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Abstract. The Direct Sampling technique, belonging to the family ofltiple-point statistics, is
proposed as a non-parametric alternative to the classitaregressive and Markov-chain based
models for daily rainfall time-series simulation. The aitfuin makes use of the patterns contained
inside the training image (the past rainfall record) to ogjuce the complexity of the signal without
inferring its prior statistical model: the time-series imslated by sampling the training dataset
where a sufficiently similar neighborhood exists. The atlvge of this approach is the capability
of simulating complex statistical relations by respectihg similarity of the patterns at different
scales. The technique is applied to daily rainfall recordsnf different climate settings, using a
standard setup and without performing any optimizatiomefdarameters. The results show that the
overall statistics as well as the dry/wet spells patteressanulated accurately. Also the extremes
at the higher temporal scale are reproduced adequatelygirgdthe well known problem of over-
dispersion.

1 Introduction

The stochastic generation of rainfall time-series is a kapict for hydrological and climate sci-
ence applications: the challenge is to simulate a syntfsggical honoring the high-order statis-
tics observed in the historical record, respecting thesesdy and persistence from the daily to
the higher temporal scales. Among the different proposednigues, exhaustively reviewed by
Sharma and Mehrotrg2010, the most commonly adopted approach to the problem sire&th

is the Markov-chain (MC) simulation: in its classical forinis a linear model which cannot simu-
late the variability and persistence at different scaledut®ns to deal with this limitation consist

of introducing exogenous climatic variables and largdescaculation indexesHay et al, 1991
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Bardossy and Platel 992 Katz and Parlangel993 Woolhiser et al. 1993 Hughes and Guttorp
1994 Wallis and Griffiths 1997 Wilby, 1998 Kiely et al,, 1998 Hughes et a]1999, lower-frequency
daily rainfall covariatesWilks, 1989 Briggs and Wilks1996 Jones and Thornte©997 Katz and Zheng
1999 or an index based on the short-term daily historical or jonesly generated recoréi@rrold et al,
2003ab; Mehrotra and Sharm20073ab) as conditioning variables for the estimation of the MC pa-
rameters. By doing this, non-linearity is introduced in phi®r model, the MC parameters changing
in time as a function of some specific low-frequency fluctuagi An alternative proposed method
is model nestingWWang and Nathar2002 Srikanthan2004 2005 Srikanthan and Pegrar009),
that implies the correction of the generated daily rainfalhg a multiplicative factor to compensate
the bias in the higher-scale statistics. These technigemsrglly allow a better reproduction of the
statistics up to the annual scale, but they imply the estimaif a more complex prior model and
cannot completely capture a complex dependence structure.

In this paper, we propose the use of some lower-frequencyriades of daily rainfall in a com-
pletely unusual framework: the Direct Sampling (DS) tecjuei Mariethoz et al.2010, which be-
longs to multiple-point statistics (MPS). Introduced®wyardiano and Srivastaya993 and widely
developed during the last deca&rebelle2002 Allard et al, 2006 Zhang et al.2006 Arpat and Caers
2007 Honarkhah and Caer201Q Straubhaar et gl201% Tahmasebi et 12012, MPS is a family
of geostatistical techniques widely used in spatial dataukitions and particularly suited to pattern
reproduction. MPS algorithms use a training image, i.e.tas#d to evaluate the probability distri-
bution (pdf) of the variable simulated at each point (in tiorespace), conditionally to the values
present in its neighborhood. In the particular case of thred@iSampling, the concept of training
image is taken to the limit by avoiding the computation of ¢baditional pdf and making a random
sampling of the historical dataset where a pattern simidahé conditioning data is found. If the
training dataset is representative enough, these teobsitpn easily reproduce high-order statistics
of complex natural processes at different scales. MPS heady been successfully applied to the
simulation of spatial rainfall occurrence patterigofcik et al, 2009. In this paper, we test the Di-
rect Sampling on the simulation of daily rainfall time-&exi The aim is to reproduce the complexity
of the rainfall signal up to the decennial scale, simulatirgoccurrence and the amount at the same
time with the aid of a multivariate dataset. Similar algamis performing a multivariate simulation
had been previously developed¥gung (1994 andRajagopalan and LaflL999 using a bootstrap-
based approach. As discussed in details in Se&i8nthe advantage of the Direct Sampling with
respect to the mentioned techniques is the possibility te bavariable high-order time-dependence,
without incurring excessive computation since the esionabf the n-dimensional conditional pdf
is not needed. Moreover, we propose a standard setup fdaltaimulation: an ensemble of auxil-
iary variables and fixed values for the main parameters redudy the Direct Sampling algorithm,
suitable for the simulation of any stationary rainfall tiseries, without the need of calibration. The

technique is tested on three time-series from differembadic regions of Australia. The paper is
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organized as follows: in Sectidhthe DS technique is introduced and compared with the egistin
resampling techniques. The dataset used, the proposqria®dithe method of evaluation are de-
scribed in Sectio®. The statistical analysis of the simulated time-seriesésg@nted and discussed
in Sectiond and Sectiorb is dedicated to the conclusions.

