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Abstract 1	
  

The increasing food and water demands of East Africa’s growing population are stressing 2	
  

the region’s inconsistent water resources and rain-fed agriculture. More accurate seasonal 3	
  

agricultural drought forecasts for this region can inform better water and agro-pastoral 4	
  

management decisions, support optimal allocation of the region's water resources, and mitigate 5	
  

socio-economic losses incurred by droughts and floods. Here we describe the development and 6	
  

implementation of a seasonal agricultural drought forecast system for East Africa (EA) that 7	
  

provides decision support for the Famine Early Warning Systems Network’s (FEWS NET) 8	
  

science team. We evaluate this forecast system for a region of equatorial EA (20 S to 80 N, and 9	
  

360 to 460 E) for the March-April-May growing season. This domain encompasses one of the 10	
  

most food insecure, climatically variable, and socio-economically vulnerable regions in EA, and 11	
  

potentially the world; this region has experienced famine as recently as 2011.  12	
  

 To produce an ‘agricultural outlook’, our forecast system simulates soil moisture (SM) 13	
  

scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate 14	
  

scenarios describing the upcoming season. First, we forced the VIC model with high quality 15	
  

atmospheric observations to produce baseline soil moisture (SM) estimates (here after referred as 16	
  

SM a posteriori estimates). These compared favorably (correlation=0.75) with Water Required 17	
  

Satisfaction Index (WRSI), an index that the FEWS NET uses to estimate crop yields.  Next, we 18	
  

evaluated the SM forecasts generated by this system on March 5th and April 5th of each year 19	
  

between 1993-2012 by comparing them with corresponding SM a posteriori estimates. We found 20	
  

that initializing SM forecasts with start-of-season  (SOS) (March 5th) SM conditions resulted in 21	
  

useful SM forecast skill (>0.5 correlation) at 1-month, and in some cases 3-month, lead times. 22	
  

Similarly, when the forecast was initialized with mid-season (i.e. April 5th) SM conditions, the 23	
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skill of forecasting SM estimates until the end-of-season improved (correlation >0.5 over several 24	
  

grid cells). We also found these SM forecasts to be more skillful than the ones generated using 25	
  

the Ensemble Streamflow Prediction (ESP) method, which derives its hydrologic forecast skill 26	
  

solely from the knowledge of the initial hydrologic conditions. Finally, we show that, in terms of 27	
  

forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system 28	
  

is generally greater (>0.8 correlation) during drought years (when standardized anomaly of 29	
  

MAM precipitation is below 0). This indicates that this system might be particularity useful for 30	
  

identifying drought events in this region and can support decision making for mitigation or 31	
  

humanitarian assistance. 32	
  

 33	
  

  34	
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1. Introduction 35	
  

The 2011 famine in the Horn of Africa was one of the most severe humanitarian disasters of 36	
  

this century. It affected more than 13 million people (Hillier, 2012) and resulted in a disastrous 37	
  

loss of life. According to Food and Agriculture Organization (FAO) and FEWS NET reports, 38	
  

there were between 244,000 to 273,000 famine related deaths in southern and central Somalia 39	
  

alone (Checchi and Robinson, 2013). While the situation was most dire in this region (Mosley, 40	
  

2012), the impacts spilled over the border into south-eastern Ethiopia and northern Kenya. To 41	
  

mitigate socio-economic losses of future drought events of this magnitude timely and adequate 42	
  

responses to drought early warnings are crucial (Hillier, 2012). 43	
  

FEWS NET is a program of the United States Agency for International 44	
  

Development (USAID) tasked with providing timely and rigorous early warning and 45	
  

vulnerability information on emerging and evolving food security issues. FEWS NET is active in 46	
  

more than 30 of the world’s most food-insecure countries including Ethiopia, Kenya, and 47	
  

Somalia. Each month FEWS NET’s regional food analysts compile a set of agroclimatic working 48	
  

assumptions (i.e. hypotheses) for the upcoming season. Meanwhile FEWS NET’s hydroclimate 49	
  

scientists review those assumptions with a deeper focus on the climate conditions and contribute 50	
  

to the assumptions if need be. This process requires compiling available information on soil 51	
  

moisture (SM), rainfall, vegetation health, sea surface temperatures (SSTs) and temperatures 52	
  

(land surface and air) to provide weekly-to-seasonal climate outlooks.  53	
  

Thus far, the hydroclimate science team has focused on forecasting rainfall anomalies of 54	
  

the upcoming season, as well as real-time monitoring and attribution activities (Funk et al., 2005, 55	
  

2010).  Due to this attention, rainfall estimation has also experienced significant technical 56	
  

advances and is the premier input to assess agricultural production and available water resources 57	
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(Funk et al., 2014b). While seasonal rainfall may be the most accessible indicator of yields, we 58	
  

argue that future attention needs to be shifted toward monitoring and forecasting of SM. Rainfall 59	
  

indicates meteorological drought, whereas SM in cropping zones during the growing season is a 60	
  

more direct indicator of agricultural drought. Furthermore, accurate SM initialization 61	
  

significantly contributes to the forecast skill of available moisture for up to six months (Koster et 62	
  

al., 2010; Shukla and Lettenmaier, 2011; Shukla et al., 2013). Due to the shortage of real time 63	
  

observed SM measurements, estimates computed using hydrologic models are among the best 64	
  

indicator of antecedent SM conditions and agricultural drought (Keyantash and Dracup, 2002). 65	
  

