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Abstract 18 

A major challenge in the emerging research field of coupling of existing regional climate models and 19 

hydrology/land-surface models is the computational interaction between the models. Here we present 20 

results from a full two-way coupling of the HIRHAM regional climate model over a 4000 km x 2800 km 21 

domain at 11 km resolution and the combined MIKE SHE-SWET hydrology and land-surface models over the 22 

2500 km2 Skjern river catchment. A total of 26 one-year runs were performed to assess the influence of the 23 

data transfer interval (DTI) between the two models and the internal HIRHAM model variability of ten 24 

variables. DTI frequencies between 12-120 min were assessed, where the computational overhead was 25 
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found to increase substantially with increasing exchange frequency. In terms of hourly and daily 26 

performance statistics the coupled model simulations performed less accurately than the uncoupled 27 

simulations whereas for longer term cumulative precipitation the opposite was found especially for more 28 

frequent DTI rates. Four of six output variables from HIRHAM, precipitation, relative humidity, wind speed 29 

and air temperature, showed statistically significant improvements in root-mean-square-error (RMSE) by 30 

reducing the DTI. For these four variables, the HIRHAM RMSE variability corresponded to approximately 31 

half of the influence from the DTI frequency and the variability resulted in a large spread in simulated 32 

precipitation. Conversely, DTI was found to have only a limited impact on the energy fluxes and discharge 33 

simulated by MIKE SHE. 34 

 35 

1 – Introduction 36 

Combined modelling of atmospheric, surface and subsurface processes has been performed in a broad 37 

range of studies over the years utilizing increasingly complex model codes. For example, by adding more 38 

complex process descriptions in the hydrological component of the Lund–Potsdam–Jena vegetation model 39 

(LPJ GUESS), more realistic global reproductions of evapotranspiration and runoff is achieved as compared 40 

to an offline  hydrological model (Gerten et al., 2004). It is further argued that the combination of 41 

hydrology and  vegetation processes may account for rising CO2 levels not simulated using hydrological 42 

models alone. Similarly Yan et al. (2012) successfully simulate global evapotranspiration using the energy 43 

based vegetation and water balance land-surface model ARTS E, while Anyah et al. (2008) show a direct 44 

connection between soil moisture and simulations of evapotranspiration over the Western North America, 45 

where soil water is a limiting factor, using the coupled RAMS-Hydro model. Several studies deal with the 46 

influence of surface hydrology, vegetation and land use change on atmospheric processes. Seneviratne et 47 

al. (2006) show that land-atmosphere coupling processes are significant in representing the variability of 48 

temperature projections for 2070 to 2099 using an ensemble of climate models. Zeng et al. (2003) highlight 49 

the considerable influence of land-surface temperature and moisture heterogeneities on simulations of 50 
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sensible (H) and latent heat (LE) fluxes as well as the precipitation pattern, using the RegCM2 regional 51 

climate model. Cui et al. (2006) show a substantial change in ECHAM5 general circulation model predictions 52 

as a consequence of projected changes in vegetation. Kunstmann and Stadler (2005), Smiatek et al. (2012) 53 

and York et al. (2002) study the influence of the atmosphere on land-surface and subsurface state. Of 54 

these, York et al. (2002) use the CLASP II model with coupled aquifer-atmosphere processes for a single grid 55 

box to study the response of groundwater levels to climate forcing.  56 

Current climate models include only a simplistic surface and subsurface description of hydrology processes 57 

and similarly hydrological models generally include atmospheric processes in a surface-near layer in the 58 

scale of meters. More recent studies have therefore focused on combining model codes that each 59 

represents a component in the total simulation of atmospheric, land-surface and subsurface processes as 60 

well as ocean processes. Of these, a few studies have focused on coupling a mesoscale atmospheric model 61 

with a combined land-surface and hydrological model. Maxwell et al. (2007) for example study the coupling 62 

of the ARPS mesoscale atmospheric model (Xue et al., 2000, 2001) and the ParFlow hydrological model 63 

(Kollet and Maxwell, 2008) for a 36 hour period over the Little Washita catchment in Oklahoma, USA, 64 

showing a high degree of soil moisture influence on the boundary layer development. In Maxwell et al. 65 

(2011) the ParFlow hydrological model also including subsurface flow is coupled with the WRF atmospheric 66 

model (Skamarock et al., 2008) and the NOAH land-surface model (Ek et al., 2003) for 48 hour idealized and 67 

semi-idealized runs emphasizing the applicability of the model setup in integrated water resource studies. 68 

Also using the WRF and NOAH models  Jiang et al. (2009) couple these with the SIMGM groundwater model 69 

highlighting the importance in proper energy flux and soil moisture signal from the land-surface for the 70 

reproduction precipitation over the Central USA. A recent study utilizes a fully dynamic coupling of the 71 

COSMO atmospheric model, the CLM3.5 land-surface model and the ParFlow hydrology model for a one 72 

week summer period (Shresta et al. 2014) indicating slight improvements for surface energy fluxes for the 73 

distributed model system as compared to 1D columns. COSMO further has the advantage of being non-74 

hydrostatic and therefore able to resolve convective processes. Klüpfel et al. (2011) use COSMO in 2.8 km 75 
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resolution over Western Africa and demonstrate a high degree of soil moisture influence on simulated 76 

precipitation for a convective event. Furthermore, a few recent studies couple atmospheric models in 77 

climate mode, i.e. performing longer term simulations at larger spatial scales. Rasmussen (2012) for 78 

example studied the HIRHAM regional climate model (Christensen et al., 2006) and the MIKE SHE 79 

hydrological model (Graham and Butts, 2005) with the SWET land-surface scheme (Overgaard, 2005) in 80 

one-way coupled mode, where output from the regional climate model is transferred to the hydrological 81 

model over the FIFE test domain in Kansas, USA, for the period May to October 1987. In that study, data 82 

are exchanged over an area represented by a single 0.125 degree HIRHAM grid cell. In two more recent 83 

studies, the MM5 regional climate model and the PROMET land-surface model (Zabel and Mauser, 2013) 84 

and the CAM atmosphere model and the SWAT hydrology model (Goodall et al., 2013) have been coupled. 85 

A comprehensive two-way coupling between the HIRHAM regional climate model and the MIKE SHE 86 

hydrological model combined with the SWET land-surface model for the 2500 km2 Skjern river catchment in 87 

Denmark has recently been established by Butts et al. (2014) and used for a one-year simulation. To our 88 

knowledge, no previous studies have been reported on annual simulations employing couplings between a 89 

distributed regional climate model and a full 3D groundwater-surface water hydrological model for 90 

catchments larger than a single regional climate model grid point. A limitation of the study of Butts et al. 91 