2 Methodology

In this section we recall the basics of multiple-point stits and we focus on the Direct Sampling

algorithm. The dataset used is then presented as well asdtids of evaluation.
2.1 Background on multiple-point statistics

Before entering in the details of the DS algorithm, let usddtice some common elements of MPS.
The whole information used by MPS to simulate a certain gedg based on th&aining Image
(T1) or training dataset: the dataset constituted of one or more variables used¢o tiné statistical
relations and occurrence probability of any datum in theuation. The Tl may be constituted of
a conceptual model instead of real data, but in the case ahthfall time-series it is more likely
to be a historical record of rainfall measurements. HBmaulation Grid (SG) is a time referenced
vector in which the generated values are stored during thelation. Following a simulation path
which is usually random, the SG is progressively filled withmgated values and becomes the
actual output of the simulation. Theonditioning data are a group of given data (e.g. rainfall
measurements) situated in the SG. Being already informedimulation occurs at those time-
steps. The presence of conditioning data affects, in treghborhood, the conditional law used for
the simulation and limits the range of possible patterns.SiVids well some MC based algorithm
for rainfall simulation (see Sectiol), may include the use @uxiliary variables to condition the
simulation of the target variable. Auxiliary variables mgiyher be known (fully or partially) and
used to guide the simulation, or they may be unknown butcgiéimulated because their structures
contains important characteristics of the signal. Forfadlitime-series, it could be for example:
covariates of the original or previously simulated datg.(he number of wet days in a past period),
a correlated variable for which the record is known, a thiéoakvariable that imposes a periodicity
or a trend (e.g. a sinusoid function describing the annumda®ality over the data). Finally, the
search neighborhood is a moving window, i.e. the portion of time-series locatedhe past and
future neighborhood of each simulated value, used to wettigedata event, i.e. the group of time-

referenced values used to condition the simulation.
2.2 The Direct Sampling algorithm

Classical MPS implementations create a catalog of the Iplesseighbors patterns to evaluate the

conditional probability of occurrence for each event wiglspect to the considered neighborhood.



95

100

105

110

115

120

This may imply a significant amount of memory and always kntite application to categorical
variables. On the contrary, the Direct Sampling generateb ®alue by sampling the data from
the TI where a sufficiently similar neighborhood exists. D& implementation used in this paper
is calledDeeSse (Straubhaar2011). The following is the main workflow of the algorithm for the
simulation of a single variable. For the multivariate case the last paragraph of this section.

Let us denotex = [z, ..., 2, ] the time vector representing the S+ [y1, ..., ym] the one repre-
senting the Tl and/(-) the target variable, object of the simulation, defined ahedement ofc and
y. Before the simulation begins, all continuous variablesrasrmalized using the transformation
Z v+ Z - (max(Z) —min(Z))~' in order to have distances (see s&jin the rang€0, 1]. During
the simulation, the uninformed time-steps of the SG ardedsin a random order. The random
simulation patht € {1,2,..., M} is obtained by sampling without replacement the discretform
distributionU (1,M) where M is the SG length. At each uninformegd the following steps are

executed:

1. The data everd(x;) = {Z(x14h,),-.-, Z(x14n, )} IS retrieved from the SG according to a
fixed neighborhood of radius R centeredgn It consists of at most N informed time-steps,
closest tox;. This defines a set of lagh = {h1,...,h, }, with |h;| < R andn <N. The
size ofd(x;) is therefore limited by the user-defined parameter N andvhgadle informed

time-steps inside the search neighborhood.

2. Arandom time-step; in y is visited and the corresponding data ewéfy; ), defined accord-
ing to H, is retrieved to be compared with{(z;).

3. AdistanceD(d(x:),d(y;)), i.e. a measure of dissimilarity between the two data eyésits

calculated. For categorical variables (e.g. the dry/wetfal sequence), it is given by the

formula:
1 Lif Z(x;) # Z(y;)
D(d(xt)ad( Z)) = - Qj, a; = (1)
WIZE 0 Y i e 200
while for continuous variables the following one is used:
D(d(r),dyi)) = = 317 (x;) ~ Z(y5) @

j=1
wheren is the number of elements of the data event. The elemeni$:§, independently
from their position, play an equivalent role in conditiogithe simulation oZ(x;). Note that,
using the above distance formulas, the normalization i;eetled for categorical variables,
while for the continuous ones it ensures distance8,it].

4. If D(d(z+),d(y;)) is below afixed threshold T, i.e. the two data events are seffitly similar,

the iteration stops and the datufiy; ) is assigned t& (z; ). Otherwise, the process is repeated
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from point2 until a suitable candidaté(y; ) is found or the prescribed TI fraction limit F is

scanned.

5. Ifa Tl fraction F has been scanned and the distdn@&z:),d(y;)) is above T for each visited
ys, the datumZ(y}) minimizing this distance is assigned X+ ).

