scale. This problem is avoided here because a variable depeais considered, up to a 5000-days
radius on the3651/ A auxiliary variable, that helpsespeetingoreservinghe low-frequency fluctu-
ations. We also see that, at this scale, the DS is capablenefating extremes higher than the ones
found in the reference, meaning that new patterns have mwrated using the same values at the
daily scale. This results is purely based on the reprodnctidigher-scale patterns: the acceptance
threshold value chosen for tl365M A auxiliary variable allows enough freedom to generate new
patterns although maintaining an unbiased distributioevedtheless, this approach is not meant to
replace a specific technique to predict long recurrence-guents at any temporal scale, since it is

not focused on modeling the tail of the probability disttiba.
4.3 Annual seasonality and extremes

Figure4 shows the principal indicators describing the annual seig of the reference and the
generated time-series: each different season is acouraf@ioduced by the algorithm, with almost
no bias. The probability of having a wet day, usually impobgda prior model in the classical

parametric techniques, is indirectly obtained by samliag the rainfall patterns of the appropriate

period of the year. This goal is mainly achieved using theileuy variablestr1 and¢r2 as€b
conditioningdata(see Sectios).

FIG.4 ABOUT HERE

follows thereferenceatheraccuratel

FIG.5 ABOUT HERE
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4.4 Rainfall patterns and verbatim copy

The statistical indicators regarding the dry/wet pattsim@vn in Figuré demonstrate the efficiency
of the proposed DS setup in simulating long droughts or webde according to the training dataset:
the dry and wet spells distributions aespectegrreservednd extremes higher than the ones present
in the Tl are also simulated.

The verbatim copy box-plots show the distribution of thediseries pieces exactly copied from
the Tl as a function of their size for the ensemble of the zadilbins: the number of patches decreases
exponentially with their size. The phenomenon is mainlyitét to a maximum of few 8-days
patches, with isolated cases up to 14 days.

The 10-years rainfall moving sum, shown at the bottom of Fdi) shewsillustratesthe low-
frequency time-series structure: the quantiles of the Eitimns at each time-step confirm that the
glebaloverallvariability is correctly simulated, but the local fluctuaisandglebattrendsdo not
match the reference. For example, the Darwin referencessshiows a clear upwagtbbattendeney
trendwhich is not present in the superposed randomly-picked @Ezegion. Generally, the Tl is
supposed to be stationary or the non-stationarity shoudd least described by an auxiliary variable.
If it is not the case, as for the Darwin time-series, the atjorrespectsheglebatvariatierhonors
themarginaldistributionof the reference, but it does not reproduce a specific trehi. groblem is
treated separately in Sectidrb.

FIG.6 ABOUT HERE

spelldistributionshownin Figures: for example Alice Springspresentsa zerominimum moving
from theannualo the 60 yearsscale.

FIG7 ABOUT HERE

Accordingto this indicator,the simulationof thelong-termstructurds fairly accurateThenegative
bias,lower than0.5 mm, showsa modesttendencyto underestimatéhe minimummovingaverage
from theannuatto the decenniabkcalefor wet climatesasSydneyandDarwin.

4.5 Linear time-dependence

The specific linear time-dependence of the generated aeckrefesighalsignalshas been evaluated
at different scales using the sample Partial Autocormtaliunction (PACF, Figuré&28, Equation
4).

14
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FIG228 ABOUT HERE

At the daily scale, the data show the same level of autoairosl at lag-1 and a low but significant
linear dependence until lag 3 for Alice Springs and SydnéyleanDarwin presents a longer tailing
which asymptotically approaches the confidence bounéssabaussiaranuncorrelatedoise. The

DS simulation shows a tendency to a slight underestimafittredag-1 PACF, with a maximum error

or Sydney.
Sincethe algorithmoperatesn anon-parametriovay andimposesa variabletime-dependencehe
the PACF hasbeencalculatedipto the 20thlag, assuringhatno extralinear-dependendeasbeen

introduced

around 0.

At the monthly scale, the linear time-dependence struétrkearly related to the annual season-
ality, with a negative autocorrelation around lag 6 and atpesone around lag 12. The climate
characterization is also evident: from Alice Springs to\Wiarwe see a more marked seasonality re-
flected in the PACF. The simulation follows the referenceyaiell, with a maximum error around
+0.1.

At the annual scale, the limited length of the time-sersiicedeads to wider confidence bounds
for the non-significant values (see secti®®). The reference does not show a clear linear time-
dependence structure which is not similarly reproducedheysimulation. Some more relevant
discrepancy is present in the Darwin seripsesentingshowinga more discontinuous structure.
However, using such a limited dataset for the time scaleiden=sd here, it is difficult to determine

if the reference PACF is really indicative of an effectivedar dependence.