(2014) is the need to understand the influence of the data transfer interval (DTI) between the two models, 92 

an issue which has also not been reported in previous studies. Also, in Butts et al. (2014) only a limited part 93 

of the full RCM domain is replaced by the local hydrology model land-surface scheme which could lead to 94 

local physical discontinuities.Another crucial issue, when systematically evaluating climate model results, is 95 

the inherent model variability where minor changes to the model setup, induced either by artificially 96 

perturbing initial conditions (Giorgi and Bi, 2000) or by altering the domain location (Larsen et al., 2013) 97 

result in significant variations in the simulated atmospheric variables. Giorgi and Bi (2000) show for regions 98 

in China that especially during the summer and for high precipitation events, precipitation is highly 99 

sensitive to perturbations in the initial and boundary conditions. Similarly, Alexandru et al. (2007) used the 100 
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Canadian regional climate model CRCM (Caya and Laprise, 1999) over five domains with twenty perturbed 101 

runs for each domain to assess model variability in precipitation. They found at least 10 ensemble members 102 

were needed to reproduce the correct seasonal means although this number is dependent on the domain 103 

size.   104 

In this paper we study the interaction and feedback mechanisms between the atmosphere and the land-105 

surface by two-way coupling of proven climate and hydrology models each operating in an environment 106 

where the other model component deliver high quality boundary conditions using the same setup as Butts 107 

et al. (2014). Our hypothesis is that the inclusion of feedback will provide a significantly changed signal 108 

when compared to uncoupled simulations. In addition, the current study aims to evaluate the influence of 109 

the data transfer interval (DTI) between the two models since this strongly influences computation time 110 

and to evaluate the importance of the internal HIRHAM model variability by assessing the sensitivity of the 111 

simulation results to perturbations of boundary and initial conditions. 112 

 113 

2 – Method 114 

2.1 – Study area 115 

The climate and hydrological models used in this study each cover areas typical of their application range. 116 

The HIRHAM regional climate domain model covers an area of approximately 2800 km x 4000 km from 117 

northwest of Iceland to southern Ukraine (figure 1). Approximately 60% of the latitudinal stretch is located 118 

west of the Skjern catchment where most local weather systems originate. The MIKE SHE model setup 119 

covers the Skjern catchment area of 2500 km2 (figure 1) located in the western part of the Jutland 120 

peninsula. The data exchange between the models occurs at the overlapping grid cells with the hydrological 121 

catchment nested within the climate model domain (figure 1). Skjern River emerges in the central Jutland 122 

ridge at approx. 125 m above sea level and has its outlet into the Ringkøbing fjord. The Jutland ridge has a 123 

maximum elevation of approx. 130 m. Two general soil classes can be distinguished within the catchment; 124 

sandy soils generated by the Weichsel ice age glacial outwash and till soils from the previous Saalian ice 125 
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age. The catchment land use is divided between 61% agriculture, 24% meadow/grass/heath, 13% forest 126 

and 2% other. For the period 2000-2009 the average annual measured precipitation is 940 mm, which 127 

when corrected for turbulence related gauge undercatch (Allerup et al., 1998) amounts to 1130 mm/year. 128 

The mean annual air temperature for the same period is 9.3 oC.  129 

 130 

2.2 – Observed input and validation data 131 

Measurements from three sites having flux towers, placed over agricultural, meadow and forest surfaces, 132 

respectively, are used for calibration of the hydrological model (figure 1) as described in Larsen et al. 133 

(submitted). At these locations we have measurements of latent (LE), sensible (H), and soil heat fluxes (G), 134 

radiation components, soil/air temperature, precipitation, wind speed, soil moisture and groundwater 135 

table depth. The latent and sensible heat fluxes are measured above the vegetation using eddy-covariance 136 

sonic anemometers and the soil heat flux is measured using hukseflux plates at 5 cm depths. Latent and 137 

sensible heat fluxes are gap-filled and corrected according to data quality using the Alteddy software 3.5 138 

(Alterra, University of Wageningen, the Netherlands) as described in Ringgard (2012). Up to 45% of the data 139 

is replaced. For the periods 21 July-16 August and 24 August-28 October in 2009, no data were recorded at 140 

the agricultural site and were therefore replaced by data from the forest site (Ringgaard et al. 2011). 141 

Discharge measurements (Q) from the three discharge stations Ahlergaarde (1055 km2), Soenderskov (500 142 

km2) and Gjaldbaek (1550 km2) were also used for calibrating the hydrological model (Larsen et al., 143 

submitted) and in the present study for point validation (figure 1). 144 

To drive the MIKE SWET module six climatic variables are needed. Daily precipitation (PRECIP) data are 145 

derived from gauge stations and interpolated by kriging to a 500 m grid as described in Stisen et al. (2011a). 146 

The precipitation data are dynamically corrected for gauge undercatch (Allerup et al., 1998 and Stisen et al., 147 

2011b). The remaining five variables; air temperature (Ta), wind speed (V), relative humidity (RH), surface 148 

pressure (Ps) and global radiation (Rg) are based on measurements from climatic stations. The data have 149 

been interpolated in space and time to produce hourly datasets at a 2 km resolution (Stisen et al., 2011b). 150 
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For the assessments made here, these six distributed variables have been bi-linearly interpolated to match 151 

the exact grid of the HIRHAM setup allowing for grid-by-grid calculations. 152 

 153 

2.3 – MIKE SHE 154 

In the present study we use the MIKE SHE hydrological model that represents all key hydrological processes 155 

in the land-surface part of the hydrological cycle such as evapotranspiration, snow melt, channel flow (the 156 

MIKE 11 component), overland flow, unsaturated flow, saturated  flow as well as irrigation and drainage 157 

(Graham and Butts, 2005).  158 

The SWET component is included to handle the vegetation and energy balance processes occurring in the 159 

land-surface interface from the root zone and into the lower atmospheric boundary layer (Overgaard, 160 

2005). The SWET model is based on a two-layer system with resistances for both soil and canopy, as 161 

presented in Shuttleworth and Wallace (1985), but modified to include energy fluxes from ponded water 162 

and vegetation interception storage (Overgaard, 2005). A limitation to the current SWET model is that snow 163 

accumulation/melt is not yet included, which may be important under Danish conditions. 164 

In the current setup, the MIKE SHE model is derived from the Danish national water resources model (DK-165 

model) (Stisen et al., 2011a, 2012; Højberg et al., 2013) at 500 m resolution. The model setup includes 11 166 

computational layers in the groundwater system and an extensive river network and is implemented with a 167 

basic (maximum) time step of 1 hour, which is reduced dynamically during precipitation events.  168 