This procedure is repeated for the simulation at eachntil the entire SG is covered. Figule
illustrates the iterative simulation using the Direct Séingpand stresses some of its peculiarities.
First, simulatingZ (x;) in a random order allows to be progressively populated at non-consecutive
time-steps. Therefore, the simulation at eaghcan be conditioned on both past and future, as
opposed to the classical Markov-chain techniques, thaa lisear simulation path starting from the

beginning of the series, allowing conditioning on past only
FIG.1 ABOUT HERE

In the early iterations, the closest informed time-stesius condition the simulation are located
far from 2, and its number is limited by the search window, i.e. conditig is mainly based on
large past and future time lags. On the contrary, the finadfiens dispose of a more populated SG,
conditioning is thus done on small time lags since only tlese$t N values are considered. This
variable time-lag principle may not respect the autocatieh on a specific time-lag rigorously, but
it should preserve a more complex statistical relationshipich cannot be explored exhaustively
using a fixed-dependence model.

The DS can simulate multiple variables together similaolyhte univariate case, dealing with a
vector of variablesZ (x;) and considering a data evady different for eachk-th variable, defined
by N, and R,. Unlike the implementation presented Mdriethoz et al.2010, DeeSse also uses
a specific acceptance thresholg fbr each variable. Poir of the algorithm is repeated until a
candidate with a distance below the threshold for all vdeslis found. If this condition is not
met, the scan stops at the prescribed Tl fraction F and tloe &r each candidatg; and k-th
variable is computed with the following formuldy, (v;) = (D(dk(x¢),dg(y:)) —Tk)T,;l, where
D(-,-) is defined as in Poir8. Finally, the candidate minimizinguax(E(y;)) is assigned t&Z ().
Note that the entire data vectdf(z,) is simulated in one iteration, reproducing exactly the same
combination of values found for all the variables at the dachfime-step, excluding the conditioning
data, already present in the SG. This feature, althougtciegthe variability in the simulation, has

been adopted to accurately reproduce the correlation keetwariables.
2.3 Comparison with existing resampling techniques

The resampling principle is at the base of some already pegptechniques for rainfall and hydro-
logic time-series simulation. There exist two principahfies of resampling techniques: the block
bootstrap Yogel and Shallcros4996 Srinivas and Srinivasa005 Ndiritu, 2011), which implies
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the resampling with replacement of entire pieces of tinr@&savith the aim of preserving the statis-
tical dependence at a scale minor than the blocks size, ardiearest neighbor bootstrap (k-NN),
based on single value resampling using a pattern similewi. This latter family of techniques,
introduced byEfron (1979 and inspired to the jackknife variance estimation, has segeral devel-
opments in hydrologyoung 1994 Lall and Sharmal994 Lall et al, 1996 Rajagopalan and Lall
1999 Buishand and Brandsma001, Wojcik and Buishand2003 Clark et al, 2004. Having dif-
ferent points in common with the Direct Sampling, its gehé&nr@mework is briefly presented in
the following. Each datum inside the historical record iarettterized by a vectat, of predictor
variables, analogous to the data event for the DS. For exanmplgenerateZ (z;) one could use
di =[Z(x1-1),Z(x¢—2),U(xs),U(x¢—1)], meaning that the simulation is conditioned to the 2 pre-
vious time-steps of and the present and previous time-stepé/ofa correlated variable. In the
predictor variables spad@, the historical data as well a(x;), which still has to be generated,
are represented as points whose coordinates are defingd Bpnsequently, proximity if® corre-
sponds to similarity of the conditioning patterns(z;) is simulated by sampling an empirical pdf
constructed on the k points closest4dz, ); the closer the point is, the higher is the probability to
sample the corresponding historical datum. Proposedti@rgof the algorithm include transforma-
tions of the predictor variables space, the applicatioreofi&l smoothing to the k-NN pdf to increase
the variability beyond the historical values, and diffarerethods to estimate the parameters of the
model, e.g. k and the kernel bandwidth.

Going back to the Direct Sampling, the similarities with KaIN bootstrap are: i) they both make
a resampling of the historical record conditioned by an eride of auxiliary/predictor variables; ii)
they both compute a distance as a measure of dissimilarttyele® the simulating time-step and
the candidates considered for resampling. Neverthelbess are several points of divergence in
the rationale of the techniques: i) in the k-NN bootstraf, distance is used to evaluate the re-
sampling probability, while in the DS it is used to evaludte tesampling possibility. This means
that, using the k-NN resampling, the conditional pdf is aciion of the distance, while in the DS
the distance is only used to define its support. In fact, utiegDS, the spacP is not restricted
to the k nearest neighbors but it is bounded by the distanesitblds: outside the boundary, the
resampling probability is zero, while inside, it followsetloccurrence of the data in the scanned TI
fraction, without being a function of the pattern resemb&nOnly in case of no candidate found,
the closest neighbor outside the bounded portioP & chosen for resampling. The latter can be
considered as an exceptional condition which usually doekead to a good simulation and seldom
occurs using an appropriate setup and training datasélsiig the DS, the conditional pdf remains
implicit, its computation is not needed: the historicaloetis randomly visited instead and the first
datum presenting a distance below the threshold is samflei. is an advantage since it avoids
the problem of the high-dimensional conditional pdf estiorawhich limits the degree of condi-

tioning in bootstrap techniqueSKarma and Mehrotr2010. iii) The k-NN technique considers a
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fixed time-dependence, while it varies during the simutatiothe case of the DS. iv) Finally, the
simulation path (in the SG) is always linear in the k-NN tegle, while it is random using the DS,
allowing conditioning on future time-steps of the targetable.

