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Abstract 1	  

The increasing food and water demands of East Africa’s growing population are stressing 2	  

the region’s inconsistent water resources and rain-fed agriculture. More accurate seasonal 3	  

agricultural drought forecasts for this region can inform better water and agro-pastoral 4	  

management decisions, support optimal allocation of the region's water resources, and mitigate 5	  

socio-economic losses incurred by droughts and floods. Here we describe the development and 6	  

implementation of a seasonal agricultural drought forecast system for East Africa (EA) that 7	  

provides decision support for the Famine Early Warning Systems Network’s (FEWS NET) 8	  

science team. We evaluate this forecast system for a region of equatorial EA (20 S to 80 N, and 9	  

360 to 460 E) for the March-April-May growing season. This domain encompasses one of the 10	  

most food insecure, climatically variable, and socio-economically vulnerable regions in EA, and 11	  

potentially the world; this region has experienced famine as recently as 2011.  12	  

 To produce an ‘agricultural outlook’, our forecast system simulates soil moisture (SM) 13	  

scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate 14	  

scenarios describing the upcoming season. First, we forced the VIC model with high quality 15	  

atmospheric observations to produce baseline soil moisture (SM) estimates (here after referred as 16	  

SM a posteriori estimates). These compared favorably (correlation=0.75) with Water Required 17	  

Satisfaction Index (WRSI), an index that the FEWS NET uses to estimate crop yields.  Next, we 18	  

evaluated the SM forecasts generated by this system on March 5th and April 5th of each year 19	  

between 1993-2012 by comparing them with corresponding SM a posteriori estimates. We found 20	  

that initializing SM forecasts with start-of-season  (SOS) (March 5th) SM conditions resulted in 21	  

useful SM forecast skill (>0.5 correlation) at 1-month, and in some cases 3-month, lead times. 22	  

Similarly, when the forecast was initialized with mid-season (i.e. April 5th) SM conditions, the 23	  
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skill of forecasting SM estimates until the end-of-season improved (correlation >0.5 over several 24	  

grid cells). We also found these SM forecasts to be more skillful than the ones generated using 25	  

the Ensemble Streamflow Prediction (ESP) method, which derives its hydrologic forecast skill 26	  

solely from the knowledge of the initial hydrologic conditions. Finally, we show that, in terms of 27	  

forecasting spatial patterns of SM anomalies, the skill of this agricultural drought forecast system 28	  

is generally greater (>0.8 correlation) during drought years (when standardized anomaly of 29	  

MAM precipitation is below 0). This indicates that this system might be particularity useful for 30	  

identifying drought events in this region and can support decision making for mitigation or 31	  

humanitarian assistance. 32	  

 33	  

  34	  
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1. Introduction 35	  

The 2011 famine in the Horn of Africa was one of the most severe humanitarian disasters of 36	  

this century. It affected more than 13 million people (Hillier, 2012) and resulted in a disastrous 37	  

loss of life. According to Food and Agriculture Organization (FAO) and FEWS NET reports, 38	  

there were between 244,000 to 273,000 famine related deaths in southern and central Somalia 39	  

alone (Checchi and Robinson, 2013). While the situation was most dire in this region (Mosley, 40	  

2012), the impacts spilled over the border into south-eastern Ethiopia and northern Kenya. To 41	  

mitigate socio-economic losses of future drought events of this magnitude timely and adequate 42	  

responses to drought early warnings are crucial (Hillier, 2012). 43	  

FEWS NET is a program of the United States Agency for International 44	  

Development (USAID) tasked with providing timely and rigorous early warning and 45	  

vulnerability information on emerging and evolving food security issues. FEWS NET is active in 46	  

more than 30 of the world’s most food-insecure countries including Ethiopia, Kenya, and 47	  

Somalia. Each month FEWS NET’s regional food analysts compile a set of agroclimatic working 48	  

assumptions (i.e. hypotheses) for the upcoming season. Meanwhile FEWS NET’s hydroclimate 49	  

scientists review those assumptions with a deeper focus on the climate conditions and contribute 50	  

to the assumptions if need be. This process requires compiling available information on soil 51	  

moisture (SM), rainfall, vegetation health, sea surface temperatures (SSTs) and temperatures 52	  

(land surface and air) to provide weekly-to-seasonal climate outlooks.  53	  

Thus far, the hydroclimate science team has focused on forecasting rainfall anomalies of 54	  

the upcoming season, as well as real-time monitoring and attribution activities (Funk et al., 2005, 55	  

2010).  Due to this attention, rainfall estimation has also experienced significant technical 56	  

advances and is the premier input to assess agricultural production and available water resources 57	  
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(Funk et al., 2014b). While seasonal rainfall may be the most accessible indicator of yields, we 58	  

argue that future attention needs to be shifted toward monitoring and forecasting of SM. Rainfall 59	  

indicates meteorological drought, whereas SM in cropping zones during the growing season is a 60	  

more direct indicator of agricultural drought. Furthermore, accurate SM initialization 61	  

significantly contributes to the forecast skill of available moisture for up to six months (Koster et 62	  

al., 2010; Shukla and Lettenmaier, 2011; Shukla et al., 2013). Due to the shortage of real time 63	  

observed SM measurements, estimates computed using hydrologic models are among the best 64	  

indicator of antecedent SM conditions and agricultural drought (Keyantash and Dracup, 2002). 65	  

These same hydrologic models can be driven with climate forecasts for the upcoming season to 66	  

provide SM forecasts. This additional step of using forecast rainfall and other meteorological 67	  

variables to provide a seasonal outlook for plant available water provides a more nuanced and 68	  

accurate assessment of agricultural drought conditions than rainfall forecasts alone. We show 69	  

here that the combination of rainfall observations and forecasts produces more accurate SM 70	  

predictions.  71	  

 During the October-November-December growing season of 2013, the FEWS NET 72	  

science team developed and implemented a seasonal agricultural drought forecast system using 73	  

the Variable Infiltration Capacity (VIC) hydrologic model and National Centers of 74	  

Enviornmental Prediction’s (NCEP) Climate Forecasts System Version-2 (CFSv2). This system 75	  

produces SM forecasts that are used for providing agricultural drought assessment. The primary 76	  

objective of this manuscript is to describe the development and evaluation of the SM forecasts 77	  

generated by the seasonal drought forecast system. Although the intended domain of this system 78	  

expands over the Greater Horn of Africa, we focus on the equatorial East Africa (EA) (i.e. 79	  

southeastern Ethiopia, northern Kenya, and southern Ethiopia as captured in Fig. 1) as a test-bed. 80	  
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This region is predominantly a pastoral area with some crop zones. For evaluation of this system 81	  

we chose to focus on March-April-May (MAM), which is the primary growing and rainy season 82	  

as shown by the ratio of MAM and annual precipitation based on the Climate Hazards Group 83	  

InfraRed Precipitation with Station data (CHIRPS) dataset (Funk et al., 2014b) (see section 2.2) 84	  

in Fig. 1.  85	  

 Reliable rainfall forecasts at a seasonal scale over this region during the rainy season 86	  

have proven to be a challenge (Nicholson, 2014; Owiti et al., 2008). However, retrospective 87	  

analysis shows us that rainfall in MAM season has declined in last two decades (Funk et al., 88	  

2008; Lyon and DeWitt, 2012; Williams and Funk, 2011). Although the primary causes of this 89	  

decline has been a matter of debate (Hoell and Funk, 2013a; Lyon and DeWitt, 2012; Tierney et 90	  

al., 2013), it seems likely that both anthropogenic warming and decadal variability have 91	  

contributed to more frequent droughts, but in ways that may be making rainfall more predictable 92	  

(Funk et al., 2014a and Funk et al. 2013). In the future, the MAM season will continue to be 93	  

prone to drought events and continue to pose challenges for water and drought management, 94	  

given increases in population and water demands as well as degradation of land in the past few 95	  

decades (Pricope et al., 2013). These facts support a need to improve and develop tools to assist 96	  

decision makers.  97	  

  In the remainder of this manuscript we describe the approach and data used to implement 98	  

the agricultural drought forecasts system, its evaluation, and future directions. 99	  

2. Approach and Data 100	  

This section describes the approach undertaken to develop the seasonal agricultural drought 101	  

forecast system. Our approach is similar to other experimental/operational seasonal hydrologic 102	  

and drought forecast systems including the NCEP’s Multimodal Drought Monitoring System 103	  
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(http://www.emc.ncep.noaa.gov/mmb/nldas/drought/), the Climate Prediction Center’s Land 104	  

Surface Monitoring and Prediction System 105	  

(http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml), as well 106	  

as Princeton University’s Africa Flood and Drought Monitor 107	  

(http://stream.princeton.edu/AWCM/WEBPAGE/index.php) (Sheffield et al., 2013) and 108	  

Contiguous United States (CONUS) seasonal drought forecasting system 109	  

(http://hydrology.princeton.edu/forecast/current.php) (Yuan et al., 2013b).  	  110	  

We used the same model parameters and temperature and wind forcings as these systems; 111	  

however, we used different precipitation and a different approach for generating seasonal climate 112	  

scenarios. More specifically, the CHIRPS rainfall dataset blends in more station data than other 113	  

products and uses a high resolution background climatology, providing better estimates of 114	  

precipitation means and variations, resulting in a better hydrologic state. The seasonal climate 115	  

scenarios are based on a statistical-dynamical downscaling approach that leverages the strengths 116	  

of global forecast systems. A schematic diagram shown in Fig. 2 summarizes our approach and 117	  

lists all the data and models used to implement this system.  118	  

In following sections we describe in detail the hydrology model (section 2.1), observed 119	  

atmospheric forcings (section 2.2), and the methodology adopted to build seasonal climate 120	  

scenarios (section 2.3) and generate seasonal forecasts of SM (section 2.4). 121	  

2.1 Hydrologic Model and Parameters  122	  

For this analysis we used the VIC model, which is a semi-distributed macroscale 123	  

hydrology model. The VIC model has been widely used at global scale and has been 124	  
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demonstrated to accurately capture the hydrology of different regimes (Nijssen et al., 1997, 125	  