 169 

2.4 – HIRHAM 170 

The climate model used in the present coupling study is the HIRHAM regional climate model version 5 171 

(Christensen et al., 1996; Christensen et al., 2006). HIRHAM is based on the atmospheric dynamics from the 172 

HIRLAM model used for operational weather forecasting (Undén et al., 2002) and physical parameterization 173 

schemes from the ECHAM5 general circulation model (Roeckner et al., 2003). HIRHAM is a hydrostatic 174 

model and typically implemented in resolutions of 5-50 km, here applied at a resolution of 11 km on a 175 
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rectangular grid. The HIRHAM model is here  driven by ERA-Interim reanalysis data as lateral boundary 176 

conditions (Uppala et al., 2008), and the internal model time step is 120 sec. The derivation of the domain 177 

is described in Larsen et al. (2013).   178 

 179 

2.5 – Coupling code 180 

A challenge in developing the coupling code used for this work is that the MIKE SHE and HIRHAM models 181 

operate on different computing platforms, i.e. a Windows workstation and a highly parallelized Linux 182 

supercomputing facility, respectively. To facilitate communication across these very different platforms, an 183 

Open Modelling Interface (OpenMI, www.openmi.org) code have therefore been developed and used on 184 

the Windows workstation side, and MIKE SHE was modified to exploit OpenMI. On the Linux side 185 

modifications to the HIRHAM code were made and additional code controlling the data exchange 186 

developed. An OpenMI interface was installed in order to facilitate the communication between existing 187 

time-dependent model codes running simultaneously and to handle differences in time step, model 188 

domain, resolution and discretization (Gregersen et al., 2005; Gregersen et al., 2007).  189 

The OpenMI and Linux/HIRHAM coupling code served four general functions: 1) To control the timing 190 

between models so that data are stored from one model waiting for the other to reach the point in time of 191 

specified data exchange. 2) To define which variables to be exchanged in both directions and to handle 192 

potential unit conversion factors, offsets and aggregation types. 3) To handle the spatial grid structure of 193 

each model and transfer the data based on a selected spatial interpolation mapping. 4) To collect and 194 

interpolate data for each separate model time step to be exchanged between models at each data 195 

exchange time step, based on the differing time steps in the two model codes, including MIKE SHE’s 196 

dynamically varying time steps during precipitation events. 197 

The exchange of data between the models are selected within the modelling scope of using the HIRHAM 198 

climate forcing as input to MIKE SHE/SWET as well as transferring energy and water fluxes in the opposite 199 

direction.  The exchange of data between the models is as follows: (1) MIKE SHE receives the driving 200 
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variables: PRECIP, RH, V, Rg, Ta and Ps from HIRHAM, and (2) HIRHAM receives the variables LE and surface 201 

temperature (Ts) from MIKE SHE. Ts is then used to calculate H within the HIRHAM code. The spatial 202 

mapping in this study was based on a weighted mean method where each grid cell contributes relatively 203 

according to the land share fraction. 204 

In the current version of the coupling LE and Ts (and therefore H) calculated by MIKE SHE directly replaces 205 

the corresponding variables within HIRHAM one-to-one over the shared domain, whereas outside of the 206 

domain the simple land-surface scheme embedded in the regional climate model is preserved.  207 

Atmospheric fields are then updated based on the modified surface energy balance from MIKE SHE. In this 208 

study no means are implemented to assure ensuing internal physical consistency of fields within HIRHAM. 209 

Therefore, effects directly related to differences in spatial and temporal scales and in the physical 210 

formulation of the land-surface scheme may be found along the boundary of the hydrological catchment. 211 

The boundary effects seen here are however relatively small, which again to a large degree is due to 212 

differences in spatial and temporal scales, i.e. to cell averaging and cancellation of errors when feeding the 213 

MIKE SHE surface back to HIRHAM. In this work we address primarily the effect of the temporal scale 214 

differences on the coupled system i.e. by varying DTI.  215 

The standard OpenMI method for data exchange is memory-based. However, due to local safety 216 

regulations for network data exchange at the location of model execution, the current setup is constrained 217 

to the exchange of data files on a shared drive visible to both the Windows and Linux model setups. 218 

Naturally, this network file transfer generates a significant overhead with respect to execution time when 219 

data exchange is frequent, which by far exceeds that of the added overhead on each of the individual 220 

models. 221 

 222 

2.6 – Simulations 223 
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All model simulations were performed for the one-year period from 1 May 2009 to 30 April 2010 with a 224 

spin-up period from the beginning of March to 30 April 2009. A total of 26 model runs were used; in the 225 

present study they are divided into four main categories (see also table 1): 226 

• Transfer interval (TI): Eight two-way fully coupled simulations were performed by varying the data 227 

transfer interval (DTI), between the HIRHAM and MIKE SHE models, between 12 and 120 min. 228 

These DTI values were chosen to conform to time step restrictions imposed by MIKE SHE (given in 229 

fractions of an hour) to ensure accurate process modelling and to allow for executing model runs 230 

within the time slots allocated by DMI’s supercomputing facility. The TI runs used 1 March 2009 as 231 

starting day. 232 

• HIRHAM uncoupled variability (HUV): Eight HIRHAM uncoupled simulations were performed each 233 

starting one day apart from 1 March to 8 March 2009. 234 

• Coupled variability (CV): Eight two-way fully coupled simulations using a 60 min DTI were 235 

performed using starting dates from 1 March to 8 March 2009 as above. 236 

• MIKE SHE data source (MSDS): To assess the influence of data sources on MIKE SHE performance 237 

two MIKE SHE simulations were performed. (1) Uncoupled mode using observed values of PRECIP, 238 

RH, V, Rg, Ta and Ps and (2) One-way coupled mode using simulated values as driving variables 239 

based on HIRHAM model simulations with 30 min DTI and without feedback to HIRHAM.  240 

The eight uncoupled HIRHAM runs all show varying geographical and temporal patterns of, in particular, 241 

precipitation. With these changes in precipitation, the water available for evapotranspiration and the 242 

energy balance is altered, and therefore attention should be given to which simulations are compared. For 243 

all models runs, simulation output from HIRHAM were assessed for the six climatic variables PRECIP, RH, V, 244 

Rg, Ta and Ps since observations were available. The same observational data were also used as input to 245 

MIKE SHE SWET for the uncoupled runs. Likewise, the output from the MIKE SHE simulations was assessed 246 

by comparing to measurements of LE, H and G at the agricultural, forest and meadow sites (figure 1) as well 247 

as discharge measurements from three gauging stations.  248 
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Figure 2 outlines the data flow and simulation categories. As the Skjern Catchment has an irregular shape, 249 

different degrees of overlap are found between the HIRHAM grid cells and the hydrological catchment 250 