3 Application

The dataset chosen for this study is composed of three dailjail time-series from different cli-
matic regions of Australia: Alice Springs (hot desert), lwit very dry rainfall regime and long
droughts, Sydney (temperate), with a far wetter climatetduts proximity to the ocean, and Dar-

win (tropical savannah), showing an extreme variabilityneen the dry and wet seasons.
TAB.1 ABOUT HERE

Tablel presents the dataset used: the chosen stations providsideble record of about 70 years
for Darwin and Alice Springs and 150 years for Sydney. Anyggaptrends have been explicitly
kept to test the behavior of the algorithm with incompletenon-stationary datasets. The Direct
Sampling treats gaps in the time-series in a simple way: éathevent found in the Tl is rejected if
it contains any missing data. This allows incomplete tragnmages to be dealt with in a safe way,
but, as one could expect, a large quantity of missing dapecally if sparsely distributed, may lead
to a poor simulationMariethoz and Renar(P010 show how the Direct Sampling can be used for
data reconstruction.

Since rainfall is a complex signal exhibiting not only mdtiale time dependence but also inter-
mittence, the classical approach is to split the daily tsedes generation in two steps: the occur-
rence model, where the dry/wet daily sequence is generatad a Markov-chain, and the amount
model, where the rainfall amount is simulated on wet daysgian estimation of the conditional
pdf (e.g.,Coe and Sternl982. The simulation framework proposed here is radicallyediht: we
use the Direct Sampling to generate the complete timessiriene step, simulating multiple vari-
ables together. In particular, the Tl used is based on thedadly rainfall record and composed
of the following variables (Tabl@): 1) the average rainfall amount on a 365 days centered rgovin
window (365M A) [mm], 2) the sum of the current and the previous day amotég) [mm], 3)
and 4) two out-of-phase of triangular functioris1( and¢r2) with frequency 365.25 days, similar
to trigonometric coordinates expressing the position efdhy in the annual cycle, 5) the dry/wet
sequence, i.e. a categorical variable indicating the jpostif a day inside the rainfall pattern (1 =
wet, 0 = dry, 2 = solitary wet, 3 = wet day at the beginning ohaténd of a wet spell), 6) the daily
rainfall amount, which is the target of the simulation. Thetftwo auxiliary variables are covari-
ates used to force the algorithm to preserve the inter-dstruature and the day-to-day correlation,
which are known to exist a priori. The other ones are usedpoockice the dry/wet pattern and
the annual seasonality accurately. Moreover, any unkn@peidence in the daily rainfall signal is

generically taken into account in the simulation by usingacevent of variable length as explained
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in Section2.2 It has to be remarked that, apart from 3) and 4), which arevkndeterministic
functions imposed as conditioning data, the rest of thel@nyivariables are transformations of the
rainfall datum, automatically computed on the Tl and cotgated with the daily rainfall.

To summarize, the main parameters of the algorithm are fleving: the maximum scanned Tl
fraction Fe (0,1], the search neighborhood radius R, the maximum number ghhers N, both
expressed in number of elements of the time vector, and stardie threshold & (0,1]. Recall
that, apart from F, each parameter is set independenthafdr simulated variable. The setup shown
in Table2 is used together with & 0.5 and proposed as a standard for daily rainfall time-series. A
sensitivity analysis, not shown here, confirmed the geiteraf this setup which is not the result
of a numerical optimization on a specific dataset, but it teeain accordance to the criteria used
to define the order and extension of the variable time-degere] as shown below. Applying it to
any type of single-station daily rainfall dataset, the us®yuld obtain a reliable simulation without
needing to change any parameter or give supplementarymiation. An additional refinement of

the setup is also possible, keeping in mind the followingegeahrules:

— R limits the maximum time-lag dependence in the simulatioth should be set according to
the length of the largest sufficiently repeated structuréreguency in the signal that has to
be reproduced. Being interested to condition the simutatjwon the inter-annual fluctuations
(visible in the 10-years MA time-series in Figudg we set Rssars = Rrqin fair = 5000 for
the 365M .S and daily rainfall variables. We recommend keeping R belogv ltalf of the
training dataset total length, to condition on sufficiemypeated structures only. Regarding
dry/wet pattern conditioning, we prefer limiting the vdoia time dependence within a 21-
days window (R, = 10). This window should be set between the median and the mamwimu
of the wet spell length distribution, in order to properlytatathe continuity of the rainfall

events over multiple days.