2001; Maurer et al., 2002; Adam et al., 2007).  126	  

The VIC model parameterizes major surface, subsurface, and land-atmosphere 127	  

hydrometeorological processes (Liang et al., 1994, 1996; Nijssen et al., 1997) and represents the 128	  

influence of sub-grid spatial heterogeneity (in SM, elevation, and vegetation) on runoff 129	  

generation. The VIC model uses the University of Maryland land cover classification system to 130	  

assign different vegetation types (and bare soil) to each grid cell. Actual evapotranspiration in 131	  

the VIC model is calculated using the Penman-Monteith equation. Total actual 132	  

evapotranspiration is the sum of transpiration and canopy and bare soil evaporation, weighted by 133	  

the land cover fraction within each grid cell. The soil profile (i.e. depth) in the VIC model is 134	  

partitioned into three layers. The first layer has a fixed depth of 10 cm and responds quickly to 135	  

changes in surface conditions and precipitation, while the lower layers characterize slower, 136	  

seasonal SM behavior. Moisture transfers between the first and second, and second and third soil 137	  

layers are governed by gravity drainage, with diffusion from the second to the upper layer 138	  

allowed in unsaturated conditions (Liang et al., 1996). Baseflow is a non-linear function of the 139	  

moisture content of the third soil-layer (Todini, 1996).  140	  

The soil and vegetation parameters used for this study were originally developed for 141	  

Princeton’s Africa Flood and Drought Monitor 142	  

(http://hydrology.princeton.edu/~nchaney/ADM_ML/), documented in Sheffield et al. (2013) and 143	  

Chaney et al (2013).  For a complete list of the soil parameters used by the VIC model see: 144	  

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/SoilParam.shtml). 145	  

We briefly describe their origin and sources here for the benefit of the reader. Soil texture and 146	  

bulk density were from Batjes (1997) and the rest of the soil parameters were from Cosby et al. 147	  
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(1984). In order to insure that the VIC model yields reasonable water balance, the soil 148	  

parameters were calibrated, following the method of Troy et al. (2008), against runoff fields 149	  

derived by Global Runoff Data Center gauges in Africa. Troy et al. (2008) demonstrated that this 150	  

approach is sufficiently accurate, computationally efficient, and results in reasonable soil 151	  

parameters for ungauged basins, which makes it particularity attractive for a data sparse region 152	  

such as Africa. Vegetation parameters were taken from Nijssen et al. (2001b), where each 153	  

vegetation type has specific root length, minimum stomatal resistance, architectural resistance, 154	  

roughness length, and displacement length. Leaf Area Index (LAI) and albedo vary monthly. 155	  

Monthly LAI values used in this study were derived from Myneni et al. (1997). 156	  

2.2 Observed atmospheric forcings 157	  

This project used the CHIRPS rainfall product (Funk et al. 2014), which is available from 158	  

1981-near present. This dataset was developed and is updated at near-real time by the United 159	  

States Geological Survey (USGS) in collaboration with the Climate Hazards Group of the 160	  

Department of Geography at the University of California, Santa Barbara. CHIRPS is generated 161	  

by blending together three different datasets: (1) global 0.05° precipitation climatology (2) time 162	  

varying grids of satellite based and climate model precipitation estimates, and (3) in situ 163	  

precipitation observations. This dataset has been compared with other global precipitation 164	  

datasets such as Global Precipitation Climatology Project (GPCP), and has a high level 165	  

agreement in our area of interest.  166	  

Other meteorological inputs include maximum and minimum daily temperature and wind 167	  

speed. From 1982-2008 we used the data described in Chaney et al. (2013) and Sheffield et al. 168	  

(2006, 2013). From 2009 to present we used Global Ensembles Forecast System (GEFS) (Hamill 169	  
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et al., 2013) temperature (daily Tmax and Tmin) analysis fields (accessed from: 170	  

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html). For a continuous record, we 171	  

bias-corrected these data relative to the previous time period using a quantile-quantile mapping 172	  

approach for the overlapping climatological period of both dataset (i.e. 1985-2008). For the wind 173	  

speed post-2009 we used the climatological monthly mean of wind speed data over 1982-2008. 174	  

Livneh et al. (2013) demonstrated that using climatological mean value of wind speed has 175	  

minimal impact on simulated SM. 176	  

2.3 Seasonal Climate Scenarios  177	  

	   In order to generate SM forecasts with the VIC model, we needed scenarios of gridded 178	  

daily precipitation and temperature for the upcoming season. The conventional approach is to 179	  

downscale (both spatially and temporally) seasonal climate forecasts generated by dynamical 180	  

models (Wood et al., 2002; Yuan et al., 2013b). However, dynamical precipitation forecasts for 181	  

EA have very limited forecast skill (r<0.3), especially during the main boreal spring growing 182	  

season (Yuan et al., 2013b).	  Instead, we generated seasonal scale climate scenarios by using the 183	  

hybrid dynamical-statistical downscaling approach described here. 184	  

Our novel approach uses an ensemble mean of the 1993-2012 CFSv2 MAM seasonal 185	  

precipitation forecasts over Indo-Pacific ocean region to generate climate scenarios over the EA 186	  

domain. We used the CFSv2 forecasts over Indo-Pacific domain because (1) there is a strong 187	  

teleconnection between precipitation over Indo-Pacific region and EA rainfall during the MAM 188	  

season and (2) dynamic forecast models have higher skill of over the Indo-Pacific ocean region 189	  

than over terrestrial regions of EA. We limit our period of analysis for both generating climate 190	  

scenarios and SM forecasts to 1993-2012 based on Funk et al. (2013), which reported that the 191	  

teleconnection between MAM rainfall over the EA region (Fig. 1) and Indo-Pacific SST has 192	  
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been the strongest since 1993. This increase in sensitivity can at least partially be attributed to 193	  

the co-occurrence of La Niña events with a strong West Pacific Gradient (WPG) (Hoell and 194	  

Funk, 2013b). Funk et al. (2014a) revisits the empirical relationship between EA rainfall and the 195	  

WPG; that heuristic paper supports the more rigorous analysis provided here. 196	  

In brief, our approach of generating seasonal climate scenarios involved first estimating 197	  

the similarity between the target year precipitation forecasts with climatological years (i.e. 1993-198	  

2012, except the target years itself). Next, based on the similarity, we generated weights to guide 199	  

a simple bootstrapping process of selection of atmospheric forcings (precipitation, temperature 200	  

maximum, temperature minimum, and wind speed) from the climatological years (i.e. 1993-2012 201	  

except the target year) to generate scenarios of daily weather patterns for the target season (i.e. 202	  

seasonal climate scenarios). The specific steps undertaken to generate seasonal climate scenarios 203	  

are as follows:	  204	  

A. Estimating Weights  	  205	  

1. We first calculate the correlation between the standardized anomaly of MAM observed 206	  

rainfall (CHIRPS) time series averaged for the EA study region (Fig. 1) with the 207	  

standardized anomaly of CFSv2 precipitation forecasts at each grid cell over the entire 208	  

globe.  The period of 1982-2012 is used to standardize both datasets and the correlation is 209	  

calculated over 1993-2012. Areas of highest correlation ([r]>0.35), within the domain 210	  

shown in Fig. 3 (hereafter refereed as analog domain), are used to calculate similarities 211	  

between the target year and hindcast years (1993-2012) as described in steps 2-3.  212	  

2. We then multiply the standardized anomaly of CFSv2 forecasts of all hindcast years 213	  

(1993-2012) over the analog domain by the absolute value of the correlation values (as 214	  
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discussed in step 1). Using the absolute correlation value allows us to put less weight on, 215	  

or effectively discard, the CFSv2 forecasts for those grid cells in the analog domain that 216	  

demonstrate little correlation (negative or positive) with MAM rainfall in the EA study 217	  

region.  218	  

3. Next, we estimate the first principal component of correlation scaled CFSv2 precipitation 219	  

forecasts (as in step 2) and regress that against the observed MAM precipitation of EA 220	  

domain. This results in hindcast estimates (over 1993-2012) of MAM precipitation over 221	  

the EA region. We then calculate the distance (i.e. squared difference) between hindcast 222	  

estimates for any given target year CFSv2 forecasts with the observed precipitation of all 223	  

hindcast years (1993-2012), except the target year itself. The inverse of these distances 224	  

are used to produce final weights for sampling daily seasonal climate scenarios for a 225	  

given target year as described in step 4 to 6.  226	  

4. The final weights for sampling daily scenarios are then generated using the inverse of 227	  

distances as in step 4, referred to as “Wi ” and a set of equiprobable climatological 228	  

weights (i.e. 1/number of years) “Wclim ”. The blending of weights to generate final 229	  

weights is done based on skill “s” of hindcast estimates of precipitation (i.e. the 230	  

correlation between the hindcast estimates as mentioned in step 3 and observed 231	  

precipitation) as shown in equation (1): 232	  

Wf = sWi+ (1− s)Wclim          (1) 233	  

Hence in the case of s=0 for any given season, our approach will simply yield Wf =Wclim , 234	  

resulting in climatological forecasts, whereas the higher the skill “s”, the more Wf  will 235	  

be closer to Wi . 236	  
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 This weighting scheme allows us to include all available years in the climatological 237	  

period (consisting of each year between 1993-2012, except the target year), although at a 238	  

reduced likelihood, for generating climate scenarios (in contrast to the “constructed analog” 239	  

approach suggested by Hidalgo et al. (2008) which only relies on a few best analogs). 240	  