(figure 1). Analyses of PRECIP, RH, V, Rg, Ta and Ps were therefore performed for five domains that reflect 251 

these different degrees of overlap; 252 

• Dom1: Cells with 100% overlap (9 cells) 253 

• Dom2: Dom1 + the cells with 50-100% overlap (23 cells)  254 

• Dom3: Dom2 + the cells with 0-50% overlap (30 cells)  255 

• Dom4: Dom3 + cells located immediately downstream of the catchment with regards to the 256 

dominant western wind direction (42 cells) 257 

• Dom5: A cluster of cells east of the coupled catchment (4 cells)  258 

For HIRHAM output, the evaluation was performed on all five test domains by calculating a single root 259 

mean square error (RMSE) value for each full model simulation. For MIKE SHE output, the RMSE was 260 

performed on the point data only. The RMSE was calculated on the basis of hourly values of RH, V, Rg, Ta, 261 

Ps, LE, H and G and daily values of PRECIP and Q against the corresponding observations for the six HIRHAM 262 

and four MIKE SHE variables: 263 

n

OBSSIM
RMSE ti titi −

= ,
2

,, )(
(1) 264 

where SIM and OBS are simulated and observed values respectively, i and t are location and time 265 

respectively, and n is the total number of data points. To assess the output variability from each of the 266 

three simulation groups involving HIRHAM (TI, CV and HUV), simulation box plots with the 25th and 75th 267 

percentiles including whiskers for the most extreme data were created (figure 5 and 8). 268 

Similarly, the mean absolute errors (MAE) were assessed to gain more information on the expected 269 

improvements for simulations with a more frequent DTI: 270 

n
OBSSIM

MAE ti titi −
= , ,, ||

(2) 271 
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where the terms correspond to the RMSE calculations. The MAE calculations, for the TI simulations, were 272 

performed for each of the six HIRHAM variables over each of the five test domains and the four MIKE SHE 273 

variables at point scale. Linear trend lines, using least squares, were then fitted to the 12-120 min DTI MAE 274 

values for each of the test domains and point scale output and for each variable. The mean absolute and 275 

percentage change in MAE, based on the trend lines from the 120 min to the 12 min data points, were then 276 

calculated. Also, correlation coefficients on the basis of the trend lines were calculated to detect statistical 277 

significance at a 95% two-tailed level. 278 

The HUV and CV simulation groups apply the same changes in initial conditions by using different start 279 

dates to perturb these initial conditions but differ by having different land-surface schemes over the Skjern 280 

catchment. These simulations were therefore used to test for statistical significance of the coupling. A 281 

simple two-sample t-test was performed for each of the test domains and variables for the HUV and CV 282 

simulations to test the hypothesis of these simulation groups having unequal means. 283 

 284 

3 – Results 285 

3.1 – HIRHAM output 286 

3.1.1 - Data transfer interval (DTI) 287 

Of the six HIRHAM output variables, the four variables of PRECIP, RH, V and Ta show a significant decrease 288 

in RMSE with decreasing DTI in the fully two-way coupled mode simulations, whereas Ps is less affected and 289 

Rg is unaffected (figure 3). Based on the linear trend line averages between the domains, RMSE 290 

improvements of 1.1 mm/day, 1.1%, 0.2 m/s and 0.3 oC are seen for PRECIP, RH, V and Ta respectively 291 

(table 2). Similarly,  MAE shows improvements of 0.3 mm/day, 0.8%, -0.1 m/s and 0.2 corresponding to a 292 

change from the 120 to the 12 min simulations of 7.2% averaged for the four significant variables (table 2). 293 

For the variables with statistically significant trends, PRECIP, RH, V and Ta, there is a specific order in the 294 

resulting RMSE trend line locations with the largest RMSE values for Dom1, Dom2 etc., decreasing down to 295 

Dom5.  296 
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The execution time for the coupled setup, as a function of DTI, is shown in figure 4. Only a moderate 297 

increase in execution time is seen in the range of 60-120 min DTI values whereas a sharp increase is seen 298 

from DTI values of around 15-30 min. 299 

 300 

3.1.2 – HIRHAM model variability 301 

Figure 5 shows the output variability for each of the TI, CV and HUV group runs for each of the five test 302 

domains, Dom1-Dom5. For PRECIP, RH, V and to some extent Ta, the largest variability is seen for the two-303 

way coupled runs (TI). The RH and V, using a 60 min DTI, for both the coupled (CV) and uncoupled (HUV) 304 

runs show almost negligible variability. For PRECIP the CV variability is greater than for HUV whereas the 305 

opposite is the case for  Ta. with a larger variability in the HUV simulations. For the variables, PRECIP, RH, V 306 

and Ta, a general decrease in RMSE is seen for the coupled TI and CV simulations with increasing test 307 

domain number from Dom1 to Dom5. For the HUV simulations, this pattern is seen, to some extent, for 308 

PRECIP only. The Rg and Ps variables show comparable levels of variability between the TI, CV and HUV 309 

simulations groups. For Rg, the RMSE values increase with test domain number whereas the opposite is the 310 

case for Ps. When comparing the influence of variability with the influence of DTI it is seen that the range in 311 

RMSE values from the perturbation induced HUV variability corresponds to 47% of the RMSE improvement 312 

for the TI simulations when going from 120 to 12 min (based on the linear trend lines). The corresponding 313 

number when comparing TI with CV is 46%. 314 

Two-sample t-tests confirmed the hypotheses that the results from the HUV and CV simulations belong to 315 

two separate populations for the variables PRECIP, RH, V and Ta with significance levels of 98.2% or above. 316 

For these four variables, there was a clear pattern of decreasing significance with increasing test domain 317 

number corresponding to a lesser degree of coupling. 318 

Figure 6 shows the simulated PRECIP for each run, for each of the TI, HUV and CV simulation groups and for 319 

each test domain. PRECIP is seen to decrease with increasing domain number for all three simulation 320 

groups as well as for observations. This decrease is strongest for the two-way coupled TI and CV simulation 321 
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groups which also show the highest PRECIP levels compared to the uncoupled HUV simulations. Compared 322 

to the observed PRECIP mean over the five test domains of 892 mm over the simulation period, both the TI 323 

and CV simulations consistently overestimate PRECIP with accumulated values of 1004 mm and 1027 mm 324 

respectively. In contrast, the HUV underestimates the PRECIP for this period, with an accumulated value of 325 