— N controls the complexity of the conditioning structure also influences the specific time-lag
dependence. For instance, if one increases N, higher-degendencies are represented, but
the weight accorded to a specific neighbor in evaluatingigtaiice between patterns becomes
lower. This leads to a less accurate specific time-lag cimmditg, but a more complex time-
dependence is respected on average. For the rainfall arandB865M A variables, N« R
follows the same setup rule as fogR In this way, in the initial iterations, the conditioning
neighbors will be sparse in a 10001 days winddw= 5000) to respect low-frequency fluc-
tuations, whereas, in the final iterations, they will be eimtd in a N-days window to respect
the within-spell variability. The standard value propokede (Nygs5a74 = N3esara = 21) cor-
responds approximately to the spell distribution mediatihefDarwin time-series, remaining
in the appropriate range for the other considered clima@esversely, N,, is kept lower in
order to focus the conditioning on the small-scale dry/vadtgyn. Ny, =5 gave in general

the best result in terms of dry/wet pattern reproduction.
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— For2M S, trl andtr2, the time-dependence is limited to lag 1 by using=NR=1. This
combination should not be changed since we have no interegpianding or varying the time
lag-dependence for the mentioned variables.

— T determines the tolerance in accepting a pattern. Thetsétysanalysis done until now
on different types of heterogeneitiddéerschman et gl2013 confirmed that the optimum
generally lies in the intervd.01,0.07] (1 to 7% of the total variation). Higher T values
usually lead to poorly simulated patterns, but lower oneg mduce a bias in the marginal
distribution and increase the phenomenon of verbatim dapythe exact reproduction of an
entire portion of data by oversampling the same pattermiéngie TI. For these reasons, we

recommend keeping the proposed standard VAlue0.05 for all the variables.

— F should be set sufficiently high to have a consistent chofggatierns but a value close
to 1, i.e. all the Tl is scanned each time, may lower the vditalf the simulations and
increase the verbatim copy. Using a training dataset reptatve enough, the optimal value
corresponds to a Tl fraction containing some repetitiontheflowest-frequency fluctuation
that should be reproduced. Considering the randomnessofltiscan, the value & 0.5
chosen in this paper is sufficient to serve the purpose.

TAB.2 ABOUT HERE
3.1 Imposing a trend

As already shown inGhugunova and H2008 Mariethoz et al.201Q Honarkhah and Caer301Q

Hu et al, 2019, in case of a non-stationary target variable, the simutatian be constrained to
reproduce the same type of trend found in the Tl by making dissncauxiliary variable . The
one proposed here is the integer veclor [1,2,...,M], where M is the length of the time-series,
tracking the position of each datum inside the Tlis assigned to the SG as conditioning datum
with the following parameters: R=1, Ny =1 and T, = 0.01. According to the threshold I,
the sampling is therefore constrained to a neighborhooti®@fsame time-step inside the TI: for
example, in the Darwin case, being#¥26356 and T, = 0.01 (1% of the total variation allowed),
the sampling to simulateZ(x;) is constrained to the intervaj + 263 [days]. In this way, the
marginal distribution is respected, but the local varifpik restricted to the one found inside the
training dataset, reproducing the same trend. The follgwamarks are noteworthy: i) to avoid
an unnecessary restriction of the sampling, Should correspond to the maximum time interval
for which the target variable can be considered stationgryhe simulation should not be longer
than the training dataset, having no basis to extrapolatérémd in the past or future; iii) the local
variability is not completely limited by.: a pattern outside the tolerance range (i.e. with a distance
over the threshold) could be sampled if no better candidafuind.



3.2 Validation

To test the proposed technique the visual comparison oféhergted time-series with the reference
as well as several groups of statistical indicators areidensd. The empirical cumulative prob-
ability distributions, obtained using the Kaplan-Meietimsite Kaplan and Meigr1958, of the

305 daily, the annual and decennial rainfall time-series, iole@ by summing up the daily rainfall, are
compared using quantile-quantile (qg-) plots. Moreover hinimum moving average, i.e. the min-
imum value found on the moving average of each time-sesespinputed using different running
window lengths up to 60 years to assess the efficiency of timighm in preserving the long-term
dependence characteristics of the rainfall.

310 The daily rainfall statistics have been analyzed separ&tekach month considering the average
value of the following indicators: the probability of occence of a wet day and the mean, standard
deviation, minimum and maximum on wet days only. For instartise standard deviation is com-
puted on the wet days of each month of January, then the aveedge is taken as representative of
that time-series. We therefore obtain a unique value forgference and a distribution of values for

315 the simulations represented with a box-plot.

Another used validation criterion is the comparison of theahd wet spells length distributions.
Each series is transformed into a binary sequence with zenwesponding to dry days and ones
to the wet days. Then, counting the number of days inside daclnd wet spell, we obtain the
distributions of dry and wet spells length, that can be camgasing qg-plots. This is an impor-

320 tantindicator since it determines, for example, the efficieof the algorithm in reproducing long
droughts or wet periods.

Since the DS works by pasting values from the Tl to the SG strsightforward to keep track of
the original location of each value in the training imagesu€cessive values in the Tl are also next
to each other in the SG, then a patch is identified. A multippbe-plot is then used to represent the

325 number of patches found in each realization as a functioh@ftch length to keep track of the
verbatim copy effect.