These same hydrologic models can be driven with climate forecasts for the upcoming season to 66	
  

provide SM forecasts. This additional step of using forecast rainfall and other meteorological 67	
  

variables to provide a seasonal outlook for plant available water provides a more nuanced and 68	
  

accurate assessment of agricultural drought conditions than rainfall forecasts alone. We show 69	
  

here that the combination of rainfall observations and forecasts produces more accurate SM 70	
  

predictions.  71	
  

 During the October-November-December growing season of 2013, the FEWS NET 72	
  

science team developed and implemented a seasonal agricultural drought forecast system using 73	
  

the Variable Infiltration Capacity (VIC) hydrologic model and National Centers of 74	
  

Enviornmental Prediction’s (NCEP) Climate Forecasts System Version-2 (CFSv2). This system 75	
  

produces SM forecasts that are used for providing agricultural drought assessment. The primary 76	
  

objective of this manuscript is to describe the development and evaluation of the SM forecasts 77	
  

generated by the seasonal drought forecast system. Although the intended domain of this system 78	
  

expands over the Greater Horn of Africa, we focus on the equatorial East Africa (EA) (i.e. 79	
  

southeastern Ethiopia, northern Kenya, and southern Ethiopia as captured in Fig. 1) as a test-bed. 80	
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This region is predominantly a pastoral area with some crop zones. For evaluation of this system 81	
  

we chose to focus on March-April-May (MAM), which is the primary growing and rainy season 82	
  

as shown by the ratio of MAM and annual precipitation based on the Climate Hazards Group 83	
  

InfraRed Precipitation with Station data (CHIRPS) dataset (Funk et al., 2014b) (see section 2.2) 84	
  

in Fig. 1.  85	
  

 Reliable rainfall forecasts at a seasonal scale over this region during the rainy season 86	
  

have proven to be a challenge (Nicholson, 2014; Owiti et al., 2008). However, retrospective 87	
  

analysis shows us that rainfall in MAM season has declined in last two decades (Funk et al., 88	
  

2008; Lyon and DeWitt, 2012; Williams and Funk, 2011). Although the primary causes of this 89	
  

decline has been a matter of debate (Hoell and Funk, 2013a; Lyon and DeWitt, 2012; Tierney et 90	
  

al., 2013), it seems likely that both anthropogenic warming and decadal variability have 91	
  

contributed to more frequent droughts, but in ways that may be making rainfall more predictable 92	
  

(Funk et al., 2014a and Funk et al. 2013). In the future, the MAM season will continue to be 93	
  

prone to drought events and continue to pose challenges for water and drought management, 94	
  

given increases in population and water demands as well as degradation of land in the past few 95	
  

decades (Pricope et al., 2013). These facts support a need to improve and develop tools to assist 96	
  

decision makers.  97	
  

  In the remainder of this manuscript we describe the approach and data used to implement 98	
  

the agricultural drought forecasts system, its evaluation, and future directions. 99	
  

2. Approach and Data 100	
  

This section describes the approach undertaken to develop the seasonal agricultural drought 101	
  

forecast system. Our approach is similar to other experimental/operational seasonal hydrologic 102	
  

and drought forecast systems including the NCEP’s Multimodal Drought Monitoring System 103	
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(http://www.emc.ncep.noaa.gov/mmb/nldas/drought/), the Climate Prediction Center’s Land 104	
  

Surface Monitoring and Prediction System 105	
  

(http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml), as well 106	
  

as Princeton University’s Africa Flood and Drought Monitor 107	
  

(http://stream.princeton.edu/AWCM/WEBPAGE/index.php) (Sheffield et al., 2013) and 108	
  

Contiguous United States (CONUS) seasonal drought forecasting system 109	
  

(http://hydrology.princeton.edu/forecast/current.php) (Yuan et al., 2013b).  	
  110	
  

We used the same model parameters and temperature and wind forcings as these systems; 111	
  

however, we used different precipitation and a different approach for generating seasonal climate 112	
  

scenarios. More specifically, the CHIRPS rainfall dataset blends in more station data than other 113	
  

products and uses a high resolution background climatology, providing better estimates of 114	
  

precipitation means and variations, resulting in a better hydrologic state. The seasonal climate 115	
  

scenarios are based on a statistical-dynamical downscaling approach that leverages the strengths 116	
  

of global forecast systems. A schematic diagram shown in Fig. 2 summarizes our approach and 117	
  

lists all the data and models used to implement this system.  118	
  

In following sections we describe in detail the hydrology model (section 2.1), observed 119	
  

atmospheric forcings (section 2.2), and the methodology adopted to build seasonal climate 120	
  

scenarios (section 2.3) and generate seasonal forecasts of SM (section 2.4). 121	
  

2.1 Hydrologic Model and Parameters  122	
  

For this analysis we used the VIC model, which is a semi-distributed macroscale 123	
  

hydrology model. The VIC model has been widely used at global scale and has been 124	
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demonstrated to accurately capture the hydrology of different regimes (Nijssen et al., 1997, 125	
  