868 mm. Despite generally overestimating the rainfall, the coupled TI runs, with high frequency DTIs and a 326 

high degree of coupling (Dom1-Dom3), show better estimates of accumulated rainfall compared to 327 

uncoupled run (CV). With regard to timing there is a tendency for the main part of the TI simulation 328 

variability to arise from events in the fall months of 2009 whereas most of the HUV and CV variability 329 

occurs in early 2010 events.                  330 

In addition to comparing simulation statistics and precipitation accumulation plots, the HIRHAM output 331 

variables for all 24 TI, HUV and CV simulations are plotted in figure 7. This figure shows hourly values for 332 

the period 10 July-17 July, 2009, with the exception of precipitation data which are given as daily values for 333 

all of August, 2009. The one-week period was chosen to reflect high dynamics in the peak summer period 334 

whereas the one-month period of august showed more precipitation as compared to July. A large spread is 335 

seen for precipitation amounts on individual days that appears to increase with the mean intensity, most 336 

pronounced on 10 and 20 August. Reasonable agreement is seen between these simulations in terms of 337 

capturing the dry days. For the remaining five variables, RH, Ta, Ps and especially V and Rg, the period with 338 

low pressure and precipitation, 10 July to 12 July, exhibits a fair amount of spread between the individual 339 

simulations, whereas the remaining period, 13 July to 17 July, shows a higher degree of consistency within 340 

each simulation group (TI, HUV and CV) especially in terms of dynamics. For the PRECIP, RH, V and Ta 341 

variables the coupled simulations groups of TI and CV clearly deviate from the HUV simulations in terms of 342 

the timing, dynamics and absolute levels. Of these, the most noticeable difference is the daytime RH and 343 

night time Ta, which are notably higher and lower, respectively, for the HUV simulations.  344 

 345 

3.2 – MIKE SHE output 346 
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As for the HIRHAM simulations, the MIKE SHE RMSE results are plotted as a function of DTI (figure 8). LE 347 

shows a general improvement in RMSE with a higher frequency of exchange (smaller DTI), which is 348 

strongest for the agriculture and forest sites. Correlation coefficients between RMSE and DTI of 0.83, 0.55 349 

and 0.13 are found for the agriculture, forest and meadow sites respectively. Conversely, H shows general 350 

decreases in RMSE with increased DTI and with correlation coefficients of -0.80 to -0.83. The changes in LE 351 

and H thereby represent opposing signals which could be expected, to some degree, from the conservation 352 

of the energy balance. No clear trend between DTI and RSME results is seen for both G and Q and the 353 

corresponding correlation coefficients are generally low.  354 

For LE, an absolute improvement of 1.9 W/m2 in both MAE and RMSE is seen from the 120 to 12 min trend 355 

line average data points corresponding to 6.9% and 4.5% for MAE and RMSE respectively (table 2). Overall 356 

the one-way coupled and uncoupled MSDS simulations are superior to the TI simulations with the 357 

exception of agricultural LE and G and meadow G. The HIRHAM climate model variability as represented by 358 

the CV simulations produces a resulting MIKE SHE RMSE total output span of 1.5 W/m2, 1.5 W/m2, 0.7 359 

W/m2 and 2.2 m3/s for LE, H, G and Q as an average of the three surfaces and the three discharge stations 360 

(figure 8). By comparison the TI simulations induce a spread in the corresponding results, not based on the 361 

trend lines as in table 2, of 3.7 W/m2, 3.8 W/m2, 4.5 W/m2 and 1.3 m3/s, respectively.  362 

The variations in the MIKE SHE output for four variables LE, H, G and Q, for the CV and TI model runs, are 363 

shown in figure 9. Also here there is no distinct pattern distinguishing the TI and CV simulation group 364 

results. The simulations for 10-12 July show larger variations in simulated fluxes reflecting the variability in 365 

the HIRHAM simulations. Using either observation data as driving input for MIKE SHE or the HIRHAM data 366 

(i.e. the MSDS runs) however resulted in substantial variations in the results. As expected due to the change 367 

in forcing data, the uncoupled (observation data input) runs resulted in shifts in LE, H and G values for both 368 

peaks (day time) and lows (night time) most obvious for G. The one-way coupled run output (HIRHAM data 369 

input) seems to provide better match than when based on observation data, especially for night time LE 370 

and G, than the TI and CV runs. It should be pointed out that for this analysis (figure 9), that although 371 
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results are extracted from three single MIKE SHE cells (for meadow, forest and agriculture), the forcing data 372 

are based on either 11 km resolution HIRHAM data input (TI and CV) or 10 km observation gridded data 373 

(station interpolated – MSDS), which can be expected to smooth out local features.   374 

    375 

4 – Discussion  376 

The motivation for performing this coupling study is to include the land-surface-atmosphere interactions 377 

between the RCM and the hydrological model. Our hypothesis is that the RCM will benefit from the more 378 

detailed representation of the surface and subsurface processes provided by the dedicated hydrological 379 

model as compared to the much simpler land-surface schemes that climate models usually rely on. 380 

Similarly, we expect that the hydrological model would benefit from the better representation of the 381 

horizontal redistribution processes in the atmosphere offered by the dynamic coupling with the climate 382 

model.  383 

 384 

4.1 - Performance of coupled versus uncoupled model 385 

As shown above, the performance of the coupled model simulations (TI and CV) when compared to hourly 386 

values of RH, V and Ta and daily PRECIP, is generally poorer than the uncoupled model simulations (HUV). 387 

This is not surprising. Even though it is based on basic physical principles the HIRHAM RCM has been 388 

refined over the years, e.g. in terms of convective parameterization and land-surface albedo, to better 389 

reproduce observations. Moreover, the model configuration (domain extent and grid size) used here was 390 

the best performing in terms of simulating precipitation and air temperature, as well as representing the 391 

atmospheric circulation patterns (Larsen et al., 2013). Likewise, MIKE SHE SWET has been subject to 392 

rigorous inverse modelling to assess parameter values (Larsen et al., submitted). By coupling, the existing 393 

land-surface scheme in HIRHAM is replaced by MIKE SHE SWET over the Skjern catchment. Calibration or 394 

parameter tuning of complex models comprising several processes often introduces compensational errors 395 