4.6 Non-stationary simulation

Figure9 shows the Darwin time-series simulatiezalizedby-impesingpreservinghe same non-
stationaritywith-containedn thereferenceéy usingthe technique proposed in Secti®rl The 10-

years moving sum plot shows that thealandglobaltrendoeftrendandlow-frequencyfluctuation
presenin the reference are accuratebpreducesimulated the median of the realizations follows
the reference and a variability of aboutddm between the 5-th and 95-th percentile is preséhe
acedracyntheglobalstatistiedRegardingheotherconsideredtatisticaindicatorstheperformance
appears to be essentially the same as for the stationaryesiomi the only remarkable difference is

a modest positive bias in the maximum wet periods length.
FIG.9 ABOUT HERE

The fact that, to impose the trend, the sampling is resttitiea local region of the reference reduces
the local variability with respect to the stationary sinmida. Consequently, #ttle-modesincrease

of the verbatim copy effect occurs.
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would benecessarto preservahe samelong-termbehavior.

5 Conclusions

The aim of the paper is to present an alternative daily rdisfaulation technique based on the
Direct Sampling algorithm, belonging to multiple-poinatstics family. The main principle of the
technique is to resample a given dataset using a patteiitastyrule. Using a random simulation
path and a non-fixed pattern dimension, the technique alloywssing a variable time-dependence
and reproducing the reference statistics at multiple scdlee proposed setup, suitable for any type
of rainfall, includes the simulation of the daily rainfalrte-series together with a series of auxiliary
variables including: a categorical variable describing diny/wet pattern, the 2 days moving sum
which helps respecting the lag-1 autocorrelation, the 33 dnoving average to condition upon
inter-annual fluctuations and two coupled theoreticalquéd functions describing the annual sea-
sonality. Since all the variables are automatically coragddtom the rainfall data, no additional
information is needed.

The technique has been tested on three different climatéastialia: Alice Springs (desert),
Sydney (temperate) and Darwin (tropical savannah). Witlsbanging the simulation parameters,
the algorithm correctly simulates both the rainfall ocemage structure and amount distribution up
to the decennial scale for all the three climates, avoidirgyproblem of over-dispersion, which
often affects daily-rainfall simulation techniques. Bgibased on resampling, the algorithm can
only generate data which are present in the training dathsethey can be aggregated differently,
simulating new extremes in the higher-scale rainfall arydvaet pattern distributions. The technique
is not meant to be used as a tool to explore the uncertairayeckto long recurrence-time events,
but rather to generate extremely realistic replicates efd&itum, to be used as inputs in hydrologic
models.

Reproducinga-treneHin-the-simulationthe specifictrend found in the datais also possible by
making use of an additional auxiliary variable which simgasgtricts the sampling to a local portion
of the TI. This way, any type of non-stationarity presentha Tl is automatically imposed on the

simulation. The Darwin example demonstrates the efficiefdpis approach in reproducing 100

different realizations showing the same type of trend glealstatistiesnarginaldistribution. This
setupcanbe usefulto simulatemultiple realizationsf a specificnon-stationargcenariaegardless

of its complexit
In conclusion, the Direct Sampling technique used with tfeppsed generic setup can produce

realistic daily rainfall time-series replicates from @ifént climates without the need of calibration or

16



additional information. The generality and the total audtion of the technique makes it a powerful

tool for a routine use in scientific and engineering appidcet.
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Table 1. Summary of thesseddatasetsed

Location Station Period [years] Record length [days] Miggiata [days]

Alice Springs A.S.Airport 1940-2013 26347 305
Sydney S.Observatory Hill 1858-2013 56662 184
Darwin D.Airport 1941-2013 26356 0
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Fig. 2. Visual comparison between the simulated2ihd the refereaite rainfall [mm] time-series: 10-years
(left column) and 100-days (right column) random samples.



Alice Springs Sydney Darwin
daily rainfall qgplot
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Alice Springs Sydney Darwin

wet days occurrence probability
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Fig. 5. Box-plots of the average extremes per monthi{]. The solid line indicates the reference.
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Alice Springs Sydney Darwin

wet spells size qgplot
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Fig. 6. Main indicators describing the rainfall pattern: qqg-plofghe dry and wet spellsihys] distributions,
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Alice Springs Sydney Darwin

minimum moving average
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Alice Springs Sydney Darwin

Daily rainfall sample PACF
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Table 2. Standard setup proposed for rainfall simulation. The patars are: search window radius R, max-
imum number of neighbors N and distance threshold T. Thebbes are: 1) the 365 days Moving Average
(365M A), 2) the Moving Sum of the current day and the one befaf §), 3) and 4) annual seasonality
triangular functionst#(-1 and¢r2), 5) the dry/wet sequenctw and+6) the daily rainfall amount as the target

variable.Ontheright, a portionof multivariateTI is givenasexample.

Variable R N T

1)365MA 5000 21 0.05 M
2)2MS 1 1 005

3)trl 1 1 005

4y tr2 1 1 005

5) dw 10 5 0.05 WMMMUMLMWWMMMWM\—
+6) rainfall 5000 21 0.05 “M““Lm“o Lot b nssaicds
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