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Abstract:  12 

In eastern East Africa (the southern Ethiopia, Eastern Kenya and southern Somalia region), poor 13 

boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 14 

contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits 15 

in this region on seasonal and decadal time frames can help decision makers implement disaster 16 

risk reduction measures while guiding climate-smart adaptation and agricultural development. 17 

Building on recent research that links more frequent East African droughts to a stronger Walker 18 

Circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west 19 

sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant 20 

modes of East African boreal spring rainfall variability are tied to SST fluctuations in the 21 

western-central Pacific and central Indian Ocean, respectively. Variations in these two rainfall 22 

modes can thus be predicted using two SST indices – the West Pacific Gradient (WPG) and 23 

Central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-24 

validated skill (rcv≈0.6). In contrast, the current generation of coupled forecast models show no 25 
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skill during the long rains. Our SST indices also appear to capture most of the major recent 26 

drought events such as 2000, 2009 and 2011.  Predictions based on these simple indices can be 27 

used to support regional forecasting efforts and combined with more sophisticated coupled 28 

modeling systems and land surface data assimilations to help inform early warning and guide 29 

climate outlooks. 30 

1. Introduction 31 

1.1 How understanding trends can lead to better drought predictions 32 

Since 2003, scientists from the University of California, Santa Barbara’s Climate Hazards 33 

Group, the U.S. Geological Survey, the Universitat de Barcelona, the National Ocean and 34 

Atmospheric Administration’s (NOAA) Earth System Research Laboratory, Physical Science 35 

Division, Climate Analysis Branch, and the National Aeronautics and Space Agency have been 36 

working to improve the US Agency for International Development’s Famine Early Warning 37 

System Network’s (FEWS NET) drought early warning capabilities for Eastern Africa.  In this 38 

introduction, we describe how our deepening understanding of boreal spring rainfall trends can 39 

lead to useful new SST indices that support better drought prediction. 40 

Early FEWS NET research focused on developing better Ethiopian rainfall archives and 41 

historical time series, which revealed substantial 1980-2004 rainfall declines in key crop growing 42 

areas in the southern half of the country (Funk et al., 2003). Further diagnostic analysis of sea 43 

surface temperatures (SST) and precipitation (Verdin et al., 2005;Funk et al., 2008;Hoell and 44 

Funk, 2013a, b;Lyon and DeWitt, 2012;Williams and Funk, 2011) suggested that the recent 45 

appearance of more very warm areas (>29°C) in the south-central Indian Ocean and equatorial 46 

western Pacific has led to an increase in local precipitation over the ocean but reduced rainfall 47 
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over Eastern Africa via a Rossby wave-like (Gill, 1980) atmospheric response.  One study (Funk 48 

et al., 2008) examined the canonical correlation between moisture transports over Eastern Africa 49 

and reanalysis precipitation over the Indian Ocean and found that increased precipitation over the 50 

south Central Indian Ocean (CIO, 0-15°S, 60-90°E) is associated with decreased easterly low-51 

level moisture flows into the Horn of Africa. Further confirmation of this relationship was 52 

obtained from a simulation using the Community Atmospheric Model (CAM), which suggested 53 

that anomalous diabatic heating over the Indian Ocean reduced and reduced onshore moisture 54 

transports (Funk et al. 2008).  55 

These diagnostic analyses were later extended by using a combined Principal Component 56 

Analysis (PCA) based on zonal surface winds, 500 hPa vertical velocities, rainfall and SSTs over 57 

the tropical Indo-Pacific Area (IPA) (Williams and Funk, 2011). The leading principal 58 

component (PC) was shown to represent a low frequency oceanic warming signal associated 59 

with an enhancement of the Indian branch of the Walker circulation and with declining rainfall in 60 

Eastern Africa and the central equatorial Pacific. Specifically, figures 7 and 8 of Williams and 61 

Funk (2011) identified enhanced low level convergence and increases in convection over the 62 

warm pool, subsidence over the eastern Horn, westerly surface zonal wind anomalies over the 63 

northern equatorial Indian Ocean, and reductions in total atmospheric precipitable water over 64 

Eastern Africa. 65 

While the 1st mode of Williams and Funk’s (2011) combined PCA exhibited a strong secular 66 

trend and tracked closely with global average temperatures (r=0.86), the 2nd mode varied on 67 

interannual time scales and was strongly related to the El Niño-Southern Oscillation (ENSO), 68 

with a negative correlation of -0.75 between its time series and the Niño 4 SST index (5°S-5°N, 69 
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160°E-150°W).  Like the IPA PC1 ‘trend mode’, the 2nd mode (in one of its phases) was 70 

associated with drying over East Africa via anomalies in the Indian Ocean Walker circulation  71 

The IPA PC1, which was linked to warming in the Indo-Pacific warm pool, appeared to be 72 

associated with East African drought in two ways. First, PC1 helps explain the downward 1980-73 

2009 rainfall trends across the eastern portions of the Greater Horn of Africa. Second, it was 74 

hypothesized that the enhanced subsidence associated with the increasing PC1 mode would be 75 

even stronger when occurring in combination with a La Niña event. Indeed, La Niña events also 76 

produce increased upward motion over the equatorial Indo-Pacific and increased subsidence and 77 

higher surface pressures over East Africa (Nicholson and Kim, 1997;Nicholson and Selato, 78 

2000;Ogallo, 1988). To test this hypothesis, 1950-2009 La Niña events were categorized into 79 

warm Warm Pool and cool Warm Pool groups (based on the IPA PC1) and composited. 80 

Composites of La Niña events displayed a much stronger negative precipitation anomaly over 81 

Eastern Africa when the Warm Pool was warmer. Since the Warm Pool has exhibited a strong 82 

increase in temperature over the past few decades, this corresponded with a stronger La Niña 83 

teleconnection in the recent period (Williams and Funk, 2011). In particular, over eastern East 84 

Africa composites of low PC1/La Niña events had standardized precipitation index (SPI) 85 

(McKee et al., 1993) values of about -0.1, while composites of high PC1/La Niña events had SPI 86 

values ranging from -0.4 to -0.8. In the summer of 2010, when our NOAA partners predicted that 87 

there was a high probability for the development of a strong La Niña, FEWS NET used 88 

composites of high PC1/La Niña events to provide early warning of the devastating 2011 drought 89 