(i.e. providing the right answer for the wrong reason) in the different model components, in order to 396 
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ensure that the model fits observational data as well as possible (Graham and Jacob, 2000). When the 397 

existing land-surface scheme in HIRHAM is replaced by MIKE SHE SWET, it will inevitably provide different 398 

results likely to be poorer in terms of a hindcast assessment. We should, however, highlight that the 399 

coupled system shows benefits over the uncoupled when assessing longer term periods such as cumulative 400 

precipitation where high frequency DTI’s produce better results (figure 6). Also, greater accuracy in the 401 

representation of soil moisture and water available for evapotranspiration, in the coupled system, could 402 

explain these findings. In terms of future climate projections, which are typically in the range of 10-30 year 403 

integrations, this is very promising and suggests that there could be potential added value in using the 404 

coupled model system. Similar results, where the added complexity when joining two existing model 405 

systems does not lead to obvious direct improvements in simulations, has also been seen in studies of 406 

coupling ocean models and atmosphere models (Covey et al., 2004).   407 

From a different perspective the fact that the hourly to daily coupled model performance in many respects 408 

is poorer, when replacing the existing land-surface scheme with a more elaborate and well-calibrated one 409 

(MIKE SHE SWET), suggests that some of the HIRHAM components could be improved. So far very few 410 

attempts have been made in formalised calibration of RCMs, and we are not aware of any study that aims 411 

at calibrating coupled hydrology-RCM models. While there is a very interesting perspective here in a formal 412 

calibration of HIRHAM, e.g. as done by Bellprat et al. (2012), and in learning from the coupled model to 413 

improve the HIRHAM parameterisations, this is outside the scope of the current study. 414 

To some degree the atmospheric variables are likely to be affected by the discontinuity in model physics 415 

between HIRHAM uncoupled cells and MIKE SHE coupled cells for the present version of the modelling 416 

setup. With the current experimental setup it was however not possible to distinguish between this effect 417 

and the change in land-surface signal from MIKE SHE as opposed to the inherent HIRHAM land-surface 418 

scheme signal. Large differences in surface fluxes between neighbouring grid cells both inside and outside 419 

the coupled area are nonetheless seen, as induced by differences in vegetation, soil, topography etc., and 420 

discontinuities at the uncoupled-coupled interface are therefore not considered important.   421 
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 422 

4.2 – Data transfer interval (DTI) 423 

As four out of six of the assessed climatic variables exhibit improved performance statistics with a lower 424 

DTI, the relation between computation time and DTI (figure 4) is highly relevant for studies over longer 425 

periods. This improved performance of the coupled setup is constrained, however, by a corresponding 426 

increase in computation time. The general decrease in RMSE levels with lower DTI is not surprising as a 427 

more frequent update of the surface forcing from MIKE SHE will include more dynamic features in the land-428 

surface exchange and better align with variations in the surface energy balance affecting the land-429 

atmosphere interaction. To fully capture the higher degree of dynamics in the land-surface-atmosphere 430 

interaction and dependence during unstable atmospheric conditions, a high frequency DTI closer to the 431 

RCM time step is likely to be important. One might suspect the effect of DTI to level off when approaching 432 

the internal HIRHAM model time step of 120 seconds and to obtain results affected by coupling features 433 

alone. Along these lines, a more dynamic pattern is seen for most variables for days with a higher degree of 434 

cloud cover and lower Rg levels (10 and 17 July) (figure 7).   435 

Similar to this study Maxwell et al. (2011) have tested the timing of data transfer between the ParFlow 436 

hydrological model and the WRF atmospheric model in a 48 hour idealized constructed setup. The 437 

simulations were performed by using four transfer intervals of 5, 10, 60 and 360 seconds, where WRF used 438 

a constant time step of 5 seconds (nonhydrostatic model) and the time step in ParFlow varied with the 439 

transfer interval. Good water balance results were obtained for transfer rates up to 12 times that of WRF 440 

(60 seconds) whereas the results for transfer interval of 360 second deteriorated. Even though a smaller 441 

time step was used in WRF than in HIRHAM in the present study (5 seconds compared to 120 seconds), the 442 

results of Maxwell et al. (2011) correspond reasonably well to our results, where a transfer rate of 12 times 443 

that of HIRHAM would correspond to a 24 min DTI.         444 

 445 

4.3 - Impact of coupling evaluated against climate model variability 446 
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Climate models as proxies for real atmospheric conditions show considerable internal variability and the 447 

effects of introducing a full coupling therefore need to be evaluated on the basis of several simulations, 448 

where e.g. the initial boundary conditions are perturbed. In some cases the internal variability could be as 449 

large as effects introduced by the coupling of a regional climate model and a hydrology model. Hence, it is 450 

critically recommendable to explore variations caused by the physical changes (i.e. the coupling) as 451 

opposed to the internal climate model variation when developing coupled climate-hydrology modelling 452 

systems. 453 

In our study the precipitation amounts spanning 75-99 mm and 52-134 mm for the HUV and CV simulations 454 

respectively, exhibit a significant variability in simulated PRECIP simply as a result of changes in the initial 455 

conditions. This has also been shown in several other studies (Casati et al., 2004; van de Beek et al., 2011; 456 

Larsen et al., 2013), which have highlighted the importance of considering climate model variability when 457 

assessing model performance. In the present case the coupling is seen to inflate the variability of local 458 

precipitation as compared to the uncoupled climate model simulations even considering internal climate 459 

model variability.  Since many climate models generally tend to underestimate the variability of local 460 

precipitation thus providing unrealistic projections of e.g. extreme precipitation events, this is again a 461 

potentially promising feature of a coupled model system e.g., with respect to the representation of long-462 

term trends in precipitation for longer periods (multiple years) and in future climate projections, and will be 463 

investigated in future studies.  464 

 465 

4.4 – Test domains 466 

There is a clear tendency for increased RMSE levels from the TI simulations with a higher degree of coupling 467 

from Dom1 to Dom5 with the exception of Rg results (figure 3). An important consideration in this regard 468 

is, however, the specific location of each of the domains within Denmark (figure 1). For the uncoupled HUV 469 

simulations, a similar pattern of increased RMSE values is seen in PRECIP for the same test domains as for 470 

the TI simulations. Therefore, it is not possible to directly relate the share of MIKE SHE influence on the 471 
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HIRHAM simulations to the results. An additional cause of the pattern of higher RMSE levels for test 472 

domains located in central Jutland (Dom1 – Dom4) as compared to the eastern Dom5 could be related to 473 

certain geographical biases in the precipitation as often seen in RCMs, including HIRHAM (Jacob et al., 474 

2007; Polanski et al., 2010). Corresponding biases for temperature have also been found (Kjellström et al., 475 

2007; Plavcová and Kyselý, 2011). Proximity to the coastline has also been shown to affect precipitation 476 

results from HIRHAM (Larsen et al., 2013) and thereby the available water affecting the energy balance 477 

budget. In this regard, the test domains Dom2 and specifically Dom3-Dom4 are located close to Ringkøbing 478 

Fjord, which might contribute to the higher RMSE levels of these compared to Dom5.  479 