2001; Maurer et al., 2002; Adam et al., 2007).  126	
  

The VIC model parameterizes major surface, subsurface, and land-atmosphere 127	
  

hydrometeorological processes (Liang et al., 1994, 1996; Nijssen et al., 1997) and represents the 128	
  

influence of sub-grid spatial heterogeneity (in SM, elevation, and vegetation) on runoff 129	
  

generation. The VIC model uses the University of Maryland land cover classification system to 130	
  

assign different vegetation types (and bare soil) to each grid cell. Actual evapotranspiration in 131	
  

the VIC model is calculated using the Penman-Monteith equation. Total actual 132	
  

evapotranspiration is the sum of transpiration and canopy and bare soil evaporation, weighted by 133	
  

the land cover fraction within each grid cell. The soil profile (i.e. depth) in the VIC model is 134	
  

partitioned into three layers. The first layer has a fixed depth of 10 cm and responds quickly to 135	
  

changes in surface conditions and precipitation, while the lower layers characterize slower, 136	
  

seasonal SM behavior. Moisture transfers between the first and second, and second and third soil 137	
  

layers are governed by gravity drainage, with diffusion from the second to the upper layer 138	
  

allowed in unsaturated conditions (Liang et al., 1996). Baseflow is a non-linear function of the 139	
  

moisture content of the third soil-layer (Todini, 1996).  140	
  

The soil and vegetation parameters used for this study were originally developed for 141	
  

Princeton’s Africa Flood and Drought Monitor 142	
  

(http://hydrology.princeton.edu/~nchaney/ADM_ML/), documented in Sheffield et al. (2013) and 143	
  

Chaney et al (2013).  For a complete list of the soil parameters used by the VIC model see: 144	
  

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/SoilParam.shtml). 145	
  

We briefly describe their origin and sources here for the benefit of the reader. Soil texture and 146	
  

bulk density were from Batjes (1997) and the rest of the soil parameters were from Cosby et al. 147	
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(1984). In order to insure that the VIC model yields reasonable water balance, the soil 148	
  

parameters were calibrated, following the method of Troy et al. (2008), against runoff fields 149	
  

derived by Global Runoff Data Center gauges in Africa. Troy et al. (2008) demonstrated that this 150	
  

approach is sufficiently accurate, computationally efficient, and results in reasonable soil 151	
  

parameters for ungauged basins, which makes it particularity attractive for a data sparse region 152	
  

such as Africa. Vegetation parameters were taken from Nijssen et al. (2001b), where each 153	
  

vegetation type has specific root length, minimum stomatal resistance, architectural resistance, 154	
  

roughness length, and displacement length. Leaf Area Index (LAI) and albedo vary monthly. 155	
  

Monthly LAI values used in this study were derived from Myneni et al. (1997). 156	
  

2.2 Observed atmospheric forcings 157	
  

This project used the CHIRPS rainfall product (Funk et al. 2014), which is available from 158	
  

1981-near present. This dataset was developed and is updated at near-real time by the United 159	
  

States Geological Survey (USGS) in collaboration with the Climate Hazards Group of the 160	
  

Department of Geography at the University of California, Santa Barbara. CHIRPS is generated 161	
  

by blending together three different datasets: (1) global 0.05° precipitation climatology (2) time 162	
  

varying grids of satellite based and climate model precipitation estimates, and (3) in situ 163	
  

precipitation observations. This dataset has been compared with other global precipitation 164	
  

datasets such as Global Precipitation Climatology Project (GPCP), and has a high level 165	
  

agreement in our area of interest.  166	
  

Other meteorological inputs include maximum and minimum daily temperature and wind 167	
  

speed. From 1982-2008 we used the data described in Chaney et al. (2013) and Sheffield et al. 168	
  

(2006, 2013). From 2009 to present we used Global Ensembles Forecast System (GEFS) (Hamill 169	
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et al., 2013) temperature (daily Tmax and Tmin) analysis fields (accessed from: 170	
  

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html). For a continuous record, we 171	
  

bias-corrected these data relative to the previous time period using a quantile-quantile mapping 172	
  

approach for the overlapping climatological period of both dataset (i.e. 1985-2008). For the wind 173	
  

speed post-2009 we used the climatological monthly mean of wind speed data over 1982-2008. 174	
  

Livneh et al. (2013) demonstrated that using climatological mean value of wind speed has 175	
  

minimal impact on simulated SM. 176	
  

2.3 Seasonal Climate Scenarios  177	
  

	
   In order to generate SM forecasts with the VIC model, we needed scenarios of gridded 178	
  

daily precipitation and temperature for the upcoming season. The conventional approach is to 179	
  

downscale (both spatially and temporally) seasonal climate forecasts generated by dynamical 180	
  

models (Wood et al., 2002; Yuan et al., 2013b). However, dynamical precipitation forecasts for 181	
  

EA have very limited forecast skill (r<0.3), especially during the main boreal spring growing 182	
  

season (Yuan et al., 2013b).	
  Instead, we generated seasonal scale climate scenarios by using the 183	
  

hybrid dynamical-statistical downscaling approach described here. 184	
  

Our novel approach uses an ensemble mean of the 1993-2012 CFSv2 MAM seasonal 185	
  

precipitation forecasts over Indo-Pacific ocean region to generate climate scenarios over the EA 186	
  

domain. We used the CFSv2 forecasts over Indo-Pacific domain because (1) there is a strong 187	
  

teleconnection between precipitation over Indo-Pacific region and EA rainfall during the MAM 188	
  

season and (2) dynamic forecast models have higher skill of over the Indo-Pacific ocean region 189	
  

than over terrestrial regions of EA. We limit our period of analysis for both generating climate 190	
  

scenarios and SM forecasts to 1993-2012 based on Funk et al. (2013), which reported that the 191	
  

teleconnection between MAM rainfall over the EA region (Fig. 1) and Indo-Pacific SST has 192	
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been the strongest since 1993. This increase in sensitivity can at least partially be attributed to 193	
  

the co-occurrence of La Niña events with a strong West Pacific Gradient (WPG) (Hoell and 194	
  