(Ververs, 2011). 90 

In 2012, new research (Lyon and DeWitt, 2012) suggested that a 1998 shift in Pacific SSTs 91 

had played an important role in increasing the intensity of the Walker circulation, thereby drying 92 
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eastern East Africa. In that study several sets of atmospheric general circulation model (GCM) 93 

simulations were run to isolate the Indian and Pacific effects. Indian Ocean forcing produced 94 

anomalous circulations similar to those identified in prior FEWS NET analyses of Indian Ocean 95 

influences (Funk et al., 2008;Funk et al., 2005;Jury and Funk, 2013;Verdin et al., 2005;Williams 96 

et al., 2011). The Pacific Ocean forcing effects were consistent with those identified in the IPA 97 

analysis of Williams and Funk (2011).  98 

In 2013 and 2014, FEWS NET scientists built on Williams and Funk (2011) and Lyon and 99 

DeWitt (2012) to better explain these teleconnections. Hoell and Funk (2013a) showed that a 100 

stronger West Pacific SST Gradient (WPG) combined with La Niña conditions produced 101 

stronger East African drying. Hoell and Funk (2013a) defined the WPG as the difference 102 

between standardized SST in the Niño 4 region (160°E-150°W, 5°S-5°N) and the western Pacific 103 

(WP, 130-150°E, 0-20°N). Because the standard deviation of WP SST is substantially less than 104 

Niño 4 SST (0.35°C versus 0.7°C) a one degree WP anomaly will have a greater influence on the 105 

WPG index. The physical justification for this is the greater dynamic response associated with 106 

very warm WP SSTs (Folkins and Braun, 2003).  107 

The WPG analysis of Hoell and Funk (2013a) is similar to Williams and Funk (2011), but 108 

offers a more transparent physical mechanism: a strong WPG combined with a cold eastern 109 

Pacific produces a strong SST gradient spanning the entire Pacific basin; stronger SST gradients 110 

are known to produce larger circulation changes (Lindzen and Nigam, 1987). The temporal 111 

response of the WPG combines the long term warming trend of the WP (Funk, 2012) with the 112 

strong ENSO-related variations of the Niño 4 regions.  113 

Recent analyses of atmospheric climate model simulations (Funk et al., 2013;Liebmann et 114 

al., 2014) have shown the link between the WPG and low east African rainfall. Here we explore 115 
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the utility of this index as a basis for predicting the first principal component of East African 116 

boreal spring precipitation. Recent assessments (Nicholson, 2014a) have examined multivariate 117 

predictions of East African long rains; our objective here is not to replicate this work, but rather 118 

to examine forecasts based on indices linked to our process-based studies of the effects of 119 

stronger Pacific SST gradients. Since global climate models have almost no skill forecasting the 120 

long rains (Mwangi et al., 2014), the modest cross-validated skills we find here is still likely to 121 

be useful.  122 

The WPG and CIO indices, furthermore, can link the process-based studies discussed above 123 

with the requirements of real time monitoring and climate diagnostics and analyses. Such 124 

analysis helped FEWS NET identify analog years and effectively communicate risks to decision 125 

makers in 2011 (Ververs, 2011) and 2012 (US, 2012). Our main point is that there are important 126 

climate indices, beyond the well-known Niño 3.4 (Indeje et al., 2000) and the Indian Ocean 127 

Dipole (IOD) indices (Saji et al., 1999), that can inform East African climate outlooks such as 128 

the Greater Horn of Africa Climate Outlook Fora. While these other indices are good indicators 129 

of the region’s boreal fall ‘short’ rains, the WPG may be preferable during boreal spring because 130 

of the high sensitivity this season exhibits to WP and Niño 4 SST. 131 

1.2 Climate change and Pacific decadal variability (PDV) 132 

Long rain declines have been confirmed by many recent studies (Funk et al., 2012;Liebmann 133 

et al., 2014;Lyon and DeWitt, 2012;Viste et al., 2012), and corroborated by analyses of 134 

Normalized Difference Vegetation Index imagery (Pricope et al., 2013) and satellite observed 135 

soil moisture (Omondi et al., 2013). Omondi et al. (2013) identify a large post-2005 decline in 136 

Gravity Recovery and Climate Experiment (GRACE) soil moisture values over the Greater 137 

Horn. These declines appear consistent with the detailed 2008-2011 drought analyses provided 138 
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by Nicholson (Nicholson, 2014b). The source of the SST forcing behind recent East African 139 

rainfall declines, however, continues to be a matter of considerable debate.  140 

One interpretation (Funk et al., 2013) is that the recent strengthening of the WPG, Warm 141 

Pool precipitation increases, and related East African precipitation declines, is a function of 142 

anthropogenic warming in the WP combined with natural decadal cooling in the central Pacific. 143 

Both the WP SST (Hoell and Funk, 2013b) and the WPG (Hoell and Funk, 2013a) have 144 

increased dramatically over the past thirty years, increasing the frequency of droughts and the 145 

number of opportunities for drought prediction. Hoell and Funk (2013b) compare the influence 146 

of WP, IOD and ENSO influences on boreal spring East African rainfall, and find that WP 147 

drought influences tend be as strong as or stronger than IOD and ENSO. This view implies that 148 

WP warming is largely anthropogenic and has contributed to recent East African drying. 149 

An alternative interpretation (Lyon et al., 2013;Yang et al., 2014) suggests that the dominant 150 

driver of recent East African has been PDV, interpreted as linearly detrended ENSO-residual 151 

changes in Pacific SST. Lyon et al. (2013) make a convincing and important case for the large 152 

dynamic response associated with the tropical SST anomaly pattern found in detrended ENSO-153 

residual SST. The research presented in Lyon and DeWitt (2012), furthermore, helped motivate 154 

the gradient analyses leading to this current publication. The research presented here, however, 155 

suggests that i) most of the recent ‘decadal’ variability in detrended western Pacific SST arises 156 

due to anthropogenic warming, so that ii) decadal East African long rains variability can best be 157 

described by a combination of a recent secular decline and decadal variations. We furthermore 158 

(iii) suggest that an understanding of the greater sensitivity of East African precipitation to WP 159 

versus Niño 4 warming may help support more effective precipitation forecasts. 160 

1.3 Paper organization 161 
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This paper is organized as follows. Section 2 describes our datasets. Section 3.1 describes our 162 

two prediction targets: the first and second principal components (PC1 and PC2) of East African 163 

precipitation for the 1981-2013 time period, estimated using the new 0.05°x0.05° gridded 164 

Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data (Funk et al., 2014). 165 

We first briefly describe the CHIRPS precipitation dataset; then we explore the pattern and time 166 

series associated with the first two principal components during the March-May season. Spatial 167 

correlations (Section 3.2) between these principal components and antecedent (January) SST 168 

show that the leading spatial pattern (PC1) exhibits Pacific SST gradients similar to the WPG 169 

(Hoell and Funk, 2013a) and correlation structures between East African precipitation and SSTs 170 

(Funk et al., 2013;Liebmann et al., 2014;Tierney et al., 2013). The second mode SST correlation 171 

structure (PC2), on the other hand, is similar to the patterns found in earlier studies (Funk et al., 172 

2008;Funk et al., 2005) focused on the CIO.  In Section 3.3 we show that the WPG and CIO 173 

indices can be useful large scale climate indicators when used to predict PC1 and PC2. We relate 174 

PC1 to the WPG, and PC2 to CIO SST. We then show that these simple indices provide a 175 

reasonable basis for forecasting some East Africa precipitation extremes. Section 3.4 provides a 176 

case study forecasting the 2014 long rains. Section 3.5 provides a brief analysis of long term 177 

changes in WPG SSTs in both observations and model simulations. Section 4 summarizes our 178 

results. 179 

2. Data  180 

This study focuses mainly on the relationships between CHIRPS March-May rainfall over a 181 

region extending across the southern Arabian peninsula and eastern East Africa (25°E-55°E, 182 

13°S-20°N) and January NOAA Extended Reconstruction version 3b SST (ER3b) (Smith et al., 183 

2008). The CHIRPS study precipitation region was selected based on i) the climatological 184 
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importance of March-May rainfall, ii) a known sensitivity to Indo-Pacific forcing and iii) high 185 

underlying levels of food and water insecurity. The study focuses on Yemen, Djibouti, Eritrea, 186 

Ethiopia, Somalia, Kenya, and Tanzania.  187 

The 1981-2013 CHIRPS data set (Funk et al., 2014) combines satellite cold cloud duration 188 

rainfall estimates with gauge observations and a high resolution (0.05°) precipitation 189 

climatology. Comparisons between the CHIRPS fields and two state-of-the-science data sets: the 190 

Global Precipitation Climatology Centre data set (Schneider et al., 2013) and the Global 191 

Precipitation Climatology Project (Adler et al., 2003) data sets, reveal a reasonable level of 192 

correspondence among all three data sources. We compare the major modes of variability 193 

(principal components) of the March-May CHIRPS with January SSTs from the Extended 194 

Reconstruction version 3b SST (ER3b) (Smith et al., 2008).  195 

The final section of the analysis presented here considers a longer time span (1920-2013) 196 

using the gridded Global Precipitation Climatology Centre (GPCC) dataset. The analysis was not 197 

pushed further back in time because of concerns about the limited and poor quality East African 198 

station data (Liebmann et al., 2013).  This final section also uses an ensemble of 53 Phase 5 199 

Coupled Model Intercomparison Project (CMIP5) simulations from 14 models (Taylor et al., 200 

2011).  In these runs, coupled atmosphere-ocean general circulation models are initialized, 201 

allowed to spin up for several hundred years, and then used to simulate climate from 1850 202 

onward. The models are driven by observed changes in greenhouse gasses, solar insolation and 203 

aerosols. The models used are listed in Table 1. These CMIP5 simulations were obtained from 204 

the Royal Netherlands Meteorological Institute’s Climate Explorer.  205 

3. Results 206 

3.1 CHIRPS principal component patterns and time series 207 
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Principal component analysis (PCA) provides a way of compactly summarizing the spatio-208 

temporal variations in data sets. PCA produces matched sets of principal component time series 209 

and spatial patterns (loading maps, based on the covariance matrix). The first principal 210 

component time series and associated pattern describes the largest possible amount of the 211 

variance by aggregating locations that tend to be positively or negatively correlated with each 212 

other.  At a given time step, multiplying the PC1 time series value by the associated first 213 

principal component loading map produces the partial contribution of that PC to total rainfall. 214 

This process can be repeated for the second component, which explains most of the remaining 215 

variance of the data, after the first principal component has been removed. We will predict the 216 

leading two March-May PC1 and PC2 time series using January WPG and CIO SST indices and 217 

then use these two components to generate March-May rainfall prediction maps. The January 218 

SST data was chosen as a predictor because the East African climate experts typically gather in 219 

mid-February at the Greater Horn of Africa Climate Outlook Forum (GHACOF) to produce a 220 

regional forecast for East Africa. PCA provides an alternative to the definition, analysis and 221 

prediction of homogeneous rainfall areas (cf. Nicholson 2014a). For most forecasting 222 

applications, analysis of homogeneous areas is preferable. We have used PCA values in this 223 

illustrative study because they provide, by definition, representative time series that describe the 224 

highest possible precipitation variance. They therefore provide insight into regional 225 

precipitation-SST relationships, and can help benchmark forecast relationships used in regional 226 

land surface models as in Shukla et al. (2014ab). 227 

Figure 1 shows the first and second principal component maps and time series for our 228 

extended East African region. The principal components were calculated based on the 1981-2013 229 

covariance matrix. PC1 and PC2 explained 26% and 12%, respectively, of the total rainfall 230 
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variance in the study region. Experiments with different spatial domains indicated very little 231 

(substantial) sensitivity to variations in the north-south (east-west) limit and size of domain, 232 

especially for PC1. This sensitivity, and the temporal loading patterns of PC1, indicate that we 233 

are primarily focusing on the eastern East Africa region identified as a homogenous area by 234 

Nicholson (2014a) and Liebmann et al. (2014). 235 

Figures 1a and 1b show the changes in standardized precipitation associated with PC1 and 236 

PC2. The spatial loading patterns have been scaled by the 1981-2013 trends in PC1 and PC2, and 237 

then divided by the standard deviation of rainfall at each location. This provides an estimate of 238 

the 33-year change in the standardized precipitation associated with the first and second mode.  239 

The linear trend in PC1 is significant (p=0.03), the trend in PC2 is not (p=0.11).  240 

This can help us understand the contributions of changes in the first and second principal 241 

components to the total observed trends (shown in Fig. 1c). Standardized changes are shown to 242 

shown to emphasize the emergent food security risks in the red areas of Fig. 1c. In these regions 243 

rainfall has decline by more than half a standard deviation, greatly increasing the frequency of 244 

below normal crop and pasture conditions.  245 

Figure 1a indicates substantial rainfall declines associated with PC1, extending from northern 246 