B. Generating Daily Scenarios 241	  

5. To generate daily climate scenarios we start with the final weights Wf mentioned in step 242	  

4. We use these weights to guide the probability of selection during the bootstrapping 243	  

process (following the methods described in Husak et al., 2013) from the observed MAM 244	  

precipitation over the EA domain during the hindcast years (1993-2012). The years with 245	  

higher weights get selected more often than other years because the frequency of 246	  

selection is proportionate to the weights. We first perform this bootstrapping process for 247	  

the first dekad of MAM, comprised of 10 daily values of precipitation and temperature 248	  

maximum and minimum. In order to build the scenarios for the first dekad of the MAM 249	  

season for any target year, we sampled the first dekad of the MAM season from all years 250	  

(1993-2012, except the target year) as described previously.  251	  

6. We then repeat this process for subsequent dekads of the MAM season. For example, Fig. 252	  

4 shows the frequency of years in the available record (1993-2012) picked in generating 253	  

100 climate scenarios for the MAM season of the year 2011, which was a drought year. 254	  

Based on our estimates, year 2011 was most similar to the years 2009, 1999, and 2000, 255	  

which were all drought years. Beyond the MAM season our bootstrapping selection is 256	  

based on the equiprobable weights (similar to climatological forecasts). 257	  

For generating seasonal hydrologic forecasts (section 2.4) we only use 30 of those climate 258	  

scenarios. Although all 30 scenarios aggregated over the MAM season are similar for any given 259	  
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target year, the bootstrapping process described above allows for uncertainties in the evolution of 260	  

daily weather pattern among each scenarios.  261	  

2.4 Seasonal hydrologic forecasts  262	  

 Two sets of hindcast SM forecasts were generated by combining the antecedent 263	  

conditions, one at March 5th and one April 5th (1993-2012), with a suite of climate scenarios 264	  

(daily precipitation, maximum and minimum temperature, as described in section 2.3b) for the 265	  

remainder of the season. (Note that the same climate scenarios were used in both cases).  We 266	  

chose these dates because March 5th is near the SOS and about a week before FEWS NET’s 267	  

seasonal forecast review meeting in March; likewise, April 5th is near the middle-of-season 268	  

(MOS) and about a week before the seasonal forecast review meeting in April.  269	  

 For comparison, we also generated two more sets of forecasts using the Ensemble 270	  

Streamflow Prediction (ESP) method (Shukla and Lettenmaier, 2011; Wood and Lettenmaier, 271	  

2008; Wood et al., 2002). In this method, seasonal hydrologic forecasts are generated by driving 272	  

the hydrologic model with atmospheric forcings sampled from the climatology. It is assumed that 273	  

the climate during the upcoming season has equal likelihood of being similar to any of the years 274	  

during the climatological period (1993-2012 in this case). The forecasts are initialized using 275	  

“true” initial hydrologic conditions (IHCs), so the source of hydrologic forecast skill is only the 276	  

IHCs. We used the SM forecast generated using the ESP method as a baseline to compare the 277	  

similar forecasts generated using CFSv2 based seasonal climate scenarios (section 2.3). This 278	  

comparison was done in order to examine the value of CFSv2 based climate scenarios in 279	  

hydrologic forecasting, since both methods share the IHCs but differ in the climate scenarios.  280	  
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3. Evaluation of VIC derived soil moisture for agricultural drought 281	  

assessment 282	  

 First we evaluated the suitability of VIC-derived SM (generated by forcing the VIC 283	  

model with high quality observed forcings (section 2.2)) for providing agricultural drought 284	  

assessments across our domain (Fig. 1). Hereafter we refer to this dataset as “SM a posteriori 285	  

estimates”.  We did so by comparing SM a posteriori estimates, spatially aggregated over the 286	  

crop zones only, with the Water Requirement Satisfaction Index (WRSI) (Verdin and Klaver, 287	  

2002).  WRSI is a water balance model that is used by Food and Agricultural Organization 288	  

(FAO) as well as FEWS NET scientists to provide crop yield assessment (Senay and Verdin, 289	  

2003; Verdin and Klaver, 2002; Verdin et al., 2005), therefore we used WRSI in lieu of actual 290	  

crop yield data, which is generally scarce for this region. WRSI was calculated using the same 291	  

precipitation data (i.e. CHIRPS) as VIC’s SM. WRSI is approximately equal to the percent of 292	  

potential evapotranspiration met by available water resources, either rainfall or SM.  As such, 293	  

WRSI values range from 0 to 100, with a value below 50 commonly being associated with crop 294	  

failure.  Because only a limited amount of excess water is retained for the next time interval in 295	  

the WRSI model, the relationship of seasonal precipitation with WRSI is not entirely linear.  For 296	  

example, WRSI values may be the same for 100% of normal precipitation and 120% of normal 297	  

precipitation, since both precipitation values meet the required available moisture for crop 298	  

growth. For this reason we compared standardized anomalies of SM, rainfall and WRSI over the 299	  

crop zones. As shown in Fig. 6, the spearman rank correlation between rainfall and WRSI is 0.83 300	  

and the correlation between SM and WRSI is slightly less (0.75). We chose the spearman rank 301	  

correlation value to make sure that the correlation value is not sensitive to a few outlier years, 302	  

given the small sample size. Based on this finding we postulate that VIC derived SM is a 303	  
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reasonable indicator of agricultural drought in the focus domain. 304	  

Next we compared SM a posteriori estimates with the European Space Agency (ESA) 305	  

Essential Climate Variable (ECV) SM dataset. This dataset is one of the most complete and long 306	  

term global SM datasets based on active and passive microwave remote sensing. Further details 307	  

about this dataset can be found in Liu et al. (2011) and (2012). For the comparison between both 308	  

datasets we calculated standardized anomaly (anomaly divided by the standard deviation) using 309	  

the climatology of 1993-2012. In Fig. 6 we present the comparison of both data sets for two 310	  

above normal MAM SM years (1998 and 2010) and two below normal SM years (2000 and 311	  

2011). Although the intensity of SM anomalies are different between both datasets (which partly 312	  

could be attributed to VIC SM being from a much deeper soil profile then ECV SM dataset), 313	  

overall both datasets do agree on the general direction of the anomaly, meaning that, according 314	  

to both datasets, 1998 and 2010 were wet years and 2000 and 2011 were drought years. We 315	  

observed similar agreement between both datasets in other years as well (not shown here).   316	  

4. Evaluation of precipitation and soil moisture forecasts 317	  

	   Next we assessed the skill of the precipitation and SM forecasts. Our model hindcasts 318	  

consisted of an ensemble of 30 precipitation and SM scenarios for each year in 1993-2012.  We 319	  

used the ensemble median of the scenarios and correlated this with the observed seasonal 320	  

outcome. We used the CHIPRS to assess the skill of the precipitation forecasts and SM a 321	  

posteriori estimates to assess the skill of the SM forecasts. We did so due to the lack of long-term 322	  

SM observations for the region. 323	  

 We compared the spatially aggregated (over the focus domain) MAM seasonal 324	  

precipitation forecasts made during 1993-2012 and observations (CHIRPS) (Fig. 7). The value of 325	  
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spearman rank correlation between precipitation forecasts and observations is 0.67.  326	  

 Fig. 8 (a) shows the skill of SM forecasts initialized on March 5th (SOS) for lead-time of 327	  

1 to 3 months. (Where lead-1 is the month of March and lead-3 is the month of May). The skill is 328	  

defined as the spearman rank correlation between the ensemble median of all 30 SM scenarios 329	  

for each year and SM a posteriori estimates (section 2.2). SM forecast skill is generally greater 330	  

than 0.5 across the most of the region and greater than 0.9 for some parts at the 1-month lead. 331	  

The SM forecast skill dissipates as the time between forecast month and day of forecast 332	  

initialization increases. This finding about the SM forecast skill is consistent with the results of 333	  

other studies (Mo et al., 2012; Shukla and Lettenmaier, 2011; Shukla et al., 2013). Nevertheless, 334	  

over part of the focus domain (southeastern parts of Ethiopia, eastern parts of Kenya, as well as 335	  

southern Somalia) the SM forecast skill remains as high as 0.5 for up to three months lead-time. 336	  

This observation is particularly important in an early warning context, since it implies that over 337	  

those regions skillful assumptions about the agricultural drought can be made early in the 338	  

growing season. This lead-time is particularly helpful for FEWS NET food analysts, who can 339	  

provide advanced warning about potential growing conditions in those regions.  340	  

 Fig. 8(b) shows the SM forecast skill generated using the ESP method. As previously 341	  

noted the ESP method does not derive its skill from the climate forecasts and is solely based on 342	  

the knowledge of the IHCs (Shukla and Lettenmaier, 2011), therefore the comparison between 343	  