Funk, 2013b). Funk et al. (2014a) revisits the empirical relationship between EA rainfall and the 195	
  

WPG; that heuristic paper supports the more rigorous analysis provided here. 196	
  

In brief, our approach of generating seasonal climate scenarios involved first estimating 197	
  

the similarity between the target year precipitation forecasts with climatological years (i.e. 1993-198	
  

2012, except the target years itself). Next, based on the similarity, we generated weights to guide 199	
  

a simple bootstrapping process of selection of atmospheric forcings (precipitation, temperature 200	
  

maximum, temperature minimum, and wind speed) from the climatological years (i.e. 1993-2012 201	
  

except the target year) to generate scenarios of daily weather patterns for the target season (i.e. 202	
  

seasonal climate scenarios). The specific steps undertaken to generate seasonal climate scenarios 203	
  

are as follows:	
  204	
  

A. Estimating Weights  	
  205	
  

1. We first calculate the correlation between the standardized anomaly of MAM observed 206	
  

rainfall (CHIRPS) time series averaged for the EA study region (Fig. 1) with the 207	
  

standardized anomaly of CFSv2 precipitation forecasts at each grid cell over the entire 208	
  

globe.  The period of 1982-2012 is used to standardize both datasets and the correlation is 209	
  

calculated over 1993-2012. Areas of highest correlation ([r]>0.35), within the domain 210	
  

shown in Fig. 3 (hereafter refereed as analog domain), are used to calculate similarities 211	
  

between the target year and hindcast years (1993-2012) as described in steps 2-3.  212	
  

2. We then multiply the standardized anomaly of CFSv2 forecasts of all hindcast years 213	
  

(1993-2012) over the analog domain by the absolute value of the correlation values (as 214	
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discussed in step 1). Using the absolute correlation value allows us to put less weight on, 215	
  

or effectively discard, the CFSv2 forecasts for those grid cells in the analog domain that 216	
  

demonstrate little correlation (negative or positive) with MAM rainfall in the EA study 217	
  

region.  218	
  

3. Next, we estimate the first principal component of correlation scaled CFSv2 precipitation 219	
  

forecasts (as in step 2) and regress that against the observed MAM precipitation of EA 220	
  

domain. This results in hindcast estimates (over 1993-2012) of MAM precipitation over 221	
  

the EA region. We then calculate the distance (i.e. squared difference) between hindcast 222	
  

estimates for any given target year CFSv2 forecasts with the observed precipitation of all 223	
  

hindcast years (1993-2012), except the target year itself. The inverse of these distances 224	
  

are used to produce final weights for sampling daily seasonal climate scenarios for a 225	
  

given target year as described in step 4 to 6.  226	
  

4. The final weights for sampling daily scenarios are then generated using the inverse of 227	
  

distances as in step 4, referred to as “Wi ” and a set of equiprobable climatological 228	
  

weights (i.e. 1/number of years) “Wclim ”. The blending of weights to generate final 229	
  

weights is done based on skill “s” of hindcast estimates of precipitation (i.e. the 230	
  

correlation between the hindcast estimates as mentioned in step 3 and observed 231	
  

precipitation) as shown in equation (1): 232	
  

Wf = sWi+ (1− s)Wclim          (1) 233	
  

Hence in the case of s=0 for any given season, our approach will simply yield Wf =Wclim , 234	
  

resulting in climatological forecasts, whereas the higher the skill “s”, the more Wf  will 235	
  

be closer to Wi . 236	
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 This weighting scheme allows us to include all available years in the climatological 237	
  

period (consisting of each year between 1993-2012, except the target year), although at a 238	
  

reduced likelihood, for generating climate scenarios (in contrast to the “constructed analog” 239	
  

approach suggested by Hidalgo et al. (2008) which only relies on a few best analogs). 240	
  

B. Generating Daily Scenarios 241	
  

5. To generate daily climate scenarios we start with the final weights Wf mentioned in step 242	
  

4. We use these weights to guide the probability of selection during the bootstrapping 243	
  

process (following the methods described in Husak et al., 2013) from the observed MAM 244	
  

precipitation over the EA domain during the hindcast years (1993-2012). The years with 245	
  

higher weights get selected more often than other years because the frequency of 246	
  

selection is proportionate to the weights. We first perform this bootstrapping process for 247	
  

the first dekad of MAM, comprised of 10 daily values of precipitation and temperature 248	
  

maximum and minimum. In order to build the scenarios for the first dekad of the MAM 249	
  

season for any target year, we sampled the first dekad of the MAM season from all years 250	
  

(1993-2012, except the target year) as described previously.  251	
  

6. We then repeat this process for subsequent dekads of the MAM season. For example, Fig. 252	
  

4 shows the frequency of years in the available record (1993-2012) picked in generating 253	
  

100 climate scenarios for the MAM season of the year 2011, which was a drought year. 254	
  

Based on our estimates, year 2011 was most similar to the years 2009, 1999, and 2000, 255	
  

which were all drought years. Beyond the MAM season our bootstrapping selection is 256	
  

based on the equiprobable weights (similar to climatological forecasts). 257	
  

For generating seasonal hydrologic forecasts (section 2.4) we only use 30 of those climate 258	
  

scenarios. Although all 30 scenarios aggregated over the MAM season are similar for any given 259	
  