Tanzania through Yemen, with the strongest standardized declines being found just north of the 247 

equator, but with large declines (more than half a standard deviation) occurring in a large part of 248 

the domain. Figure 1b was created in an identical fashion, using PC2. This pattern tends to 249 

emphasize off-equatorial regions of Tanzania, northern Ethiopia, Eritrea, and Djibouti, but PC2 250 

does not appear to have contributed substantially to recent rainfall declines. Figure 1d shows the 251 

time series for these two principal components. Figures 1e and 1f show the rainfall loading 252 

patterns associated with PC1 and PC2. The first principal component identifies many intense 253 
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drought years: 1984, 1992, 1999, 2000, 2004, 2008, 2009, and 2011. The large negative PC2 254 

values in 1988, 2003, 2008, 2009, and 2013 were associated with dryness in Tanzania and 255 

Ethiopia, but not near the equator. Both time series exhibit substantial interannual variations. 256 

PC1 indicates substantial declines between 1981 and 2013.  257 

The total rainfall trend for this period is presented in Fig. 1c. This trend pattern suggests that 258 

the substantial rainfall declines that have occurred during the last 20 years (1994-2013) can be 259 

ascribed largely to the first leading mode. We next examine the relationships between the 260 

corresponding time series and antecedent January SST. Analysis of January SST can inform 261 

regional food security outlooks, providing sufficient lead time to shape contingency plans, guide 262 

resource distribution, and help pre-position humanitarian assistance before long rainy season 263 

droughts begin.  264 

3.2 Correlations with January SST 265 

The correlation results presented here (Fig. 2a) use a 1994-2013 period because the studies 266 

discussed above (Funk et al., 2008;Hoell and Funk, 2013a, b;Lyon and DeWitt, 2012;Verdin et 267 

al., 2005;Williams and Funk, 2011) indicate a recent increase in the sensitivity of East African 268 

precipitation to Indo-Pacific SST forcing. This increase in sensitivity is likely related to the long 269 

term WP warming trend (Williams and Funk, 2011; Hoell and Funk, 2013b), an increase in the 270 

Indian branch of the Walker circulation (Williams and Funk, 2011; Liebmann et al. 2014), and a 271 

stronger WPG (Hoell and Funk, 2013a). Changes in these climate conditions accompanied by a 272 

future transition to a warmer central Pacific (as predicted by climate change models) might 273 

weaken the boreal spring teleconnection pattern.  274 
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It should be noted that the strength of these SST correlations depend on the time period 275 

analyzed. As discussed in Funk et al. (2013) or Liebmann et al. (2014), the strong negative 276 

correlation structure shown in Fig. 2a has only manifested since the mid-1990s. Running 277 

correlations with Niño 3.4 SSTs indicate weak relationships before that period (Funk et al. 278 

2013). Analysis of 1948-1987 climate data (Hastenrath et al., 2011), furthermore, indicate weak 279 

teleconnections between Kenyan boreal spring rainfall and the atmospheric circulation over the 280 

Indian Ocean. As the mean Walker Circulation has intensified (L’Heureux et al., 2013), 281 

however, the East African drought impacts of La Niña-like SST patterns has intensified 282 

(Williams and Funk, 2011) due to the influence of a stronger WPG (Hoell and Funk, 2013a), 283 

resulting in the type of correlation structure shown in Fig. 2a. Atmospheric Global Circulation 284 

Models (AGCMs) have also been used to confirm the plausibility of this correlation pattern 285 

(Hoell and Funk, 2013b; Liebmann et al., 2014; Lyon and DeWitt, 2012). 286 

The correlations (Fig. 2a) between the March-May PC1 (solid red line, Fig. 1d) and the 287 

preceding January SST field indicate that a stronger than normal west-to-east warm-to-cool 288 

Pacific SST gradient over the tropical Pacific is associated with dry conditions over most of the 289 

Horn of Africa, consistent with earlier findings (Tierney et al., 2013;Lyon and DeWitt, 290 

2012;Liebmann et al., 2013;Hoell et al., 2013;Hoell and Funk, 2013c;Hoell and Funk, 291 

2013d;Hoell and Funk, 2013e;Funk et al., 2013). The blue and red boxes denote the Niño 4 and 292 

WP regions; the WPG index is estimated as the SST difference between these regions following 293 

Hoell and Funk (2013b). 294 

The correlation pattern associated with PC2 (Fig. 2b) identifies warming in the Indian Ocean 295 

with drying in parts of the Horn of Africa, particularly Ethiopia and Tanzania. These results are 296 

also consistent with prior research focusing on the causes of Ethiopian rainfall declines, which 297 
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identified teleconnections to the Indian Ocean (Williams et al., 2011;Funk et al., 2005;Jury, 298 

2010). While other regions in Fig. 2b exhibit significant correlations, we focus here on the CIO 299 

because of prior literature and the plausible physical teleconnection between this region and the 300 

adjacent Greater Horn of Africa. Nonetheless, warming in the central Pacific also appears to be 301 

associated with East African drying (in contrast to the pattern associated with PC1).  302 

3.3 Using January WPG and CIO indices to predict March-May CHIRPS PC1 and PC2 303 

Two regression prediction time periods for the PC1 time series were compared: 1981-1993 304 

(Fig. 3a) and 1994-2013 (Fig. 3a). The PC1 variance explained by the WPG index over the 1994-305 

2013 time period was substantially larger, with the WPG index explaining 50% of the PC1 306 

variance as opposed to 0% over the 1981-1993 time period. Over the 1994-2013 time period, the 307 

regression slope between the March-May CHIRPS PC1 and the January WPG index indicates a 308 

modest negative relationship (not shown), with a one standard deviation decrease in the WPG 309 

(designating a stronger Niño4 to WP gradient) being associated with a 0.5 standardized deviation 310 

decrease in PC1. In this study, which focuses on developing a framework to anticipate the next 311 

drought, we use the regression coefficients from the shorter time period to estimate rainfall 312 

associated with PC1 based on the western Pacific SST gradient index (WPG), while emphasizing 313 

the need to monitor the stationarity of the La Niña-East Africa teleconnection. The strength of 314 

this modest teleconnection is quite similar to results obtained from ECHAM5 simulations 315 