Fig. 8 (a) and (b) shows the value of using skillful climate scenarios in improving SM forecast 344	  

skill. This value is especially highlighted at lead-2 to 3 months (when the influence of the IHCs 345	  

has diminished) when Fig. 8(a) shows higher level of skill than Fig. 8 (b).  346	  

 We also calculated the SM forecast skill derived using CFSv2 based climate scenarios 347	  

and the ESP method but during the forecast period starting on April 5th   (Fig. 9 a and b, 348	  
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respectively). Although SM forecast skill dissipates as one moves further from the initial state, 349	  

one noteworthy observation from this figure is the higher SM forecast skill over the second and 350	  

third month (lead-1 and lead-2 months respectively) of the MAM season. Comparing lead-2 and 351	  

lead-3 forecasts skill in Fig. 8(a) with lead-1 and lead-2 forecast skill in Fig. 9(a), we see the 352	  

higher values across the region in Fig. 9(a), corresponding to improved EOS information at the 353	  

beginning of April compared to March. Ideally, forecasts of agricultural drought are early in the 354	  

season; however, mid-season is the time when the antecedent SM state has a larger influence 355	  

over SM until end-of-season. Such mid-season outlooks still lead actual harvest dates by several 356	  

months, and can therefore provide critical early warning. This also highlights the value of 357	  

incorporating precipitation during the early part of the season, which is reflected in the initial 358	  

hydrologic state of the MOS. What this means, in practical terms, is that in case of delayed onset 359	  

of rainfall and/or below normal rainfall during the first month of the season, SM at the middle of 360	  

the season will be below normal and chances of recovery from the SM deficit (or failure of the 361	  

crop) becomes lower (higher) than what they are at the beginning of the season. Again, a 362	  

comparison of Fig. 9 (a) with Fig. 9(b) indicates that climate scenarios add to the SM forecast 363	  

skill beyond the ESP method.  364	  

 Although Figs. 8 and 9 show that SM forecasts generated using CFSv2 based climate 365	  

scenarios are skillful, one obvious question is how this system would have performed during the 366	  

2011 MAM season, which was one of the worst drought events in the history of this region. To 367	  

answer this question, in Fig. 10 we compared the standardized anomaly of SM forecasts 368	  

(generated by using CFSv2 based climate scenarios) initialized on March 5th (top panel) and 369	  

April 5th (middle panel) with SM a posteriori estimates (bottom panel). From this figure (Fig. 10) 370	  

it appears that although this system would have successfully predicted 2011 as a drought year as 371	  
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early as March 5th, it would have underestimated the drought’s severity. Forecasts made on April 372	  

5th do show elevated drought severity, though, because they used updated (drier than normal) 373	  

IHCs.  374	  

 Finally we examine how the SM forecast skill varies among other drought years vs 375	  

normal years by estimating the spatial pattern correlation between SM forecasts (generated using 376	  

CFSv2 based seasonal climate scenarios) and SM a posteriori estimates over the region (Fig. 11). 377	  

The higher the correlation, the better the forecast is in capturing the spatial variability of SM 378	  

anomaly pattern. Spatial anomaly pattern correlation is greater than 0.60 for all years (Fig. 10). 379	  

As indicated by Fig. 10, there is a correlation of -0.62 between spatial anomaly pattern 380	  

correlation for MAM SM and standardized anomaly of MAM precipitation, which means that 381	  

spatial anomaly pattern correlation is generally higher (lower) for negative (positive) anomaly of 382	  

precipitation. In almost all years (except one) the value of spatial anomaly pattern correlation is 383	  

greater than 0.8 when MAM precipitation anomaly was negative (i.e. meteorological drought 384	  

years). This finding indicates that, in terms of capturing spatial variability of SM, this system 385	  

does relatively better during drought years than in normal or above normal years.  386	  

5.  Concluding remarks 387	  

Our primary findings are as follows: 388	  

1. VIC model derived SM values over the crop zones of the focus domain aligns well with 389	  

end-of-season WRSI, the FAO indicator that is often used for providing crop yield 390	  

assessments.  391	  

2. The hybrid approach that utilizes dynamical CFSv2 precipitation forecasts over EA and 392	  

the Indo-Pacific Ocean to statistically forecast rainfall over the focus domain is more 393	  
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skillful (correlation = 0.67 for MAM precipitation forecasts initialized in February) than 394	  

using climatology (ESP) alone. 395	  

3. Forecasts initialized mid-season make the greatest contribution to end-of-season SM 396	  

forecast skill. SM forecasts initialized at the beginning of the season were skillful across 397	  

the domain at 1-month lead, while the forecast skill during the second and third months 398	  

of the season increased when the SM forecast was initialized with updated initial 399	  

hydrologic state, even with the same climate scenarios used at the time of the start of the 400	  

season. 401	  

4. Spatial anomaly pattern correlation between SM forecast and SM a posteriori estimates 402	  

are generally higher (>0.8) for drought years, indicating the value of this system during 403	  

drought events, which is the primary focus of FEWS NET.   404	  

 We described the development and implementation of a seasonal hydrologic forecast 405	  

system that is being used by FEWS NET scientists to provide seasonal assessment of agricultural 406	  

production for food-insecure regions of EA. This is certainly not the first attempt to provide 407	  

seasonal hydrologic forecasts for EA. Our approach is most similar to Yuan et al. (2013) and 408	  

Sheffield et al. (2013)'s Africa Flood and Drought Monitor as mentioned in section 2. 409	  

Specifically, we used the same model parameters and temperature and wind forcings. The main 410	  

differences between our system and theirs are the high resolution, station intensive, bias-411	  

corrected CHIRPS precipitation forcings and the hybrid statistical-dynamical approach used for 412	  

generating seasonal climate scenarios.  413	  

Besides the Africa Flood and Drought Monitor, other approaches have been developed for 414	  

drought monitoring and forecasting for Africa or EA. Rojas et al. (2011) described a drought 415	  

monitoring approach that utilizes Vegetation Health Index (VHI) from the Advanced Very High 416	  
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Resolution Radiometer (AVHRR) averaged over the crop season. Anderson et al. (2012) 417	  

suggested an approach that takes advantage of the relative strength of three different methods for 418	  

obtaining SM estimates. Mwangi et al. (2013) examined the skill of Standardized Precipitation 419	  

Index (SPI) forecasts based on European Centre for Medium-Range Weather Forecasts 420	  

(ECMWF) and found that for MAM season the skill was generally below 0.4 for forecasts issued 421	  

in February. Meroni et al. (2014) described an approach to provide early warning of unfavorable 422	  

crop and pasture conditions using a statistical analysis of Early Observation Data. While these 423	  

approaches are valuable contributions, it is important for FEWS NET to have an in-house 424	  

platform to help provide seasonal assessment of agricultural drought conditions and meet the 425	  

decision making needs of the food analysts. This also allows us to test different approaches to 426	  

generate climate scenarios and estimate initial hydrologic state (approaches that we plan to 427	  

implement in this system are described in further details in next section). 428	  

6. Future directions: 429	  

 As mentioned before, this seasonal agricultural drought forecast system is already being 430	  

used to provide scientific assessment of seasonal agricultural outlook. However, we 431	  

acknowledge that further improvements to this system will better meet the decision-making 432	  

needs of the food analysts. Three primary avenues of improvements in this system are:  433	  

1. Improvement in the estimation of initial hydrologic state  434	  

Differences in the way that hydrologic models partition precipitation into evapotranspiration 435	  

and runoff, and their different water holding capacity, lead to differences in SM sensitivity to 436	  

precipitation variability. These differences may lead to discrepancies among the model based 437	  

SM drought estimates (Crow et al., 2012; Wang et al., 2010). Therefore we are transferring 438	  

this agricultural drought forecast system to NASA’s FEWS NET Land Data Assimilation 439	  



	   22	  

System, an instance of NASA’s Land Information System (LIS) (Kumar et al., 2006) that 440	  

includes hydrologic and soil water balance models such as Noah (Ek et al., 2003; Schaake et 441	  

al., 1996) and WRSI (Verdin and Klaver, 2002; Verdin et al., 2005)  in addition to VIC and 442	  

will include other land surface models such as the Catchment model (Koster et al., 2000) in 443	  

the near future.  444	  

Besides using a multimodel framework for seasonal agricultural drought forecasting, 445	  

another promising approach that we plan to test is data assimilation. Previous works have 446	  

shown that data assimilation improves estimates of SM and snow state in large scale 447	  

hydrologic model (Andreadis and Lettenmaier, 2006; Kumar et al., 2008) leading to a higher 448	  

hydrologic forecast skill. Therefore we will test if assimilating satellite based SM estimates 449	  

(for top soil layer) and/or total water storage (as estimated by NASA’s Gravity Recovery and 450	  

Climate Experiment) improves our SM forecasts skill.  	  451	  

2. Improvement in climate scenario building process  452	  

For the current version of the seasonal agricultural drought forecast system we only use 453	  

dynamical seasonal climate forecasts from CFSv2. However, NCEP’s National Multi-model 454	  

Ensemble system (NMME, http://www.cpc.ncep.noaa.gov/products/NMME/) includes five 455	  

other models aside from CFSv2. Recent studies have demonstrated the value of using 456	  

multimodel ensembles of seasonal forecasts relative to using just one of the models 457	  

(Hagedorn et al., 2005; Kirtman et al., 2013; Lavers et al., 2009; Yuan and Wood, 2013). 458	  

Therefore we plan to use NMME model ensembles to generate climate scenarios. 459	  

 We also aim to test other statistical forecasting methods to improve the skill of climate 460	  

scenarios. One of those methods was recently suggested by Nicholson (2014), who found 461	  
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that atmospheric variables, when used as predictors, can provide higher rainfall forecast skill 462	  

in the Greater Horn of Africa than other surface variables such as sea surface temperature 463	  

(SST) and sea level pressure (SLP).  464	  

3. Improvement in presentation of the forecasts 465	  

The primary goal of this seasonal agricultural drought forecast system is to assist FEWS 466	  