	
   14	
  

target year, the bootstrapping process described above allows for uncertainties in the evolution of 260	
  

daily weather pattern among each scenarios.  261	
  

2.4 Seasonal hydrologic forecasts  262	
  

 Two sets of hindcast SM forecasts were generated by combining the antecedent 263	
  

conditions, one at March 5th and one April 5th (1993-2012), with a suite of climate scenarios 264	
  

(daily precipitation, maximum and minimum temperature, as described in section 2.3b) for the 265	
  

remainder of the season. (Note that the same climate scenarios were used in both cases).  We 266	
  

chose these dates because March 5th is near the SOS and about a week before FEWS NET’s 267	
  

seasonal forecast review meeting in March; likewise, April 5th is near the middle-of-season 268	
  

(MOS) and about a week before the seasonal forecast review meeting in April.  269	
  

 For comparison, we also generated two more sets of forecasts using the Ensemble 270	
  

Streamflow Prediction (ESP) method (Shukla and Lettenmaier, 2011; Wood and Lettenmaier, 271	
  

2008; Wood et al., 2002). In this method, seasonal hydrologic forecasts are generated by driving 272	
  

the hydrologic model with atmospheric forcings sampled from the climatology. It is assumed that 273	
  

the climate during the upcoming season has equal likelihood of being similar to any of the years 274	
  

during the climatological period (1993-2012 in this case). The forecasts are initialized using 275	
  

“true” initial hydrologic conditions (IHCs), so the source of hydrologic forecast skill is only the 276	
  

IHCs. We used the SM forecast generated using the ESP method as a baseline to compare the 277	
  

similar forecasts generated using CFSv2 based seasonal climate scenarios (section 2.3). This 278	
  

comparison was done in order to examine the value of CFSv2 based climate scenarios in 279	
  

hydrologic forecasting, since both methods share the IHCs but differ in the climate scenarios.  280	
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3. Evaluation of VIC derived soil moisture for agricultural drought 281	
  

assessment 282	
  

 First we evaluated the suitability of VIC-derived SM (generated by forcing the VIC 283	
  

model with high quality observed forcings (section 2.2)) for providing agricultural drought 284	
  

assessments across our domain (Fig. 1). Hereafter we refer to this dataset as “SM a posteriori 285	
  

estimates”.  We did so by comparing SM a posteriori estimates, spatially aggregated over the 286	
  

crop zones only, with the Water Requirement Satisfaction Index (WRSI) (Verdin and Klaver, 287	
  

2002).  WRSI is a water balance model that is used by Food and Agricultural Organization 288	
  

(FAO) as well as FEWS NET scientists to provide crop yield assessment (Senay and Verdin, 289	
  

2003; Verdin and Klaver, 2002; Verdin et al., 2005), therefore we used WRSI in lieu of actual 290	
  

crop yield data, which is generally scarce for this region. WRSI was calculated using the same 291	
  

precipitation data (i.e. CHIRPS) as VIC’s SM. WRSI is approximately equal to the percent of 292	
  

potential evapotranspiration met by available water resources, either rainfall or SM.  As such, 293	
  

WRSI values range from 0 to 100, with a value below 50 commonly being associated with crop 294	
  

failure.  Because only a limited amount of excess water is retained for the next time interval in 295	
  

the WRSI model, the relationship of seasonal precipitation with WRSI is not entirely linear.  For 296	
  

example, WRSI values may be the same for 100% of normal precipitation and 120% of normal 297	
  

precipitation, since both precipitation values meet the required available moisture for crop 298	
  

growth. For this reason we compared standardized anomalies of SM, rainfall and WRSI over the 299	
  

crop zones. As shown in Fig. 6, the spearman rank correlation between rainfall and WRSI is 0.83 300	
  

and the correlation between SM and WRSI is slightly less (0.75). We chose the spearman rank 301	
  

correlation value to make sure that the correlation value is not sensitive to a few outlier years, 302	
  

given the small sample size. Based on this finding we postulate that VIC derived SM is a 303	
  



	
   16	
  

reasonable indicator of agricultural drought in the focus domain. 304	
  

Next we compared SM a posteriori estimates with the European Space Agency (ESA) 305	
  

Essential Climate Variable (ECV) SM dataset. This dataset is one of the most complete and long 306	
  

term global SM datasets based on active and passive microwave remote sensing. Further details 307	
  

about this dataset can be found in Liu et al. (2011) and (2012). For the comparison between both 308	
  

datasets we calculated standardized anomaly (anomaly divided by the standard deviation) using 309	
  

the climatology of 1993-2012. In Fig. 6 we present the comparison of both data sets for two 310	
  

above normal MAM SM years (1998 and 2010) and two below normal SM years (2000 and 311	
  

2011). Although the intensity of SM anomalies are different between both datasets (which partly 312	
  

could be attributed to VIC SM being from a much deeper soil profile then ECV SM dataset), 313	
  

overall both datasets do agree on the general direction of the anomaly, meaning that, according 314	
  

to both datasets, 1998 and 2010 were wet years and 2000 and 2011 were drought years. We 315	
  

observed similar agreement between both datasets in other years as well (not shown here).   316	
  

4. Evaluation of precipitation and soil moisture forecasts 317	
  

	
   Next we assessed the skill of the precipitation and SM forecasts. Our model hindcasts 318	
  

consisted of an ensemble of 30 precipitation and SM scenarios for each year in 1993-2012.  We 319	
  

used the ensemble median of the scenarios and correlated this with the observed seasonal 320	
  

outcome. We used the CHIPRS to assess the skill of the precipitation forecasts and SM a 321	
  

posteriori estimates to assess the skill of the SM forecasts. We did so due to the lack of long-term 322	
  