(Liebmann et al., 2013). 316 

For the PC2 time series, we used a regression based on the full period of record (1981-2013), 317 

since the negative relationship between SST in the CIO region (0-15°S, 60-90°E) and PC2 was 318 

found to be robust throughout the time period evaluated. The corresponding 1981-2013 319 
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regression explained 33% of the total variance of PC2. For every standard deviation increase in 320 

CIO SSTs, PC2 declined -0.6 standard deviations. 321 

The two leading CHIRPS principal components during March-May over East Africa relate, 322 

respectively, to SST anomalies in the Pacific and Indian Oceans (Fig. 2) during January. Figure 323 

3a-c show scatter plots of the cross-validated 1994-2013 PC1, 1981-1993 PC1 and 1981-2013 324 

PC2 estimates. The cross-validation was carried out using a ‘leave-one-out’ algorithm. Each 325 

year’s data was withheld, the regression coefficients re-estimated and the regression estimate for 326 

the withheld year compared to the corresponding observed data. The y-axes depict the observed 327 

March-May principal components from the CHIRPS data. The time series of these components 328 

are also plotted in Fig. 1d. The x-axes represent jack-knifed regression estimates of these PCs 329 

based on either the WPG or CIO indices calculated from January SST. Over the past twenty 330 

years, the combination of wintertime La Niña conditions and warm western Pacific SSTs (large 331 

WPG) presage low PC1 values (Fig. 3a). The three most extreme dry (low PC1) seasons in this 332 

period (1999, 2000 and 2011) are captured well (dark black diamonds). Over the 1981-1993 333 

period, the PC1 WPG relationship was weak (Fig. 3b), consistent with the aforementioned 334 

reports of a weak zonal connections in the Indo-Pacific (Hastenrath et al., 2011).  The skill of the 335 

CIO index, on the other hand, comes more from distinguishing between high PC2 values 336 

associated with relatively cool Indian Ocean SSTs between 1981 and 1996 and low PC2 values 337 

related to the warm Indian Ocean conditions that have persisted since 1997. These time periods 338 

are denoted respectively, with diamonds and triangles in Fig. 3c.  339 

These simple WPG and CIO indices can thus be used to predict PC1 and PC2, which can 340 

then be multiplied against their loading maps and summed to produce hindcasts of East African 341 

March-May rainfall. The correlation between these forecasts and observed 1994-2013 CHIRPS 342 
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rainfall is shown in Fig. 3d. The eastern Horn of Africa, southern Tanzania, Eritrea, Djibouti, and 343 

Yemen all exhibit positive correlations. One region of northern Tanzania is poorly represented, 344 

and exhibits negative correlations. While rainfall in northern Tanzania has been declining (Fig. 345 

1c), these declines seem poorly related to WPG/PC1 or CIO/PC2 changes. Regional climate 346 

change simulations (Cook and Vizy, 2013) have suggested that this region may be more sensitive 347 

to changes in trans-Congo moisture transports, while drying in Kenya, southern Somalia and 348 

southern Ethiopia might be related to changes in the Somali Jet. 349 

Figure 4 shows forecast and observed rainfall anomaly maps for a selection of dry and wet 350 

seasons. While the index-based forecasts tend to under-estimate the variance of the rainfall, the 351 

ability to discriminate between wet and dry seasons at a regional scale seems promising. 352 

Likewise, although the ability to discriminate between normal and above normal PC1 values 353 

seems limited (Fig. 3a), extreme dry years appear to be fairly well predicted. Thus our index-354 

based predictions can capture some of the extreme drought years (2000, 2009, 2011), but do not 355 

predict well some above normal wet seasons (such as 2006 and 2013). SST composites of wet, 356 

normal, and dry seasons (not shown) indicate a much more well-defined structure during dry 357 

seasons, with most dry years being associated with a strong WPG. Between 1994 and 2013, 358 

strong WPG events have been associated with observed rainfall ranging from normal to far 359 

below normal (Fig. 3a). When WPG conditions are neutral or indicative of El Niño-like 360 

conditions, the relationship between WPG and EA long rains seems quite weak (Fig. 3a).  361 

We hypothesize that there may be a nonlinear East African precipitation response to WP and 362 

Niño 4 SST variations caused by the interaction of the long term warming trend and ENSO. Over 363 

the past twenty years, during La Niña events, the effects of the long term WP warming trend and 364 

cold Niño 4 SST act to reinforce each other, making droughts more predictable. During neutral 365 
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or El Niño-like conditions, instead, the two effects cancel out and East African precipitation may 366 

be more influenced by less predictable Indian Ocean SST, variations in the Madden-Julien 367 

Oscillation  (Pohl and Camberlin, 2006), or internal atmospheric dynamics. Absent the combined 368 

influences of warm WP and La Niña conditions, these natural weather variations may play a 369 

more dominant role in producing normal or above normal East African precipitation. 370 

3.4 A case study addressing the 2014 long rains 371 

Here we briefly describe how the WPG and CIO indices were used in February of 2014 to 372 

produce an operational forecast for FEWS NET. This case study provides an example of how 373 

these indices might be used in the context of a GHACOF forecast setting. Despite weak forecasts 374 

for the onset of El Niño conditions, the ocean in January of 2014 exhibited substantial warm 375 

(cold) conditions in the WP (Niño 4) region, indicating a strong WPG (Fig. 5a). CIO conditions 376 

(Fig. 5a) were close to neutral, or slightly warm. Given that the regression between 1994-2013 377 

East African March-May standardized precipitation index and January WPG indicates reasonable 378 

levels of skill (r=0.57) and is able to identify the worst drought years (recall section 3.3), this 379 

regression was used to produce a forecast for modestly below normal rainfall (X in Fig. 5b). This 380 

forecast and the assumption of gaussianity was used to derive tercile-based probability forecasts, 381 

indicating normal to below normal rains (Fig. 5c).  382 

While no forecast methodology should be validated based on a single season, the FEWS 383 

NET prediction made in February of 2014 proved to be reasonably accurate. Strong Pacific 384 

gradient (WPG) conditions persisted into April and May. While March 2014 rains were above 385 

normal, April and May totals were very low over much of Kenya and Southern Ethiopia (Fig. 386 

5d), with rainfall rank imagery indicating rains in the bottom five years of the 1981-2014 387 