NET’s food analysts with their decision making process. Hence it is imperative for us to 467	  

provide forecasts in a manner that is easily understandable by the decision makers and still 468	  

includes key information about the forecast (such as probabilities of a region being either wet 469	  

or dry in an upcoming season). We recognize that this is a slow and iterative process; 470	  

however, through this unique position of working directly with the food analysts we have the 471	  

perfect opportunity to translate science into action. We plan to improve the presentation of 472	  

our forecasts by incorporating the feedback of the end users (FEWS NET’s food analysts) 473	  

into our forecasts. Thus far we have learned that providing the forecasts in terms of the 474	  

chances of drought onset/persistence/recovery and best analogs is well received.  475	  

Acknowledgements 476	  

This research was supported by the Postdocs Applying Climate Expertise (PACE) Fellowship 477	  

Program, partially funded by the NOAA Climate Program Office and administered by the UCAR 478	  

Visiting Scientist Programs. Additional support for this work was provided by the USAID’s 479	  

FEWS NET (USGS award #G09AC00001), NOAA Technical Transitions grant 480	  

NA11OAR4310151 and NASA SERVIR grant XXXX. The authors would like to thank Diego 481	  

Pedreros (USGS/UCSB) for his work on generating WRSI data.  482	  



	   24	  

Finally we also like to extend our thanks to Dr. Justin Sheffield, Nate Chaney, and others 483	  

at Terrestrial Hydrology Research Group in the Department of Civil and Environmental 484	  

Engineering at Princeton University for their work on developing forcing and model parameter 485	  

datasets and kindly sharing them with us.   486	  

 487	  

	    488	  



	   25	  

Reference 489	  

Adam,	  J.	  C.,	  Haddeland,	  I.,	  Su,	  F.	  and	  Lettenmaier,	  D.	  P.:	  Simulation	  of	  reservoir	  influences	  on	  annual	  and	  490	  
seasonal	  streamflow	  changes	  for	  the	  Lena,	  Yenisei,	  and	  Ob’	  rivers,	  J.	  Geophys.	  Res.,	  112(D24),	  491	  
doi:10.1029/2007JD008525,	  2007.	  492	  

Anderson,	  W.	  B.,	  Zaitchik,	  B.	  F.,	  Hain,	  C.	  R.,	  Anderson,	  M.	  C.,	  Yilmaz,	  M.	  T.,	  Mecikalski,	  J.	  and	  Schultz,	  L.:	  493	  
Towards	  an	  integrated	  soil	  moisture	  drought	  monitor	  for	  East	  Africa,	  Hydrology	  and	  Earth	  System	  494	  
Sciences	  Discussions,	  9(4),	  4587–4631,	  2012.	  495	  

Andreadis,	  K.	  M.	  and	  Lettenmaier,	  D.	  P.:	  Assimilating	  remotely	  sensed	  snow	  observations	  into	  a	  496	  
macroscale	  hydrology	  model,	  Advances	  in	  Water	  Resources,	  29(6),	  872–886,	  2006.	  497	  

Batjes,	  N.	  H.:	  A	  world	  dataset	  of	  derived	  soil	  properties	  by	  FAO–UNESCO	  soil	  unit	  for	  global	  modelling,	  498	  
Soil	  use	  and	  management,	  13(1),	  9–16,	  1997.	  499	  

Chaney,	  N.,	  Sheffield,	  J.,	  Villarini,	  G.	  and	  Wood,	  E.	  F.:	  Spatial	  analysis	  of	  trends	  in	  climatic	  extremes	  with	  500	  
a	  high	  resolution	  gridded	  daily	  meteorological	  data	  set	  over	  Sub-‐Saharan	  Africa,	  J.	  Clim.,	  doi:(in	  review),	  501	  
2013.	  502	  

Checchi,	  F.	  and	  Robinson,	  W.	  C.:	  Mortality	  among	  populations	  of	  southern	  and	  central	  Somalia	  affected	  503	  
by	  severe	  food	  insecurity	  and	  famine	  during	  2010-‐2012,	  FAO/FSNAU	  and	  FEWSNET.	  [online]	  Available	  504	  
from:	  http://www.fsnau.org/in-‐focus/study-‐report-‐mortality-‐among-‐populations-‐southern-‐and-‐central-‐505	  
somalia-‐affected-‐severe-‐food-‐,	  2013.	  506	  

Cosby,	  B.	  J.,	  Hornberger,	  G.	  M.,	  Clapp,	  R.	  B.	  and	  Ginn,	  T.	  R.:	  A	  statistical	  exploration	  of	  the	  relationships	  507	  
of	  soil	  moisture	  characteristics	  to	  the	  physical	  properties	  of	  soils,	  Water	  Resources	  Research,	  20(6),	  682–508	  
690,	  1984.	  509	  

Crow,	  W.	  T.,	  Kumar,	  S.	  V.	  and	  Bolten,	  J.	  D.:	  On	  the	  utility	  of	  land	  surface	  models	  for	  agricultural	  drought	  510	  
monitoring,	  Hydrol.	  Earth	  Syst.	  Sci.,	  16(9),	  3451–3460,	  doi:10.5194/hess-‐16-‐3451-‐2012,	  2012.	  511	  

Ek,	  M.	  B.,	  Mitchell,	  K.	  E.,	  Lin,	  Y.,	  Rogers,	  E.,	  Grunmann,	  P.,	  Koren,	  V.,	  Gayno,	  G.	  and	  Tarpley,	  J.	  D.:	  512	  
Implementation	  of	  Noah	  land	  surface	  model	  advances	  in	  the	  National	  Centers	  for	  Environmental	  513	  
Prediction	  operational	  mesoscale	  Eta	  model,	  Journal	  of	  Geophysical	  Research:	  Atmospheres,	  108(D22),	  514	  
n/a–n/a,	  doi:10.1029/2002JD003296,	  2003.	  515	  

Funk,	  C.,	  Dettinger,	  M.	  D.,	  Michaelsen,	  J.	  C.,	  Verdin,	  J.	  P.,	  Brown,	  M.	  E.,	  Barlow,	  M.	  and	  Hoell,	  A.:	  516	  
Warming	  of	  the	  Indian	  Ocean	  threatens	  eastern	  and	  southern	  African	  food	  security	  but	  could	  be	  517	  
mitigated	  by	  agricultural	  development,	  Proc.	  Natl.	  Acad.	  Sci.	  U.S.A.,	  105(32),	  11081–11086,	  518	  
doi:10.1073/pnas.0708196105,	  2008.	  519	  

Funk,	  C.,	  Eilerts,	  G.,	  Davenport,	  F.	  and	  Michaelsen,	  J.:	  A	  Climate	  Trend	  Analysis	  of	  Kenya—August	  2010,	  520	  
USGS	  fact	  sheet,	  2010.	  521	  

Funk, C., Husak, G., Michaelsen, J., Shukla, S., Hoell, A., Lyon, B., Hoerling, M. P., 522	  
Liebmann, B., Zhang, T., Verdin, J., Galu, G., Eilerts, G., and Rowland, J.: Attribution of 523	  
2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia, Bull. Amer. 524	  



	   26	  

Meteor. Soc., 95, 2013. 525	  
	  526	  

Funk,	  C.,	  Hoell,	  A.,	  Shukla,	  S.,	  Bladé,	  I.,	  Liebmann,	  B.,	  Roberts,	  J.	  B.,	  Robertson,	  F.	  R.	  and	  Husak,	  G.:	  527	  
Predicting	  East	  African	  spring	  droughts	  using	  Pacific	  and	  Indian	  Ocean	  sea	  surface	  temperature	  indices,	  528	  
Hydrol.	  Earth	  Syst.	  Sci.	  Discuss.,	  11(3),	  3111–3136,	  doi:10.5194/hessd-‐11-‐3111-‐2014,	  2014a.	  529	  

Funk,	  C.,	  Peterson,	  P.,	  Landsfield,	  M.,	  Pedreros,	  D.,	  Verdin,	  J.,	  Rowland,	  J.,	  Romero,	  B.,	  Husak,	  G.,	  530	  
Michaelsen,	  J.	  and	  Vedin,	  A.:	  A	  Quasi-‐global	  Precipitation	  Time	  Series	  for	  Drought	  Monitoring,	  USGS,	  531	  
EROS	  Data	  Center.	  [online]	  Available	  from:	  http://chg.geog.ucsb.edu/data/chirps.pdf,	  2014b.	  532	  

Funk,	  C.,	  Senay,	  G.,	  Asfaw,	  A.,	  Verdin,	  J.,	  Rowland,	  J.,	  Michaelson,	  J.,	  Eilerts,	  G.,	  Korecha,	  D.	  and	  533	  
Choularton,	  R.:	  Recent	  drought	  tendencies	  in	  Ethiopia	  and	  equatorial-‐subtropical	  eastern	  Africa,	  Famine	  534	  
Early	  Warning	  System	  Network,	  USAID,	  Washington,	  DC,	  2005.	  535	  

Hagedorn,	  R.,	  Doblas-‐Reyes,	  F.	  J.	  and	  Palmer,	  T.	  N.:	  The	  rationale	  behind	  the	  success	  of	  multi-‐model	  536	  
ensembles	  in	  seasonal	  forecasting	  –	  I.	  Basic	  concept,	  Tellus	  A,	  57(3),	  219–233,	  doi:10.1111/j.1600-‐537	  
0870.2005.00103.x,	  2005.	  538	  

Hamill,	  T.	  M.,	  Bates,	  G.	  T.,	  Whitaker,	  J.	  S.,	  Murray,	  D.	  R.,	  Fiorino,	  M.,	  Galarneau,	  T.	  J.,	  Zhu,	  Y.	  and	  539	  
Lapenta,	  W.:	  NOAA’s	  Second-‐Generation	  Global	  Medium-‐Range	  Ensemble	  Reforecast	  Dataset,	  Bulletin	  540	  
of	  the	  American	  Meteorological	  Society,	  94(10),	  1553–1565,	  doi:10.1175/BAMS-‐D-‐12-‐00014.1,	  2013.	  541	  