 480 

4.5 - Scale of variables 481 

An essential consideration is to assess at which spatial scale the atmospheric variables are affected by the 482 

land-surface. The Skjern River catchment covers an area of approximately 70 km x 50 km, and our 483 

hypothesis is that areas in the proximity of the catchment and up to 25 km downstream of the catchment 484 

(in relation to the dominant wind direction) may be affected by the model coupling. This corresponds to 485 

atmospheric scales from smaller mesoscale to microscale. It could be argued, however, that the effect of 486 

the coupling, although tested on regional scales below 100 km, could likely be imposed regionally on top of 487 

larger scale atmospheric phenomena such as larger mesoscale and synoptic scale features. In this regard it 488 

should be noted that global incoming solar radiation (Rg) which is by and large affected by cloud cover and 489 

therefore by upstream larger meso- and synoptic scale conditions, shows no effect of the coupling scenario, 490 

as the RSME pattern resembles a somewhat random pattern as a function of DTI, test domain and model 491 

variability (figure 3). Similarly surface pressure (Ps) would be connected with larger scale weather systems 492 

and sea surface temperatures (Køltzow et al., 2011) and is seen to be constrained, to some degree, by 493 

lateral boundary conditions (Seth and Georgi, 1998; Diaconescu et al., 2007; Leduc and Laprise, 2009) but is 494 

highly influenced by domain characteristics (Larsen et al., 2013).  The variables RH, V and Ta all vary on 495 

spatial scales far below the resolution of HIRHAM and even MIKE SHE and the improved results with a more 496 
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frequent DTI could therefore be anticipated to some extent. Also PRECIP, in particular convective rainfall, 497 

can be seen at grid scales below the HIRHAM resolution (Casati et al., 2004).  498 

Another potential contribution to the coupled model performance comes from the fact that HIRHAM is a 499 

hydrostatic RCM with a convective scheme close to, or at, the threshold of its minimum resolution as also 500 

suggested in Larsen et al. (2013). Although, HIRHAM has been tested at similar spatial scales previously and 501 

was found to provide reasonable results, at very fine temporal scales the hydrostatic nature of HIRHAM 502 

could arguably contribute to the degree of variability seen for precipitation, and the 11 km resolution 503 

naturally has its limits compared to newer studies utilizing atmospheric model resolutions of a few 504 

kilometres such as Kendon et al. (2014). For hydrological studies forcing data having finer resolutions are 505 

highly beneficial (Xue et al., 2014) and must be expected even more important for regions with a complex 506 

topography and a high degree of convective precipitation. One approach to reach fine resolutions 507 

appropriate for hydrological studies is seen in Berg et al. (2012) using a range of downscaling methods to 508 

achieve a resolution of 1 km over a Northern European region thereby demonstrating significant 509 

improvements for both temperature and precipitation. Conversely, the uncertainty related to, e.g. the 510 

location and timing of precipitation events, are in general much larger than the model resolution even for 511 

very high resolution non-hydrostatic models, particularly at the time scales of climate projections 512 

(Rasmussen et al., 2012).  Hence, in practical terms, the HIRHAM-MIKE SHE setup explored in this paper 513 

represents a reasonable compromise in terms of delivering results of sufficient spatial representation for a 514 

number of problems in climate projection studies. 515 

 516 

4.6 - Perspectives for further use  517 

Computationally, we show that it is feasible to run simulations using coupled models dedicated to different 518 

types of computing systems, in this case a high performance computer and a personal computer. 519 

Moreover, we have demonstrated that transient coupled climate-hydrology simulations at the decadal 520 

scale or longer is well within reach. The present proto-type implements a number of technical decisions 521 
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inherent to the computing environment available for this study and more work is needed in order to reduce 522 

computation times, e.g. implementation of a more efficient memory-based data transmission schemes as 523 

prescribed in the OpenMI standard. In its current form the coupling approach, however, may easily be 524 

generalized to other computing environments. In terms of further model development this work suggests 525 

that several steps may be undertaken to improve the coupled model performance. While we directly link 526 

model variables in the present study using an OpenMI interface, the present framework could easily be 527 

extended by imposing empirical downscaling and bias correction methods to further improve model 528 

compatibility across time and spatial scales.  529 

 530 

5 – Conclusions 531 

This study presents the performance of the fully two-way coupled setup between the HIRHAM RCM and 532 

the combined MIKE SHE/SWET hydrological and land-surface models. In particular, the influence of the data 533 

transfer interval between the models (DTI), the domain of coupling influence and the HIRHAM model 534 

variability, was assessed.  535 

Of the six HIRHAM output climate variables, precipitation, relative humidity, wind speed and air 536 

temperature (PRECIP, RH, V and Ta) showed significant differences between simulations from perturbed 537 

runs of HIRHAM and perturbed runs of two-way coupled MIKE SHE-HIRHAM, as well as significant 538 

improvements in RMSE with a reduced DTI in the evaluated range of 12 to 120 min DTIs. The improvement 539 

for precipitation is highlighted with regard to the potential in the coupled setup as this is considered one of 540 

the most difficult variables to simulate. The global radiation and surface pressure variables (Rg and Ps) were 541 

shown to have little to no impact from the coupling. Little to no improvement in the MIKE SHE output 542 

variables is seen for decreased DTI values as the improvement in latent heat flux (LE) is in the same range 543 

as the sensible heat flux (H) decline.    544 

The uncoupled and coupled HIRHAM model variability, induced by perturbing the HIRHAM runs with 545 

varying starting dates, was shown to correspond to 47% and 46%, respectively, of the average 546 
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improvements in RMSE and MAE for the four significant variables when going from a 120 min to a 12 min 547 

DTI. Similarly significant variations were seen in the simulated precipitation where the eight two-way fully 548 

coupled simulations with 12 to 120 min DTI values (TI) produced spans in precipitation during the one year 549 

period of 108-170 mm for the five test domains. Similarly, the uncoupled (HUV) and coupled (CV) 550 

simulations where model variability was induced by changing initial conditions showed precipitation spans 551 

of 75-99 mm and 52-134 mm respectively. For all of these, the resulting span increased with a higher 552 

degree of coupling. Part of this pattern may be attributed to well-known geographical HIRHAM bias over 553 

the central Jutland ridge. The HIRHAM model variability as transferred to the MIKE SHE model in the 60 min 554 

DTI CV simulations were substantially higher for discharge than for the LE, H or soil (G) heat fluxes. 555 