CHIRPS archive. Time series of Kenyan/Southern Ethiopian April-May rainfall from the GPCC 388 
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and CHIRPS archives (Fig. 5e) place this dry season in deeper historical context. The region 389 

used in the areal averages (shown as the red polygon in the inset on Fig. 5e) covers all Kenya 390 

except Western and Nyanza province, south-central and south-eastern Ethiopia. In this region 16 391 

of the 24 April-May seasons since 1991 (66%) have received less than 190 mm of rainfall, the 392 

1930-1980 average.  We therefore conclude that at least some of the most extreme dry seasons 393 

seem to be predictable and associated with strong WPG conditions.  394 

3.5 Examining long time series of East African rainfall and SSTs  395 

We briefly examine long time series of East African rainfall and SSTs. Our objective is to place 396 

recent East African rainfall declines in a deeper historic context.  We have averaged the GPCC 397 

interpolated gauge dataset over our entire study region (25°E-55°E, 13°S-20°N), converted the 398 

resulting time series into an EA SPI time series (McKee et al., 1993), smoothed the results with 399 

ten year running means, and plotted the results in Fig. 6a. Between 1920 and 1980, the GPCC 400 

time series exhibits substantial inter-decadal oscillations (Lyon et al., 2013;Lyon and DeWitt, 401 

2012;Yang et al., 2014), indicative of the climate sensitivity of this semi-arid region. After 1980, 402 

the GPCC begins a large decline to arrive at a very low decadal average SPI of -0.7. We have 403 

used a regression based on 1930-2012 January WP and Niño 4 SST data to create standardized 404 

estimates of the WPG time series. This gives us a way to quantify the relative influence of WP 405 

and Niño 4 SST changes. The results indicate an almost one to one correspondence between WP 406 

SST changes and the East African SPI time series: one degree of WP warming is associated with 407 

about one standardized anomaly decrease in rainfall (bWP = -0.997). The sensitivity to Niño 4 408 

SST changes is substantially less and of the opposite sign. One degree of Niño 4 warming is 409 

associated with about a +0.4 standardized anomaly increase in rainfall (bN4 = +0.419). These 410 

results seem plausible given the very warm average SST found in the Warm Pool (~29°C).  411 
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Relatively small increases in temperatures in the Warm Pool are associated with relatively large 412 

increases in moist entropy and precipitation (Folkins and Braun, 2003). These empirical results 413 

suggest that boreal spring EA precipitation exhibits a greater sensitivity to WP warming. 414 

These WP and Niño 4 slope parameters can be used to estimate EA SPI as shown in Fig. 6a 415 

(r=0.55, p=0.05, based on 7 d.o.f.). Note that while these estimates fail to recreate the 1920-1980 416 

decadal oscillations, they do capture well the post-1990 GPCC decline. While the EA SPI peaks 417 

during the 1930s and 1980s and declines during the 1950s, these changes do not seem well 418 

represented by the WP and Niño 4 variations. This suggests that the WP and Niño 4 influences 419 

on EA precipitation are not strongly modulated by PDV. While deviations around our regression 420 

estimates are likely related to PDV (Yang et al., 2014), these PDV contributions have probably 421 

not produced, alone, the observed -0.7 decline in the GPCC SPI time series (Fig. 6a).   422 

We can make this case more explicitly by examining in Fig. 6b the individual WP and 423 

NINO4 time series contributions to the regression estimate shown in Fig. 6a. Contributions based 424 

on the observed WP and Niño 4 time series are shown along with estimated contributions based 425 

on the CMIP5 ensemble means. These time series were produced by multiplying the WP and 426 

Niño 4 SST time series by the regression coefficients used in Fig. 6a (bWP = -0.997, bN4 = 427 

+0.419). What this decomposition (Fig. 6b) suggests is that between the 1920s and 1980s, the 428 

modest drying effect of warming in the WP and the modest wetting effect of warming in the 429 

Niño 4 region more or less canceled each other out, resulting in little change in the regression 430 

estimates shown in Fig. 6a. Some in the 1990s this may have changed, as the WP warming 431 

accelerated, and the high WP sensitivity led to rapid declines in the estimated WP SPI (Fig. 6b). 432 

The 1990-2014 SPI increases associated with Niño 4 warming (Fig. 6b) on the other hand, have 433 

not kept pace, both because of the lower Niño 4 sensitivity, and because Niño 4 warming has 434 
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stalled since the beginning of the post-1998 hiatus (England et al., 2014;Meehl et al., 2013). 435 

While both the WP and Niño 4 regions have warmed, producing a drying (wetting) effect 436 

through the negative (positive) influence of the WP (Niño 4) regions, the overall drying effect of 437 

the WP warming (based on our regression) appears to have been greater.  438 

We next examine the relationship between WP SST and the effects of radiative forcing, as 439 

represented by a CMIP5 ensemble. Fig. 6c shows the smoothed observed WP SST time series 440 

and the multi-model ensemble mean WP SST time series from the CMIP5 models listed in Table 441 

1. The smoothed time series track closely (r=0.89, p=0.01, based on 7 d.o.f.). Note that there are 442 

‘decadal’ variations in the radiatively forced CMIP5 SSTs. These fluctuations are caused by the 443 

warming impacts of greenhouse gases, changes in solar insolation, and the cooling effects of 444 

aerosols and volcanic eruptions. Because we have averaged across a large number of 445 

simulations, any internal ENSO or PDV signal has been removed. The CMIP5 WP SST 446 

increases in 1930s and 1940s, stabilizes in the 1950s, cools for a brief period in the 1960s, and 447 

increases at an accelerated rate since about 1980. These decadal fluctuations match reasonably 448 

well with changes seen in the observed SST, except for an observed SST increase in the early 449 

1950s.  450 

It is important to realize that these influences can produce low frequency fluctuations that 451 

appear similar to natural ‘internal’ decadal variations. An example of this is shown in Fig. 6d. 452 

Linear fits to the observed and CMIP5 WP SST time series have been removed and the residuals 453 

plotted. Because we have averaged across a large number of CMIP simulations (53), any 454 

‘internal’ variations associated with natural climate variability should be greatly diminished in 455 

the CMIP ensemble mean time series. Nonetheless, we see large swings in CMIP WP SST that 456 

are caused by changes in radiative forcing. Overall, the residuals from a linear fit to the 457 
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radiatively forced CMIP5 WP ensemble SST (dashed blue line) correspond closely (r=0.69, 458 

p=0.04, based on 7 d.o.f.) with the residuals from a linear fit with to the observed data (solid red 459 

line). Much of the decadal and longer variation around a linear fit to the WP SST data is likely 460 

due to external radiative forcing, especially over the past thirty years. New research has 461 

highlighted the important climate impacts associated with the 1st principal component of 462 

detrended SST (Lyon et al. 2013); Fig. 6d suggests that these detrended SST are likely to have 463 

substantial decadal variations influenced by changes in greenhouse gasses, aerosols and 464 

insolation. Western Pacific PDV is largely driven by changes in radiative forcing. 465 