Hidalgo,	  H.	  G.,	  Dettinger,	  M.	  D.	  and	  Cayan,	  D.	  R.:	  Downscaling	  with	  constructed	  analogues:	  Daily	  542	  
precipitation	  and	  temperature	  fields	  over	  the	  United	  States,	  California	  Energy	  Commission	  PIER	  Final	  543	  
Project	  Report	  CEC-‐500-‐2007-‐123,	  2008.	  544	  

Hillier,	  D.:	  A	  dangerous	  delay:	  the	  cost	  of	  late	  response	  to	  early	  warnings	  in	  the	  2011	  drought	  in	  the	  545	  
Horn	  of	  Africa,	  Oxfam.	  [online]	  Available	  from:	  546	  
http://books.google.com/books?hl=en&lr=&id=3c5o5gnSj74C&oi=fnd&pg=PA3&dq=Drought%2BFamine547	  
%2BEast+Africa&ots=Fdonfsy2jh&sig=pHT4RdBcOydIBikstX0Xl7sb0sQ	  (Accessed	  26	  June	  2013),	  2012.	  548	  

Hoell,	  A.	  and	  Funk,	  C.:	  Indo-‐Pacific	  sea	  surface	  temperature	  influences	  on	  failed	  consecutive	  rainy	  549	  
seasons	  over	  eastern	  Africa,	  Clim	  Dyn,	  1–16,	  doi:10.1007/s00382-‐013-‐1991-‐6,	  2013a.	  550	  

Hoell,	  A.	  and	  Funk,	  C.:	  The	  ENSO-‐related	  West	  Pacific	  Sea	  Surface	  Temperature	  Gradient,	  Journal	  of	  551	  
Climate,	  130729124132007,	  doi:10.1175/JCLI-‐D-‐12-‐00344.1,	  2013b.	  552	  

Keyantash,	  J.	  and	  Dracup,	  J.	  A.:	  The	  quantification	  of	  drought:	  An	  evaluation	  of	  drought	  indices.,	  Bulletin	  553	  
of	  the	  American	  Meteorological	  Society,	  83,	  1167–1180,	  2002.	  554	  

Kirtman,	  B.	  P.,	  Min,	  D.,	  Infanti,	  J.	  M.,	  Kinter	  III,	  J.	  L.,	  Paolino,	  D.	  A.,	  Zhang,	  Q.,	  van	  den	  Dool,	  H.,	  Saha,	  S.,	  555	  
Mendez,	  M.	  P.	  and	  Becker,	  E.:	  The	  North	  American	  Multi-‐Model	  Ensemble	  (NMME):	  Phase-‐1	  Seasonal	  to	  556	  
Interannual	  Prediction,	  Phase-‐2	  Toward	  Developing	  Intra-‐Seasonal	  Prediction,	  Bulletin	  of	  the	  American	  557	  
Meteorological	  Society	  [online]	  Available	  from:	  http://journals.ametsoc.org/doi/abs/10.1175/BAMS-‐D-‐558	  
12-‐00050.1	  (Accessed	  28	  August	  2013),	  2013.	  559	  



	   27	  

Koster,	  R.	  D.,	  Mahanama,	  S.	  P.	  .,	  Livneh,	  B.,	  Lettenmaier,	  D.	  P.	  and	  Reichle,	  R.	  H.:	  Skill	  in	  streamflow	  560	  
forecasts	  derived	  from	  large-‐scale	  estimates	  of	  soil	  moisture	  and	  snow,	  Nature	  Geoscience,	  3(9),	  613–561	  
616,	  2010.	  562	  

Koster,	  R.	  D.,	  Suarez,	  M.	  J.,	  Ducharne,	  A.,	  Stieglitz,	  M.	  and	  Kumar,	  P.:	  A	  catchment-‐based	  approach	  to	  563	  
modeling	  land	  surface	  processes	  in	  a	  general	  circulation	  model:	  1.	  Model	  structure,	  Journal	  of	  564	  
Geophysical	  Research:	  Atmospheres,	  105(D20),	  24809–24822,	  doi:10.1029/2000JD900327,	  2000.	  565	  

Kumar,	  S.,	  Peterslidard,	  C.,	  Tian,	  Y.,	  Houser,	  P.,	  Geiger,	  J.,	  Olden,	  S.,	  Lighty,	  L.,	  Eastman,	  J.,	  Doty,	  B.	  and	  566	  
Dirmeyer,	  P.:	  Land	  information	  system:	  An	  interoperable	  framework	  for	  high	  resolution	  land	  surface	  567	  
modeling,	  Environmental	  Modelling	  &	  Software,	  21(10),	  1402–1415,	  doi:10.1016/j.envsoft.2005.07.004,	  568	  
2006.	  569	  

Kumar,	  S.	  V.,	  Reichle,	  R.	  H.,	  Peters-‐Lidard,	  C.	  D.,	  Koster,	  R.	  D.,	  Zhan,	  X.,	  Crow,	  W.	  T.,	  Eylander,	  J.	  B.	  and	  570	  
Houser,	  P.	  R.:	  A	  land	  surface	  data	  assimilation	  framework	  using	  the	  land	  information	  system:	  Description	  571	  
and	  applications,	  Advances	  in	  Water	  Resources,	  31(11),	  1419–1432,	  572	  
doi:10.1016/j.advwatres.2008.01.013,	  2008.	  573	  

Lavers,	  D.,	  Luo,	  L.	  and	  Wood,	  E.	  F.:	  A	  multiple	  model	  assessment	  of	  seasonal	  climate	  forecast	  skill	  for	  574	  
applications,	  Geophysical	  Research	  Letters,	  36,	  209,	  2009.	  575	  

Liang,	  X.,	  Lettenmaier,	  D.	  P.,	  Wood,	  E.	  F.	  and	  Burges,	  S.	  J.:	  A	  simple	  hydrologically	  based	  model	  of	  land	  576	  
surface	  water	  and	  energy	  fluxes	  for	  general	  circulation	  models,	  Journal	  of	  Geophysical	  Research:	  577	  
Atmospheres	  (1984–2012),	  99(D7),	  14415–14428,	  1994.	  578	  

Liang,	  X.,	  Wood,	  E.	  F.	  and	  Lettenmaier,	  D.	  P.:	  Surface	  soil	  moisture	  parameterization	  of	  the	  VIC-‐2L	  579	  
model:	  Evaluation	  and	  modification,	  Global	  and	  Planetary	  Change,	  13(1),	  195–206,	  1996a.	  580	  

Liang,	  X.,	  Wood,	  E.	  F.	  and	  Lettenmaier,	  D.	  P.:	  Surface	  soil	  moisture	  parameterization	  of	  the	  VIC-‐2L	  581	  
model:	  Evaluation	  and	  modification,	  Global	  and	  Planetary	  Change,	  13(1-‐4),	  195–206,	  1996b.	  582	  

Liu,	  Y.	  Y.,	  Dorigo,	  W.	  A.,	  Parinussa,	  R.	  M.,	  de	  Jeu,	  R.	  A.	  M.,	  Wagner,	  W.,	  McCabe,	  M.	  F.,	  Evans,	  J.	  P.	  and	  583	  
van	  Dijk,	  A.	  I.	  J.	  M.:	  Trend-‐preserving	  blending	  of	  passive	  and	  active	  microwave	  soil	  moisture	  retrievals,	  584	  
Remote	  Sensing	  of	  Environment,	  123,	  280–297,	  doi:10.1016/j.rse.2012.03.014,	  2012.	  585	  

Liu,	  Y.	  Y.,	  Parinussa,	  R.	  M.,	  Dorigo,	  W.	  A.,	  De	  Jeu,	  R.	  A.	  M.,	  Wagner,	  W.,	  van	  Dijk,	  A.	  I.	  J.	  M.,	  McCabe,	  M.	  F.	  586	  
and	  Evans,	  J.	  P.:	  Developing	  an	  improved	  soil	  moisture	  dataset	  by	  blending	  passive	  and	  active	  587	  
microwave	  satellite-‐based	  retrievals,	  Hydrol.	  Earth	  Syst.	  Sci.,	  15(2),	  425–436,	  doi:10.5194/hess-‐15-‐425-‐588	  
2011,	  2011.	  589	  

Livneh,	  B.,	  Rosenberg,	  E.	  A.,	  Lin,	  C.,	  Nijssen,	  B.,	  Mishra,	  V.,	  Andreadis,	  K.	  M.,	  Maurer,	  E.	  P.	  and	  590	  
Lettenmaier,	  D.	  P.:	  A	  Long-‐Term	  Hydrologically	  Based	  Dataset	  of	  Land	  Surface	  Fluxes	  and	  States	  for	  the	  591	  
Conterminous	  United	  States:	  Update	  and	  Extensions*,	  Journal	  of	  Climate,	  26(23),	  9384–9392,	  592	  
doi:10.1175/JCLI-‐D-‐12-‐00508.1,	  2013.	  593	  

Lyon,	  B.	  and	  DeWitt,	  D.	  G.:	  A	  recent	  and	  abrupt	  decline	  in	  the	  East	  African	  long	  rains,	  Geophysical	  594	  
Research	  Letters,	  39(2),	  n/a–n/a,	  doi:10.1029/2011GL050337,	  2012.	  595	  