The last group of indicators considered is the sample Pa&titocorrelation Function (PACF)
(Box and Jenkins1976 of the daily, monthly and annual rainfall. Given a timeissrX,, the
sample PACF is the estimation of the linear correlation xnoletween the datum at timeand the

330 ones at previous time-steps- h, without considering the linear dependence with the iwben
observations. For a stationary time-series the sample R&\&Fpressed as a function of the time-lag
h with the following formula:

ﬁ(Xtah) = COW’[Xt - E(Xt|{Xt—la ---,Xt—h+1}),Xt—h - E(Xt—h|{Xt—h+1, ---7Xt—1})] (3)

whereE(X|{X;_1,..., X;_n+1}) isthe best linear predictor knowing the observatiohis_1, ..., X;_ 41}
335 p(h) varies in[0, 1], with high values for a highly autocorrelated process. Tinikcator is widely

used in time-series analysis since it gives informatiorualite persistence of the signal. The auto-

10



correlation function could be used instead, but PACF isgretl here since it shows the autocorre-
lation at each lag independently. In the case of daily rédlirtfae partial autocorrelation is usually
very low, while the higher-scale rainfall may present a morportant specific time-lag linear de-
340 pendence. As usually done in the absence of any prior kngeledoutX,, the5 —95% confidence
limits of an uncorrelated white noise are adopted to assessignificance of the PACF indexes.
Since the time-series used in this paper are not necesstatignary, any sample PACF is computed
from the standardized signal?, obtained by applying moving average estimationand standard
deviations; filters with the following formula:
X X ) Y X S= @)Y el bl <t <nng

St . ;
Jj=—q Jj=—q

345 (4)

whereq = 2555 (15 years centered moving window). It is important to not this operation may
exclude from the PACF computation a consistent part of tipeaig + 1 < ¢t < n—q), especially on
the higher time-scale. In the case of the datasets usednthmktime-series is reduced to less than
60 values for Alice Springs and Darwin: a barely sufficiengigtity, considering that the minimum

350 amount of data for a useful sample PACF estimation suggésté®bx and Jenking1976 is of
about 50 observations.

4 Results and discussion

To evaluate the proposed technique, a group of 100 reaimtf the same length as the reference
is generated for each of the 3 considered datasets to obsaifficiently stable response in both the

355 average and the extreme behavior. The setup used is the esenped in Sectio with the fixed
parameters values shown in TaBleThe obtained results are shown and discussed in the folgpwi
section.

4.1 Visual comparison

Figure2 shows the comparison between random samples from bothnttudesed and the reference

360 time-series. For each dataset, the generated rainfalslgokilar to the reference: the extreme
events inside the 10-years samples are reproduced withedogas frequency and magnitude. The
annual seasonality, particularly pronounced in the Daseines, is accurately simulated as well as
the persistence of the rainfall events, visible in the 189sdsamples. These aspects are evaluated
guantitatively in the following sections.

365 FIG.2 ABOUT HERE
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4.2 Multiple-scale probability distribution

The qg-plots of the rainfall empirical distributions areepented in Figur8, where all the range

of quantiles is considered. The distribution of the dailinfall (computed on wet days only) is

generally respected, although some extremes that arenpresly once in the reference and, in
particular, at the start or end of the time-series, may npéapin the simulation. Itis the case of the
Darwin series, with a mismatch of the very upper quantilesrédver, the DS being an algorithm
based on resampling, the distribution of the simulatedasls limited by the range of the training
dataset: this is shown in the Alice Springs and Sydney qtgplehere the distribution of the last
quantiles is clearly truncated at the maximum value founithénreference. This result is normally
expected using this type of techniques: the direct sampsingf course not able to extrapolate

extreme intensities higher than the ones found in the Tlastale of the simulated signal.
FIG.3 ABOUT HERE

On the contrary, the distribution of the rainfall amount e solitary wet days is accurately re-
spected, with some realizations including higher extretnas the reference. More importantly, the
annual and 10-years rainfall distributions are corre@froduced and do not show over-dispersion.
This phenomenon, common among the classical techniqued lbasdaily-scale conditioning, con-
sists in the scarce representation of the extremes andestoheation of the variance at the higher
scale. This problem is avoided here because a variable depeais considered, up to a 5000-days
radius on the365M A auxiliary variable, that helps preserving the low-freguefiuctuations. We
also see that, at this scale, the DS is capable of generatiregees higher than the ones found in the
reference, meaning that new patterns have been generatgdius same values at the daily scale.
This results is purely based on the reproduction of higlatespatterns: the acceptance threshold
value chosen for th865M A auxiliary variable allows enough freedom to generate neitepas
although maintaining an unbiased distribution. Nevegbg| this approach is not meant to replace a
specific technique to predict long recurrence-time evargayatemporal scale, since it is not focused
on modeling the tail of the probability distribution.

4.3 Annual seasonality and extremes

Figure4 shows the principal indicators describing the annual sesiy of the reference and the
generated time-series: each different season is acouraf@ioduced by the algorithm, with almost
no bias. The probability of having a wet day, usually impobgda prior model in the classical
parametric techniques, is indirectly obtained by sampfiogn the rainfall patterns of the appro-
priate period of the year. This goal is mainly achieved usirgauxiliary variable¢r1 and¢r2 as

conditioning data (see Secti@h

FIG.4 ABOUT HERE
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The simulation of the average extremes, shown in Figuadso follows the reference rather accu-

rately.