SM observations for the region. 323	
  

 We compared the spatially aggregated (over the focus domain) MAM seasonal 324	
  

precipitation forecasts made during 1993-2012 and observations (CHIRPS) (Fig. 7). The value of 325	
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spearman rank correlation between precipitation forecasts and observations is 0.67.  326	
  

 Fig. 8 (a) shows the skill of SM forecasts initialized on March 5th (SOS) for lead-time of 327	
  

1 to 3 months. (Where lead-1 is the month of March and lead-3 is the month of May). The skill is 328	
  

defined as the spearman rank correlation between the ensemble median of all 30 SM scenarios 329	
  

for each year and SM a posteriori estimates (section 2.2). SM forecast skill is generally greater 330	
  

than 0.5 across the most of the region and greater than 0.9 for some parts at the 1-month lead. 331	
  

The SM forecast skill dissipates as the time between forecast month and day of forecast 332	
  

initialization increases. This finding about the SM forecast skill is consistent with the results of 333	
  

other studies (Mo et al., 2012; Shukla and Lettenmaier, 2011; Shukla et al., 2013). Nevertheless, 334	
  

over part of the focus domain (southeastern parts of Ethiopia, eastern parts of Kenya, as well as 335	
  

southern Somalia) the SM forecast skill remains as high as 0.5 for up to three months lead-time. 336	
  

This observation is particularly important in an early warning context, since it implies that over 337	
  

those regions skillful assumptions about the agricultural drought can be made early in the 338	
  

growing season. This lead-time is particularly helpful for FEWS NET food analysts, who can 339	
  

provide advanced warning about potential growing conditions in those regions.  340	
  

 Fig. 8(b) shows the SM forecast skill generated using the ESP method. As previously 341	
  

noted the ESP method does not derive its skill from the climate forecasts and is solely based on 342	
  

the knowledge of the IHCs (Shukla and Lettenmaier, 2011), therefore the comparison between 343	
  

Fig. 8 (a) and (b) shows the value of using skillful climate scenarios in improving SM forecast 344	
  

skill. This value is especially highlighted at lead-2 to 3 months (when the influence of the IHCs 345	
  

has diminished) when Fig. 8(a) shows higher level of skill than Fig. 8 (b).  346	
  

 We also calculated the SM forecast skill derived using CFSv2 based climate scenarios 347	
  

and the ESP method but during the forecast period starting on April 5th   (Fig. 9 a and b, 348	
  



	
   18	
  

respectively). Although SM forecast skill dissipates as one moves further from the initial state, 349	
  

one noteworthy observation from this figure is the higher SM forecast skill over the second and 350	
  

third month (lead-1 and lead-2 months respectively) of the MAM season. Comparing lead-2 and 351	
  

lead-3 forecasts skill in Fig. 8(a) with lead-1 and lead-2 forecast skill in Fig. 9(a), we see the 352	
  

higher values across the region in Fig. 9(a), corresponding to improved EOS information at the 353	
  

beginning of April compared to March. Ideally, forecasts of agricultural drought are early in the 354	
  

season; however, mid-season is the time when the antecedent SM state has a larger influence 355	
  

over SM until end-of-season. Such mid-season outlooks still lead actual harvest dates by several 356	
  

months, and can therefore provide critical early warning. This also highlights the value of 357	
  

incorporating precipitation during the early part of the season, which is reflected in the initial 358	
  

hydrologic state of the MOS. What this means, in practical terms, is that in case of delayed onset 359	
  

of rainfall and/or below normal rainfall during the first month of the season, SM at the middle of 360	
  

the season will be below normal and chances of recovery from the SM deficit (or failure of the 361	
  

crop) becomes lower (higher) than what they are at the beginning of the season. Again, a 362	
  

comparison of Fig. 9 (a) with Fig. 9(b) indicates that climate scenarios add to the SM forecast 363	
  

skill beyond the ESP method.  364	
  

 Although Figs. 8 and 9 show that SM forecasts generated using CFSv2 based climate 365	
  

scenarios are skillful, one obvious question is how this system would have performed during the 366	
  

2011 MAM season, which was one of the worst drought events in the history of this region. To 367	
  

answer this question, in Fig. 10 we compared the standardized anomaly of SM forecasts 368	
  

(generated by using CFSv2 based climate scenarios) initialized on March 5th (top panel) and 369	
  

April 5th (middle panel) with SM a posteriori estimates (bottom panel). From this figure (Fig. 10) 370	
  

it appears that although this system would have successfully predicted 2011 as a drought year as 371	
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early as March 5th, it would have underestimated the drought’s severity. Forecasts made on April 372	
  

5th do show elevated drought severity, though, because they used updated (drier than normal) 373	
  

IHCs.  374	
  

 Finally we examine how the SM forecast skill varies among other drought years vs 375	
  

normal years by estimating the spatial pattern correlation between SM forecasts (generated using 376	
  

CFSv2 based seasonal climate scenarios) and SM a posteriori estimates over the region (Fig. 11). 377	
  

The higher the correlation, the better the forecast is in capturing the spatial variability of SM 378	
  

anomaly pattern. Spatial anomaly pattern correlation is greater than 0.60 for all years (Fig. 10). 379	
  