	   28	  

Maurer,	  E.	  P.,	  Wood,	  A.	  W.,	  Adam,	  J.	  C.,	  Lettenmaier,	  D.	  P.	  and	  Nijssen,	  B.:	  A	  Long-‐Term	  Hydrologically	  596	  
Based	  Dataset	  of	  Land	  Surface	  Fluxes	  and	  States	  for	  the	  Conterminous	  United	  States*,	  Journal	  of	  597	  
Climate,	  15(22),	  3237–3251,	  2002.	  598	  

Meroni,	  M.,	  Fasbender,	  D.,	  Kayitakire,	  F.,	  Pini,	  G.,	  Rembold,	  F.,	  Urbano,	  F.	  and	  Verstraete,	  M.	  M.:	  Early	  599	  
detection	  of	  biomass	  production	  deficit	  hot-‐spots	  in	  semi-‐arid	  environment	  using	  FAPAR	  time	  series	  and	  600	  
a	  probabilistic	  approach,	  Remote	  Sensing	  of	  Environment,	  142,	  57–68,	  doi:10.1016/j.rse.2013.11.012,	  601	  
2014.	  602	  

Mo,	  K.	  C.,	  Shukla,	  S.,	  Lettenmaier,	  D.	  P.	  and	  Chen,	  L.-‐C.:	  Do	  Climate	  Forecast	  System	  (CFSv2)	  forecasts	  603	  
improve	  seasonal	  soil	  moisture	  prediction?,	  Geophysical	  Research	  Letters,	  39(23),	  n/a–n/a,	  604	  
doi:10.1029/2012GL053598,	  2012.	  605	  

Mosley,	  J.:	  Translating	  Famine	  Early	  Warning	  into	  Early	  Action:	  An	  East	  Africa	  Case	  Study,	  [online]	  606	  
Available	  from:	  607	  
http://www.chathamhouse.org/sites/default/files/public/Research/Africa/1112pp_mosley.pdf	  608	  
(Accessed	  26	  June	  2013),	  2012.	  609	  

Mwangi,	  E.,	  Wetterhall,	  F.,	  Dutra,	  E.,	  Giuseppe,	  F.	  D.	  and	  Pappenberger,	  F.:	  Forecasting	  droughts	  in	  East	  610	  
Africa,	  Hydrology	  and	  Earth	  System	  Sciences	  Discussions,	  10(8),	  10209–10230,	  2013.	  611	  

Myneni,	  R.	  B.,	  Ramakrishna,	  R.,	  Nemani,	  R.	  and	  Running,	  S.	  W.:	  Estimation	  of	  global	  leaf	  area	  index	  and	  612	  
absorbed	  PAR	  using	  radiative	  transfer	  models,	  Geoscience	  and	  Remote	  Sensing,	  IEEE	  Transactions	  on,	  613	  
35(6),	  1380–1393,	  1997.	  614	  

Nicholson,	  S.	  E.:	  The	  predictability	  of	  rainfall	  over	  the	  Greater	  Horn	  of	  Africa.	  Part	  I.	  Prediction	  of	  615	  
seasonal	  rainfall.,	  Journal	  of	  Hydrometeorology,	  140117143344004,	  doi:10.1175/JHM-‐D-‐13-‐062.1,	  2014.	  616	  

Nijssen,	  B.,	  Lettenmaier,	  D.	  P.,	  Liang,	  X.,	  Wetzel,	  S.	  W.	  and	  Wood,	  E.	  F.:	  Streamflow	  simulation	  for	  617	  
continental-‐scale	  river	  basins,	  Water	  Resources	  Research,	  33(4),	  711–724,	  1997.	  618	  

Nijssen,	  B.,	  O’Donnell,	  G.	  M.,	  Hamlet,	  A.	  F.	  and	  Lettenmaier,	  D.	  P.:	  Hydrologic	  sensitivity	  of	  global	  rivers	  619	  
to	  climate	  change,	  Climatic	  Change,	  50(1),	  143–175,	  2001a.	  620	  

Nijssen,	  B.,	  O’Donnell,	  G.	  M.,	  Lettenmaier,	  D.	  P.,	  Lohmann,	  D.	  and	  Wood,	  E.	  F.:	  Predicting	  the	  Discharge	  621	  
of	  Global	  Rivers,	  Journal	  of	  Climate,	  14(15),	  3307–3323,	  doi:10.1175/1520-‐622	  
0442(2001)014<3307:PTDOGR>2.0.CO;2,	  2001b.	  623	  

Owiti,	  Z.,	  Ogallo,	  L.	  A.	  and	  Mutemi,	  J.:	  Linkages	  between	  the	  Indian	  Ocean	  Dipole	  and	  east	  African	  624	  
seasonal	  rainfall	  anomalies,	  Journal	  of	  Kenya	  Meteorological	  Society	  Volume,	  2,	  1,	  2008.	  625	  

Pricope,	  N.	  G.,	  Husak,	  G.,	  Lopez-‐Carr,	  D.,	  Funk,	  C.	  and	  Michaelsen,	  J.:	  The	  climate-‐population	  nexus	  in	  626	  
the	  East	  African	  Horn:	  Emerging	  degradation	  trends	  in	  rangeland	  and	  pastoral	  livelihood	  zones,	  Global	  627	  
Environmental	  Change,	  23(6),	  1525–1541,	  doi:10.1016/j.gloenvcha.2013.10.002,	  2013.	  628	  

Rojas,	  O.,	  Vrieling,	  A.	  and	  Rembold,	  F.:	  Assessing	  drought	  probability	  for	  agricultural	  areas	  in	  Africa	  with	  629	  
coarse	  resolution	  remote	  sensing	  imagery,	  Remote	  Sensing	  of	  Environment,	  115(2),	  343–352,	  630	  
doi:10.1016/j.rse.2010.09.006,	  2011.	  631	  



	   29	  

Schaake,	  J.	  C.,	  Koren,	  V.	  I.,	  Duan,	  Q.-‐Y.,	  Mitchell,	  K.	  and	  Chen,	  F.:	  Simple	  water	  balance	  model	  for	  632	  
estimating	  runoff	  at	  different	  spatial	  and	  temporal	  scales,	  Journal	  of	  Geophysical	  Research:	  633	  
Atmospheres,	  101(D3),	  7461–7475,	  doi:10.1029/95JD02892,	  1996.	  634	  

Senay,	  G.	  B.	  and	  Verdin,	  J.:	  Characterization	  of	  yield	  reduction	  in	  Ethiopia	  using	  a	  GIS-‐based	  crop	  water	  635	  
balance	  model,	  Canadian	  Journal	  of	  Remote	  Sensing,	  29(6),	  687–692,	  2003.	  636	  

Sheffield,	  J.,	  Goteti,	  G.	  and	  Wood,	  E.	  F.:	  Development	  of	  a	  50-‐year	  high-‐resolution	  global	  dataset	  of	  637	  
meteorological	  forcings	  for	  land	  surface	  modeling,	  Journal	  of	  Climate,	  19(13),	  3088–3111,	  638	  
doi:10.1175/JCLI3790.1,	  2006.	  639	  

Sheffield,	  J.,	  Wood,	  E.	  F.,	  Chaney,	  N.,	  Guan,	  K.,	  Sadri,	  S.,	  Yuan,	  X.,	  Olang,	  L.,	  Amni,	  A.,	  Ali,	  A.	  and	  Demuth,	  640	  
S.:	  A	  Drought	  Monitoring	  and	  Forecasting	  System	  for	  Sub-‐Sahara	  African	  Water	  Resources	  and	  Food	  641	  
Security,	  Bull.	  Am.	  Met.	  Soc.,	  doi:(in	  review),	  2013.	  642	  

Shukla,	  S.	  and	  Lettenmaier,	  D.	  P.:	  Seasonal	  hydrologic	  prediction	  in	  the	  United	  States:	  understanding	  the	  643	  
role	  of	  initial	  hydrologic	  conditions	  and	  seasonal	  climate	  forecast	  skill,	  Hydrol.	  Earth	  Syst.	  Sci.,	  15(11),	  644	  
3529–3538,	  doi:10.5194/hess-‐15-‐3529-‐2011,	  2011.	  645	  

Shukla,	  S.,	  Sheffield,	  J.,	  Wood,	  E.	  F.	  and	  Lettenmaier,	  D.	  P.:	  On	  the	  sources	  of	  global	  land	  surface	  646	  
hydrologic	  predictability,	  Hydrol.	  Earth	  Syst.	  Sci.,	  17(7),	  2781–2796,	  doi:10.5194/hess-‐17-‐2781-‐2013,	  647	  
2013.	  648	  

Tierney,	  J.	  E.,	  Smerdon,	  J.	  E.,	  Anchukaitis,	  K.	  J.	  and	  Seager,	  R.:	  Multidecadal	  variability	  in	  East	  African	  649	  
hydroclimate	  controlled	  by	  the	  Indian	  Ocean,	  Nature,	  493(7432),	  389–392,	  doi:10.1038/nature11785,	  650	  
2013.	  651	  

Todini,	  E.:	  The	  ARNO	  rainfall–runoff	  model,	  Journal	  of	  Hydrology,	  175(1-‐4),	  339–382,	  1996.	  652	  

Troy,	  T.	  J.,	  Wood,	  E.	  F.	  and	  Sheffield,	  J.:	  An	  efficient	  calibration	  method	  for	  continental-‐scale	  land	  surface	  653	  
modeling,	  Water	  Resources	  Research,	  44(9)	  [online]	  Available	  from:	  654	  
http://www.agu.org/journals/wr/wr0809/2007WR006513/2007wr006513-‐t02.txt	  (Accessed	  17	  655	  
September	  2013),	  2008.	  656	  