FIG5ABOUT HERE
4.4 Rainfall patterns and verbatim copy

The statistical indicators regarding the dry/wet pattsir@vn in Figuré demonstrate the efficiency
of the proposed DS setup in simulating long droughts or webde according to the training dataset:
the dry and wet spells distributions are preserved and mesehigher than the ones present in the
Tl are also simulated.

The verbatim copy box-plots show the distribution of thedigeries pieces exactly copied from
the Tl as a function of their size for the ensemble of the zadilbons: the number of patches decreases
exponentially with their size. The phenomenon is mainlyitét to a maximum of few 8-days
patches, with isolated cases up to 14 days.

The 10-years rainfall moving sum, shown at the bottom of Feé@uillustrates the low-frequency
time-series structure: the quantiles of the simulatioreaah time-step confirm that the overall vari-
ability is correctly simulated, but the local fluctuatiors bt match the reference. For example, the
Darwin reference series shows a clear upward trend whiabtisnesent in the superposed randomly-
picked DS realization. Generally, the Tl is supposed to bgmstary or the non-stationarity should
be at least described by an auxiliary variable. If it is na tase, as for the Darwin time-series,
the algorithm honors the marginal distribution of the refare, but it does not reproduce a specific
trend. This problem is treated separately in Secdigh

FIG.6 ABOUT HERE

The minimum moving average on different window lengths upQqears (Figur&) gives infor-
mation about the long-term structure of rainfall. The zeatues are in accordance with the dry spell
distribution shown in Figuré: for example, Alice Springs presents a zero minimum moviegage
until 5 months, meaning that it contains dry spells of thisglda. Alice Springs and Sydney show
a very different long-term structure: the former with lony dpells, the latter with a wider range
of minimum values. Darwin presents the peculiarities ohbimates with a sharp rising from the

annual to the 60 years scale.
FIG.7 ABOUT HERE

According to this indicator, the simulation of the long#testructure is fairly accurate. The negative
bias, lower than 0.mm, shows a modest tendency to underestimate the minimum evierage

from the annual to the decennial scale for wet climates as&yend Darwin.
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4.5 Linear time-dependence

The specific linear time-dependence of the generated arcerefe signals has been evaluated at

different scales using the sample Partial Autocorreldionction (PACF, Figur8, Equatiord).
FIG.8 ABOUT HERE

At the daily scale, the data show the same level of autoadiogl at lag-1 and a low but signifi-
cant linear dependence until lag 3 for Alice Springs and 8ydwhile Darwin presents a longer
tailing which asymptotically approaches the confidencenlgwf an uncorrelated noise. The DS
simulation shows a tendency to a slight underestimatioh@fidg-1 PACF, with a maximum error
around 0.1 for Sydney. Since the algorithm operates in agasametric way and imposes a variable
time-dependence, the eventuality of modifying the strectf the daily signal cannot be excluded
a priori, for this reason the PACF has been calculated upeaa@th lag, assuring that no extra
linear-dependence has been introduced.

At the monthly scale, the linear time-dependence strudgsuwckearly related to the annual season-
ality, with a negative autocorrelation around lag 6 and atpesone around lag 12. The climate
characterization is also evident: from Alice Springs to\Wiarwe see a more marked seasonality re-
flected in the PACF. The simulation follows the referenceyaiell, with a maximum error around
+0.1.

At the annual scale, the limited length of the time-seriesl$to wider confidence bounds for the
non-significant values (see secti®). The reference does not show a clear linear time-deperdenc
structure which is not similarly reproduced by the simwati Some more relevant discrepancy is
presentin the Darwin series, showing a more discontinumustsre. However, using such a limited
dataset for the time scale considered here, it is difficultatermine if the reference PACF is really
indicative of an effective linear dependence.

4.6 Non-stationary simulation

Figure9 shows the Darwin time-series simulation preserving thessaom-stationarity contained in
the reference by using the technique proposed in Se8tibrThe 10-years moving sum plot shows
that the trend and low-frequency fluctuation present in gierence are accurately simulated: the
median of the realizations follows the reference and a bditiaof about 4m between the 5-th and
95-th percentile is present. Regarding the other considstagistical indicators, the performance
appears to be essentially the same as for the stationaryesiomu the only remarkable difference is

a modest positive bias in the maximum wet periods length.
FIG.9 ABOUT HERE

The fact that, to impose the trend, the sampling is resttiie local region of the reference reduces

the local variability with respect to the stationary sintida. Consequently, a modest increase of the
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verbatim copy effect occurs.