In general, the coupled modeling results (TI and CV) are poorer than the uncoupled results (HUV) when 556 

assessed on a sub-daily to daily basis whereas longer term precipitation is better reproduced by more 557 

frequent DTI coupled simulations. The poorer short-term coupled performance is not surprising as each of 558 

the models over the years, also prior to this study, have been separately refined (convective scheme and 559 

land-surface energy balance) or calibrated to accurately reproduce observations. These calibrations are 560 

likely to have compensated for errors in the separate and complex model components to ensure a proper 561 

data fit. We suggest that the replacement of the land-surface scheme in HIRHAM, as introduced by MIKE 562 

SHE, and the change in data input in MIKE SHE, as introduced by HIRHAM, causes this deterioration. A 563 

potential calibration of the coupled setup is outside the time-frame and scope of the present paper, 564 

however we see a great potential for further improvements.      565 
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Simulation group 
name 

No. of 
runs Description HIRHAM MIKE SHE 

Coupled simulations TI 8 Fully two-way coupled, DTI's of 12, 15, 24, 30, 48, 60, 90 and 120 min x x 

  CV 8 Fully two-way coupled, DTI's of 60 min, perturbed initial conditions 
(simulations start between 1-8. May) x x 

One-way or uncoupled 
simulations HUV 8 HIRHAM runs alone, perturbed initial conditions (simulations start 

between 1-8. May) x   

  MSDS 2 Two MIKE SHE runs with 1) observation data forcing and 2) with HIRHAM 
forcing through a one-way coupling   x 

Table 1. 767 

 768 

 Variable MAE absolute 
change 

MAE 
percentage 

change 

MAE CV 
variability 

MAE HUV 
variability 

RMSE 
absolute 
change 

RMSE 
percentage 

change 

RMSE CV 
variability 

RMSE HUV 
variability 

HIRHAM 
output 

variables 

PRECIP 
(mm/day) 

0.3 8.3 0.2 0.2 1.1 16.4 0.7 0.6 

RH (%) 0.8 7.9 0.3 0.1 1.1 8 0.3 0.2 

V (m/s) 0.1 5.4 0.0 0.0 0.2 5.8 0.5 0.1 

Rg (W/m2) -0.1 -0.2 2.6 1.3 -0.1 -0.1 6.0 3.2 

Ta (oC) 0.2 10.1 0.1 0.1 0.3 8.8 0.1 0.2 

Ps (hPa) 0.0 1.8 0.1 0.1 0.1 2.7 0.2 0.2 

MIKE SHE 
output 

variables 

LE (W/m2) 1.9 6.9 0.9 - 1.9 4.5 1.5 - 

H (W/m2) -2.3 -7.4 0.5 - -3.1 -6 1.5 - 

G (W/m2) -0.1 -3.1 0.2 - -0.7 -7.9 0.7 - 

Q (W3/s) -0.4 -12.2 0.7 - 0.1 -0.1 2.2 - 

Table 2. 769 

 770 

Figure 1. Location of HIRHAM regional climate domain within Europe, MIKE SHE catchment within Denmark, three 771 

point measurement sites, and location of five evaluation domains. 772 

 773 

Table 1. Simulation outline showing simulation groups, number of runs in each group and short description of 774 

simulation group characteristics. The two latter columns show from which of the two model components the 775 

simulation output derives. 776 

 777 

Figure 2. Flow chart of the data flow and analyses performed in the present study and a legend of the variables 778 

mentioned in the study. 779 

 780 
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Figure 3. HIRHAM output RMSE statistics for each of the test domains for the coupled TI simulations. Linear trend lines 781 

are shown with RMSE as a function of DTI as well as the average trend line correlation coefficients where the 782 

significant correlations on a two-sided 95% confidence level are underlined.     783 

 784 

Figure 4. Model execution time in hours of wall time as a function of DTI. DTI steps of 6, 9, 12, 15, 24, 30, 48, 60, 90 785 

(eight CV runs), and 120 min were used whereas 6 and 9 min DTI values were extrapolated from unfinished runs. For 786 

comparison the dashed line is the execution time for the uncoupled HIRHAM runs (HUV). Reprinted from Advances in 787 

Water Resources, doi: 10.1016/j.advwatres.2014.09.004, Butts, M., Drews, M., Larsen, M. A. D., Lerer, S., Rasmussen, 788 

S. H., Gross, J., Overgaard, J., Refsgaard, J. C., Christensen, O. B. and Christensen, J. H, Embedding complex hydrology 789 

in the regional climate system – dynamic coupling across different modelling domains, 2014, with permission from 790 

Elsevier. 791 

 792 

Figure 5. RMSE variability for the TI, HUV and CV simulations for each of the five test domains. The dots represent the 793 

median value, the box plots represent the 25-75th percentiles and the whiskers represent the entire data range.    794 

   795 

Table 2. Absolute and percentage change in MAE and RMSE between the largest (120 min) and smallest (12 min) DTI 796 

based on the average value of the linear trendlines of either the five test domains (HIRHAM output) or the 797 

measurement sites (MIKE SHE output). Also shown is the absolute variability from the CV and HUV runs defined as the 798 

minimum value subtracted from the maximum for the 60 min DTI averaged between test domains (HIRHAM output) 799 

or measurement sites (MIKE SHE output) for each tested variable. 800 

 801 

Figure 6. Precipitation sum curve for the evaluation period 1 May 2009 to 30 April 2010 for the five test domains and 802 

the TI, HUV and CV simulations as well as the observations. Also given are the simulated mean values, the span in the 803 

period sum for each plot group (minimum value subtracted from maximum value) and the observed mean values.  804 

 805 

 806 

 807 
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Figure 7. The six HIRHAM output variables assessed in the present study in the 10-17 July period (precipitation is 1-31 808 

August to match the period in figure 9 with a higher dynamic in discharge) for all 24 TI, HUV and CV runs and for Dom1 809 

(nine cell mean). The legend colouring reflects the overall simulation group (TI, HUV or CV) whereas each simulation is 810 

in the colour shade as in figure 6.   811 

 812 

Figure 8. MIKE SHE output RMSE statistics for each of the three flux tower measurement sites and the three discharge 813 

stations for the TI, MSDS and CV simulations. For the TI simulations linear trendlines are shown with RMSE as a 814 

function of DTI as well as the average trendline correlation coefficients where significant correlations on a two-sided 815 

95% confidence level are underlined. Also, the variability of the perturbed CV simulations is shown.     816 

 817 

Figure 9. Four MIKE SHE output variables for the period 10-17 July (discharge is 1-31 August) for the TI, CV and MSDS 818 

runs and for Dom1 (nine cell mean). The legend colouring reflects the overall simulation group (TI, CV and MSDS) and 819 

each simulation has the same colour shade as in figure 6.  The individual flux sites are shown for LE only. Notice the y-820 

axis shifts to accommodate more sites.    821 
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