4. Summary 466 

Building on recent diagnostic studies, this paper has explored the utility of two simple SST 467 

indices related to the first two principal components of East African spring rainfall. Interestingly, 468 

the two principal component modes were found to relate to the WPG and CIO, as identified in 469 

prior FEWS NET research focusing on Warm Pool (Hoell and Funk, 2013a, b;Liebmann et al., 470 

2014;Williams and Funk, 2011) and Central Indian Ocean (Funk et al., 2008;Funk et al., 2005) 471 

warming. In this study, warming in the WP and cooling in the Niño 4 region was related to 472 

rainfall deficits across much of the eastern Horn of Africa (lower PC1 values, Fig. 1d). Warming 473 

in the CIO was related to declines in Tanzania and the northeastern Horn (lower PC2 values, Fig. 474 

1d). Thus warming in both the western Pacific and Indian Ocean has likely contributed to 475 

declines in PC1 and PC2. These SST changes, occurring since the mid-1980s, can be attributed 476 

to increases in anthropogenic forcing; the CMIP5 ensemble examined here produced a near-477 

perfect forecast (Fig. 6c) of decadal WP SST variations (r=0.89), and WPG-based regression 478 

estimates link this warming (Fig. 6b) with substantial EA precipitation declines. ‘Decadal’ WP 479 

variations, denoted as deviations from a linear trend, are almost completely explained by the 480 
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recent acceleration of anthropogenic warming (Fig. 6d). While PDV certainly influences Niño 4 481 

SSTs, contributing to a hiatus (England et al., 2014) in the Niño 4 contribution to EA rainfall 482 

shown in Fig. 6b, these influences do not appear to dominate the recent drying tendencies, which 483 

appear to be mostly explained by the influence of the western Pacific (Hoell and Funk, 2013b) in 484 

a manner consistent with the long (1300-1950) anti-correlation between paleoclimate records of 485 

East African precipitation and west Pacific SST (Tierney et al., 2013). An important take home 486 

message of the work presented here is that the high sensitivity of East Africa to WP warming 487 

presents both a risk and an opportunity. As the warm WP continues to warm we may see more 488 

frequent strong gradient events, like the SST conditions during January 2014 (Fig. 5a). Spotting 489 

these events, however, requires attention, since they are typically associated with relatively small 490 

SST anomalies, since the SST variance in the western Pacific is quite low.  491 

Facing the 21st century, we can be fairly sure that the combination of warming air 492 

temperatures, growing population, and increasing demands for food will create an enhanced 493 

sensitivity to hydrologic extremes in East Africa. At the same time, the large scale climate, both 494 

in observations and in CMIP5 models, seems to indicate both a strengthening of the ENSO signal 495 

and the ENSO-residual Walker circulation (Sandeep et al., 2014). These tendencies, like the WP 496 

and Niño 4 time series shown in Fig. 6b, indicate warming across the Pacific basin. This 497 

warming, however, will likely appear sporadically in space and time, likely creating more intense 498 

positive or negative SST gradients (cf. Fig. 5a). Taking advantage of the predictability created by 499 

these gradients will help us adapt to climate change and our increasing demands for water. While 500 

coupled ocean-atmosphere general circulation forecast models provide a valuable resource, we 501 

should not expect these systems to always reproduce all the details of climate teleconnections or 502 

climate change correctly. The current generation of models struggle to accurately recreate 503 
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seasonal rainfall variations over East Africa’s complex terrain (Mwangi et al., 2014). The simple 504 

observationally-based SST indices used here, provide a way of partially overcoming model 505 

limitations. More complex statistical models, tailored to East Africa’s many diverse climate 506 

regions, hybrid statistical-coupled model predictions (Shukla et al. 2014ab) and mesoscale model 507 

simulations might all provide potentially better ways to build on the predictive relationships 508 

explored here. 509 

 It should be stressed, however, that statistical relationships can be non-stationary in nature 510 

and should be monitored closely. For example, running correlations with March-May NINO3.4 511 

SSTs (Funk et al., 2013) show an emerging negative relationship between East African rainfall 512 

and Nino3.4 SST. This teleconnection should be routinely monitored, if statistical models such 513 

those proposed here are to be used for hydrologic early warning. Conditions that might indicate a 514 

weakening of the WPG teleconnection would include climate shifts indicative a weaker Walker 515 

circulation: less warm pool precipitation, weaker upper level easterly flows over the Indian 516 

Ocean, and weaker easterly trade winds over the central equatorial Pacific Ocean. If the central 517 

Pacific suddenly warms dramatically, WPG-induced droughts might become much less frequent.  518 

Whatever the future brings, integrated hydrologic early warning systems will help us prepare 519 

for extremes. To best address this challenge, multiple sources of information should be 520 

combined. Rainfall climatologies, like the CHIRPS, can help us assess historical risks. Just 521 

before the onset of rains, appropriate SST indices can guide food security outlooks and 522 

GHACOF projections, as illustrated in Section 3.4. The modest levels of skill of these forecasts 523 

far exceeds the performance of current generation coupled forecast systems, which show no 524 

appreciable skill for the long rains (Mwangi et al., 2014). Coupled models do, however, make 525 

skillful forecasts over the Indian and Pacific oceans, and these forecasts can be combined with a 526 
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statistical constructed analog (CA) formulation to make skillful predictions of East African 527 

rainfall (Shukla et al., 2014a).  528 

Once the rainy season begins, land surface conditions becomes an additional source of 529 

information – and predictability comes from both the state of the large scale climate and the local 530 

antecedent soil moisture conditions (Shukla et al., 2013). Land surface models (LSMs) can add 531 

substantial increases in drought prediction skill by incorporating the knowledge of initial 532 

hydrologic conditions (derived by forcing the models with observations of rainfall, radiation and 533 

air temperature through the time of forecast initialization) in the prediction (Shukla et al., 2013). 534 

New hydrologic forecast systems that blend these observations with climate predictions 535 