This technique can find application in cases where a spedafiestationarity extended to high-
order moments should be imposed, e.g. exploring the uniegriaf a given past or future scenario,
where a simple trend or seasonality adjustment is insufficG@d an overly complex parametric

model would be necessary to preserve the same long-termibeha

5 Conclusions

The aim of the paper is to present an alternative daily rdisfaulation technique based on the
Direct Sampling algorithm, belonging to multiple-poinasstics family. The main principle of the
technique is to resample a given dataset using a patteiitastyrule. Using a random simulation
path and a non-fixed pattern dimension, the technique alioywssing a variable time-dependence
and reproducing the reference statistics at multiple scdlee proposed setup, suitable for any type
of rainfall, includes the simulation of the daily rainfalrte-series together with a series of auxiliary
variables including: a categorical variable describing diny/wet pattern, the 2 days moving sum
which helps respecting the lag-1 autocorrelation, the 3 dnoving average to condition upon
inter-annual fluctuations and two coupled theoreticalquéd functions describing the annual sea-
sonality. Since all the variables are automatically coragdtom the rainfall data, no additional
information is needed.

The technique has been tested on three different climatéaistialia: Alice Springs (desert),
Sydney (temperate) and Darwin (tropical savannah). Witlsbanging the simulation parameters,
the algorithm correctly simulates both the rainfall ocemce structure and amount distribution up
to the decennial scale for all the three climates, avoidirggproblem of over-dispersion, which
often affects daily-rainfall simulation techniques. Bgibased on resampling, the algorithm can
only generate data which are present in the training dathsethey can be aggregated differently,
simulating new extremes in the higher-scale rainfall arydvaet pattern distributions. The technique
is not meant to be used as a tool to explore the uncertairdayeckto long recurrence-time events,
but rather to generate extremely realistic replicates efd&itum, to be used as inputs in hydrologic
models.

Reproducing the specific trend found in the data is also plesbly making use of an additional
auxiliary variable which simply restricts the sampling tdoaal portion of the TI. This way, any
type of non-stationarity present in the Tl is automaticaiiyposed on the simulation. The Darwin
example demonstrates the efficiency of this approach ideming 100 different realizations show-
ing the same type of trend and marginal distribution. Thtsgean be useful to simulate multiple
realizations of a specific non-stationary scenario regasdbf its complexity.

In conclusion, the Direct Sampling technique used with tfeppsed generic setup can produce

realistic daily rainfall time-series replicates from @ifént climates without the need of calibration or

15



additional information. The generality and the total audtion of the technique makes it a powerful

tool for a routine use in scientific and engineering appidcet.
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Fig. 1. Sketch of the sequential simulation of a rainfall time-semerformed by the Direct Sampling: the
dashed rectangle represents the search neighborhoodus Rydhe datum being simulated is in green and the

ones composing the data event are in red. Note the non-exadchretween the data event in the SG and the

one inthe TI.

Table 1. Summary of the dataset used.

Location Station Period [years] Record length [days] Miggiata [days]
Alice Springs A.S.Airport 1940-2013 26347 305

Sydney S.Observatory Hill 1858-2013 56662 184

Darwin D.Airport 1941-2013 26356 0
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Fig. 2. Visual comparison between the simulated2dd the refereaite rdinfall [mm] time-series: 10-years
(left column) and 100-days (right column) random samples.



Alice Springs Sydney Darwin
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Alice Springs Sydney Darwin
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Fig. 4. Box-plots of the average wet days probability, mean dailpfedl amount jnm] and its standard
deviation per month. The solid line indicates the reference
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Fig. 5. Box-plots of the average extremes per monthi{]. The solid line indicates the reference.
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Alice Springs Sydney Darwin

wet spells size qgplot
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Fig. 6. Main indicators describing the rainfall pattern: qqg-plofghe dry and wet spellsihys] distributions,
verbatim copy box-plots as function of the patch sizeyls] and daily 10-years Moving Sumi\{.S) time-series
[mm] of the reference (black line), median, 5-th and 95-th petite of the realizations (gray lines) and a
randomly picked simulation (dashed blue line).
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Alice Springs Sydney Darwin
minimum moving average
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Fig. 7. Minimum moving average of daily rainfalhjm] for different running window lengths (days, months

or years). The solid line indicates the reference.
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Fig. 8. Sample Partial Autocorrelation Function (PACF) of the yaihonthly and annual rainfall signal: the
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indexes (dashed lines).
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o4 x 10" Non-stationary Darwin simulation
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Fig. 9. Darwin daily rainfall non-stationary simulation: 10-yeavloving Sum time-series (top) of the reference
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Table 2. Standard setup proposed for rainfall simulation. The patars are: search window radius R, max-
imum number of neighbors N and distance threshold T. Theabbes are: 1) the 365 days Moving Average
(365M A), 2) the Moving Sum of the current day and the one befafe §), 3) and 4) annual seasonality
triangular functions#1 andt¢r2), 5) the dry/wet sequencéw and 6) the daily rainfall amount as the target

variable. On the right, a portion of multivariate Tl is givas example.

Variable R N T

1)365MA 5000 21 0.05 M
2)2MS 1 1 005

3)trl 11 005 o
4y tr2 1 1 005 T~ )
5) dw 10 5 0.05 WMWMMMWMMMM—
6)rainfall 5000 21 0.5 sitial, Lttty
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