As indicated by Fig. 10, there is a correlation of -0.62 between spatial anomaly pattern 380	
  

correlation for MAM SM and standardized anomaly of MAM precipitation, which means that 381	
  

spatial anomaly pattern correlation is generally higher (lower) for negative (positive) anomaly of 382	
  

precipitation. In almost all years (except one) the value of spatial anomaly pattern correlation is 383	
  

greater than 0.8 when MAM precipitation anomaly was negative (i.e. meteorological drought 384	
  

years). This finding indicates that, in terms of capturing spatial variability of SM, this system 385	
  

does relatively better during drought years than in normal or above normal years.  386	
  

5.  Concluding remarks 387	
  

Our primary findings are as follows: 388	
  

1. VIC model derived SM values over the crop zones of the focus domain aligns well with 389	
  

end-of-season WRSI, the FAO indicator that is often used for providing crop yield 390	
  

assessments.  391	
  

2. The hybrid approach that utilizes dynamical CFSv2 precipitation forecasts over EA and 392	
  

the Indo-Pacific Ocean to statistically forecast rainfall over the focus domain is more 393	
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skillful (correlation = 0.67 for MAM precipitation forecasts initialized in February) than 394	
  

using climatology (ESP) alone. 395	
  

3. Forecasts initialized mid-season make the greatest contribution to end-of-season SM 396	
  

forecast skill. SM forecasts initialized at the beginning of the season were skillful across 397	
  

the domain at 1-month lead, while the forecast skill during the second and third months 398	
  

of the season increased when the SM forecast was initialized with updated initial 399	
  

hydrologic state, even with the same climate scenarios used at the time of the start of the 400	
  

season. 401	
  

4. Spatial anomaly pattern correlation between SM forecast and SM a posteriori estimates 402	
  

are generally higher (>0.8) for drought years, indicating the value of this system during 403	
  

drought events, which is the primary focus of FEWS NET.   404	
  

 We described the development and implementation of a seasonal hydrologic forecast 405	
  

system that is being used by FEWS NET scientists to provide seasonal assessment of agricultural 406	
  

production for food-insecure regions of EA. This is certainly not the first attempt to provide 407	
  

seasonal hydrologic forecasts for EA. Our approach is most similar to Yuan et al. (2013) and 408	
  

Sheffield et al. (2013)'s Africa Flood and Drought Monitor as mentioned in section 2. 409	
  

Specifically, we used the same model parameters and temperature and wind forcings. The main 410	
  

differences between our system and theirs are the high resolution, station intensive, bias-411	
  

corrected CHIRPS precipitation forcings and the hybrid statistical-dynamical approach used for 412	
  

generating seasonal climate scenarios.  413	
  

Besides the Africa Flood and Drought Monitor, other approaches have been developed for 414	
  

drought monitoring and forecasting for Africa or EA. Rojas et al. (2011) described a drought 415	
  

monitoring approach that utilizes Vegetation Health Index (VHI) from the Advanced Very High 416	
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Resolution Radiometer (AVHRR) averaged over the crop season. Anderson et al. (2012) 417	
  

suggested an approach that takes advantage of the relative strength of three different methods for 418	
  

obtaining SM estimates. Mwangi et al. (2013) examined the skill of Standardized Precipitation 419	
  

Index (SPI) forecasts based on European Centre for Medium-Range Weather Forecasts 420	
  

(ECMWF) and found that for MAM season the skill was generally below 0.4 for forecasts issued 421	
  

in February. Meroni et al. (2014) described an approach to provide early warning of unfavorable 422	
  

crop and pasture conditions using a statistical analysis of Early Observation Data. While these 423	
  

approaches are valuable contributions, it is important for FEWS NET to have an in-house 424	
  

platform to help provide seasonal assessment of agricultural drought conditions and meet the 425	
  

decision making needs of the food analysts. This also allows us to test different approaches to 426	
  

generate climate scenarios and estimate initial hydrologic state (approaches that we plan to 427	
  

implement in this system are described in further details in next section). 428	
  

6. Future directions: 429	
  

 As mentioned before, this seasonal agricultural drought forecast system is already being 430	
  

used to provide scientific assessment of seasonal agricultural outlook. However, we 431	
  

acknowledge that further improvements to this system will better meet the decision-making 432	
  

needs of the food analysts. Three primary avenues of improvements in this system are:  433	
  

1. Improvement in the estimation of initial hydrologic state  434	
  

Differences in the way that hydrologic models partition precipitation into evapotranspiration 435	
  

and runoff, and their different water holding capacity, lead to differences in SM sensitivity to 436	
  

precipitation variability. These differences may lead to discrepancies among the model based 437	
  

SM drought estimates (Crow et al., 2012; Wang et al., 2010). Therefore we are transferring 438	
  

this agricultural drought forecast system to NASA’s FEWS NET Land Data Assimilation 439	
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System, an instance of NASA’s Land Information System (LIS) (Kumar et al., 2006) that 440	
  

includes hydrologic and soil water balance models such as Noah (Ek et al., 2003; Schaake et 441	
  

al., 1996) and WRSI (Verdin and Klaver, 2002; Verdin et al., 2005)  in addition to VIC and 442	
  

will include other land surface models such as the Catchment model (Koster et al., 2000) in 443	
  

the near future.  444	
  

Besides using a multimodel framework for seasonal agricultural drought forecasting, 445	
  

another promising approach that we plan to test is data assimilation. Previous works have 446	
  

shown that data assimilation improves estimates of SM and snow state in large scale 447	
  

hydrologic model (Andreadis and Lettenmaier, 2006; Kumar et al., 2008) leading to a higher 448	
  

hydrologic forecast skill. Therefore we will test if assimilating satellite based SM estimates 449	
  