(Sheffield et al., 2013;Shukla et al., 2014b) hold forth exciting new prospects for better early 536 

warning. Shukla et al. (2014b) describe a hybrid statistical-coupled model forecast system that 537 

uses coupled model Indo-Pacific SST and precipitation forecasts to assign probabilities to past 538 

seasons. WPG-like metrics are used to quantify the similarity between current and past climate 539 

conditions. These probabilities are then used to sample (bootstrap) the historical LSM forcing 540 

archive, preferentially selecting more often years considered similar to the current season. This 541 

type of system can incorporate both the observed soil moisture condition and seasonal forecast 542 

information, leading to more skillful mid-season predictions. While it seems likely, at least under 543 

current negative PDV conditions, that East Africa will continue to face more frequent droughts, 544 

rapid advances in prediction systems may help us mitigate their impacts. 545 

  546 



25 
 

 547 

Table 1. Coupled ocean-atmosphere models used in this study. 548 

Modeling Group 

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of 

Meteorology (BOM), Australia 

Canadian Centre for Climate Modelling and Analysis 

National Center for Atmospheric Research 

Community Earth System Model Contributors 

Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation 

Avancée en Calcul Scientifique 

EC-EARTH consortium 

The First Institute of Oceanography, SOA, China 

NOAA Geophysical Fluid Dynamics Laboratory 

NASA Goddard Institute for Space Studies 

Met Office Hadley Centre  

Institute for Numerical Mathematics 

Institut Pierre-Simon Laplace 

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology 

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 

 549 

Figure Legends 550 

Figure 1. a. Thirty-three year changes in standardized March-May precipitation associated with the 551 

trend in principal component 1 b. same for principal component 2. c. Thirty- three year changes in 552 

standardized March-May precipitation associated with a linear trend d. Standardized time series of PC1 553 

(solid red line) and PC2 (dashed blue line). 554 
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Figure 2. a. correlations between March-May CHIRPS PC1 and January SSTs b. same for CHIRPS PC2. 555 

Values have been screened at a 10% significance level. Boxes in panel a and b show the regions used to 556 

the define the WPG and CIO SST indices.  557 

Figure 3. a. Scatterplot of 1994-2013 March-May PC1 observations (y axis) and cross-validated PC1 558 

estimates based on January WPG SSTs (x axis). b. Same but for 1981-1993.  c. Scatterplot of 1981-2013 559 

March-May PC2 observations (y axis) and PC1 estimates based on January WPG SSTs (x axis). d. 1993-560 

2013 correlation between forecasts and observed rainfall.  561 

Figure 4. Forecasts and observed March-May SPI values for 2000, 2006, 2009, 2010, 2011 and 2013. 562 

Figure 5. a. January 2014 SST anomalies. b. Scatterplot of observed and hindcast East African March-563 

May SPI values. Bold diamonds denote 2000, 2009 and 2011. The bold X marks the forecast for 2014 564 

made in February of 2014. c. Forecast rainfall tercile probabilities. d. April-May CHIRPS rainfall ranks. e. 565 

Time series of GPCC and CHIRPS April-May rainfall for Kenya (excluding Nyanza and Western Province) 566 

as south-central and south-eastern Ethiopia, as indicated by the inset map in e. 567 

Figure 6. a. Time series of smoothed standardized GPCC for study region (red solid line), and WPG-based 568 

estimates of GPCC SPI (blue dashed line). b. The western Pacific (red solid line) and Niño 4 (solid blue 569 

line) contributions to the EA SPI estimates shown in blue in panel a. Dashed red and blue lines show the 570 

WP and Niño 4 contribution estimates based on the mean of a 53 member CMIP5 ensemble. c. observed 571 

western Pacific SST anomalies (solid red line), CMIP5 western Pacific SST anomalies (dashed blue line), 572 

and linear fits (straight red and blue lines). d. detrended western Pacific SST anomalies (solid red line) 573 

and detrended CMIP5 western Pacific SST anomalies (dashed blue line). 574 

  575 
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 736 

Figure 1. a. Thirty-three year changes in standardized March-May precipitation associated with the 737 

trend in principal component 1 b. same for principal component 2. c. Thirty- three year changes in 738 

standardized March-May precipitation associated with a linear trend d. Standardized time series of PC1 739 

(solid red line) and PC2 (dashed blue line). 740 
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 742 

Figure 2. a. correlations between March-May CHIRPS PC1 and January SSTs b. same for CHIRPS PC2. 743 

Values have been screened at a 10% significance level. Boxes in panel a and b show the regions used to 744 

the define the WPG and CIO SST indices.  745 
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 747 

Figure 3. a. Scatterplot of 1994-2013 March-May PC1 observations (y axis) and cross-validated PC1 748 

estimates based on January WPG SSTs (x axis). b. Same but for 1981-1993.  c. Scatterplot of 1981-2013 749 

March-May PC2 observations (y axis) and PC1 estimates based on January WPG SSTs (x axis). d. 1993-750 

2013 correlation between forecasts and observed rainfall.  751 
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 753 

Figure 4. Forecasts and observed March-May SPI values for 2000, 2006, 2009, 2010, 2011 and 2013. 754 
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 756 

Figure 5. a. January 2014 SST anomalies. b. Scatterplot of observed and hindcast East African March-757 

May SPI values. Bold diamonds denote 2000, 2009 and 2011. The bold X marks the forecast for 2014 758 

made in February of 2014. c. Forecast rainfall tercile probabilities. d. April-May CHIRPS rainfall ranks. e. 759 

Time series of GPCC and CHIRPS April-May rainfall for Kenya (excluding Nyanza and Western Province) 760 

as south-central and south-eastern Ethiopia, as indicated by the inset map in e. 761 
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 763 

 764 

Figure 6. a. Time series of smoothed standardized GPCC for study region (red solid line), and WPG-based 765 

estimates of GPCC SPI (blue dashed line). b. The western Pacific (red solid line) and Niño 4 (solid blue 766 

line) contributions to the EA SPI estimates shown in blue in panel a. Dashed red and blue lines show the 767 

WP and Niño 4 contribution estimates based on the mean of a 53 member CMIP5 ensemble. c. observed 768 

western Pacific SST anomalies (solid red line), CMIP5 western Pacific SST anomalies (dashed blue line), 769 

and linear fits (straight red and blue lines). d. detrended western Pacific SST anomalies (solid red line) 770 

and detrended CMIP5 western Pacific SST anomalies (dashed blue line). 771 
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