Verdin,	  J.,	  Funk,	  C.,	  Senay,	  G.	  and	  Choularton,	  R.:	  Climate	  science	  and	  famine	  early	  warning,	  657	  
Philosophical	  Transactions	  of	  the	  Royal	  Society	  B:	  Biological	  Sciences,	  360(1463),	  2155–2168,	  2005.	  658	  

Verdin,	  J.	  and	  Klaver,	  R.:	  Grid-‐cell-‐based	  crop	  water	  accounting	  for	  the	  famine	  early	  warning	  system,	  659	  
Hydrological	  Processes,	  16(8),	  1617–1630,	  2002.	  660	  

Wang,	  A.,	  Bohn,	  T.	  J.,	  Mahanama,	  S.	  P.,	  Koster,	  R.	  D.	  and	  Lettenmaier,	  D.	  P.:	  Multimodel	  ensemble	  661	  
reconstruction	  of	  drought	  over	  the	  continental	  United	  States,,	  2010.	  662	  

Williams,	  A.	  P.	  and	  Funk,	  C.:	  A	  westward	  extension	  of	  the	  warm	  pool	  leads	  to	  a	  westward	  extension	  of	  663	  
the	  Walker	  circulation,	  drying	  eastern	  Africa,	  Climate	  Dynamics,	  37(11-‐12),	  2417–2435,	  664	  
doi:10.1007/s00382-‐010-‐0984-‐y,	  2011.	  665	  

Wood,	  A.	  W.	  and	  Lettenmaier,	  D.	  P.:	  An	  ensemble	  approach	  for	  attribution	  of	  hydrologic	  prediction	  666	  
uncertainty,	  Geophysical	  Research	  Letters,	  35(14),	  L14401,	  2008.	  667	  



	   30	  

Wood,	  A.	  W.,	  Maurer,	  E.	  P.,	  Kumar,	  A.	  and	  Lettenmaier,	  D.	  P.:	  Long-‐range	  experimental	  hydrologic	  668	  
forecasting	  for	  the	  eastern	  United	  States,	  J.	  Geophys.	  Res.,	  107(D20),	  4429,	  doi:10.1029/2001JD000659,	  669	  
2002.	  670	  

Yuan,	  X.	  and	  Wood,	  E.	  F.:	  Multimodel	  seasonal	  forecasting	  of	  global	  drought	  onset,	  Geophys.	  Res.	  Lett.,	  671	  
40(18),	  4900–4905,	  doi:10.1002/grl.50949,	  2013.	  672	  

Yuan,	  X.,	  Wood,	  E.	  F.,	  Chaney,	  N.	  W.,	  Sheffield,	  J.,	  Kam,	  J.,	  Liang,	  M.	  and	  Guan,	  K.:	  Probabilistic	  Seasonal	  673	  
Forecasting	  of	  African	  Drought	  by	  Dynamical	  Models,	  Journal	  of	  Hydrometeorology,	  14(6),	  1706–1720,	  674	  
doi:10.1175/JHM-‐D-‐13-‐054.1,	  2013a.	  675	  

Yuan,	  X.,	  Wood,	  E.	  F.,	  Roundy,	  J.	  K.	  and	  Pan,	  M.:	  CFSv2-‐Based	  Seasonal	  Hydroclimatic	  Forecasts	  over	  the	  676	  
Conterminous	  United	  States,	  J.	  Climate,	  26(13),	  4828–4847,	  doi:10.1175/JCLI-‐D-‐12-‐00683.1,	  2013b.	  677	  

 678	  

 679	  

	    680	  



	   31	  

List of figures: 681	  

Figure 1: Ratio of March-April-May (MAM) precipitation with the annual precipitation 682	  

(calculated using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)) 683	  

over the focus domain that expands over parts of Ethiopia, Kenya and Somalia. This region was 684	  

the epicenter of the 2011 humanitarian disaster. 685	  

Figure 2: Schematic diagram summarizing the approach, data, and models used for the 686	  

development and implementation of current version of Seasonal Agricultural Drought Forecast 687	  

system.  688	  

Figure 3: Spatial pattern of correlation between CFSv2 precipitation forecasts for MAM season 689	  

(initialized in February) and observed MAM rainfall (CHIRPS) in the focus domain. Correlation 690	  

values have been masked for significance (values r<|0.35| have been screened). 691	  

Figure 4: Frequency of picking each climatological year for generating 30 climate scenarios for 692	  

MAM season of the year 2011. Top panel shows the frequency that resulted from conditioning 693	  

bootstrapping process to CFSv2-based weighted probabilities and the bottom panel shows the 694	  

same but for climatological forecasts where each year was assigned the same probability.   695	  

Figure 5: Comparison of MAM precipitation, SM a posteriori estimates (VIC-SM) and end-of-696	  

season Water Requirement Satisfaction Index (WRSI) for crop zones in the focus domain for 697	  

each year between 1993-2012. 698	  

Figure 6: Comparison standardized anomaly SM a posteriori estimates (VIC-SM, sum of 699	  

moisture in top two layers) and ECV microwave soil moisture (MW-SM) for March through 700	  

May season of the years (a) 1998 (b) 2000 (c) 2009 and (d) 2010. 701	  
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Figure 7: Comparison of ensemble median MAM precipitation forecasts and observations 702	  

(CHIPRS) spatially aggregated over the focus domain. 703	  

Figure 8: Skill of soil moisture forecasts (i.e. correlation between ensemble median of soil 704	  

moisture forecasts and a posteriori estimates) initialized on March 4th (start of the season) 705	  

estimated using (a) CFSv2 based seasonal climate scenarios, (b) ESP method. 706	  

Figure 9: Same as in Fig. 8 but for forecasts initialized on April 5th (middle-of-season) 707	  

Figure 10: Comparison of standardized anomaly of SM forecast generated using CFSv2 based 708	  

seasonal climate scenarios with SM a posteriori estimates during MAM season of the year 2011. 709	  

Top panel shows March through May forecasts generated on March 5th, middle panel shows the 710	  

same for April and May generated on April 5th and bottom panel shows the SM a posteriori 711	  

estimates. 712	  

Figure 11: Comparison between spatial anomaly pattern correlation (between MAM mean soil 713	  

moisture forecast initialized at the start of season and observation) and standardized anomaly of 714	  

MAM precipitation. This plot indicates that spatial anomaly pattern correlation is generally 715	  

higher (> 0.8) during drought years (when standardized anomaly of MAM precipitation is <0).  716	  
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 721	  

 722	  

Figure 1: Ratio of March-April-May (MAM) precipitation with the annual precipitation 723	  

(calculated using Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)) 724	  

over the focus domain that expands over parts of Ethiopia, Kenya and Somalia. This region was 725	  

the epicenter of the 2011 humanitarian disaster. 726	  
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 728	  

Figure 2: Schematic diagram summarizing the approach, data, and models used for the 729	  

development and implementation of current version of Seasonal Agricultural Drought Forecast 730	  

system.  731	  
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 733	  

Figure 3: Spatial pattern of correlation between CFSv2 precipitation forecasts for MAM season 734	  

(initialized in February) and observed MAM rainfall (CHIRPS) in the focus domain. Correlation 735	  

values have been masked for significance (values r<|0.35| have been screened). 736	  
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 740	  

Figure 4: Frequency of picking each climatological year for generating 30 climate scenarios for 741	  

MAM season of the year 2011. Top panel shows the frequency that resulted from conditioning 742	  

bootstrapping process to CFSv2 based weighted probabilities and the bottom panel shows the 743	  

same but for climatogical forecasts where each year was assigned the same probability.   744	  
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 746	  

Figure 5: Comparison of MAM precipitation, SM a posteriori estimates (VIC-SM) and end-of-747	  

season Water Requirement Satisfaction Index (WRSI) for crop zones in the focus domain for 748	  

each year between 1993-2012. 749	  

  750	  



	   38	  

 751	  

(a) 752	  

 753	  

(b) 754	  
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 756	  

(c) 757	  

 758	  

(d) 759	  

Figure 6: Comparison standardized anomaly SM a posteriori estimates (VIC-SM, sum of 760	  

moisture in top two layers), and ECV microwave soil moisture (MW-SM) for the March through 761	  

May season of the years (a) 1998 (b) 2000 (c) 2009 and (d) 2010. 762	  
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 764	  

 765	  

Figure 7: Comparison of ensemble median MAM precipitation forecasts and observations 766	  

(CHIPRS) spatially aggregated over the focus domain. 767	  
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 769	  

(a) 770	  

 771	  

(b) 772	  

Figure 8: Skill of soil moisture forecasts (i.e. correlation between ensemble median of soil 773	  

moisture forecasts and a posteriori estimates) initialized on March 4th (start of the season) 774	  

estimated using (a) CFSv2 based seasonal climate scenarios, (b) ESP method. 775	  
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 777	  

 778	  

(a) 779	  

 780	  

(b) 781	  

Figure 9: Same as in Fig. 8 but for forecasts initialized on April 5th (middle-of-season) 782	  
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 784	  

 785	  

Figure 10: Comparison of standardized anomaly of SM forecast generated using CFSv2 based 786	  

seasonal climate scenarios with SM a posteriori estimates during the MAM season of the year 787	  

2011. Top panel shows March through May forecasts generated on March 5th, middle panel 788	  

shows the same for April and May generated on April 5th, and bottom panel shows the SM a 789	  

posteriori estimates. 790	  
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 793	  

 794	  

Figure 11: Comparison between spatial anomaly pattern correlation (between MAM mean soil 795	  

moisture forecast initialized at the start of season and observation) and standardized anomaly of 796	  

MAM precipitation. This plot indicates that spatial anomaly pattern correlation is generally 797	  

higher (> 0.8) during drought years (when standardized anomaly of MAM precipitation is <0).  798	  