(for top soil layer) and/or total water storage (as estimated by NASA’s Gravity Recovery and 450	
  

Climate Experiment) improves our SM forecasts skill.  	
  451	
  

2. Improvement in climate scenario building process  452	
  

For the current version of the seasonal agricultural drought forecast system we only use 453	
  

dynamical seasonal climate forecasts from CFSv2. However, NCEP’s National Multi-model 454	
  

Ensemble system (NMME, http://www.cpc.ncep.noaa.gov/products/NMME/) includes five 455	
  

other models aside from CFSv2. Recent studies have demonstrated the value of using 456	
  

multimodel ensembles of seasonal forecasts relative to using just one of the models 457	
  

(Hagedorn et al., 2005; Kirtman et al., 2013; Lavers et al., 2009; Yuan and Wood, 2013). 458	
  

Therefore we plan to use NMME model ensembles to generate climate scenarios. 459	
  

 We also aim to test other statistical forecasting methods to improve the skill of climate 460	
  

scenarios. One of those methods was recently suggested by Nicholson (2014), who found 461	
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that atmospheric variables, when used as predictors, can provide higher rainfall forecast skill 462	
  

in the Greater Horn of Africa than other surface variables such as sea surface temperature 463	
  

(SST) and sea level pressure (SLP).  464	
  

3. Improvement in presentation of the forecasts 465	
  

The primary goal of this seasonal agricultural drought forecast system is to assist FEWS 466	
  

NET’s food analysts with their decision making process. Hence it is imperative for us to 467	
  

provide forecasts in a manner that is easily understandable by the decision makers and still 468	
  

includes key information about the forecast (such as probabilities of a region being either wet 469	
  

or dry in an upcoming season). We recognize that this is a slow and iterative process; 470	
  

however, through this unique position of working directly with the food analysts we have the 471	
  

perfect opportunity to translate science into action. We plan to improve the presentation of 472	
  

our forecasts by incorporating the feedback of the end users (FEWS NET’s food analysts) 473	
  

into our forecasts. Thus far we have learned that providing the forecasts in terms of the 474	
  

chances of drought onset/persistence/recovery and best analogs is well received.  475	
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Figure 1: Ratio of March-April-May (MAM) precipitation with the annual precipitation 723	
  

(calculated using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)) 724	
  

over the focus domain that expands over parts of Ethiopia, Kenya and Somalia. This region was 725	
  

the epicenter of the 2011 humanitarian disaster. 726	
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Figure 2: Schematic diagram summarizing the approach, data, and models used for the 729	
  

development and implementation of current version of Seasonal Agricultural Drought Forecast 730	
  

system.  731	
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Figure 3: Spatial pattern of correlation between CFSv2 precipitation forecasts for MAM season 734	
  

(initialized in February) and observed MAM rainfall (CHIRPS) in the focus domain. Correlation 735	
  

values have been masked for significance (values r<|0.35| have been screened). 736	
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Figure 4: Frequency of picking each climatological year for generating 30 climate scenarios for 741	
  

MAM season of the year 2011. Top panel shows the frequency that resulted from conditioning 742	
  

bootstrapping process to CFSv2 based weighted probabilities and the bottom panel shows the 743	
  

same but for climatogical forecasts where each year was assigned the same probability.   744	
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Figure 5: Comparison of MAM precipitation, SM a posteriori estimates (VIC-SM) and end-of-747	
  

season Water Requirement Satisfaction Index (WRSI) for crop zones in the focus domain for 748	
  

each year between 1993-2012. 749	
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(c) 757	
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(d) 759	
  

Figure 6: Comparison standardized anomaly SM a posteriori estimates (VIC-SM, sum of 760	
  

moisture in top two layers), and ECV microwave soil moisture (MW-SM) for the March through 761	
  

May season of the years (a) 1998 (b) 2000 (c) 2009 and (d) 2010. 762	
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Figure 7: Comparison of ensemble median MAM precipitation forecasts and observations 766	
  

(CHIPRS) spatially aggregated over the focus domain. 767	
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(a) 770	
  

 771	
  

(b) 772	
  

Figure 8: Skill of soil moisture forecasts (i.e. correlation between ensemble median of soil 773	
  

moisture forecasts and a posteriori estimates) initialized on March 4th (start of the season) 774	
  

estimated using (a) CFSv2 based seasonal climate scenarios, (b) ESP method. 775	
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(b) 781	
  

Figure 9: Same as in Fig. 8 but for forecasts initialized on April 5th (middle-of-season) 782	
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 785	
  

Figure 10: Comparison of standardized anomaly of SM forecast generated using CFSv2 based 786	
  

seasonal climate scenarios with SM a posteriori estimates during the MAM season of the year 787	
  

2011. Top panel shows March through May forecasts generated on March 5th, middle panel 788	
  

shows the same for April and May generated on April 5th, and bottom panel shows the SM a 789	
  

posteriori estimates. 790	
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Figure 11: Comparison between spatial anomaly pattern correlation (between MAM mean soil 795	
  

moisture forecast initialized at the start of season and observation) and standardized anomaly of 796	
  

MAM precipitation. This plot indicates that spatial anomaly pattern correlation is generally 797	
  

higher (> 0.8) during drought years (when standardized anomaly of MAM precipitation is <0).  798	
  


